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Abstract 

Background:  Degrons are short linear motifs, bound by E3 ubiquitin ligase to target protein substrates to be 
degraded by the ubiquitin-proteasome system. Mutations leading to deregulation of degron functionality disrupt 
control of protein abundance due to mistargeting of proteins destined for degradation and often result in patholo-
gies. Targeting degrons by small molecules also emerges as an exciting drug design strategy to upregulate the 
expression of specific proteins. Despite their essential function and disease targetability, reliable identification of 
degrons remains a conundrum. Here, we developed a deep learning-based model named Degpred that predicts 
general degrons directly from protein sequences.

Results:  We showed that the BERT-based model performed well in predicting degrons singly from protein 
sequences. Then, we used the deep learning model Degpred to predict degrons proteome-widely. Degpred success-
fully captured typical degron-related sequence properties and predicted degrons beyond those from motif-based 
methods which use a handful of E3 motifs to match possible degrons. Furthermore, we calculated E3 motifs using 
predicted degrons on the substrates in our collected E3-substrate interaction dataset and constructed a regulatory 
network of protein degradation by assigning predicted degrons to specific E3s with calculated motifs. Critically, we 
experimentally verified that a predicted SPOP binding degron on CBX6 prompts CBX6 degradation and mediates the 
interaction with SPOP. We also showed that the protein degradation regulatory system is important in tumorigenesis 
by surveying degron-related mutations in TCGA.

Conclusions:  Degpred provides an efficient tool to proteome-wide prediction of degrons and binding E3s singly 
from protein sequences. Degpred successfully captures typical degron-related sequence properties and predicts 
degrons beyond those from previously used motif-based methods, thus greatly expanding the degron landscape, 
which should advance the understanding of protein degradation, and allow exploration of uncharacterized altera-
tions of proteins in diseases. To make it easier for readers to access collected and predicted datasets, we integrated 
these data into the website http://​degron.​phasep.​pro/.
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Background
The ubiquitin-proteasome system (UPS) dynamically 
regulates protein turnover in cell differentiation, cell 
cycle, and signaling pathways [1, 2], with over 80% of 

intracellular proteins being degraded via UPS [3]. Dur-
ing the degradation process, ubiquitin (Ub) is covalently 
attached to lysine (K) on the substrate, which is catalyzed 
by E1 ubiquitin-activating enzymes, E2 ubiquitin-con-
jugating enzymes, and E3 ubiquitin ligases [4]. Subse-
quently, the ubiquitinated substrate is transferred to and 
degraded by the 26S proteasome [5]. The human genome 
encodes two E1s, 41 E2s, and more than 600 E3s [6]. E3s 
bind their substrates directly via E3 binding sites present 
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on the surface of substrates. These binding sites are called 
degrons [7]. The interaction between E3 and degron 
determines the specificity of the degradation process.

Degrons are preferentially located in disordered 
regions and are molecular recognition features (MoRFs) 
that undergo disorder-to-order transition upon bind-
ing to E3s [8]. Degrons are typically regulated by post-
translational modifications (PTMs), which control the 
interaction with E3s in response to environmental and 
cellular cues [9]. Degrons mediate the ubiquitination of 
substrates, and the resulting Ub-sites are usually located 
within 20 amino acids (AAs) distant from the degron 
[7]. A fundamental property of degrons is their trans-
ferability: in most cases, transplantation of a degron to 
a protein accelerates the degradation of a protein [10]. 
In contrast, dysfunction of degrons disturbs control of 
protein degradation and causes abnormally accumulat-
ing proteins, thus further contributing to pathological 
progression [1, 11]. This situation particularly applies to 
cancer, a disease that involves the enhanced expression 
of oncogenes. Recently, researchers explored the targ-
etability of degrons by designing small molecules for a 
degron on tumor suppressor p53. Two resulting small 
molecules upregulated p53 expression and restored p53 
function, which provide an opportunity to inhibit cancer 
cell growth [12]. Thus, identifying degrons on the sub-
strates should greatly assist in investigating the pathogen-
esis of related diseases and provide potential therapeutic 
targets.

Both low-throughput and high-throughput experimen-
tal approaches have been employed to identify degrons. 
Low-throughput identification of degrons usually require 
deletion or mutation of specific sites on proteins cou-
pled with half-life experiments or co-immunoprecipita-
tion with specific E3s [13]. However, many degrons are 
exposed to E3s only when proteins fail to fold correctly 
[14] and thus fail to interact with E3s or prompt degra-
dation on well-folded proteins. In addition, the interac-
tions between E3s and substrates are temporary [11, 15]. 
Thus, low-throughput identification of degrons faces 
many challenges, and only a limited number of degrons 
have so far been identified [16]. Recently, high-through-
put methods were designed to identify degrons as well. 
These methods were based on the transferability of 
degrons [14] and considered the peptides that promote 
the degradation of a reporter protein as degrons [10, 17]. 
For example, Elledge and colleagues developed a bimodal 
fluorescent expression cassette termed Global Protein 
Stability (GPS) to discover N-end and C-end degrons 
[10, 17]. However, this method did not identify internal 
degrons, and it is almost impossible to screen all pep-
tides in the human proteome. Notably, flexible segments 

facilitating access to the catalytic core of proteasome and 
peptides prone to be ubiquitinated can also promote the 
degradation of the reporter protein [7, 18, 19]. As a con-
sequence, the destabilizing peptides identified via high-
throughput methods may represent not only degrons 
but also other functional peptides that accelerate protein 
degradation [7, 18, 19]. Given the complexity and dif-
ficulty of experimental identification of degrons, an effi-
cient predictor is urgently required to facilitate degron 
discovery.

However, only a few bioinformatic tools have been 
developed to predict possible degrons. Motif match-
ing is widely used in predicting degrons, and 25 degron 
motifs from the ELM motif database are commonly used 
[16]. While motif matching excels in predicting possi-
ble degrons fast from local sequence patterns, it fails to 
consider other critical features such as structure or sol-
vent accessibility of specific sites, which leads to high 
false-positive rate of motif matches. To reduce the false-
positive rate of motif matching, Martínez-Jiménez et  al. 
scored all internal motif matches in human proteome 
using a random forest classifier (hereafter Motif_RF) with 
11 biochemical features, including flanking phospho-
rylation sites, disordered regions, MoRFs, solvent acces-
sibility, conservation, secondary structure, and flanking 
ubiquitinated Ks [20]. Motif_RF identified over 20,000 
likely new degrons in different protein isoforms. Never-
theless, Motif_RF failed to predict terminal degrons and 
could not be applied to proteins without available PTM 
data. Besides, only less than 30 E3 motifs are available for 
motif-based methods, which cannot even cover degrons 
for 5% of more than 600 E3s, precluding us from identify-
ing degrons bound by other E3s. Tokheim et al. trained 
a deep learning model deepDegron on high-throughput 
GPS data to predict N-end and C-end degrons [11]. deep-
Degron can only predict terminal degrons, and its train-
ing set derived from GPS experiment not only includes 
degrons. Thus, the predicted results of deepDegron rep-
resent multiple destabilizing peptides. Overall, exiting 
degron predictors are limited by either a high false posi-
tive rate or a limited application range. A more general 
model is needed to give a broader and unbiased predic-
tion of degrons.

Besides identifying degrons, identifying E3-substrate 
interactions (ESIs) is also an area of intense study. 
Experiments like co-immunoprecipitation, two-hybrid 
screening, and mass spectrometry are commonly used 
to discover new ESIs [15]. Recently, machine learning-
based ESI predictors were developed as well. Wang 
et  al. developed Ubibrowser 2.0 [21] to predict ESIs 
using the enriched domain, GO term pair, protein-pro-
tein interaction, and inferred E3 recognition consensus 
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motif; Chen et al. [22] built a machine learning model 
(hereafter ChenESI) to predict ESIs from proteomics 
data, transcriptomics data, protein-protein interaction, 
and pathway-based associations. However, both experi-
mental methods and prediction methods lack binding 
degron information. Here, we solved this restriction by 
combining our degron predictor and E3 motifs.

In this work, we predict degrons using a BERT-based 
deep learning approach. Our newly designed model 
Degpred successfully captures degron-related sequence 
properties and considerably expands the degron land-
scape. By assigning predicted degrons to E3s using our 
generated E3 motifs, we predicted ESIs with binding 
degron information. We also investigated the signifi-
cance of degrons and binding E3s in protein turnover 
and tumorigenesis.

Results
The BERT‑based model predicts degrons of new sequence 
patterns
To train and evaluate models, we collected known 
degrons from ELM [16] database and three previous 
studies [1, 7, 20] (Fig. 1a). For the same degrons present 
on different isoforms of one gene, only main isoforms in 
UniProt [23] were reserved. In total, 303 degrons typi-
cally spanned 5-10 AAs were obtained (Additional file 1: 
Fig. S1a, Additional file 2: Table S1).

Previous predictors predict degrons by integrat-
ing protein features like flanking phosphorylation 
sites, intrinsically disordered regions, MoRFs, sol-
vent accessibility, and flanking ubiquitinated Ks [20, 
24]. However, these models cannot be applied to pro-
teins without PTM data, and annotating proteins with 

Fig. 1  Degron collection, processing, and model performance. a Degrons were collected from the true positive degrons in the ELM database 
and three previous studies. Venn diagram showing the overlap of collected degrons from three previous studies. b Data augmentation: sampling 
128AA-peptides around degrons from original protein sequences. The blue rectangles represent degrons, and the black lines represent peptide 
sequences. c Training sets, test sets, and performances of models, models were evaluated with the area under the receiver operating characteristic 
curve (AUC). d Degron clustering and composition of five clusters, Seqlogos in the upper panel show the sequence patterns of alignment cores for 
five clusters in Gibbscluster, classes accounting for at least 10 percent in each cluster are labeled in pie graphs
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these features is time-consuming. Thus, we turned to 
using BERT-based deep learning models, which have 
been shown to successfully represent fundamental and 
advanced properties of proteins, including secondary 
structure, target binding sites, contact, and PTMs [25, 
26]. We built a BERT-based model to predict degrons 
that consists of a pre-trained TAPE BERT-encoding 
model [27], two bidirectional long short-term memory 
layers, and two fully connected layers. The architecture 
took a protein sequence as input and outputted scores 
for all AAs on the protein (Additional file  1: Fig. S1b, 
see Methods for details).

To explore the feasibility of using the BERT-based 
model to predict degrons, we compared the ability of 
our model with Motif_RF and a general MoRF predictor 
MoRFchibi [8] to classify degrons from motif matches. In 
the training and test stages, our collected degrons were 
labeled as 1, while randomly selected motif matches from 
proteins without known degrons were labeled as 0. We 
averaged predicted scores of AAs in degrons or negative 
motif matches to represent the score of the BERT-based 
model. The BERT-based model achieved comparable per-
formance with Motif_RF under fivefold cross-validation, 
and both methods significantly outperformed MoRFchibi 
(Additional file 1: Fig. S1c, see Methods for detail). This 
result indicated that the BERT-based model provides 
an alternative to protein feature integrating predictors. 
The advantage of the BERT-based model is that it only 
needs protein sequence as input and has broader scope 
of application.

As degrons derived from motifs only represent a small 
proportion of all degrons bound by more than 600 E3s, we 
next used our model to score all AAs in sequences rather 
than only AAs in motif matches of a limited number of 
motifs. To provide more inputs for the training of the 
deep learning model, we augmented known degrons by 
sampling peptides from original proteins. We randomly 
sampled ten peptides of 128 AAs containing the degron 
from the original protein for each degron, and generated 
3030 128AA-peptides containing known degrons in total 
(Fig. 1b). As transplantation of a degron confers instabil-
ity on other proteins [10], we reasoned that degrons on 
128AA-peptides can mediate the degradation of 128AA-
peptides as well. Thus, we used these 128AA-peptides 
to train our model. In the training and test stages, AAs 
in known degrons were labeled as 1, while AAs in the 
other regions were labeled as 0 (see Methods for detail). 
We first trained a model (model 0) on 128AA-peptides 
from 240 randomly selected degrons and tested it on the 
other 63 degrons. As shown in Fig. 1c, model 0 attained 
an AUC of 0.8807. This result suggested that we can use 
the BERT-based model to predict degrons from protein 
sequences rather than only from motif matches.

Next, we explored whether the BERT-based model can 
predict degrons bound by E3s not present in our data-
set. If the model trained on known degrons bound by a 
set of E3s can predict that of other E3s, we can infer that 
our model can discover degrons of new classes. Ideally, 
degrons used for training and test should be dissimilar 
in sequence. As it is hard to measure the similarity of 
degrons bound by different E3s, we grouped 303 known 
degrons into five clusters using sequence alignment [28]. 
As shown in Fig.  1d, clusters 1, 2, 4, and 5 possessed 
dominant classes accounting for about 50 percent, while 
cluster 3 lacked dominant class and acted as a trash bin 
during clustering. Next, we built five models, trained 
each model on degrons from four clusters, and tested 
each model on degrons of the remaining cluster (Addi-
tional file 1: Fig. S1d,e,f ). As shown in Fig. 1c, models 1, 
2, and 5 performed well in predicting degrons dissimilar 
with training degrons. Given the diversity of degrons in 
cluster 3, the performance of model 3 was also satisfac-
tory. The dominant class in cluster 4 is phosphorylation-
dependent degrons SCF_TRCP1 [29] (Fig.  1d); as the 
training degrons of model 4 are mostly modification-
independent, model 4 might ignore PTM-related infor-
mation in the BERT-encoding matrix and performed 
relatively poorly in predicting phospho-degrons. Overall, 
these results suggested that even though degrons in dif-
ferent clusters have little sequence homology, they share 
features beyond the primary sequence that can be cap-
tured by the BERT-based model.

To evaluate the importance of information in the 
BERT-encoding matrix in predicting degrons, we com-
pared the BERT-based model with a new predictor 
possessing similar architecture and number of train-
able parameters, except that it took one-hot encoding as 
input (Additional file 1: Fig. S1g). We trained and tested 
the one-hot model using the same strategy as the BERT-
based model and found that the BERT-based model sig-
nificantly outperformed the one-hot model in predicting 
degron in five clusters (Additional file  1: Fig. S1d,e,h). 
This result suggested that the rich information encoded 
in the TAPE BERT-encoding matrix helps our model dis-
cover novel degrons dissimilar to training degrons.

In summary, these findings suggested that the BERT-
based model can be used as an alternative to feature 
integrating degron predictors and has wilder scope of 
application. In addition, our model can predict degrons 
of new sequence patterns with satisfy performance; thus, 
it can be used to discover new degrons proteome-widely.

Degpred expands the degron landscape and assists 
in identifying degrons from motif matches
Models 1–5 trained on degrons with different sequence 
patterns represent different aspects of degron properties. 



Page 5 of 19Hou et al. BMC Biology          (2022) 20:162 	

Thus, we assembled models 1–5 to build Degpred to 
take full advantage of known degrons and provide more 
comprehensive predictions (Fig.  2a). Degpred averages 
outputs from five models to score all AAs of the input 
protein. Taking 0.3 as the cut-off, Degpred attained a false 
discovery rate (FDR) of 0.512 (Additional file 1: Fig. S2a) 
and predicted 46,621 degrons present in the human pro-
teome (UniProt [23] human reviewed proteins) (Addi-
tional file 2: Table S1).

To provide an overview of degrons predicted by 
Degpred, we first compared Degpred degrons with about 

55,000 ELM motif matches in the human proteome and 
found that only 5522 Degpred degrons overlap with ELM 
motif matches (Fig.  2b). We further analyzed the aver-
aged Degpred score of degrons that match ELM motifs 
and degrons that do not match ELM motifs. As shown in 
Fig.  2b, more than 41% of not overlapped degrons pos-
sess Degpred scores higher than the median score of 
overlapped degrons. Even though most training degrons 
were initially identified through ELM motifs, over 88% 
of Degpred degrons were beyond those discovered using 
motifs. These results suggested that Degpred expands the 

Fig. 2  Degpred expands the degron landscape and assists in identifying degrons from motif matches. a A schematic diagram to illustrate the 
process of Degpred in predicting degrons, the dimensions of matrixes and vectors in the prediction process are labeled below. b Upper penal: 
Venn diagram showing the counts and overlap of Degpred degrons and ELM motif matches in the human proteome. Lower penal: distribution of 
Degpred scores of predicted degrons overlapped and not overlapped with ELM motif matches. The green vertical line represents the median score 
of overlapped degrons. c A schematic representation of how βTrCP binds substrates, di-phosphorylation on the motif match is necessary for the 
binding. Mammal genomes encode βTrCP1 and βTrCP2 that recognize the same degron motif [29], we did not distinguish them in our analysis. d 
Statistics of βTrCP motif matches overlapped with Degpred degrons (Degpred_TRCP, blue) or not overlapped with Degpred degrons (Other_TRCP, 
green). e Counts of phosphorylation sites occurring on Degpred_TRCP and Other_TRCP. P-value was calculated using the chi-square test. f Counts 
of Ub-sites occurring near Degpred_TRCP and Other_TRCP. P-value was calculated using Fischer’s exact test. g Comparison of Degpred_TRCP and 
Other_TRCP containing proteins in BioID and AP-MS based high-throughput βTrCP substrates. P-values were calculated using Fischer’s exact test
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degron landscape. Next, we investigated the relationship 
between terminus located Degpred degrons and N-end 
and C-end destabilizing peptides in high-throughput 
GPS experiments [10, 17], which also constitute the train-
ing set of deepDegron [11]. Unexpectedly, we found that 
both Degpred degrons and known degrons tend to act 
as stabilizing peptides in GPS experiments (Additional 
file 1: Fig. S2b). This discordance might be because desta-
bilizing peptides in the GPS experiment are a mixture of 
multiple functional peptides not limited to degrons [7, 
18, 19]. Further investigations are needed to explore the 
underlying mechanism of destabilizing peptides in the 
high-throughput experiment.

Another major disadvantage of motif matching con-
stitutes its high false-positive rate due to only consider-
ing local sequence patterns. We investigated whether 
Degpred can screen real degrons from motif matches 
by testing Degpred on the motif matches of extensively 
studied E3 βTrCP. The degron of βTrCP requires a spe-
cial sequence patterns and di-phosphorylation to be rec-
ognized [29, 30] (Fig.  2c). The motif of βTrCP matches 
1068 segments on 953 proteins in the human proteome, 
and 306 matches on 298 proteins overlap with Degpred 
degrons (Fig.  2d). To compare the possibility of motif 
matches with and without Degpred signal functioning 
as degrons, we first surveyed phosphorylation sites in 
the database PhosphoSitePlus [31] and Ub-sites in the 
database dbPTM [32]. Because real degrons bound by 
βTrCP possess two phosphorylation sites and are rich in 
Ub-sites located within 20 AAs [7]. As shown in Fig. 2e, 
a higher proportion of Degpred-screened matches were 
phosphorylated compared to the other matches, both 
single-phosphorylation and di-phosphorylation. Moreo-
ver, we found that Ub-sites were significantly enriched 
within 20 AAs of Degpred-screened matches compared 
to the other matches (Fig. 2f ). Next, we analyzed poten-
tial βTrCP substrates identified by proximity-dependent 
biotin labeling (BioID) [30] and affinity purification mass 
spectrometry (AP-MS) [29]. As shown in Fig. 2g, proteins 
with Degpred-screened matches were identified at higher 
rates in both experiments compared to proteins with the 
other matches. These results suggested that Degpred 
helps identify real degrons from motif matches.

Overall, our deep learning degron predictor Degpred 
identifies novel degrons with new sequence patterns and 
helps reduce the false-positive rate of motif matches.

Degpred degrons exhibit typical degron properties and are 
rich in ubiquitination sites nearby
To explore the properties of predicted degrons, we first 
analyzed the AA composition of Degpred degrons and 
known degrons. As shown in Fig. 3a, the AA composition 
of Degpred degrons resembles that of known degrons. 

Proline (P), glutamic acid (E), serine (S), and tyrosine (T) 
which were reported to be enriched in degradation sig-
nals [33] were all enriched in Degpred degrons; S, T, and 
tyrosine (Y) which can be phosphorylated were enriched 
in Degpred degrons as well. Further analysis showed that 
not only phosphorylation sites, but also N-linked Glyco-
sylation and Methylation sites were enriched in Degpred 
degrons (Additional file  1: Fig. S2c). These results indi-
cated that Degpred successfully learns the correct AA 
preference of known degrons, and suggested that some 
PTMs might act as degron regulators and cross-talk with 
ubiquitination.

Furthermore, we compared the properties of predicted 
degrons of Degpred, ELM motif matching and Motif_RF 
[20]. As Motif_RF utilized 11 features including intrin-
sically disordered regions, MoRFs, solvent accessibil-
ity, and flanking ubiquitinated Ks to predict possible 
degrons, we first compared these sequence properties 
of predicted degrons of three methods. As expected, 
Motif_RF predicted degrons scored higher in the predic-
tions of intrinsically disordered regions, MoRFs, and sol-
vent accessibility [8, 34, 35] than ELM motif matches and 
random peptides from the human proteome (Fig. 3b–d). 
Surprisingly, Degpred degrons also scored higher in these 
predictions (Fig.  3b–d), which indicates that Degpred 
captures correct sequence features of degrons. Next, we 
surveyed Ks and Ub-sites [32] around predicted degrons 
of three methods. As shown in Fig. 3e, Ks were enriched 
around Degpred degrons, which provides a suitable envi-
ronment for E3s to ubiquitinate substrates after binding 
to degrons. In addition, we found that both Ub-sites and 
ubiquitinated Ks were enriched around Degpred degrons 
as well (Fig. 3f, g). In comparison, Ks, Ub-sites, and ubiq-
uitinated Ks were randomly distributed around ELM and 
Motif_RF predicted degrons. These results indicated that 
Degpred degrons might mediate ubiquitination of flank-
ing Ks.

In summary, Degpred degrons exhibit typical degron 
properties and might promote ubiquitination of nearby 
Ks, supporting the assumption that Degpred degrons 
constitute the binding sites of E3s.

Predicting binding E3s of degrons using calculated motifs
After predicting degrons, we set out to predict the reg-
ulatory E3s for Degpred degrons. The most straight-
forward method is to match degrons with E3 motifs as 
used in motif-based methods, but only a small number of 
experimentally identified E3 motifs were available. Here, 
we computationally generated E3 motifs using Degpred 
degrons on substrates in our collected E3-substrate 
interactions (ESIs) dataset (Fig. 4a, Additional file 1: Fig. 
S3a, Additional file 3: Table S2, see Methods for detail). 
We chose 55 E3s with at least ten substrates in the ESI 
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dataset and calculated their motifs respectively. For each 
E3, we used GibbsCluster [28] to align Degpred degrons 
on its substrates and drop dissimilar outliers, which 
might be the binding sites of other E3s. Subsequently, 
we generated motifs from the aligned Degpred degrons 
for each E3 (Fig.  4a, see Methods for detail). As shown 
in Fig.  4b, the calculated motifs for βTrCP, SPOP, and 
FZR1 resemble their experimentally identified motifs 
[16]. In addition, we generated motifs for four HECT E3s 
(WWP1, WWP2, SMURF2, NEDD4L) which recognize 

proline-rich motifs through the WW domain [36, 37]. 
Four generated HECT E3 motifs were rich in proline 
(Additional file 1: Fig. S3b). These results indicated that 
our procedure to generate motifs is reliable.

To evaluate the ability of our generated motifs to pre-
dict ESIs, we defined a score to measure the binding pos-
sibility of an E3 and a substrate: we scored all Degpred 
degrons of the substrate with the E3 motif and selected 
the maximal motif matching score to represent the 
binding possibility. As shown in Fig.  4c, our collected 

Fig. 3  Properties of Degpred degrons and comparison with motif-based methods. a The AA composition of known degrons, Degpred degrons, 
and the human proteome, AAs are grouped based on their properties. b–d Distributions of predictions of intrinsic disorder, molecular recognition 
feature, and accessible surface area of predicted degrons in Degpred (blue), Motif_RF (orange), ELM motif matching (green), and random peptides 
from human proteome (gray, see Methods for detail). The intrinsic disorder was predicted with ESpritz-DisProt; the molecular recognition feature 
was predicted with MoRFchibi; the accessible surface area was predicted with ASAquick. P-values were calculated using two sides T-test. e–g 
Percentages of lysine, Ub-site, and Ub-lysine in the flanking 50 AAs of predicted degrons in Degpred (blue), Motif_RF (orange), and ELM motif 
matching (green), averages of the human proteome are displayed in gray. Both sides of predicted degrons were considered
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ESIs possessed significantly higher scores than ran-
dom pairs. In addition, the manually collected ESIs of 
Ubibrowser2.0 [21] not in our dataset also had higher 
scores. This finding indicated that our generated motifs 
could discover new ESIs. Furthermore, we compared 
generated motifs and ChenESI [22] on manually col-
lected ESIs of Ubibrowser2.0. We found that generated 

motifs and ChenESI predicted similar number of sub-
strates for SPOP and FZR1 (Additional file  1: Fig. S3d). 
Next, we compared generated motifs, Ubibrowser2.0 and 
ChenESI on ubiquitylome and proteome data measured 
after SPOP overexpression [38]. We found that SPOP 
substrates from the generated motif showed increased 
ubiquitination levels and reduced protein levels after 

Fig. 4  E3 motifs calculation and evaluation. a Workflow of motifs calculation. 1. Summary of the ESI dataset collected from PubMed and related 
works. 2. Fifty-five E3s possessing at least ten substrates in the collected ESI dataset were selected for motif calculation. 3. Predicting Degpred 
degrons on substrates in the ESI dataset for each E3. 4. Degron alignment and outlier removal with GibbsCluster for each E3. 5. Aligned regions 
present on degrons were considered to represent the binding sites for each E3. 6. Motif calculation using aligned peptides for each E3. 7. Cut-off 
calculation, degrons with motif matching scores larger than the cut-off were predicted as binding degrons of the E3. b Comparison of our 
generated motifs of βTrCP, SPOP, and FZR1 with their experimentally verified motifs in the ELM database. ELM motifs are represented as regular 
expressions, and consistent regions are highlighted in red. c Distribution of normalized maximal motif matching scores for our ESIs, the ESIs 
collected in Ubibrowser2.0 and not in our ESIs, and random pairs. Kernel density estimate plot showing the distribution of scores. The maximal 
motif matching scores were normalized to Z-scores for each E3 respectively. d Comparison of Ub-site abundance change and protein abundance 
change of predicted SPOP substrates in three methods after SPOP overexpression. Abundances of replicate 1 in original paper [38] were compared, 
and the results of replicate 2 were identical (data not shown). ChenESI predicted 1195 SPOP substrates and 867 of them were detected in the SPOP 
overexpression MS; Ubibrowser2.0 predicted 892 SPOP substrates and 622 of them were detected in the MS; we selected the top 2000 predicted 
SPOP substrates and 669 of them were detected in the MS. Kernel density estimate plots showing the distribution of the ratios after and before 
SPOP overexpression
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SPOP overexpression (Fig. 4d). In contrast, the substrates 
of ChenESI and Ubibrowser2.0 showed no significant 
change. Thus, these results suggested that our generated 
motifs can be used to predict ESIs. More importantly, our 
generated motifs provide information of binding degrons 
which is absent in Ubibrowser2.0 and ChenESI.

Finally, we set out to construct a protein degradation 
regulatory network using Degpred degrons and gener-
ated motifs. We calculated cut-offs for motifs (Fig.  4a) 
and used the cut-offs to estimate whether an E3 will bind 
a predicted degron (see Methods for detail). To assess 
the ability of 55 generated motifs to discover real ESIs, 
we predict our collected ESIs using 55 motifs. We found 
that 71% (39/55) of motifs can predict at least 40% of col-
lected substrates (Additional file  1: Fig. S3c, Additional 
file 4: Table S3). We selected these 39 motifs to construct 
a protein degradation regulatory network, which consists 
of 25695 ESIs between 39 E3s and 8754 substrates (Addi-
tional file 1: Fig. S3e, Additional file 4: Table S3).

In summary, we generated E3 motifs using Degpred 
and our collected ESI dataset. These motifs expanded 
known E3 motifs in the ELM database and enabled us to 
predict new ESIs with binding site information.

E3‑degron interactions affect half‑lives of substrates
To evaluate the impact of Degpred degrons on the turn-
over of proteins, we analyzed half-lives of proteins in 
non-dividing B cells, natural killer cells, monocytes, and 
hepatocytes [39]. As shown in Fig. 5a, proteins character-
ized by dense degrons tend to possess shorter lifespans, 
which was more significant for proteins with at least five 
degrons per 1000 AAs. As degrons are more frequent in 
disordered regions and disorder fraction is positively cor-
related with degradation rates [19], we analyzed proteins 
with disorder fractions of 0–10%, 10–30%, 30–100%, 
respectively, and found that proteins with dense degrons 
own shorter half-lives in three groups (Additional file 1: 
Fig. S4). This finding suggested that proteins with more 
degrons are under stricter regulation of the UPS and are 
thus degraded faster. To investigate whether different 
E3s tend to regulate substrates with different half-lives, 
we compared the half-lives of predicted substrates of 
different E3s. As shown in Fig.  5b, predicted substrates 
of TRIM63, βTrCP, NEDD4L, and HUWE1 tend to live 
shorter, while predicted substrates of TRIM32, FBXL15, 
PJA1, and FBXL7 tend to possess longer half-lives.

Then, to further verify that predicted degrons prompt 
protein degradation and mediate E3 binding, we con-
ducted experiments on Chromobox protein homolog 6 
(CBX6). CBX6 possessed three Degpred degrons, and 
segment 269-273 (DARSS) was predicted to be bound 
by SPOP; CBX6 contains no ELM SPOP motif match. 
As S is enriched in our generated SPOP motif and is 

reported to be important in binding with SPOP [13], we 
mutated DARSS to DARAA. Mutating two AAs can also 
minimize the impact on protein folding and stability. We 
transfected wild-type and mutated CBX6 plasmids into 
HEK293T cells respectively, and cultured cells for 36 h to 
compare the expression of the transgenes. As shown in 
Fig.  5c, wild-type CBX6 had much less expression than 
the mutant, which indicated that mutated CBX6 is more 
stable in cells. Subsequently, we added cycloheximide to 
inhibit protein synthesis and found that mutated CBX6 
was degraded slower than wild-type CBX6 (Fig.  5c). 
Next, to test whether DARSS on CBX6 interacts with 
SPOP, we transfected SPOP and wild-type or mutated 
CBX6 plasmids into HEK293T cells and conducted co-
immunoprecipitation experiments. As shown in Fig. 5d, 
CBX6 and SPOP co-immunoprecipitated, and mutating 
CBX6 weakened the interaction with SPOP. These find-
ings indicated that DARSS presenting on CBX6 repre-
sents a binding degron of SPOP.

Together, these results demonstrated that E3-degron 
interactions are principally linked to the control of pro-
tein half-lives and different E3s regulate substrates with 
different degradation rates, which implies that E3 might 
differ in degradation ability.

Degron‑related mutations on short‑lived proteins might 
drive cancer
Defects in degrons and E3s have been implicated in 
nearly all hallmarks of cancer [11, 20]. Previous studies 
found that highly mutated driver regions in cancer con-
tain many known degrons [40], and degron-affecting 
mutations are positively selected in tumorigenesis [20]. 
By comparing Degpred degrons with these results, we 
found that Degpred degrons are enriched in the highly 
mutated driver regions (Additional file  1: Fig. S5a), 
including well-known degrons on TP53, MYC, CTNNB1, 
NFE2L2, and other newly predicted degrons (Additional 
file 6: Table S5). Besides, motif matches that overlapped 
with Degpred degrons are under more stringent selec-
tion in tumorigenesis than the other motif matches 
(Additional file  1: Fig. S5b). However, previous studies 
were limited by using a biased degron set and failed to 
link degrons to E3s. Here, we investigated alterations of 
the expanded degron landscape in human cancers and 
explored the importance of binding E3s in tumorigenesis. 
We analyzed mutations in 33 cancer types of The Cancer 
Genome Atlas (TCGA) [41, 42] and cancer driver muta-
tions predicted by CATA-population, CATA-cancer, and 
Structural clustering [41].

By comparing the percentage of AAs with mutations in 
TCGA in degron-related regions (inside and flanking 10 
AAs) and other regions, we found that AAs in degron-
related regions are susceptible to mutations in cancer 
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compared with AAs in other regions (Fig.  6a). In addi-
tion, we found a higher percentage of recurrent muta-
tions (> = two tumor samples) occur in degron-related 
regions compared with mutations occurring only once 
(Fig.  6b). These findings suggested that degron-related 
mutations are common in human cancer. Then, we 
investigated degron-related mutations in specific cancer 
types and proteins. As shown in Fig.  6c, pheochromo-
cytoma and paraganglioma (PCPG), and skin cutaneous 
melanoma (SKCM) have more mutations in degrons, 

while brain lower-grade glioma (LGG) contains more 
mutations near degrons. We next identified hundreds of 
proteins whose mutations were enriched in degrons in 
specific cancer types (Fig. 6d, Additional file 6: Table S5). 
In addition to well-known degron-mutation enriched 
proteins such as CTNNB1, NFE2L2, and EPAS1 [11, 
20], we also identified several proteins rich in degron-
mutations that have not been revealed before, such as 
RXRA in bladder urothelial carcinoma (BLCA), CRNKL1 
in skin cutaneous melanoma (SKCM), VPS13D in head 

Fig. 5  E3-degron interactions impact half-lives of substrates. a Distribution of half-lives for proteins with different densities of degrons in four 
non-dividing cell types. The half-lives used were replicate 1 of four cell types in original paper [39], and the results of replicate 2 were identical 
(data not shown). Kernel density estimate plot showing the distribution of log10(half-life + 1). b Distribution of half-lives of predicted substrates for 
each E3. The minimal half-lives in eight experiments of four non-dividing cell types (two replicates per cell type) [39] for substrates were used, and 
E3s were sorted by the median half-lives of their predicted substrates. c Half-life experiments of mutated and wild-type CBX6, the experiment is 
repeated once (Additional file 5: Table S4). d Co-immunoprecipitation experiment between mutated and wild-type CBX6 with SPOP, the experiment 
is repeated once (Additional file 5: Table S4). Cell lysates were incubated with anti-HA agarose beads, and the immunoprecipitates were analyzed by 
Western Blot with anti-HA and anti-SPOP antibodies
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and neck squamous cell carcinoma (HNSC), and CIC in 
LGG. Overall, with the expanded degron landscape, we 
can explore degron-related mutations in cancer more 
comprehensively.

Degron-related mutations might interfere with pro-
tein degradation and result in abnormal accumulating 
oncogenes, thus ultimately driving tumorigenesis. We 
explored whether degron-related mutations tend to act 
as cancer drivers. Specifically, we focused on recurrent 
mutations (> = two tumor samples) which are more path-
ologically significant and tend to occur in degron-related 
regions (Fig.  6b). Using three different predictors, we 
found that degron-related mutations are more likely to 
function as cancer drivers (Fig. 6e). As degron-enriched 
proteins tend to be short-lived proteins (Fig.  5a) that 
regulate metabolism, cell proliferation, and differentia-
tion (Additional file 1: Fig. S5c, Additional file 7: Table S6, 
[43]), we reasoned that degron-related mutations on 
short-lived proteins might be more pathogenic. To test 
this hypothesis, we analyzed 1017 short-lived proteins 
identified by quantitative proteomics in U2OS, HCT116, 
HEK293T, and RPE1 cell lines [44]. The percentages of 
driver mutations are significantly higher in short-lived 
proteins than the other proteins (Fig. 6f ), which stressed 
that short-lived proteins are important in tumorigenesis. 
Surprisingly, we found that degron-related mutations on 
short-lived proteins tend to function as cancer drivers 
compared with other mutations. In contrast, there was 
no significant difference between these mutations on the 
other proteins. Further, we used another half-life dataset 
identified in four non-dividing cell types [39] and com-
pared proteins with the top 1000 shortest half-lives in at 
least one experiment with the other proteins. We found 
that degron-related mutations on short-lived proteins 
in four non-dividing cell types also tend to drive cancer 
(Additional file 1: Fig. S5d). These results indicated that 
interfering with the degradation of short-lived proteins is 
more pathogenic in human cancer, which provides a new 
perspective for interpreting cancer driver mutations.

Then, we studied E3s in tumorigenesis by analyz-
ing their predicted substrates and binding degrons. 

We found that approximately two mutations occur 
in one degron-related region, and the average num-
bers of mutations in degron-related regions bound by 
different E3s are comparable (Additional file  1: Fig. 
S5e). In addition, we found that mutations in degron-
related regions bound by SPOP and RFWD2 are more 
likely to function as cancer drivers (Additional file  1: 
Fig. S5f ), consistent with previous findings that SPOP 
and RFWD2 regulate the degradation of critical onco-
genes [38, 45]. Finally, we analyzed the functions of 
short-lived substrates of each E3 and identified some 
well-known functions of these E3s (Fig.  6g), such as 
CHFR in chromatin remodeling and histone modifi-
cations [46], SPOP in histone H3K36 trimethylation 
and alternative splicing [47], BIRC3 in regulating the 
caspase and apoptosis pathways [48], and HUWE1 in 
chromatin modification [49]. Together, these results 
suggested that E3s regulate different pathways by con-
trolling their substrates, and mutations on degrons 
bound by different E3s might exert different effects in 
tumorigenesis.

Finally, we highlighted 19021 degron mutations that 
alter the charge, hydrophobicity, phosphorylation sites, 
MoRF regions or predicted protein binding residues [50] 
of degrons, and 1524 mutations of flanking lysine (Addi-
tional file 1: Fig. S5g, Additional file 6: Table S5). These 
mutations change the properties of degrons and might 
hinder their function, thus constitute novel potential 
cancer drivers.

The web application
A freely available and fully functional website (http://​
degron.​phasep.​pro/) has been developed to access the 
collected and predicted data. Users can search all human 
proteins on the website according to their gene names 
and UniProt IDs. The detail page for each protein (Fig. 7) 
includes four sections: (1) basic information about the 
protein, haploinsufficiency, short half-life, oncogene, 
and tumor suppressor gene annotations, known degrons 
and E3s; (2) Degpred degrons and ELM motif matches of 

(See figure on next page.)
Fig. 6  Characterizing TCGA mutations in predicted degrons. a Comparison of mutations occurred in degron-related regions (inside and flanking 10 
AAs) and other regions, the rates were calculated by dividing the number of AAs with mutations in TCGA in the regions by the number of all AAs of 
the regions. b Comparison of percentage of degron-related mutations between recurrent mutations (> = two tumor samples) and other mutations. 
c Percentage of mutations in degrons and near degrons of 33 cancer types. d Proteins with mutations enriched in degrons in 33 cancer types, P 
values were calculated using Fischer’s exact test. Proteins with more than one mutation and P value less than 0.01 were shown in the scatter plot. 
e Cancer driver percentage of mutations in degron-related regions and other regions. CATA-population distinguishes pathogenic mutations from 
benign polymorphisms on a population level; CATA-cancer distinguishes between drivers and passenger somatic mutations; structural clustering 
leverages information from protein structures to predict drivers. f Driver mutation percentage in degron-related regions and other regions of 
short-lived proteins and the other proteins. g Normalized percentage of substrates in each function group for each E3. Percentages of substrates 
in each function group were normalized to Z-scores by rows. The bluer the color, the more substrates in this pathway are regulated by the E3. All 
P-values in this figure were calculated using Fischer’s exact test

http://degron.phasep.pro/
http://degron.phasep.pro/
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the protein; (3) an interactive and scalable interface [51] 
showing the regions of domains, intrinsically disorder 
score and Degpred score along the sequence; and (4) a 
sequence viewer displaying AAs of regions of interest on 

the protein sequence. The introduction and summary of 
the website are described on the “About” page; all data on 
the website can be freely downloaded on the “Download” 
page.

Fig. 6  (See legend on previous page.)
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Discussion
Here, we developed a deep learning model to predict 
hitherto unidentified degrons, allowing for a deeper char-
acterization of the regulatory network involved in pro-
tein degradation, both in health and disease. Widely used 
motif-based methods are limited by few E3 motifs and 
high false-positive rate. Degpred partially resolves these 
concerns and captures well-known degron properties. 
Previous studies showed that machine learning models 
that integrate multiple protein sequence features perform 

well in predicting degrons from motif matches [20]; our 
study suggests that by integrating rich information in 
the BERT-encoding matrix, deep learning models can 
achieve comparable performance with feature integrat-
ing models, which highlights the power of pre-trained 
BERT-based models in understanding protein functions. 
Moreover, our model predicts degrons singly from pro-
tein sequence, which needs no time-consuming feature 
annotation process and can be used to explore the impact 
of sequence alterations on degron potential.

Fig. 7  The detail page on our website. The detail page of a protein consists of four parts: (1) basic information, function annotations, and known 
degrons and E3s; (2) Degpred degrons and ELM motif matches; (3) a feature viewer; and (4) a sequence viewer
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With the expanded degron landscape and the pre-
dicted protein degradation regulatory network, we can 
study their rules in diseases. In this work, we found that 
degron-related mutations commonly occur in cancers; 
we also identified hundreds of proteins rich in degron 
mutations in different cancer types. Based on the pre-
dicted degrons, we can infer possible cancer drivers 
based on interference of protein degradation instead of 
recurrence of mutations. Mutated degrons might cause 
abnormally high expression of proteins and further lead 
to diseases. We reasoned that mutated degrons on con-
centration-sensitive proteins like haploinsufficient pro-
teins and short-lived proteins might act as cancer drivers. 
Our analysis reveals that degron-related mutations on 
short-lived proteins tend to function as cancer drivers. 
Thus, our tool provides a new perspective to explain the 
possible rules of cancer mutations in tumorigenesis and 
identify possible cancer drivers.

However, our study also has several limitations. (1) In 
the degron and binding E3 prediction part, first, despite 
the deep learning method provided, which relies on data 
available during training, degrons can still not be identi-
fied for the overwhelming majority of E3 ligases; second, 
degrons are under dynamic PTM regulations to control 
the interaction with E3s, and our method fails to distin-
guish between modification-dependent and independ-
ent degrons; third, our method can only assign degrons 
to 39 E3s. More experimental verified degrons and ESIs 
are required to classify degrons with different proper-
ties and construct a more comprehensive regulation net-
work. (2) In the experimental part, mutation of SPOP 
binding degron on CBX6 only weakened the interaction. 
In a study of SPOP and its substrate DAXX, the authors 
found that SPOP can bind degrons with one mismatched 
position of ELM motif [52]. Even though CBX6 pos-
sesses no exact ELM SPOP motif match, there are seven 
potential binding sites on CBX6 with one mismatch with 
the ELM SPOP motif, which might mediate the interac-
tion with SPOP. Besides, we mutated DARSS to DARAA 
to minimize the impact on protein folding and stability, 
mutating two amino acids might not completely block 
the interaction. (3) In the half-life and cancer mutation 
parts, we found many interesting results, but we should 
note that correlation does not mean causality. There exit 
other factors like disordered regions, MoRFs that may 
also contribute to these correlations.

Overall, our collected datasets and Degpred model 
constitute valuable resources to UPS researchers and 
protein engineers. Our work also suggests novel applica-
tions in protein engineering and drug designation. For 
example, (1) by deleting or adding degrons to proteins, 
researchers can control protein abundance to regulate 
specific functions; (2) researchers can mutate the degrons 

or block E3-degron interactions to upregulate the expres-
sion of tumor suppressors [12], which may be a feasible 
way to treat cancer; and (3) chemists can design PRO-
TAC drugs to link a substrate with a predicted binding E3 
to form double bonds between them and achieve higher 
specificity.

Conclusions
Our newly designed model provides a powerful and reli-
able tool for predicting degrons and binding E3s at indi-
vidual protein and proteome levels. Our work provides 
novel insights for explaining how a specific subset of 
driver mutations affect the degradation of proteins and 
helps bridge the gap between cancer genomics to prot-
eomics. As UPS emerges as a novel therapeutic target 
in drug discovery and PROTAC drugs show promising 
effects in clinical trials [53], we anticipate that our work 
will assist in investigating the pathogenesis of related 
diseases and provide potential therapeutic targets in the 
near future.

Methods
Data augmentation and degron clustering
Degrons of three and four AAs were symmetrically 
expanded to five and six AAs respectively to provide 
more information, and for the convenience of cluster-
ing (Additional file 1: Fig. S1a), degrons at the terminus 
of proteins were expanded in one direction. 128AA-
peptides used to train the model were randomly sampled 
around degrons from original protein sequences. For 
degrons near or at the terminus of proteins, we added “X” 
to the terminus of the sequence to ensure that degrons 
were evenly distributed on 128AA-peptides. GibbsClus-
ter [28] was used for degrons clustering with parameters: 
number of clusters = 5, motif length = 5, default values 
were used for other parameters. Five clusters were used 
because five-fold cross-validation is widely used in evalu-
ating machine learning models.

Model architecture, training, and test processes
Models were built using Pytorch 1.4 (https://​pytor​ch.​
org/). The input protein sequence of L AAs was embed-
ded using the TAPE BERT-based model [27] (https://​
github.​com/​songl​ab-​cal/​tape) to a 768 * (L+2) feature 
matrix or embedded to a 20 * L one-hot encoding matrix. 
The embedded matrix was passed to bidirectional long 
short-term memory (biLSTM) layers and fully connected 
layers. The sigmoid function was used in the final node 
to ensure the output for each AA was always between 0 
and 1. The BERT-based model contains 230,929 trainable 
parameters, while the one-hot model contains 243,729 
trainable parameters.

https://pytorch.org/
https://pytorch.org/
https://github.com/songlab-cal/tape
https://github.com/songlab-cal/tape
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AAs in degrons were labeled as 1, AAs in the other 
regions were labeled as 0, and flanking three AAs of 
degrons were not used in the training and test processes, 
as these AAs may contribute to E3 binding as well, but 
were not verified in experiment. In the training process, a 
dropout rate of 0.3 was employed to avoid overfitting, the 
batch size was 32. The weighted cross-entropy function 
was utilized as the loss function, defined as follows:

where n is the number of all AAs, ndeg is the number of 
AAs in degrons, y is the label, and ypred is the predicted 
value. The training process stopped when the loss did not 
decrease in the following five epochs. The Adam opti-
mizer with a learning rate of 0.0003 was used to update 
parameters.

In the test process, 0.5 was used as the cut-off to clas-
sify AAs to be in degrons or not. Models were evaluated 
using the area under the receiver operating characteristic 
curve (AUC), precision-recall curves, and the following 
scores:

where TP represents the number of AAs in degrons 
identified correctly, TN represents the number of AAs 
in other regions identified correctly, FN denotes the 
number of AAs in degrons identified incorrectly, FP rep-
resents the number of AAs in other regions identified 
incorrectly.

Comparing the BERT‑based model with Motif_RF 
and MoRFchibi
For the TAPE BERT-based model, the inputs were 
128AA-peptides with motif matches located at the 
center; one 128AA-peptide was generated for each motif 
match (no data augmentation in this comparison). The 
predicted scores for AAs in the motif match were aver-
aged to represent the BERT-based model score of the 
motif match, the average scores were used to calculate 
cross-entropy loss in the training stage and evaluated 
in the test stage. Motif_RF was built by the scikit-learn 

Loss = −
1

n2

∑
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n − ndeg
)

y log
(
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)

+ ndeg
(

1 − y
)

log
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))
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TP + FN
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package of python with same parameters as the original 
paper [20]. The input features for Motif_RF were directly 
downloaded from the supplementary data of the origi-
nal paper [20]. The average MoRFchibi score of AAs in 
the motif match was used as the MoRFchibi score of the 
motif match.

Our collected known degrons possessing feature anno-
tations in the supplementary data of the original Motif_
RF paper [20] constituted the positive dataset (only 
retaining one degron for the same degrons on differ-
ent isoforms of one gene); the negative dataset contains 
motif matches randomly selected from proteins without 
known degrons. The ratio of positive to negative samples 
is 1:5. Fivefold cross-validation was used to calculate the 
AUC of TAPE BERT-based model and Motif_RF; AUC of 
MoRFchibi was directly calculated on all motif matches 
in positive and negative datasets.

Degron prediction
To predict degrons from protein sequence, the average 
of outputs from models 1–5 was calculated and 0.3 was 
set as the cut-off. Two predicted degrons with a distance 
of fewer than 4 AAs were merged, and degrons shorter 
than 3 AAs were discarded. Due to the O(L2) space com-
plexity of BERT-based models, handling the full length of 
long proteins requires high computational power. Thus, 
for proteins shorter than 1000 AAs, the full proteins 
were used; for proteins longer than 1000 AAs, the pro-
teins were evenly split into ceil(L/1000) parts and pre-
dicted separately, where L is the length of proteins, and 
ceil means to round up the value upward to the smallest 
integer not less than it.

Properties comparison
MoRFchibi, ASAquick and predicted protein bind-
ing residue (SCRIBER) scores were downloaded from 
DescribePROT [50]. MoRF regions and predicted protein 
binding residues in Additional file 1: Fig. S5g were resi-
dues with top 5% highest score in the human proteome. 
ESpritz-Disport [34] with default parameters was used to 
predict disordered regions. Phosphorylation sites were 
downloaded from PhosphoSitePlus [31] (2021.01.19); 
the other PTM sites were downloaded from dbPTM [32] 
(2020.12.31).

Degpred degrons in Fig.  3b–g were predicted at the 
cut-off of 0.3 with an FDR of 0.512 at positive: nega-
tive = 1:20 (Additional file 1: Fig. S2a). Predicted degrons 
of Motif_RF in Fig.  3b–g were motif matches in the 
supplementary data of the original paper [20] with 
Prob_DEGRON larger than 0.842, which attained the 
same FDR at positive: negative = 1:20 with our method. 
The random peptides used in Fig.  3b–d and Additional 
file 1: Fig. S2c were peptides of 10 AAs sampled from the 



Page 16 of 19Hou et al. BMC Biology          (2022) 20:162 

human proteome. The number of peptides sampled from 
a protein of length L is ceil(L/1000), where ceil means to 
round the value upward to the smallest integer not less 
than it. About 33,000 random peptides were sampled 
from the human proteome.

ESI dataset collection
Nine hundred sixty-five related papers were obtained 
by searching PubMed with keywords: (E3[Title] 
OR E3s[Title]) AND (substrate[Title/Abstract] OR 
substrates[Title/Abstract]). Twenty-seven of 965 papers 
were retained after the manual screening. Two thousand 
two hundred seventy-two nonredundant ESIs between 
56 human E3s and 1863 substrates were extracted from 
these studies, and most of them were identified from high 
throughput experiments. In addition, Chen et al. [22] had 
collected 1790 nonredundant known ESIs from BioGrid 
[54], E3Net [55], hUbiquitome [56], and UniProt [23]; 
these ESIs were included as well. In total, we obtained 
3766 nonredundant ESIs between 307 human E3s and 
2713 substrates (Additional file 4: Table S3).

Motif calculation and matching
As known substrates from public databases are more reli-
able than manual high-throughput substrates, for E3s 
with at least ten known substrates, only known substrates 
were used to calculate motifs; for E3s with less than ten 
known substrates, both known substrates and high-
throughput substrates were used. Degrons and flanking 
three AAs on both sides were used in motif calculation 
and matching. GibbsCluster [28] was employed to align 
these expanded degrons and remove outliers. Given the 
length of known degrons, the motif length was set to 5-8 
AAs, and four motifs with lengths of 5-8 would be gen-
erated for each E3. A trash cluster was used to remove 
outliers, and the trash cluster threshold was set to 4. 
Alignment cores with lengths of 5-8 generated by Gibb-
sCluster [28] were used to construct four position-spe-
cific score matrixes (PSSMs) for each E3. For a PSSM, Si, 
a represents the score of amino acid a on position i, and 
was calculated as:

where Ci, a is the number of amino acid a on position i 
in alignment cores, N is the number of alignment cores, 
and Fa is the frequency of amino acid a in the human 
proteome.

For an equal-length peptide with a PSSM, the matching 
score was calculated by adding scores of all AAs in the 
peptide; for a peptide longer than a PSSM, the peptide 
was slid across with the PSSM, and the highest matching 

Si,a = log2
Ci,a + 1 /(N + 20)

Fa

score among all positions was used as the matching 
score; for a peptide shorter than a PSSM, no match-
ing score was provided. To calculate the cut-off for a 
PSSM, we reversed it and used the reversed PSSM to 
score 1,000,000 equal-length peptides randomly sampled 
from human proteome, the top 1/2000 score was used 
as the cut-off for the PSSM. For each E3, the ability of 
four PSSMs to capture known substrates was evaluated, 
and the PSSM with higher recall rate was selected as the 
motif representing the E3.

Seven of 39 E3s with calculated motifs possess ELM 
motifs (SPOP: DEG_SPOP_SBC_1, SIAH1 and SIAH2: 
DEG_SIAH_1, βTrCP: DEG_SCF_TRCP1_1, VHL: 
DEG_ODPH_VHL_1, RFWD2: DEG_COP1, FZR1: 
DEG_APCC_KENBOX_2). Four of 16 E3s without cal-
culated motifs possess ELM motifs (SKP2: DEG_SCF_
SKP2-CKS1_1, MDM2: DEG_MDM2_SWIB_1, FBXW7: 
DEG_SCF_FBW7_1 and DEG_SCF_FBW7_2, CDC20: 
DEG_APCC_DBOX_1).

Public data and gene ontology enrichment
For SPOP overexpressed ubiquitylome and proteome 
data [38], only data of replicate 1 was compared, and the 
results of replicate 2 were identical (data not shown). 
The half-lives used in Fig.  5a and Fig. S4 were replicate 
1 of four cell types [39], and the results of replicate 2 
were identical (data not shown). TCGA mutation data 
were downloaded from https://​gdc.​cancer.​gov/​about-​
data/​publi​catio​ns/​mc3-​2017 and processed according to 
ref. [41]; cancer driver mutation data were downloaded 
from https://​gdc.​cancer.​gov/​about-​data/​publi​catio​ns/​
pancan-​driver.

Gene ontology enrichment was conducted using 
Cytoscape package clueGO (version 2.5.8, https://​apps.​
cytos​cape.​org/​apps/​cluego). The detailed parameters are 
available in Additional file 7: Table S6.

Cell culture and transfection
HEK293T cells were grown in DMEM (Biological Indus-
tries) supplemented with 10% fetal bovine serum. Cells 
were cultured in a 37 °C/5% CO2 incubator. Plasmids 
were transfected into cells with PEI (Hannothch), the cul-
ture medium was changed after 6 h of transfection, and 
cells were maintained for another 36 h.

Plasmids and antibodies
Wide type and mutated CBX6 plasmids were synthesized 
by GENEWIZ. HA-tagged wild-type and mutated CBX6 
were cloned into plvx-IRES-zsgreen. The plvx-empty and 
plvx-myc-SPOP were provided by Dr. Hong Wu lab.

Anti-HA: Santa Cruz Biotechnology sc-7392; Anti-
GAPDH: Cell Signaling Technology D16H11; Anti-SPOP 
was homemade in Dr. Hong Wu lab.

https://gdc.cancer.gov/about-data/publications/mc3-2017
https://gdc.cancer.gov/about-data/publications/mc3-2017
https://gdc.cancer.gov/about-data/publications/pancan-driver
https://gdc.cancer.gov/about-data/publications/pancan-driver
https://apps.cytoscape.org/apps/cluego
https://apps.cytoscape.org/apps/cluego
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Cycloheximide chasing assay
Wide type or mutated CBX6 plasmids were transfected 
into HEK293T cells. Cycloheximide (MCE 100 μg/ml) 
was added into the medium after incubation and cells 
were collected at different time points. Cells were washed 
with PBS, lysed in RIPA buffer (50 mM Tris-Cl pH 7.4, 
150 mM NaCl, 1% TrintonX-100, 1% sodium deoxycho-
late, 1% SDS, plus protease inhibitor cocktails (Thermo 
Scientific)). Cell lysates were analyzed by Western Blot 
with indicated antibodies.

Co‑immunoprecipitation assay
Myc-SPOP and wide type or mutated HA-CBX6 were 
transfected into HEK293T cells. Cell lysates were pre-
pared 48 h after transfected in Sucrose-NP40 lysis buffer 
(25 mM Tris-Cl pH 7.5, 150 mM NaCl, 5 mM MgCl2, 
1 mM DTT, 1 mM PMSF, 10 mM NaF, 1 mM NaVO3, 
2 mM EDTA, 0.25 M Sucrose and 0.5% NP40 and pro-
tease inhibitors (Roche 04906837001)) for 30 min on ice. 
Cell lysates were spun at 15,000 rpm for 15 min at 4 °C, 
and the supernatants were incubated with pre-washed 
anti-HA (Thermo 26182) agarose beads for 4 h in the cold 
room. The immunoprecipitates were collected by centrif-
ugation and washed four times with wash buffer (150 mM 
NaCl, 25 mM Tris-Cl pH 7.5, 0.1% NP40, 5 mM MgCl2, 
1 mM DTT, 1 mM PMSF). Precipitations were analyzed 
by Western blot after 90 °C 10 min boiled in 1 × loading 
buffer (0.2 M Tris-Cl pH 6.8, 0.02 g/mL SDS, 1 mg/mL 
Bromophenol Blue, 10% glycerinum, 1% β-Me).

Western Blot
Cell lysates were boiled in protein loading buffer and cen-
trifuged at 14,000g. The protein supernatants were sub-
jected to 10% SDS-PAGE. Proteins were then transferred 
into 0.45 μm PVDF membranes (Millpore), and the mem-
brane were blocked in 5% BSA for 1 h and were incubated 
with primary antibodies overnight at 4 °C. After washing 
with TBST (0.5% Tween-20), membranes with protein 
were incubated with secondary antibody for 2 h at room 
temperature. After washing with TBST (0.5% Tween-20), 
proteins of interest were visualized using the enhanced 
chemiluminescence system (Thermo). Uncropped west-
ern blots were provided in Additional file 8.
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