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Abstract 

Background:  Cryopreserved peripheral blood mononuclear cells (PBMCs) are frequently collected and provide 
disease- and treatment-relevant data in clinical studies. Here, we developed combined protein (40 antibodies) and 
transcript single-cell (sc)RNA sequencing (scRNA-seq) in PBMCs.

Results:  Among 31 participants in the Women’s Interagency HIV Study (WIHS), we sequenced 41,611 cells. Using 
Boolean gating followed by Seurat UMAPs (tool for visualizing high-dimensional data) and Louvain clustering, we 
identified 50 subsets among CD4+ T, CD8+ T, B, NK cells, and monocytes. This resolution was superior to flow 
cytometry, mass cytometry, or scRNA-seq without antibodies. Combined protein and transcript scRNA-seq allowed 
for the assessment of disease-related changes in transcriptomes and cell type proportions. As a proof-of-concept, we 
showed such differences between healthy and matched individuals living with HIV with and without cardiovascular 
disease.

Conclusions:  In conclusion, combined protein and transcript scRNA sequencing is a suitable and powerful method 
for clinical investigations using PBMCs.
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Background
PBMCs are a rich source of disease- and treatment-rel-
evant information [6, 19, 36, 48, 57, 76, 84–86]. PBMCs 
can be analyzed without mechanical or enzymatic 

dissociation, which are known to alter cell surface mark-
ers and transcriptomes [79]. PBMCs can be cryopre-
served without loss of viability. At the most basic level, 
lymphocytes and monocyte can be distinguished by 
morphology using automated cell counters (blood cell 
counter, CBC) [7]. The current practice is to use flow 
cytometry of between 8 and 30 markers simultane-
ously [41, 46, 51, 60, 64] or even 43 markers with spec-
tral cytometry [66]. Mass cytometry [2, 23, 71, 80] allows 
for analysis of up to 50 markers, but no transcriptomes 
[23, 61]. Single-cell RNA sequencing (scRNA-seq) allows 
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the interrogation of expressed genes [17, 45, 53, 72, 87] 
and surface markers (cellular indexing of transcriptional 
epitope sequencing, CITE-Seq) [67, 72, 87].

In immune cells, the correlation between mRNA 
and surface expression of any given surface marker is, 
in the majority of the cases, weak [42, 67]. The correla-
tion between mRNA and protein levels in mamma-
lian immune cells is around 40% [69]. This is because 
cell surface expression is not only determined by gene 
expression, but also by post-translational protein modifi-
cations [43], trafficking to the cell surface, protein stabil-
ity, and proteolytic modifications. The capture efficiency 
of mRNA is not perfect, and mRNA drop-outs further 
weaken the correlation between gene and surface pro-
tein [87]. Cell types in PBMCs have been defined by flow 
cytometry, and the surface markers of the major cell 
types are very well known. Yet, it is difficult to call even 
major cell types by scRNA-seq. For example, CD4+ T 
cells were not resolved from CD8+ T cells and natural 
killer (NK) cells [83]. To take advantage of the extensive 
knowledge and vast literature in flow and mass cytom-
etry, it is necessary to assess cell surface phenotype along 
with transcriptomes.

Currently, only two publications report combined 
single-cell transcriptomes and protein (antibodies) from 
patients with atherosclerosis. The first one [19] includes 
human carotid endarterectomy specimens and matched 
PBMCs where 1652 PBMCs from one patient (without 
PBMCs from a healthy control) were analyzed by 10x 
Genomics 3′ and CITE-seq [53, 72], using a panel of 21 
oligonucleotide-tagged antibodies. The second paper 
analyzed human carotid arteries from explanted hearts 
with 10x Genomics and a panel of 11 oligonucleotide-
tagged antibodies. It is focused on smooth muscle cells 
and fibromyocytes rather than immune cells [81]. A 
recent study reported the effect of HIV infection on 
PBMC transcriptomes [33], focusing on acute HIV infec-
tion (before antiretroviral therapy started) and reporting 
PBMC transcriptomes in four patients at 8 defined time 
points (average of 1976 PBMC transcriptomes per partic-
ipant and condition). No scRNA-seq or CITE-seq stud-
ies of PBMCs of people living with chronic HIV infection 
have been reported and no single-cell studies of the inter-
action between HIV and cardiovascular disease (CVD) 
are available.

Here, we report transcriptomes and cell surface phe-
notypes of almost 42,000 PBMCs using the targeted 
scRNA-seq BD Rhapsody platform [17, 45] that simul-
taneously provides single-cell surface phenotype (40 
monoclonal antibodies, mAbs) and transcriptomes (485 
immune and inflammatory transcripts) in the same cells. 
As a proof-of-concept, we show significant differences 
in cell proportions and cell transcriptomes between 

healthy subjects and matched subjects living with HIV 
or cardiovascular disease from the WIHS cardiovascular 
sub-study. WIHS is an ongoing multi-center, prospec-
tive, observational cohort study of women with or at risk 
of HIV infection. PBMCs were cryopreserved on liquid 
N2, following strict standard operating procedures that 
ensured preservation of cell surface phenotype, viability, 
and transcriptomes.

Methods
Study characteristics and sample selection
The Women’s Interagency HIV Study (WIHS) was initi-
ated in 1994 at six (now expanded to ten) US locations 
[25, 28]. It is an ongoing prospective study of over 4000 
women with or at risk of HIV infection. Recruitment in 
the WIHS occurred in four phases (1994–1995, 2001–
2002, 2010–2012, and 2013–2015) from HIV primary 
care clinics, hospital-based programs, and community 
outreach and support groups. Briefly, the WIHS involves 
semi-annual follow-up visits, during which participants 
undergo similar detailed examinations, specimen collec-
tion, and structured interviews assessing health behav-
iors, medical history, and medication use. All participants 
provided informed consent, and each site’s Institutional 
Review Board approved the studies.

All participants in the current analysis were part of a 
vascular sub-study nested within the WIHS [25, 28, 32]. 
The baseline visit for the vascular sub-study occurred 
between 2004 and 2006, and a follow-up visit occurred 
on average 7 years later. Participants underwent high-
resolution B-mode carotid artery ultrasound to image 
six locations in the right carotid artery: the near and far 
walls of the common carotid artery, carotid bifurcation, 
and internal carotid artery. A standardized protocol was 
used at all sites [32], and measurements of the carotid 
artery focal plaque, a marker of subclinical atherosclero-
sis, were obtained at a centralized reading center (Uni-
versity of Southern California). Subclinical CVD (sCVD) 
was defined based on the presence of one or more carotid 
artery lesions [32].

From the initial 1865 participants in the WIHS vascu-
lar sub-study, 32 participants were selected for scRNA-
seq analysis. sCVD was defined as the presence of carotid 
artery focal plaque at either vascular sub-study visit to 
define four groups of eight participants each: HIV−, 
HIV+CVD−, HIV+CVD+, and HIV+CVD+ on cho-
lesterol reduce treatment (CRT). Because we were inter-
ested in the joint relationships of HIV infection and 
sCVD with surface marker and RNA expression by dif-
ferent cell subtypes, we selected matched samples based 
on HIV, sCVD, and CRT (mostly statins) (Additional 
file 1: Fig. S1). The latter was done because we found that 
CRT had a major impact on monocyte transcriptomes 
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[16]. HIV infection status was ascertained by enzyme-
linked immunosorbent assay (ELISA) and confirmed by 
Western blot. Non-sCVD participants with self-reported 
coronary heart disease or current lipid-lowering therapy 
use were excluded. Participants were formed in quartets 
matched by race/ethnicity (except one quartet), age (± 
5 years) at the baseline vascular sub-study (except one 
quartet where the age difference was more but all the 
women were post-menopausal), visit number, smoking 
history, and date of specimen collection (within 1 year).

Demographic, clinical, and laboratory variables were 
assessed from the same study visit using standardized 
protocols. The median age at the baseline study visit was 
55 years, and 96% of participants were either of Black 
race or Hispanic ethnicity. Most (86%) reported a his-
tory of smoking. Substance use was highly prevalent, 
with 43% of HIV+ and 50% of HIV− participants report-
ing either a history of injection drug use; current use of 
crack, cocaine, or heroin; or alcohol use (≥14 drinks per 
week). Among HIV+ participants, over 80% reported 
use of highly active antiretroviral therapy (HAART) at 
the time PBMCs were obtained, and 59% reported an 
undetectable HIV-1 RNA level. The median CD4+ T-cell 
count was 585 cells/μL (IQR 382–816) in HIV+ women 
without sCVD and 535 cells/μL (IQR 265–792) in HIV+ 
women with sCVD. From now on along the text, sCVD 
will be referred as CVD.

Preparation of PBMC samples for CITE‑seq
To avoid batch effects, sixteen samples each were pro-
cessed on the same day. PBMC tubes were thawed in 
a 37°C water bath and tubes filled with 8 mL of com-
plete RPMI-1640 solution (cRPMI-1640) which con-
tains human serum albumin, HEPES, sodium pyruvate, 
MEM-NEAA, penicillin-streptomycin, GlutaMax, 
and mercaptoethanol. Main reagents, manufacturers, 
and catalogue numbers are listed in Additional file  1: 
Table  S1. The tubes were centrifuged at 400 ×g for 5 
min and pellets resuspended in cold staining buffer (2 
% fetal bovine serum (FBS) in phosphate-buffered saline 
(PBS)). Manual cell counting (trypan blue solution, 0.4%) 
was performed by diluting cell concentration to achieve 
100–400 cells per hemocytometer count. Cells were ali-
quoted to a count of 1 million cells each and incubated 
on ice with Fc Block reagent (BD Biosciences, Additional 
file 1: Table S1) at a 1:20 dilution, centrifuged at 400 ×g 
for 5 min, resuspended in 180 μL of staining buffer, and 
transferred to their respective sample multiplexing kit 
tubes (BD Biosciences). The cells were incubated for 
20 min at room temperature, transferred to 5-mL poly-
styrene tubes, washed 3 times, and centrifuged at 400 
×g for 5 min. The cells were resuspended in 400 μL of 
staining buffer and 2 μL of 0.3mM DRAQ7 and 2 μL of 

2mM Calcein AM were added to each tube. The viabil-
ity and cell count of each tube were determined using the 
BD Rhapsody scanner (Additional file 1: Table S2). Tube 
contents were pooled in equal proportions with total cell 
counts not to exceed 1 million cells. The tubes were then 
centrifuged at 400 ×g for 5 min and resuspended in a 
cocktail of 40 oligonucleotide-tagged antibodies (listed in 
Additional file  1: Table  S3) (2 μL each antibody and 20 
μL of staining buffer) on ice for 30–60 min per manufac-
turer’s recommendations. The tubes were then washed 
with 2 mL of staining buffer followed by centrifugation at 
400 ×g for 5 min. This was repeated two more times for a 
total of 3 washes. The cells were then counted again using 
the scanner and loaded into Rhapsody nanowell plates (4 
samples per plate).

Library preparation
Cells were loaded at 800–1000 cells/μL into the primed 
plate per the BD user guide. The beads were isolated 
with a magnet and the supernatant removed. Reverse 
transcription was performed at 37 °C on a thermomixer 
at 1200 rpm for 20 min. Exonuclease I was incubated 
at 37 °C on a thermomixer at 1200 rpm for 30 min and 
then immediately placed on a heat block at 80 °C for 20 
min. The tube was placed on ice followed by superna-
tant removal while beads were on a magnet. The beads 
were resuspended in BD bead resuspension solution. The 
tubes were stored at 4 °C until further processing.

Per BD’s protocol, the reagents for PCR1 including the 
BD Human Immune Response Panel and a custom panel 
of ~100 genes (Additional file 1: Table S4) were added to 
the beads. Samples were aliquoted into strip PCR tubes 
and incubated for 10 cycles according to BD’s proto-
col for PCR1. A double size selection was performed to 
remove high genomic DNA fragments by adding 0.7× 
volume AMPure XP SPRI beads to the PCR products. 
After incubation, the supernatant is recovered and trans-
ferred to a new tube followed by purifying the superna-
tant with an additional 100 μL of AMPure XP beads. The 
content was eluted off the beads using 30 μL of BD elu-
tion buffer and then transferred to a 1.5-mL tube.

Pre‑sequencing quality control (QC)
Each tube had 12 cycles of PCR performed according to 
BD’s user guide. The tubes were cleaned with AMPure 
XP beads at 0.8X for mRNA and 1.2X for sample tags. 
Two 200-μL washes per sample were performed during 
the clean-up using 80% ethanol. The cDNA was eluted off 
using BD elution buffer. QC and quantification was per-
formed using Agilent TapeStation high sensitivity D1000 
screen tape and Qubit double-stranded high sensitivity 
DNA test kit. The mRNA was then diluted, if necessary, 
to a concentration of 1.2–2.7 ng/μL and the antibody and 
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sample tag libraries from PCR2 were diluted, if needed, 
to a concentration of 0.5–1.1 ng/μL. From each sample, 3 
μL was added to a volume of 47 μL of reagents for PCR3 
as described by BD’s user recommendations follow-
ing the protocol and number of cycles listed, except for 
AbSeq, which had 9 cycles of PCR performed as deter-
mined by previous optimization. The three libraries were 
then cleaned with AMPure XP beads at 0.7X for AbSeq 
and 0.8X for sample tags. Samples were washed twice 
with 200 μL of 80% ethanol. The cDNA was eluted off the 
beads using BD’s elution buffer. Final QC and quantifica-
tion was performed using TapeStation and Qubit kits and 
reagents.

Sequencing
The samples were pooled and sequenced to the follow-
ing nominal depth recommended by BD: AbSeq: n × 
1000 reads per cell, where n is the plexity of AbSeq used; 
mRNA: 20,000 reads per cell; sample tags: 600 reads per 
cell. Thus, a total of 60,600 reads per cell were desired for 
sequencing on the NovaSeq. The samples and specifica-
tions for pooling and sequencing depth, along with num-
ber of cells loaded onto each plate, were optimized for S1 
and S2 100 cycle kits (Illumina) with the configuration of 
67 × 8 × 50 bp. Once sequencing was complete, a FASTA 
file was generated by BD as a reference for our AbSeq and 
genes we targeted with these assays. The FASTA file and 
FASTQ files generated by the NovaSeq were uploaded 
to Seven Bridges Genomics pipeline, where the data was 
filtered and matrices and csv files were generated. This 
analysis generated draft transcriptomes and surface phe-
notypes of 54,078 cells (496 genes, 40 antibodies). Eleven 
genes were not expressed, leaving 485 genes for analysis.

Doublet removal
Based on the 4 sample tags used per plate, 8359 doublets 
were removed. The remaining 45,719 cells were ana-
lyzed using the Doublet Finder package on R (https://​
github.​com/​chris-​mcgin​nis-​ucsf/​Doubl​etFin​der) with 
the default doublet formation rate (7.5%). This removed 
another 3322 doublets, leaving 42,397 Cells. Finally, we 
removed all cells that had less than 128 (27) antibody 
molecules sequenced. This removed 786 noisy cells, 
resulting in 41,611 cell transcriptomes. All antibody data 
were CLR (centered log-ratio) normalized and converted 
to log2 scale. All transcripts were normalized by total 
UMIs in each cell and scaled up to 1000.

Thresholding
Preliminary experiments showed that each antibody had 
both specific and non-specific binding, as expected. To 
remove the non-specific signal, a threshold value sepa-
rating noise from expression for each surface marker was 

obtained as follows (Additional file 1: Table S5). Density 
plots for expression of each surface marker in the main 
cell types (Ridgeline plots) were used to define the sig-
nal in a known negative cell population or by deconvo-
lution of overlapping normal distributions (we used the 
function “normalmixEM” to deconvolute the overlap-
ping distributions in the R package “mixtools”). The 
intersect of the two Gaussian distributions was then set 
as minimum expression threshold for the antibody, set-
ting surface expression values below the threshold to 
zero. In combined protein and transcript panel single-cell 
sequencing, non-specific background staining is caused 
by incomplete Fc block and oligonucleotide-tagged anti-
body being trapped in the nanowell [72] as well as by 
incorrect titrations. Some antibodies like most antibod-
ies to chemokine receptors have inherent background. 
The adjustment of antibody concentration improves sig-
nal and lowers the background [8]. Ridgeline plots of the 
thresholded protein expressions for each main cell type 
are shown in Additional file 1: Fig. S2A, which indicates 
how the thresholding worked on each protein expression. 
Based on Fig. S2A, CCR7 (CD197) antibody data were 
not included in the analysis.

Clustering
Prior to clustering the data based on antibodies, we 
ensured that the data were batch-corrected using the 
Harmony package. To prepare the data for clustering, we 
first reduced the dimensionality of the data using UMAP 
(Uniform Manifold Approximation and Projection) [1] 
to visualize the clusters. UMAP is a manifold learning 
technique that helps find the latent space in which the 
data lies within the higher dimension space by reducing 
the dimensions of data. It is a dimension reduction tech-
nique used for visualization. We use Louvain clustering 
[3] in order to cluster the data. The parameter “resolu-
tion,” which determines the quality of clustering, is set 0.8 
for B cells, 1.0 for CD4+ T cells, 1.3 for CD8+ T cells, 
0.5 for classical monocytes, 0.4 for intermediate mono-
cytes, 0.4 for nonclassical monocytes, and 0.3 for NK 
cells. Subclustering of each major cell type was based on 
all non-negative antibodies (Additional file  1: Table  S6). 
Gates were overlaid and used in all subsequent UMAP 
figures (cell numbers in each cluster in Additional file 1: 
Table S7).

Cluster assignment
Clustering was done just using antibodies. In CD4+ T 
cells, 4 of the initial clusters were further divided based 
on the expression of CD11c, CD56, CD25, CD127, 
CXCR3, and CCR2. CD8+ T cells had two clusters that 
were divided based on CD11c, CD16, and CXCR3 pro-
tein expression. One cluster from classical monocytes 
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and one cluster from intermediate monocytes were 
further divided based on CD163 and CD152 expres-
sion, respectively. In nonclassical monocytes, one clus-
ter showed differential expression of CD36 and CD152 
expression and was divided in two. In B cells, one clus-
ter was split because it showed differential expression of 
CD25 and CXCR3 within the cluster. Finally, two clusters 
from NK cells were split due to CD16, CD56, and CD11c 
expression.

Comparing gene expression among participant types
To determine differential expression (DE) among the 
four types of participants, we ran Wilcoxon rank sum 
test in the Seurat package [73] in R with no thresholds 
over avg_logFC, minimum fraction of cells required in 
the two populations being compared, minimum num-
ber of cells and minimum number of cells expressing a 
feature in either group. We filtered for adjusted p < 0.05 
and compared HIV−, HIV+CVD−, HIV+CVD+, and 
HIV+CVD+CRT+. From this data, dotplots were gen-
erated using ggpubr package in R. Significant genes were 
selected based on an adjusted p-value (Bonferroni cor-
rected) threshold of < 0.05 and pct.1 (percentage of cells 
where the feature is detected in the first group) value > 
0.2. Significantly differentially expressed genes (exact 
p-values) for each major cell types are shown in Addi-
tional file 1: Table S8.

Comparing cell proportions
To find changes in proportions, we identified the cell 
numbers for each participant in each cluster (Additional 
file 1: Table S9). Statistical differences in cell proportions 
were calculated by log-odds ratio defined as p/(1−p) 
where p is the proportion of cells, followed by ANOVA 
and Tukey’s multiple comparison test between the four 
groups. For clarity, the data are presented as percentage 
of cells.

Correlation analysis
We correlated each antibody to its corresponding gene(s) 
using Spearman rank correlation and significance (R 
package). For each combination of gene-antibody, we 
discarded cells that had values below the correspond-
ing threshold for that antibody as well as cells with zero 
counts for that gene. After this filter, any gene-antibody 
combination that had 10 cells or less was deemed insig-
nificant. Finally, all non-significant (p-value > 0.05) were 
designated a nominal value of zero as the Spearman rank 
correlation coefficient and we selected only those genes 
or antibodies that had at least one correlation whose 
coefficient ≥ 0.25 or whose coefficient ≤ −0.25. All sig-
nificant non-negative correlations are reported in Addi-
tional file 1: Table S10.

Random forest analysis
A machine learning (ML) approach was implemented 
to identify the genes that distinguish between disease 
groups. To accomplish this goal, the Random For-
est (RF) model [37, 40] was trained with the normal-
ized gene expression from 1000 randomly selected cells 
from each condition and variable importance scores of 
the genes were calculated. This procedure was repeated 
for 15 iterations and importance scores in each itera-
tion were scaled to 0–100. A higher score indicated a 
higher power for classifying the disease groups.

Results
Identification of main cell types based on surface marker 
expression
To identify the major known cell types (Fig.  1A), we 
used ridgeline plots on CD3, CD4, CD8, CD14, CD16, 
CD19, CD56, CD123, and CD206. This approach 
defines (Fig. 1B):

•	 B cells: CD19+ CD3−
•	 T cells: CD19− CD3+
•	 CD4+ T cells: CD4+ CD8− T cells
•	 CD8+ T cells: CD8+ CD4− T cells
•	 Monocytes (M): CD19−CD3−CD56−
•	 Classical (CM): CD14+CD16−
•	 Intermediate (INT): CD14+CD16+
•	 Nonclassical (NCM): CD14−CD16+CD56−
•	 NK cells (NK): CD4− CD56+ CD14− CD20− 

CD123− CD206−

This resulted in 2835 B cells, 11,019 CD4+ T cells, 
10,865 CD8+ T cells, 5145 CM, 995 INT, 475 NCM, 
and 1801 NK cells. Each of these major cell types was 
then re-clustered separately, using Seurat [73] to con-
struct UMAPs, an effective tool for visualizing high-
dimensional data, with Louvain clustering (Fig.  1C). 
Like in flow or mass cytometry, we clustered on anti-
body staining only. This “preserves” the transcriptomes 
for investigations into disease- and treatment-related 
changes. Using this approach, we identified 13 CD4+ 
T cell subsets, 14 CD8+ T cell subsets, 7 CM subsets, 
3 NCM subsets, 3 INT subsets, 7 B cell subsets, and 3 
NK cell subsets (Fig. 1C). The age of each of the partici-
pants was projected onto the main cell type UMAPs to 
study the possible effect of this variable in the results. 
Similar age distribution was observed in CD4+ T cells, 
CD8+ cells, CM, INT, and NCM (Additional file 1: Fig. 
S2B). In the case of B cells and NK UMAPs, some of the 
clusters presented unequal age distribution, but those 
clusters did not show any remarkable finding in this 
study (Fig. 1D).
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Fig. 1  A Gating scheme to identify major immune cell types, B ridgeline plots to identify thresholds, C antibody-based UMAP of major cell types, 
and D age projection (above and below median age, 49 years) onto NK and B cell UMAPs. PBMCs from 32 WIHS participants were hashtagged and 
stained with 40 oligonucleotide-tagged antibodies. The major immune cell types were UMAP-Louvain-clustered by CD3, CD19, CD14, CD16, CD20, 
CD56, CD123, and CD206 surface expression. Then, each major known cell type was UMAP-Louvain-clustered separately by all non-negative surface 
markers. Classical monocytes (CM) formed 7 clusters, intermediate monocytes (INT) 3, and nonclassical monocytes (NCM) 3 clusters. CD4+ T cells 
formed 13 clusters and CD8+ T cells formed 14. NK cells formed 3 clusters and B cells formed 7 clusters. Numbers of clusters are indicated in each 
UMAP. Green: above median, red: below median
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Fig. 1  continued
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Cell subset calling using 40 surface markers
Next, we constructed heatmaps for those antibodies that 
were significantly differentially expressed in at least one 
subset and relevant for cell calling (Fig. 2). Based on Fig. 
S2A, CCR7 (CD197) antibody data were not included in 
the analysis. This information allowed us to call all CD4+ 
T and CD8+ T cell subsets in accordance with the pub-
lished work. Among CD4+ T cells, CD2 was expressed 
in almost all cells, as expected. The high affinity IL2 
receptor IL2RA (CD25) was expressed in about a third of 
the CD4+ T cells and was strikingly high in cluster 10, 
which was also low for IL7 receptor (CD127), defining 
cluster 10 as regulatory T cells (Tregs). CD45RA and RO 
were mutually exclusive, separating naive and antigen-
experienced CD4+ T cells. CXCR3 (CD183) identifies 
T-helper-1 (Th1) cells and was highly expressed in clus-
ter 1. Cluster 9 expressed CXCR5 (CD185) as the only 
chemokine receptor, suggesting it may contain follicular 
helper (Tfh) T cells. Cluster 9 was the only cluster with 
high expression of CD56, suggesting a CD56+ CD4+ T 
cell. Based on protein information, all CD4 T cell clus-
ters were called (Fig. 2A). Most CD8+ T cells expressed 
CD2. Chemokine receptors (CD183, 184, 192, 194, 195, 
197) were expressed on cells in clusters 5, 7, and 8. Clus-
ter 6 was identified as NK-like (CD56+) T cells with a 
CD45RA+ terminally differentiated memory (Emra) 
phenotype (Fig. 2B).

Among monocytes, we were able to call all the classi-
cal monocyte subsets based on published data [23, 75], 
related to subsets described by mass cytometry [23]. All 
CM were CD11b+ (Fig.  2C). There were gradients of 
CD9, CD69, and CD184 expression. The scavenger recep-
tor CD36 and the chemokine receptor CCR2 (CD192) 
were expressed in all classical monocytes. Some markers 
were striking in each of the CM subsets. For example, CM 
cluster 7 expressed high levels of CD142 (tissue factor), 
which has previously been implicated in people living 
with HIV [68], whereas cluster 5 expressed high CD137 
and cluster 3 high expression of CD163 (hemoglobin-
haptoglobin receptor). INT CD14+CD16+ monocytes 
have been considered pro-inflammatory and are known 
to be increased in people with HIV [24] and with CVD 
[62, 74]. All INT monocytes highly expressed the activa-
tion molecules CD69, CD9, and CD36 (Fig.  2C). Since 
INT subsets have not been described before, we propose 
a provisional naming suggestion (Fig. 2C) based on their 
most remarkable expressed markers. NCM formed 3 

clusters. Strikingly, the expression of CD9 and CD36 was 
limited to cluster 2, suggesting that this cluster corre-
sponds to the previously described CD9+CD36+ NCM 
[23]. CD11c, CD86, CD141, and CD152 were expressed 
in all NCMs (Fig. 2C).

Using 18 surface antibodies to subtype B cells obtained 
from women with coronary artery diseases, B cells were 
subtyped into 7 clusters (Fig.  2D) with 3 clusters of 
CD27+ B cells and 4 clusters of CD27− B cells. CD27 
is known as a conventional memory B cell marker [31]. 
Therefore, clusters 4, 6, and 7 were classified as memory 
B cell populations. Clusters 6 and 7 were notable for high 
CD11c expression. CD11c+ memory B cells have been 
shown to be precursors of antibody secreting cells [22]. 
Cluster 4 was remarkable for CD25+, and CD25+ B cells 
are known as antigen presenting B cells [5]. Clusters 1, 
2, 3, and 5 were CD27− B cells, likely a combination of 
naïve B cells and transitional B cells.

Among NK cells, we found 3 clusters. Cluster 1 con-
tained HLADR+ mature NK cells with CD56-CD16high 
expression, an NK cell subset known to be elevated in 
chronic HIV infection [29]. Cluster 2 of NK cells was 
mature (CD56dim/CD16+). Cluster 3 contained imma-
ture (CD56brightCD16−) NK cells (Fig. 2E).

Changes in PBMC subset abundance by disease 
or treatment
Based on this data, it is possible to address shifts in cell 
proportion based on disease or treatment: HIV effect, 
comparing HIV− vs HIV+; the cardiovascular disease 
effect in women living with HIV, comparing HIV+ vs 
HIV+CVD+; and the effect of cholesterol reduction 
treatment, comparing HIV+ CVD+CRT− vs HIV+ 
CVD+ CRT+. We found significant differences in cell 
proportions (p) (calculated by log odds ratio, p/(1−p) fol-
lowed by ANOVA and Tukey’s multiple comparison test) 
in one intermediate monocyte subsets, one nonclassical 
monocyte subset, one CD8+ T cell, and one B cell sub-
set (Fig.  3). Among B cells, antigen presenting memory 
B cells (Fig. 3A) were severely lower in all WIHS partici-
pants with HIV with or without subclinical CVD. Within 
CD8+ T cells, cluster 7 (CXCR3+ CD8+ T cells) was 
reduced in patients with HIV and CVD with CRT treat-
ment compared to those without cholesterol-reducing 
treatment (Fig. 3B). Strikingly, two subsets of monocytes 
showed significantly different abundances. Cluster 2 from 
intermediate monocytes (CD11bhi CD9lo) (Fig. 3C) was 

(See figure on next page.)
Fig. 2  Scaled heatmaps of surface marker expression (log2 scale) in each main cell type. A CD4+ T cells, B CD8+ T cells, C monocytes, D B cells, 
and E NK cells. Immunophenotypes at the bottom. Em, effector memory; Emra, terminally differentiated effector memory; Treg, regulatory T cells; 
Tfh, follicular helper T cells; CM, classical monocyte; INT, intermediate monocyte; NCM, nonclassical monocyte; hi, high; lo, low. To denote each 
of the clusters, the letter “C” is used in CD4+ T, CD8+ T, B, and NK cells followed by the cluster number. In the case of monocytes, clusters are 
represented as INT, CM, or NCM followed by the cluster number. Only expressed (non-negative) markers are shown
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Fig. 2  (See legend on previous page.)
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Fig. 3  Cell proportions in women with HIV, CVD, both, or neither. HIV−CVD− (green), HIV+CVD− (yellow), HIV+CVD+ (blue), and HIV+CVD+ 
CRT+ (red), from left to right. Eight samples per group except 7 for HIV+CVD+. Proportions of cells in each cluster calculated as percentage of the 
parent cell type as indicated in the title of each panel. A B cell cluster 4, B CD8+ T cell cluster 7, C INT monocyte cluster 2, and D NCM cluster 3. 
Clusters with significant differences (p-value) in cell proportions (calculated by log odds ratio (p/(1−p)), followed by ANOVA and Tukey’s multiple 
comparison test), are shown with individual points as well as means and standard error of the mean (SEM). INT, intermediate monocytes; NCM, 
nonclassical monocytes; CVD, cardiovascular disease; CRT, cholesterol-reducing treatment

(See figure on next page.)
Fig. 4  Significantly differentially expressed genes of cells in each cluster. The expression of 485 transcripts was determined by targeted 
amplification (BD Rhapsody system). Significant genes defined as adjusted p < 0.05 and log2 fold change > 0. Dot plot: fraction of cells in cluster 
expressing each gene shown by size of circle and level of expression shown from white (=0) to dark blue (=max, log2 scale). Red bars indicate 
genes that were significantly higher in one cluster compared to all other clusters of the parent cell type. There were no DEGs in NK or B cell clusters. 
A CD4+ T cells, B CD8+ T cells, and C monocytes. CM, classical monocytes; INT, intermediate monocytes; NCM, nonclassical monocytes. To denote 
each of the clusters, the letter “C” is used in CD4+ T and CD8+ T followed by the cluster number. In the case of monocytes, clusters are represented 
as INT, CM, or NCM followed by the cluster number
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Fig. 4  (See legend on previous page.)
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elevated in patients with HIV and cluster 3 from non-
classical monocytes (CD9hi CXCR4+) (Fig. 3D) was sig-
nificantly elevated in WIHS participants living with HIV 
with subclinical CVD.

Differential gene expression in each of the clusters
Since the transcriptomic information was not used for 
UMAPs and clustering shown in Fig. 1C, we were able to 
run unbiased gene expression patterns in each cell sub-
set against all other clusters within the same cell type. 
We filtered for genes that were significantly differentially 
expressed in at least one of the subsets (Fig. 4, Additional 
file  1: Table  S8). This analysis revealed gene signatures 
for most subsets and confirmed the identity of the cell 
clusters identified by CITE-seq (Fig.  2) and expanded 
phenotype information. Cluster 4 CD36+ effector 
memory CD4+ T cells overexpressed GNLY, GZMA, 
GZMH, NKG7, and FGFBP2, which are known as effec-
tor memory (Em) signature genes. Cluster 10 expressed 
regulatory T cell (Treg) signature genes including FoxP3, 
TIGIT, CTLA4, and LGALS3. Cluster 9 Tfh Em CD4+ T 

cells expressed CXCR5, the classical chemokine recep-
tor characteristic for Tfh cells [13]. CD56+ CD4+ T 
cells (cluster 11) expressed NK signatures such as HOPX, 
CTSW, KLRC4, and KLRK (Fig.  4A). Within CD8+ T 
cells, cluster 2 (naïve) overexpressed CCR7, SELL, or 
LEF1, representative genes of naïve cells. NK-like pheno-
type genes such as GNLY, KLRF1, GZMB, and FCGR3A 
were expressed in cluster 6 (CD56+ EMRA) (Fig.  4B). 
CTLA4+ CM (cluster 7) expressed CCL20, SOD2, or 
AQP9, classical monocyte markers (Fig. 4C). No signifi-
cant differences were found for B cells and NK cells.

Transcriptomes shift with HIV, CVD, and cholesterol control
We hypothesized blood immune cell transcriptomes 
change with disease state. To test this possibility, we 
constructed dotplots for each of the disease status and 
compared HIV− with HIV+, HIV+ with HIV+ with 
CVD, and HIV+CVD+ with HIV+ CVD+ with CRT 
treatment (Fig. 5, Additional file 1: Fig. S3, Additional 
file 2: Data S1). Many genes in CD4+ and CD8+ T cell 
subsets showed significant differences. Some genes in 

Fig. 5  Dotplots of differentially expressed genes (DEGs) for disease types. Dotplots of DEGs between HIV+CVD−CRT− vs HIV−CVD−CRT−, 
between HIV+CVD+CRT− vs HIV+CVD−CRT−, and between HIV+CVD+CRT+ vs HIV+CVD+CRT− in each cell type (A–G). The thresholds set 
for the plots were adjusted p-value <0.05, avg. log2FC>0 or <0, and pct.1 > 0.2. The size of dots represents log(pct.1/pct.2), where pct.1 is the 
proportion of cells in the first group expressing each gene and pct.2 is the proportion of cells in the second group expressing each gene
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Fig. 6  Machine learning analysis using the Random Forest model. Line with dot plots showing the feature importance of each gene in the 
comparison between A non-HIV vs HIV, B HIV+CVD− vs HIV+CVD+, and C HIV+CVD+CRT− vs HIV+CVD+CRT+. On the right, representative 
density plots are shown: A red, HIV−; blue, HIV+. B red, HIV+; blue, HIV+CVD+ and C red, HIV+CVD+; blue, HIV+CVD+CRT+
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monocyte and NK cell subsets showed significant dif-
ferences. In CD4+ T, CD8+ T, and NK cells (Fig. 5A, 
B, F), IL-32 was highly significantly increased by CVD, 
but not in CVD+ women on CRT. IL-32 is an inflam-
matory cytokine that is known to be important in 
CVD [14, 34]. The transcription factor JUNB and the 
lymphocyte-specific protein tyrosine kinase LCK were 
upregulated in both, CD4+ T and CD8+ T cells from 
women with CVD, and reduced in the presence of 
CRT. JUMB promotes the development of inflamma-
tory Th17 cells and restricts flexibility towards alterna-
tive effector and regulatory programs [9]. LCK is a key 
molecule in the activation of the TCR signaling and T 
cells. Several killer cell lectin receptors (KLRC4 and 
KLRK1) were also significantly upregulated in CVD, 
but downregulated in the presence of CRT in CD8+ 
T cells. RUNX is reduced in CVD but increased in 
women on CRT [35].
DUSP1 was highly overexpressed in classical mono-

cytes of women with CVD (Fig.  5C). DUSP1 oxida-
tion prolongs MAPK activation, ultimately resulting in 
enhanced inflammatory responses [30]. In addition to 
CCL3, CCL4, and DUSP2, IL1B, known to be highly rel-
evant in atherosclerosis, was highly upregulated in CM 
of HIV+CVD+ women. TNFSF10 (TRAIL), TNFSF13 
(APRIL), and TNFSF13B (BAFF), important B cell regu-
lators, were upregulated in CM from women with CVD. 
The Toll-like receptor TLR2, which is known to be 
involved in atherosclerosis [15, 49, 55], was upregulated 
by CVD. In intermediate monocytes (Fig.  5D), CCL4, 
TNF, IL1B, FCGR3A, and PIK3AP1 were associated with 
CVD in the women that did not receive CRT whereas 
FCN1 was increased in NCM from women with CRT 
(Fig.  5E). In nonclassical monocytes, CD52 was down-
regulated in women with HIV, consistent with a previous 
report [77]. CD74 in B cells (Fig. 5G) was slightly down-
regulated in CVD women on CRT compared to CVD. 
DUSP1 in B cells was downregulated in HIV+CVD+ 
women compared to HIV+ CVD−. The clusters with 
genes that passed the filtering process (p-value <0.05, 
avg.Log2FC>0 or <0, and pct.1 > 0.2) from each of the 
main cell types are presented in Fig. S3.

Random Forest analysis to identify genes that distinguish 
between disease groups
We used the Random Forest Machine learning approach 
to identify the genes with the highest capability to dis-
tinguish between disease groups (Additional file 2: Data 
S2). We showed the top 50 ranked genes to separate HIV 
vs healthy (Fig. 6A), HIV vs HIV+CVD+ (Fig. 6B), and 
HIV+CVD+ vs HIV+CVD+CRT+ (Fig.  6C), with the 
importance ranked between 0 and 100. The histograms 

in Fig. 6A–C show overlaid ridgeline plots for key genes. 
KLF2 was the most important gene to separate HIV from 
non-HIV participants. Both in CVD and in CVD+CRT+ 
in HIV, IL32, and CD52 were highly ranked (Fig.  6B, 
C). Interestingly, these genes were upregulated in CVD 
and conversely were downregulated in CVD+CRT+. 
Many of the genes that were important in distinguish-
ing between women with and without CVD, including 
DUSP1, DUSP2, CCL5, and LGALS1, were regulated in 
the opposite direction by CRT.

Discussion
In immunology, surface markers are widely used to 
define and distinguish cell types [11, 71, 80]. Flow 
cytometry is the discipline-defining method of immu-
nology [60]. Similar to flow cytometry, in CyTOF, sin-
gle-cell suspensions are stained with antibody panels 
to detect cellular antigens. Unlike CyTOF, scRNA-seq 
allows the detection of single-cell transcriptomes. Since 
the correlation between cell surface protein and mRNA 
expression is weak in immune cells [42], the transcrip-
tome provides a valuable additional dimension. scRNA-
seq without surface phenotype information has led to 
much frustration in the field, because the expression 
of many genes encoding well-known surface markers 
remains undetected in scRNA-seq [10, 44, 80]. It is still 
difficult to call cell types based on gene expression data 
alone, which emphasizes the need for cell surface pheno-
types in addition to transcriptomes. Here, we correlated 
gene expression with cell surface expression for 41 pairs 
of genes and proteins. CD74 protein expression was well 
correlated with the expression of both the CD74 and 
the HLA-DRA genes. CD4 and CD16 surface and gene 
expression were reasonably well correlated across all cell 
types. A few other genes including CD14, CD16, IL-3 
receptor (CD123), and CD27 were somewhat correlated 
with the surface expression of their proteins in some cell 
types. For most markers, we confirm weak correlations 
(Additional file  1: Table  S10) [42, 67, 69], which illus-
trates the value of monitoring cell surface phenotype in 
scRNA-seq.

PBMCs can be analyzed without mechanical or enzy-
matic dissociation, which are known to alter cell surface 
markers and transcriptomes [79. ]. PBMCs are attrac-
tive for single-cell RNA sequencing (scRNA-seq) stud-
ies, because they are available in many clinical studies 
of specific populations with defined diseases and out-
comes. The participants sampled for the present study 
were part of a sub-study nested within the WIHS [25, 28, 
32], which provided detailed information on subclinical 
atherosclerosis. Participants underwent high-resolution 
B-mode carotid artery ultrasound to image six locations 
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in the right carotid artery [28]. Although our study is not 
definitive, it is suggestive of significant changes in cell 
proportions and transcriptomes in subjects with cardio-
vascular disease.

scRNA-seq has been applied to human PBMCs in dis-
eases including cancers [6, 84–86], inflammatory bowel 
disease [48, 76], and autoimmune disease [36, 57], as well 
as atherosclerosis [18, 19, 81]. The foundational paper for 
the 10x Genomics drop-Seq method [87] demonstrated 
the feasibility of using scRNA-seq on PBMCs. Other 
studies reported scPBMC transcriptomes in colorec-
tal cancer [85], γδ T cells [54], liver cancer [86], in vitro 
Salmonella infection [4], and memory T cells [45]. Two 
publications have reported combined single-cell tran-
scriptomes and proteomics from patients with athero-
sclerosis. Fernandez et  al. [19] ran antibody sequencing 
in only one human plaque, but its power was revealed by 
identifying five distinct macrophage clusters. Wirka et al. 
[81] revealed that the process of smooth muscle cell phe-
notypic modulation in vivo can be altered by the expres-
sion of Tcf21, a gene causally associated with reduced 
risk of coronary artery disease. The loss of Tcf21 results 
in fewer fibromyocytes in the lesions and the protective 
fibrous cap [81].

In the current study, four clusters showed signifi-
cantly different abundance of cells in the four groups of 
participants. One of them is an intermediate monocyte 
subset, which underscores the extraordinary importance 
of this cell type in chronic HIV infection [26, 47]. Inter-
mediate monocyte numbers have previously been found 
increased in non-HIV subjects with peripheral artery 
occlusive disease [78] and significantly predicted car-
diovascular events [27, 62, 63]. A nonclassical monocyte 
cluster was increased in CVD, which was reported previ-
ously [20, 39].

CD8+ T cells are abundant in atherosclerotic plaques 
in humans [21] and they are found in higher num-
bers than CD4+ cells [19, 21, 65]. In advanced human 
lesions, CD8+ T cells are mostly found in fibrous cap 
areas [52]. Cluster 7 of CD8 + T cells (CXCR3+) was 
reduced in women on CRT. CD8+ T cells express 
higher levels of CXCR3 in patients with symptomatic 
atherosclerosis [19]. We found IL-32 highly expressed 
in most T and NK cell clusters in CVD. IL-32 is a 
27-kDa cytokine expressed in T cells and monocytes 
that is secreted after apoptosis [50]. It is an inflamma-
tory cytokine that drives IL-1β, clinically important in 
CVD [59], TNF, IL-6, and IL-8 expression [14, 34, 50]. 
IL-32 activates the leukocyte surface protease PR3, 
which in turn triggers the G-protein-coupled receptor 
PAR2 [50] and is known to be important in viral infec-
tions [38, 50, 56, 70]. IL32 was upregulated in CVD and 

was downregulated in women with CVD and choles-
terol reduce treatment. Since IL-32 appears to be CVD-
specific, we advocate for future prospective studies in 
larger cohorts to determine whether IL32 mRNA is a 
useful biomarker.
KLF2 was the most important gene to separate HIV 

from non-HIV participants. Some previous studies 
showed that KLF2 is related to HIV infection [12, 58]. 
This gene and some others including CD74 and CD52 
were also important to separate CVD from non-CVD 
in HIV, and CVD+CRT+ from CVD+, suggesting that 
these genes may be related to HIV and CVD. In fact, it 
has been reported that anti-CD52 antibodies might be 
effective in HIV individuals on antiretroviral therapy [77] 
as well as a potential diagnostic value evaluating antiret-
roviral efficiency [82]. The interaction between HIV and 
CVD observed here is novel.

Our discovery study will encourage prospective epide-
miological studies to address which PBMC subsets and 
transcriptomes are best suited as clinical biomarkers to 
stratify risk and guide treatment in subjects with coro-
nary or peripheral artery disease. The current findings 
have some limitations. They need to be extended to men 
(the current data is based on women) and other races and 
ethnicities (the current data is based on mostly African 
American and Hispanic women). Studies of CVD in non-
smokers are also needed (the current data is based on 
smokers), and the age range needs to be broadened.

Conclusions
In conclusion, we demonstrate the utility of scRNA-seq 
with cell surface phenotype assessment in the same cells. 
The identification of 50 distinct clusters of CD4+ T and 
CD8+ T cells, B cells, NK cells, and monocytes helps to 
gain a deeper understanding of PBMCs, a rich and read-
ily accessible source of biological and clinical informa-
tion. The discovery of subsets of intermediate monocytes 
calls for identifying such subsets in model organisms to 
test their function in vivo.
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