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Genome of a giant isopod, Bathynomus 
jamesi, provides insights into body size 
evolution and adaptation to deep‑sea 
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Abstract 

Background:  The deep-sea may be regarded as a hostile living environment, due to low temperature, high hydro-
static pressure, and limited food and light. Isopods, a species-rich group of crustaceans, are widely distributed across 
different environments including the deep sea and as such are a useful model for studying adaptation, migration, and 
speciation. Similar to other deep-sea organisms, giant isopods have larger body size than their shallow water relatives 
and have large stomachs and fat bodies presumably to store organic reserves. In order to shed light on the genetic 
basis of these large crustaceans adapting to the oligotrophic environment of deep-sea, the high-quality genome of a 
deep-sea giant isopod Bathynomus jamesi was sequenced and assembled.

Results:  B. jamesi has a large genome of 5.89 Gb, representing the largest sequenced crustacean genome to date. Its 
large genome size is mainly attributable to the remarkable proliferation of transposable elements (84%), which may 
enable high genome plasticity for adaptive evolution. Unlike its relatives with small body size, B. jamesi has expanded 
gene families related to pathways of thyroid and insulin hormone signaling that potentially contribute to its large 
body size. Transcriptomic analysis showed that some expanded gene families related to glycolysis and vesicular 
transport were specifically expressed in its digestive organs. In addition, comparative genomics and gene expression 
analyses in six tissues suggested that B. jamesi has inefficient lipid degradation, low basal metabolic rate, and bulk 
food storage, suggesting giant isopods adopt a more efficient mechanism of nutrient absorption, storage, and utiliza-
tion to provide sustained energy supply for their large body size.

Conclusions:  Taken together, the giant isopod genome may provide a valuable resource for understanding body size 
evolution and adaptation mechanisms of macrobenthic organisms to deep-sea environments.
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Background
The deep-sea environment is characterized by darkness, 
low temperature, high hydrostatic pressure, and lack of 
food. Despite this hostile environment, a growing num-
ber of deep-dwelling animals have been identified in this 
ecosystem, including worms, mollusks, fish, crustaceans, 
and so on [1, 2]. Crustaceans are one of the dominant 
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invertebrates inhabiting deep-sea environment, and 
among them, some macrobenthos (e.g., giant isopods and 
amphipods) are specifically attractive as their body sizes 
are significantly larger than their shallow-water relatives 
[3]. Decoding genomes of these deep-sea species helps us 
understanding their unique adaptive mechanisms [4–8], 
whereas deep-sea crustaceans, including macrobenthos, 
lack relevant genome information.

Isopods are a large group of crustaceans with more 
than 10,000 species described. So far, Isopoda is one of 
the limited groups widely distributed in various environ-
ments, as they have been found in all oceans at differ-
ent depths (from intertidal zone to hadal zone), in fresh 
and brackish waters, and on land (Fig. 1A) [9]. Therefore, 
Isopoda is an ideal model for studying migration and 

speciation, especially for the shift from shallow water to 
deep sea, and from ocean to land. Notably, isopods are 
one of the most morphologically diverse groups of crus-
taceans. Its size ranges from 0.5 cm (dwarf species) to as 
big as 50 cm for giant isopods [10]. Consistent with the 
Cope-Bergmann’s Rule, isopods from deep sea tend to 
be larger than their relatives in shallower waters [11]. 
As the largest extant animals on the planet are aquatic 
and many of them are deep-sea organisms, the impact 
of marine habitats and evolutionary adaptation on body 
size is mysterious and noteworthy [12]. Besides, body 
size has always been regarded as one of the most impor-
tant quantitative traits in evolutionary scrutiny, which is 
strongly correlated with many physiological and fitness 
characters [13]. Thus, isopods provide an excellent model 

Fig. 1  The distributions and phenotypes of isopods. A The distributions of various isopods from the land to deep-sea environments. B The 
morphology of the giant isopod, B. jamesi 
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for studying the adaptive evolution of body size, whereas, 
even with a great number of species, only two isopods, 
Armadillidium vulgare and Armadillidium nasatum, 
have been sequenced so far, and they are both terrestrial 
[14, 15]. Genomics of marine isopods, especially deep-
sea species, is far from being understood.

Bathynomids (Crustacea: Isopoda: Cirolanidae) is 
regarded to be the “supergiant group” of isopods, which 
is well known for their big size [16, 17]. Bathynomids 
inhabit deep-sea benthic environment that are generally 
found on muddy bottoms at depths from 170 m to the 
dark of 2140 m [17, 18]. To adapt to the benthic environ-
ment, bathynomids adopt a burrowing behavior [19]. 
They have developed an oversized stomach, which can 
take approximately 2/3 of the whole body cavity when it 
fills up with food (Fig. 1B). In addition, midgut glands and 
adipocytes (collectively called “fat body”) are distributed 
throughout the body of bathynomids to store organic 
reserves [20]. Furthermore, bathynomids are well known 
for their extremely long fasting state (over 5 years), which 
should be the longest record to date [21]. Larger animals 
usually have greater absolute energy requirements [22]. 
However, the deep-sea conditions are harsh and food-
limited, which seems to be unsuitable for the survival of 
giant animals [8, 23]. Therefore, a special efficient mech-
anism should be adopted by these supergiant isopods 
adapting to the deep-sea oligotrophic conditions.

Deep-sea expeditions provide excellent opportunities 
for us to uncover the unusual deep-sea creatures. Dur-
ing a recent expedition near Hainan Island in the north-
ern South China Sea, a new deep-sea (a depth of 898 m) 
bathynomid species, Bathynomus jamesi Kou, Chen & 
Li, 2017, was collected and identified [24]. In this study, 
a high-quality genome assembly of B. jamesi was gener-
ated using PacBio sequencing technology. Analysis of 

the genomic characteristics identified potential factors 
related to the genome size evolution of B. jamesi. Based 
on the comparisons between the genomes of B. jamesi 
and its terrestrial relatives and other crustaceans, we 
have identified some expanded and positively selected 
gene families related to its body size evolution and deep-
sea environment adaptation. This genome provides valu-
able resource for understanding evolutionary history of 
isopods and their deep-sea environmental adaptation 
mechanisms.

Results
Genome assembly and annotation
To estimate genome size of B. jamesi, a total of 235.25 
Gb Illumina short reads were generated and utilized for 
genome survey analysis (Additional file  1 : Table  S1). 
K-mer analysis indicated that the genome size of B. jamesi 
is approximately 5.24 Gb (Additional file  1: Fig. S1), 
which is larger than most crustacean genomes reported 
so far (generally < 2 Gb; Additional file 1: Table S2).

To assemble the genome of B. jamesi, 360.80 Gb PacBio 
long reads were generated and de novo assembled (Addi-
tional file  1: Table  S1). The final assembly was 5.89 Gb 
in total length with a contig N50 length of 587.28 Kb, 
showing a higher continuity than the genomes of terres-
trial isopod A. vulgare (contig N50 = 38.36 Kb) and many 
other crustaceans as well (Table 1) [14].

This genome assembly displayed a high quality as 
assessed by the coverage of raw Illumina sequencing 
data (99.80%) and RNA-seq data (84.23%) (Additional 
file  1: Table  S3). Besides, a high proportion of BUSCOs 
(94.98%) were covered by the B. jamesi genome, which 
is comparable to or better than many recent sequenced 
crustacean genomes (Table  1; Additional file  1: Fig. S2, 
Table S4) [14, 25–27].

Table 1  Summary of genome assembly and characteristics of B. jamesi and other three crustaceans

Species B. jamesi A. vulgare L. vannamei E. sinensis

Genome size (bp) 5,892,409,081 1,725,108,002 1,618,026,442 1,562,256,418

Number of Contigs 22,827 52,740 50,304 12,722

Contig N50 (bp) 587,279 38,359 57,650 26,045

Contig N90 (bp) 108,712 18,318 14,641 2,670

Genome GC percent% 37.28% 29.15% 35.68% 46.39%

BUSCOs coverage (%) 94.80% 91.38% 94.00% 91.20%

Repeat percentage (%) 85.32% 69.54% 49.39% 45.30%

Gene number 23,221 19,051 25,572 28,033

Gene average length (bp) 936 1259 1546 1078

Exon number per gene 4.18 4.93 5.94 3.26

Exon average length (bp) 223 181 260 330

Intron average length (bp) 3010 1872 1484 1602



Page 4 of 17Yuan et al. BMC Biology          (2022) 20:113 

A total of 23,221 protein-coding genes were predicted 
and annotated in the B. jamesi genome (Table  1; Addi-
tional file 1: Fig. S3). The average intron length of genes 
(3010 bp) was significantly longer than that of A. vulgare 
(1872 bp) and many other crustacean genomes with rela-
tive smaller genome sizes (Table 1). It is consistent with 
the view that intron size is positively correlated with 
genome size [28].

Repeats and genome size evolution
According to the Animal Genome Size Database (www.​
genom​esize.​com), C-value of isopods ranges from 1.71 
to 8.82 pg, indicating there is a 5.2-fold variation of their 
genome sizes (Additional file 1: Table S5). B. jamesi has 
the largest genome (5.89 Gb) among sequenced crus-
tacean genomes (Additional file  1: Table  S2), which is 
about 3.4-fold larger than that of the A. vulgare genome 
(1.73 Gb) and approximately 49-fold of the clam shrimp 
Eulimnadia texana genome (0.12 Gb). Whole-genome 
duplication (WGD) has been identified to be one of the 
main factors causing genome expansion. However, only 
six syntenic blocks of paralogous genes were identified 
in the B. jamesi genome, which was far less than that of 
the horseshoe crab Tachypleus tridentatus (320 syntenic 
blocks), a species with WGD. In addition, Ks peak related 
to WGD and duplicated Hox gene cluster have not been 
identified in the B. jamesi genome (Additional file 1: Fig. 
S4). Therefore, B. jamesi appears to have not undergone 
WGD.

K-mer analysis indicated that 89.7% of the B. jamesi 
genome was composed of repetitive sequences. Con-
sistently, based on the RepBase and a local repeat data-
base that generated by RepeatModeler, a total of 5.03 Gb 
sequences (85.32%) were annotated as repeats, which 
were significantly more than those of any other crus-
taceans (generally < 60%, p < 0.05) (Table  2; Additional 
file  1: Table  S2). A strong positive correlation between 
repeat content and genome size has been identified 
among crustacean genomes (r = 0.68, p = 0.00275, Pear-
son’s test) (Fig.  2A), suggesting that repeat proliferation 
might be the major driving force for the genome expan-
sion of B. jamesi.

Transposable elements (TEs) and simple sequence 
repeats (SSRs) accounted for 84.27% and 0.65% of the B. 
jamesi genome, respectively (Table 2). Different from B. 
jamesi, the A. vulgare genome contained significant less 
TEs (47.89%) and more SSRs (18.08%) that similar with 
the SSR-rich species [25]. TEs accounted for 98.77% of 
the total repeats of B. jamesi, indicating their prominent 
role in genome expansion. DNA transposons (35.99%), 
long interspersed nuclear elements (LINEs, 19.36%) and 
long terminal repeats (LTRs, 5.95%) were three major 
groups of TEs in the B. jamesi genome (Table  2). The 

proportions of LINEs and LTRs in the genome of B. 
jamesi was similar to its terrestrial relative A. vulgare. 
Among them, two typical LINEs (CR1 and Penelope) 
and two types of LTRs (Pao and Gypsy) showed apparent 
proliferation in the genomes of B. jamesi and A. vulgare. 
In contrast to LINE and LTR, DNA transposon was the 
most abundant TE (35.99%) in the B. jamesi genome, and 
its content was significantly higher than that of A. vulgare 
(7.08%, p < 0.05). Five types of DNA transposons, includ-
ing TcMar-Tc1 (6.05%), hAT-hATm (5.77%), Maverick 
(5.08%), En-Spm (3.28%), and hAT-Tip100 (2.67%), are 
significantly expanded in the B. jamesi genome in com-
parison with A. vulgare (p < 0.05, Table 2).

To assess the evolutionary history of TE proliferation, 
we performed a divergence time estimation of TEs. More 
than 95% of TEs have a divergence rate of < 20%, indi-
cating that most TEs in the B. jamesi genome are rela-
tively young (Fig. 2B). The CR1-type LINE was the most 
abundant TE of both B. jamesi and A. vulgare, which 
accounted for 9.13% and 14.46% of the two genomes, 
respectively (Table 2). However, phylogenetic analysis of 

Table 2  Comparison of the repeats among four crustaceans

Repeats B. jamesi A. vulgare L. vannamei E. sinensis

Total length 5.90 Gb 1.73 Gb 1.66 Gb 1.56 Gb

Repeats 85.32% 69.54% 49.39% 35.57%

DNA 35.99% 7.08% 9.33% 2.30%

DNA/En-Spm 3.28% 0.00% 6.39% 0.82%

DNA/Maverick 5.08% 0.63% 0.80% 0.10%

DNA/Merlin 0.37% 0.28% 0.00% 0.01%

DNA/TcMar-Mariner 0.87% 0.21% 0.06% 0.00%

DNA/TcMar-Tc1 6.05% 1.23% 0.03% 0.02%

DNA/hAT-Ac 1.41% 2.18% 0.00% 0.11%

DNA/hAT-Charlie 1.04% 0.11% 1.00% 0.09%

DNA/hAT-hATm 5.77% 0.81% 0.00% 0.00%

DNA/hAT-Tip100 2.67% 0.36% 0.00% 0.00%

LINE 19.36% 20.24% 2.82% 9.72%

LINE/CR1 9.13% 14.46% 0.25% 4.06%

LINE/Jockey 1.06% 0.63% 0.06% 0.05%

LINE/L2 1.80% 0.62% 0.35% 0.36%

LINE/Penelope 3.61% 1.26% 0.45% 0.04%

LINE/RTE-BovB 0.62% 3.00% 0.77% 0.91%

SINE 1.00% 0.00% 0.06% 0.29%

LTR 5.95% 5.89% 0.62% 1.79%

LTR/ERV1 0.24% 0.00% 0.02% 0.01%

LTR/Pao 2.48% 2.32% 0.00% 0.19%

LTR/Gypsy 2.76% 3.22% 0.22% 1.28%

Unknown 21.97% 14.87% 3.42% 10.39%

Satellite 0.31% 0.00% 0.10% 0.00%

Simple repeat 0.65% 18.08% 23.93% 6.90%

Low complexity 0.01% 3.57% 9.49% 2.04%

http://www.genomesize.com
http://www.genomesize.com
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the total CR1-type LINEs of the two genomes indicated 
these TEs proliferated independently in the two iso-
pods, rather than derived from their ancestor (Fig.  2C). 
In contrast to B. jamesi, CR1-type LINEs were relatively 
more ancient in A. vulgare with a divergence rate of 
> 20% (Additional file 1: Fig. S5). As the most abundant 
TEs (2.12 Gb) in the B. jamesi genome, DNA trans-
posons were also proliferated in a recent time like CR1 
(Additional file  1: Fig. S5). Therefore, DNA transposons 
and CR1-type LINEs are the two major types of TEs that 

contribute to the genome expansion of B. jamesi, and 
this proliferation event should have occurred in a relative 
recent time.

TE proliferation can promote genome plasticity by 
altering genome structure or regulating gene expres-
sion. Previous studies suggested that TEs enriched in 
the promoters of genes play important roles in regulat-
ing gene expressions in response to different stresses 
[29]. Thus, we next analyzed the gene-surrounding 
TEs to investigate their potential functions. Different 
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from the previous report that TEs are usually enriched 
in upstream and downstream of genes immediately 
(within 2 Kb) [29], TEs in the genome of B. jamesi 
were uniformly distributed surrounding genes (up- or 
down-stream of 10 Kb), especially for LINEs, LTRs and 
Maverick of DNA transposons (Additional file  1: Fig. 
S6). Exceptionally, TcMar, En-Spm, and hAT of DNA 
transposon and SINEs showed a relative slight enrich-
ment surrounding genes (within 2 Kb). When analyzing 
the neighboring TEs of total genes, it was interesting 
to find that although many types of TEs (e.g., Maver-
ick, TcMar-Tc1, hAT-hATm, CR1, Penelope, and Pao) 
proliferated significantly in the B. jamesi genome, they 
were less distributed surrounding genes than in other 
genomic regions (p < 0.05, Fig.  2D). In contrast, some 
TEs with lower abundance were significantly enriched 
in the promoters of genes, including Academ, En-Spm, 
TcMar-Tigger, hAT-Charlie, RTE-BovB, and SINE. 
Therefore, unlike the findings of the previous study 
[29], our results suggest the significant proliferation 
of TEs should perform a more profound impact on the 
plasticity of the whole genome than on the architecture 
of protein-coding genes in B. jamesi.

Comparative genomics
Based on 177 orthologous single-copy genes, a phylo-
genetic tree was constructed to confirm the placement 
of B. jamesi (Fig.  3A). As expected, the two isopods (B. 
jamesi and A. vulgare) were clustered together and then 
nested by the other four malacostraceans. Isopods were 
estimated to be diverged from their last common ances-
tor around 366 million years ago (Mya), which is a time 
of the Late Devonian-Epoch. The deep-sea isopod (B. 
jamesi) and the terrestrial isopod (A. vulgare) were esti-
mated to divergent around 245 Mya, which is consistent 
with the fossil records of Oniscidea (219.6–358.9 Mya) 
[30]. Besides, fossil record showing that another deep-
sea isopod Bathynomus giganteus has emerged as early as 
160 Mya [2]. Therefore, the deep-sea bathynomids should 
be originated between 160 and 245 Mya.

Comparative genomics analysis among 11 arthropod 
species identified 14,376 gene families. Among them, 
418 gene families were isopod-specific (Fig.  3A), and 
3683 gene families were specific in B. jamesi (Fig.  3B; 
Additional file  1: Table  S6). Besides, a total of 274 sig-
nificantly expanded gene families and 157 contracted 
families were identified in the B. jamesi genome (p < 0.05; 
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Fig.  3A; Additional file  1: Table  S7). These expanded 
gene families were functionally enriched in gene ontol-
ogy (GO) terms related to membrane, peptidase activity, 
ion binding, proteolysis, and signal transduction (Addi-
tional file 1: Table S8). KEGG analysis significantly linked 
some of the expanded genes to Hippo signaling pathway, 
synaptic vesicle cycle, lipid metabolism (e.g., ether lipid 
metabolism and glycerophospholipid metabolism), and 
endocrine systems (e.g., renin-angiotensin system, insu-
lin signaling pathway, and thyroid hormone signaling 
pathway) (Fig. 3C; Additional file 1: Fig. S7). The expan-
sion of these gene families may reflect the adaptive evolu-
tion of B. jamesi to the deep-sea environment. Individual 
gene families related to body size evolution and deep-sea 
adaptation were discussed in greater depth in the later 
sections.

Strengthened pathways related to large body size
B. jamesi is a giant isopod with a body length of > 20 cm, 
which is significantly larger than its intertidal and ter-
restrial relatives, e.g., sea roaches and pill bugs (generally 
< 3 cm). Comparative genomics approach helps us dis-
cover the genetic characteristics associated with the body 
size evolution of giant isopods.

As indicated from the above comparative genomic 
analysis, the expanded gene families of B. jamesi were 
significantly enriched in the thyroid hormone signaling 
pathway (p = 3.95E−06) (Fig.  3C; Additional file  1: Fig. 
S7), which is an important pathway in regulating growth, 
development and metabolism [31]. Many gene families 
related to thyroid hormone (TH) synthesis and secretion 
were significantly expanded and tandemly duplicated in 
the B. jamesi genome (Fig. 4A), including phosphatidylin-
ositol phospholipase C (PLC), inositol 1,4,5-triphosphate 
receptor type 1 (ITPR1), tyrosine-protein kinase (TPK), 
adenylate cyclase (ADCY), serine/threonine-protein 
kinase mTOR (MTOR), tuberous sclerosis 2 (TSC2), and 
mediator of RNA polymerase II transcription subunit 
(MED). TH signaling is regarded as a key modulator of 
fundamental biological processes that has been evolu-
tionarily conserved in both vertebrate and invertebrate 
species. Thyroid peroxidase (TPO), thyroid hormone 
receptor α (TRα) and β (TRβ), and thyroid receptor-
interacting protein 11 (TRIP11) are four key enzymes in 
TH biosynthesis and signaling transduction. Seven TPO 
genes, one TRα gene, one TRβ gene, and two TRIP11 
genes were identified in the B. jamesi genome, indicating 
the presence of endogenous TH in this deep-sea organ-
ism. In contrast, only a single gene encoding TPO and 
TRIP11 was identified in the A. vulgare genome, with 
the lack of TRα and TRβ genes. Likewise, the loss of TRα 
and/or TRβ genes has also been found in other crusta-
ceans (Fig. 4A). In addition to the gene family expansion, 

the thyroid hormone signaling pathway has been identi-
fied to be under strong positive selection (six positively 
selected genes, KEGG enrichment p value = 9.93E−03) 
(Fig. 4B). Thus, in contrast to other crustaceans, B. jamesi 
has a complete thyroid hormone signaling pathway, 
which has been strengthened in the case that many genes 
of this pathway were significantly expanded and posi-
tively selected (Fig. 4C).

The insulin signaling is another hormone pathway that 
plays an important role in growth and development. In 
the B. jamesi genome, the insulin signaling pathway was 
also under significant enrichment of expanded gene fam-
ilies (p = 4.5E−02). A set of common genes involved in 
the insulin signaling pathway were identified to be tightly 
associated with body size evolution, including insulin 
growth factor (IGF), insulin-like growth factor-binding 
protein (IGFBP), insulin enhancer protein (ISL), and IGF 
receptor (IR) [32]. IGFs are normally bound to IGFBPs 
in great affinities that higher than IRs, and IGFBPs func-
tion as modulators of IGF availability and activity [33]. 
ISL is a LIM-homeodomain transcription factor involved 
in insulin secretion and metabolism, and also medi-
ates glycolysis [34]. Like other crustaceans, IGF has not 
been identified in the B. jamesi genome, but IGFBP, ISL, 
and IR were all present in these crustaceans, indicating 
the presence of insulin signaling pathway. In contrast to 
A. vulgare, IGFBP complex acid labile subunit (IGFBP-
ALS), ISL and IR were all significantly expanded in the B. 
jamesi genome (Fig. 4A). Apart from these genes, many 
other genes involved in this pathway were also expanded 
in B. jamesi, including receptor-type tyrosine-protein 
phosphatase F (PTPRF), hormone-sensitive lipase (LIPE), 
phosphorylase kinase alpha/beta subunit (PHKA_B), 
flotillin (FLOT), and MTOR (Fig.  4A). MTOR is the 
core gene of mTOR signaling pathway, which is also an 
important pathway in regulating animal growth and body 
size. This pathway locates at the downstream of the insu-
lin signaling and thyroid hormone signaling pathway, 
and controls cell growth and metabolism in response 
to nutrients, growth factors, and cellular energy [35]. 
There are five genes encoding MTOR in the B. jamesi 
genome, which was significantly more than other crusta-
ceans (Fig.  4A). In addition, there are four genes of the 
insulin signaling pathway (INPP5B, PRKCI, PRKAG, and 
RHEB) under positive selection in the B. jamesi genome 
(Fig. 4B). Therefore, similar to the thyroid hormone sign-
aling pathway, the insulin signaling pathway of B. jamesi 
should also have been strengthened (Fig. 4C).

In addition to the two hormone signaling path-
ways, the Hippo signaling pathway was also signifi-
cantly enriched by expanded gene families of B. jamesi 
(p = 3.44E−08), which may make some contributions to 
the huge stomach and fat body of B. jamesi, because this 
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pathway is functional important in controlling organ 
size [36]. Compared with A. vulgare and other crus-
taceans, many key genes in the Hippo signaling path-
way, including dachsous (HCSH, 11 members), Protein 
Kibra (KIBRA, 4 members), transcriptional coactivator 
YAP1 (YAP1, 3 members), and serine/threonine-pro-
tein phosphatase 2A (PP2A, 11 members), were sig-
nificantly expanded in the B. jamesi genome (Fig. 4A). 
Besides these genes, many other genes involved in body 
size were also expanded in B. jamesi, including short-
stature homeobox protein (SHOX) and high mobility 
group protein (HMG) (Fig. 4A). The deficiency of these 
two genes (SHOX and HMG) would result in dwarfism 

[37]. Taken together, these strengthened growth-related 
signaling pathways may make great contribution to the 
large body size of B. jamesi.

Molecular mechanisms underpinning deep‑sea 
oligotrophic adaptation
To adapt to the deep-sea oligotrophic environments, the 
mechanisms of food storage and utilization of giant iso-
pods should have undergone strong selective pressure. In 
accordance, giant isopods have developed a huge stom-
ach to store food and can survive from an extraordinary 
long fasting state (> 5 years) (Fig. 1B) [21].
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In order to identify potential genes related to nutrient 
storage, absorption, and utilization, RNA-seq analysis 
was performed on six tissues of B. jamesi. A total of 901 
genes were identified to be specifically highly expressed in 
digestive organs, including stomach and intestine. These 
differently expressed genes enriched in the pathways of 
mismatch repair, insulin signaling and resistance, endo-
cytosis, glycolysis, and so on (Fig.  5A). Glycolysis is an 
important metabolic process in which glucose is broken 
down to produce energy. Genes involved in the glycoly-
sis pathway were mostly highly expressed in the stomach, 
intestine, and muscle of B. jamesi (Additional file 1: Fig. 

S8). Among them, phosphoglucomutase-2 (PGM2) is a 
transferase that plays an important role in carbohydrate 
metabolism of both glycogenolysis and glyconeogenesis 
[38]. Eight genes encoding PGM2 were identified in the 
B. jamesi genome, whereas only one PGM2 gene was 
found in the A. vulgare genome (Fig. 5B). Besides, these 
genes were tandemly duplicated on the scaffold281 and 
scaffold7261 of the B. jamesi genome, and they were 
mostly high expressed in stomach and intestine. Similar 
results were also identified in the genes encoding acetyl-
CoA synthetase (ACSS1_2) and alcohol dehydrogenase 
(ADH), both of which participate in the TCA cycle for 
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ATP production. A total of eight ACSS1_2s and 21 ADHs 
were identified in the B. jamesi genome, which were sig-
nificantly more than that of A. vulgare (four ACSS1_2 and 
seven ADHs), and these genes were also highly expressed 
in the stomach and intestine. Therefore, B. jamesi may 
adopt an efficient mechanism of glycolysis to provide suf-
ficient energy for its biological activities.

Since giant isopods developed fat body to store organic 
reserves [20], the lipid synthesis and metabolism may 
under natural selection. However, out of our expecta-
tion, none of gene families related to lipid or fatty acid 
synthesis showed any signatures of expansion or under 
positive selection. Instead, some gene families related to 
lipid degradation were significantly contracted in the B. 
jamesi genome, including genes encoding fucosyltrans-
ferase, arylsulfatase, and carboxylesterase (Fig. 5B). These 
proteins are supposed to function in degrading glycolip-
ids, sphingolipid and many esters. In addition, two genes 
related to fatty acid degradation (hcaD and echA) were 
under positive selection (Fig.  4B). Therefore, the lipid 
accumulation in the fat body should result from low effi-
ciency of lipid degradation rather than high efficiency of 
lipid synthesis.

Beside energy production, the molecule transporta-
tion is also important for the absorption and utilization 
of food. Vesicular transport is an important process of 
transporting macromolecules through membrane, which 
has been identified to be under strong natural selection 
in deep-sea crustaceans [39]. Endocytosis is an essential 
process of vesicular transport, which actively transports 
molecules into cell by engulfing it with its membrane. 
The pathway of endocytosis was significantly enriched 
by differentially expressed genes (p = 1.8E-03), and a 
large number of them were specifically expressed in the 
stomach and intestine (Fig. 5C). Besides, some expanded 
gene families were identified to be involved in vesicular 
transport, and annexin B9 (AnxB9) was a representative 
one among them. AnxB9 is a functional protein involved 
in the formation of multivesicular bodies and regula-
tion of protein trafficking, and even in stabilizing the 
endomembrane system during stress [40]. A total of 53 
genes encoding AnxB9 were identified in the B. jamesi 
genome, which were significantly higher than in A. vul-
gare (eight genes) and other crustaceans (seven genes on 
average). These AnxB9 genes were mostly tandem dupli-
cated in the B. jamesi genome (Fig. 6), and some of them 
were highly expressed in stomach, intestine, and muscle. 
Therefore, the expansion of gene families and their spe-
cific expression in digestive organs play an important 
role in the energy supply of giant isopod and help these 
organisms adapt to the oligotrophic conditions of the 
deep-sea environment.

Discussion
With the development of deep-sea diving and genome-
sequencing technologies, a growing number of deep-sea 
organisms have been discovered, collected, and iden-
tified, and their genomes have been sequenced [4–8]. 
Genome sequencing sheds lights on variable adaptive 
mechanisms of these species to the deep-sea environ-
ment. However, no deep-sea crustacean genome has been 
reported so far even though Crustacea comprises one 
of the dominant groups of deep-sea organisms. In this 
study, we reported the first deep-sea crustacean genome 
and analyzed its genome characteristics, which provides 
a valuable resource for studying the unique mechanisms 
by which crustaceans adapt to deep-sea ecosystems.

A large genome size is one of the most apparent char-
acteristics shared by the genomes of B. jamesi and some 
other deep-sea species [5, 6]. Previous studies suggested 
that genome size tend to be larger in deeper conditions as 
driven by low temperature and high hydrostatic pressures 
from deep-sea environment [3, 41]. Indeed, besides B. 
jamesi, large genome size has also been detected in some 
other deep-sea crustaceans (e.g., amphipod Ampelisca 
macrocephola: ~ 63 Gb) and polar crustaceans (e.g., Ant-
arctic krill Euphausia superba: ~ 42 Gb) [3, 42, 43]. How-
ever, this rule seems inapplicable for isopods because 
some shallow-water species (e.g., Sphaeroma destructor, 
6.79 pg), terrestrial species (e.g., Oniscus asellus, 8.60 pg) 
and parasitic species (e.g., Nerocila munda, 8.82 pg) also 
have large genome sizes (Additional file 1: Table S5). Even 
among sympatric pairs of deep-sea species there is a large 
variation in their genome sizes, suggesting an absence of 
a dominant environment variable influencing genome 
size [3, 41]. However, as summarized in previous stud-
ies [44, 45], a rough generalization indicated that marine 
and terrestrial isopods have larger genomes overall ver-
sus freshwater species, and groundwater isopods have 
larger genomes than their surface-water relatives. Thus, it 
is likely that larger genomes are specific to certain fami-
lies or genera or groups that inhabit similar conditions, 
e.g., deep-sea bathynomids. However, more evidences of 
the genome size studies, especially on the deep-sea taxa, 
is needed to support our hypothesis.

The selective pressure from deep-sea may be a candi-
date factor in shaping the large genomes of bathynomids. 
In addition to deep-sea habitat, there are many other 
factors showed possible relationships with genome size, 
including body size and life-history strategy [3, 41, 45]. 
Indeed, a relationship between genome size and body size 
has been identified in amphipods, but it is limited in giant 
organisms [3]. Thus, bathynomids may also apply a simi-
lar rule with giant amphipods because it is also a group 
of organisms displays size gigantism. Besides, the life-his-
tory strategy, including low basal metabolic rate (BMR), 
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low mobility, and high longevity, are presumed to be 
positively correlated with genome size [44]. As expected, 
these traits have been commonly identified in deep-sea 
bathynomids [46]. Thus, the large genome size of bath-
ynomids may tightly associate with their ecological habi-
tats, body sizes and life-history strategies. Furthermore, 
the body size and life-history strategy of bathynomids 
also displayed close relationships with their deep-sea 

habitats. Firstly, their body sizes showed a positive cor-
relation relationship with the depths of their habitats 
(Additional file 1: Fig. S9). According to the Bergmann’s 
rule, organisms inhabiting higher latitudes tend to have 
larger body sizes; this would, in turn, also be applicable 
to the deep-sea organisms [3, 47]. Indeed, many deep-
sea crustaceans, including giant squids, giant sea spiders, 
giant isopods, and amphipods, are significantly larger 
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than their shallow-water relatives [3]. Thus, the large 
body size of these crustaceans may be tightly associated 
with their deep-sea habitats. Besides, the low BMR is a 
well-known characteristic of gigantic animals living in 
places with limited feeding resources, such as the deep-
sea oligotrophic environment [48]. Therefore, the factors 
driving genome size evolution of bathynomids appear to 
be complex, which may be the result of a combination of 
deep-sea habitat, body size and life-history strategy.

The deep-sea environmental stress can disrupt the 
epigenetic control of TEs leading to TE proliferation 
and increased genome size [49]. TE proliferation has 
long been considered to be the major cause of the large 
genome size of many species, which is also a consequence 
of the genome of B. jamesi and some other deep-sea spe-
cies (e.g., the deep-sea clam Archivesica marissinica and 
tubeworm Paraescarpia echinospica) [5, 6]. Notably, B. 
jamesi has the highest content of TEs (84.27%) among 
sequenced crustacean genomes, and it is also signifi-
cantly higher than that of A. marissinica (55.10%) and P. 
echinospica (42.20%), making its genome also larger than 
these two deep-sea species (1.52 Gb and 1.09 Gb, respec-
tively). Therefore, in contrast to these two species, TEs of 
B. jamesi should be more active during the evolutionary 
history. Similar to the genomes of A. marissinica and P. 
echinospica, DNA transposons and LINEs were also the 
two major components of TEs in the B. jamesi genome, 
suggesting these TEs are adaptively selected and highly 
dynamic in deep-sea genomes. In consistent, our results 
suggested DNA transposons and LINEs were intensively 
proliferated in a relative recent time in the B. jamesi 
genome. The large amount of DNA insertion or deletion 
would result in a high genome plasticity [50]. As a conse-
quence, the proliferation of TEs has profound effects on 
genome size, structure, stability and plasticity, and finally 
contributes to adaptive evolution [41, 51]. Therefore, the 
convergent proliferation of DNA transposons and LINEs 
in deep-sea species might play an important role in shap-
ing highly plastic genomes and helping them adapt to the 
deep-sea environment. In addition, the highly dynamics 
of TEs may be beneficial for B. jamesi adapting deep-sea 
environment better.

The enormous size of giant isopods is a classic exam-
ple of a phenomenon known as deep-sea gigantism. By 
analyzing the genome of B. jamesi, we get a glimpse of 
the molecular basis of its giant size. The growth-related 
hormone signaling pathways, including thyroid and insu-
lin signaling pathways, play important roles in regulat-
ing growth and body size. Thyroid hormone influences 
growth in part by altering the secretion and effects of 
growth hormone. Growth hormone, in turn, mediates 
its effects by regulating the synthesis and secretion of 
insulin-like growth factor-I (IGF-I) [52]. The cooperation 

of these hormone pathways can cause gigantism when 
excess growth hormone leads to increased linear growth 
[53]. In this study, strengthened thyroid and insulin hor-
mone signaling pathways were identified in the B. jamesi 
genome, which might functionally contribute to its 
gigantism. The mTOR pathway is the primary cell-auton-
omous nutrient sensor, while circulating hormones such 
as IGF-I and thyroid hormone are the main systemic 
regulators of growth and maturation in animals [31, 34, 
35]. In addition, proper organ growth is also monitored 
and coordinated with whole-body growth through mod-
ulation of Hippo signaling [36]. Many genes participating 
in these pathways have been expanded in the B. jamesi 
genome, resulting for a strengthened network of growth-
related pathways. The large body size of B. jamesi could 
be explained by the cooperation of these strengthened 
pathways.

According to previous studies, the body size has been 
identified to be strongly correlated with the BMR, dura-
tion of juvenile growth and longevity [12]. In consist-
ent, our anatomic result showed that B. jamesi has a 
huge stomach to store food such that the fulfilled stom-
ach occupied about 2/3 of the body. It also has a large 
amount of fat body spreading all over the body cavity to 
store organic reserves. Besides, it is likely that B. jamesi 
also has an extraordinary long fasting state as the starva-
tion record (> 5 years) is kept by the congeneric species B. 
giganteus [21]. Furthermore, the low BMR, slow growth, 
high longevity have been observed in giant isopods, 
which may be a strategy for the survival of these large 
organisms [46]. Therefore, in correlation with large body 
size, B. jamesi has bulk food storage, low BMR, slower 
growth, and greater longevity.

Generally, organisms with large body sizes have greater 
absolute energy requirements [22], whereas food is defi-
nitely a limiting factor in the deep sea, for less food being 
available in deeper water and at greater distances from 
shore, which seems unsuitable for the survival of large 
animals. Thus, there is a debate about the adaptive evolu-
tion of deep-sea large animals and especially its possible 
causes. Large-sized body would be beneficial for compe-
tition and predation, whereas more energy will be costed 
to sustain the large-sized body. Kleiber’s Rule states that 
“larger animals are more efficient” [54, 55]. In the deep 
sea, the smaller surface area to volume ratio gives the 
giant isopods the advantage of conserving greater energy, 
with less energy lost to the surroundings through heat. 
Yet, the disadvantage of gigantism is that the absolute 
energy demand is large. It will be much more difficult 
to obtain adequate energy in the deep-sea environment, 
where food is usually an extremely scarce resource. To 
achieve a balance, it is likely that B. jamesi has adopted 
a sequence of survival strategies including low BMR, 
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specialized energy storage organs, and efficient nutrient 
absorption and utilization. In this study, our results sug-
gest B. jamesi have developed an efficient pathway for 
glycolysis and vesicular transport, which will contribute 
to its nutrient absorption and utilization. In addition, B. 
jamesi has low efficient of lipid degradation to support its 
lipid accumulation in fat body. Therefore, in contrast to 
small animals, an efficient mechanism of nutrient stor-
age, absorption and utilization could be more important 
for the macrobenthos to adapt the deep-sea oligotrophic 
environment.

Conclusions
The genome of a deep-sea giant isopod B. jamesi was suc-
cessfully assembled, representing the first high-quality 
genome of deep-sea crustaceans. Comparative genomic 
analyses provided new insights into the evolution of 
genome size and body size of animals and the adaptive 
mechanisms to the deep-sea extreme environments. The 
isopod genomes will shed lights on the habitat shift and 
evolution history of the crustaceans inhabiting deep-sea, 
shallow water, intertidal zone, and land. Furthermore, 
the genomic resources also provide powerful tools for 
broader studies on the ecology, evolutionary biology, and 
biological conservation of isopods.

Methods
Sampling and sequencing
The specimens of B. jamesi were collected by a deep-
sea lander at a depth of 898 m near Hainan Island, in the 
northern South China Sea (17° 46.845′ N, 110° 38.217′ E). 
The specimens were identified as the species B. jamesi 
and kept in 75% ethanol and − 80 °C freezer [24]. The 
muscle of the legs of B. jamesi was collected for DNA 
extraction and genome sequencing. Total genomic DNA 
was extracted using TIANamp Marine Animal DNA 
Kits (Tiangen, Beijing, China) and used for Illumina and 
PacBio sequencing.

For Illumina sequencing, paired-end libraries with 
short insert size (350 bp) were constructed according to 
the instructions of the Illumina library preparation kit 
(Illumina, San Diego, USA). The constructed libraries 
were sequenced on an Illumina HiseqX-ten sequencing 
platform (Illumina, San Diego, USA). The raw sequencing 
reads were trimmed for quality subsequently using Trim-
momatic v.0.35 (http://​www.​usade​llab.​org/​cms/​index.​
php?​page=​trimm​omatic), and the retained clean reads 
were used for subsequent analyses.

For PacBio sequencing, genomic DNA was sheared to 
~ 20 Kb, and the short fragments below the size of 10 Kb 
were filtered out using BluePippin (Sage Science, Beverly, 
USA). Filtered DNA was then used for the construction 
of the proprietary SMRTbell library using PacBio DNA 

Template Preparation Kit. SMRTbell libraries were used 
for single-molecule real time (SMRT) sequencing using 
the P6C5 sequencing chemistry (Pacific Biosciences, San 
Diego, USA), and then sequenced on the PacBio RSII 
sequencing platform (Pacific Biosciences, San Diego, 
USA).

RNA extraction and sequencing
In order to perform gene annotation and identification of 
tissue-specific expression genes, transcriptome sequenc-
ing was performed on six tissues of B. jamesi, namely 
gill, hepatopancreas, muscle, stomach, intestine, and 
nerve. According to the standard manufacturer’s proto-
col, total RNA was isolated and purified from each tissue 
using TRIzol extraction reagent (Thermo Fisher Scien-
tific, Waltham, USA). RNA quality was determined by 
1% agarose gel electrophoresis, and RNA concentration 
was assessed using a Nanodrop 2000 spectrophotometer 
(Thermo Fisher Scientific, Waltham, USA). Transcrip-
tome libraries were prepared according to the instruc-
tions of the TruSeq RNA Library Prep Kit (Illumina, San 
Diego, USA), and then sequenced on the Illumina HiSeq 
2500 platform. The transcriptome reads were mapped to 
the genome using TopHat v1.2.1 [56]. Then, fragments 
per kilobase of transcript per million fragments mapped 
(FPKM) was calculated using Cufflinks v2.2.1 (http://​
cole-​trapn​ell-​lab.​github.​io/​cuffl​inks/). The differential 
gene expression analysis was conducted using edgeR 
V3.10 [57].

Genome size estimation
Genome size of B. jamesi was estimated by K-mer anal-
ysis, which is widely used for the estimation of genome 
size and repeat content. Jellyfish was used to calculate 
K-mer frequencies based on the high-quality reads from 
the Illumina sequencing data [58]. A K-mer depth distri-
bution was plotted and the peak depth could be identi-
fied. The genome size was estimated as the ratio of the 
total number of K-mers to the peak depth.

Genome assembly and quality assessment
The B. jamesi genome was de novo assembled based on 
PacBio subreads using FALCON pipeline (https://​github.​
com/​Pacif​icBio​scien​ces/​FALCON/) with default param-
eters. The assembled sequences were then polished using 
Quiver (SMRT Analysis v2.3.0) based on the alignments 
of PacBio reads to the assembly. Besides, in order to 
make the genome assembly more accurate, five rounds 
of iterative error correction were performed using the 
aforementioned Illumina clean data.

To assess the quality of the genome assembly, Illu-
mina sequencing reads were aligned to the genome using 
Bowtie2 and the genome coverage was calculated [59]. 

http://www.usadellab.org/cms/index.php?page=trimmomatic
http://www.usadellab.org/cms/index.php?page=trimmomatic
http://cole-trapnell-lab.github.io/cufflinks/
http://cole-trapnell-lab.github.io/cufflinks/
https://github.com/PacificBiosciences/FALCON/
https://github.com/PacificBiosciences/FALCON/
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Besides, the unigenes obtained from the transcriptome 
data were mapped to the B. jamesi genome to assess the 
completeness of the gene regions. In addition, the sets of 
Benchmarking universal single-copy orthologs (BUSCO) 
was used to evaluate the completeness of the genome 
assembly (http://​gitlab.​com/​ezlab/​busco).

Repetitive sequence annotation
TEs in the B. jamesi genome were predicted by a com-
bination of de novo-based and homology-based 
approaches. For TE annotation, both RepeatModeler and 
RepeatMasker were used to perform de novo identifica-
tion [60]. RepeatMasker was used to identify transposa-
ble elements by aligning the genome assembly against the 
RepBase (RepBase21.04) and a local library generated by 
RepeatModeler with default parameters.

For phylogenetic analysis of TEs, MUSCLE v5 was 
used for generating multiple alignments of each cluster 
of TEs in a fast mode (-maxiters 2 -diags1) [61]. Based 
on the alignment results, the maximum likelihood (ML) 
method was used for phylogenetic tree construction with 
the parameters of “-n 1 -o tl -m 012345.” The visualization 
of the tree was performed on the iTOL (https://​itol.​embl.​
de/).

Protein‑coding gene prediction and annotation
Protein-coding genes were predicted through the com-
bination of de novo prediction, homology-based predic-
tion and transcriptome-based prediction methods. For de 
novo prediction, the coding regions of the repeat-masked 
genome were predicted by Augustus v2.5.5 [62]. For 
homology-based prediction, protein-coding genes from 
Daphnia pulex, E. texana, Litopenaeus vannamei, Parhy-
ale hawaiensis, Drosophila melanogaster, Bombyx mori, 
and Anopheles gambiae were downloaded from NCBI 
and mapped against the B. jamesi genome with Exoner-
ate v2.2.0 (http://​www.​ebi.​ac.​uk/​~guy/​exone​rate/). For 
transcriptome-based prediction, the transcriptome data 
was aligned to the B. jamesi genome using Tophat v2.1.1. 
Then, Cufflinks v2.2.1 was used to convert the transcripts 
to gene models [56]. Finally, all gene models predicted by 
above three methods were integrated into a non-redun-
dant gene set through EvidenceModeler (EVM) v1.1.1 
[63].

Functional annotation of the predicted genes was con-
ducted by blasting against the NR and SwissProt data-
bases using BLASTP program. Protein domains were 
annotated by mapping the genome to the InterPro and 
Pfam databases using InterProScan v5.50 and HMMER 
v3.3.1 [64, 65]. KEGG Automatic Annotation Server 
(KAAS) was used to annotate the pathways in which the 
genes might be involved through mapping against the 
KEGG database (https://​www.​genome.​jp/​kaas-​bin/​kaas_​

main). The GO classifications of the genes were extracted 
from the corresponding InterProScan or Pfam results 
(http://​geneo​ntolo​gy.​org/​docs/​go-​annot​ations/).

Gene family analyses
To understand the evolutionary dynamics of the genes, 
gene family clustering analysis was performed using the 
Markov clustering program OrthoFinder [66]. An all-
to-all blast search was conducted on the protein-coding 
genes of 11 arthropods, including B. jamesi, A. vulgare, 
D. pulex, E. texana, Eurytemora affinis, L. vannamei, 
Eriocheir sinensis, Procambarus virginalis, P. hawaien-
sis, Tigriopus californicus, and D. melanogaster, using 
BLASTP program with a threshold value of E ≤ 1E−05.

Expansion and contraction of the gene families among 
these 11 species were determined. Based on the cluster-
ing results calculated by OrthoFinder and cladogram of 
these 11 species, gene gain and loss analysis was con-
ducted by CAFE 5 [67]. The expansion and contraction of 
each gene family was examined by comparing cluster size 
differences between the ancestor and each of the current 
species. A random birth and death process model was 
used to identify gene gain and loss along each lineage of 
the RAxML tree.

Phylogenetic analysis
According to the results of gene family clustering, 177 
single-copy orthologous genes were selected for phylo-
genetic tree construction. For each ortholog group, the 
amino acid sequence alignment was conducted using 
MUSCLE v5 with the default settings [61]. The 177 pro-
tein alignments were merged to form a super alignment 
matrix. Then, the ML method was used for phylogenetic 
tree construction under the PROTGAMMAJTT model 
using RAxML [68]. ML phylogeny and branch lengths 
were obtained by RAxML with 1000 bootstrap replicates. 
The divergence time estimation was conducted by com-
bining programs of r8s and RAxML [69]. Fossil-derived 
timescales and evolutionary history were obtained from 
TIMETREE (http://​timet​ree.​org/).

Whole‑genome duplication analysis
To infer WGD events in B. jamesi, we performed a series 
of analyses on the B. jamesi genome, including intra-
chromosome synteny block identification, Hox gene 
cluster comparison, and synonymous substitution (Ks) 
distribution analysis. To identify the synteny blocks, an 
all-against-all BLASTP method (E value < 1E−5) was 
used to detect paralogous genes in the B. jamesi genome, 
as well as the genomes of A. vulgare, Daphnia magna, T. 
tridentatus, and L. vannamei. Synteny blocks with at least 
five collinear homologous genes were detected using 
MCScanX software [70] with the following standard 

http://gitlab.com/ezlab/busco
https://itol.embl.de/
https://itol.embl.de/
http://www.ebi.ac.uk/~guy/exonerate/
https://www.genome.jp/kaas-bin/kaas_main
https://www.genome.jp/kaas-bin/kaas_main
http://geneontology.org/docs/go-annotations/
http://timetree.org/
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parameters: MATCH_SCORE: 50, MATCH_SIZE: 
20, GAP_PENALTY: -1, OVERLAP_WINDOW: 5, E_
VALUE: 1e-05, and MAX GAPS: 25. Genes were further 
classified by duplicate gene-classifier in MCScanX. For 
the Ks distribution analysis, the Ks values of the blocks 
from intraspecies were calculated using the HKY model 
[71, 72]. The Hox gene cluster, which contains at least 
nine highly conserved Hox genes, was identified in seven 
arthropod genomes, including a species with WGD, T. 
tridentatus [73].

Positive selection analysis
The nonsynonymous/synonymous substitution ratio 
(ω = dN/dS) was calculated to identify positively selected 
genes. The alignment of the orthologous genes was con-
ducted with MUSCLE, and the stop codon and gaps in 
the alignment were removed. PAML was used to predict 
positively selected genes using the branch model [74, 75]. 
For the branch model test, positive selection was indi-
cated when a significant difference between the alterna-
tive and null models was observed using the likelihood 
ratio test (LRT). The null model assumes that ω is con-
stant (ω = 1), whereas the alternative model allows ω to 
vary among different branches.
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