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Scientific rewards for biomedical 
specialization are large and persistent
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Abstract 

Background:  While specialization plays an essential role in how scientific research is pursued, we understand little 
about its effects on a researcher’s impact and career. In particular, the extent to which one specializes within their 
chosen fields likely has complex relationships with productivity, career stage, and eventual impact. Here, we develop 
a novel and fine-grained approach for measuring a researcher’s level of specialization at each point in their career 
and apply it to the publication data of almost 30,000 established biomedical researchers to measure the effect that 
specialization has on the impact of a researcher’s publications.

Results:  Using a within-researcher, panel-based econometric framework, we arrive at several important results. 
First, there are significant scientific rewards for specialization—25% more citations per standard deviation increase 
in specialization. Second, these benefits are much higher early in a researcher’s career—as large as 75% per standard 
deviation increase in specialization. Third, rewards are higher for researchers who publish few papers relative to their 
peers. Finally, we find that, all else equal, researchers who make large changes in their research direction see generally 
increased impact.

Conclusions:  The extent to which one specializes, particularly at the early stages of a biomedical research career, 
appears to play a significant role in determining the citation-based impact of their publications. When this measure of 
impact is, implicitly or explicitly, an input into decision-making processes within the scientific system (for example, for 
job opportunities, promotions, or invited talks), these findings lead to some important implications for the system-
level organization of scientific research and the incentives that exist therein. We propose several mechanisms within 
modern scientific systems that likely lead to the scientific rewards we observe and discuss them within the broader 
context of reward structures in biomedicine and science more generally.
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Background
No researcher can be an expert in all fields. The entirety 
of human knowledge, even when considering a single 
field, is simply too much for a person to accumulate in 
a lifetime. Faced with this challenge, researchers special-
ize  [1]. Through a series of decisions and choices, each 

researcher ends up accumulating the knowledge and 
skills necessary to advance some tiny sliver of the frontier 
of knowledge.

In addition to reducing the amount of knowledge and 
skills one must accumulate, specialization plays a key 
role in the sociology of science literature. In specializ-
ing, a researcher becomes a member of a community 
of researchers working on similar matters, in a similar 
fashion, with a similar viewpoint. It is within these spe-
cialized communities that the so-called invisible col-
lege is most visible  [1, 2]. The concept of an invisible 

Open Access

*Correspondence:  gaetan.derassenfosse@epfl.ch

1 College of Management of Technology, Ecole polytechnique fédérale de 
Lausanne, Lausanne, Switzerland
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-8287-4101
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12915-022-01400-5&domain=pdf


Page 2 of 33de Rassenfosse et al. BMC Biology          (2022) 20:211 

college has a long history—in this work, we work with 
the definition provided by Zuccala [3], which thinks of 
the invisible colleges as a group of actively interacting 
researchers that are drawn together to make progress 
within a specialized domain, often across institutional 
and geographical boundaries.

These observations present us with two points of view 
to consider the specialization of researchers. Viewed 
through the frontier-of-knowledge lens, specializa-
tion is required to reach the frontier of knowledge and 
start contributing within a human lifetime. Jones  [4] 
formulates this as a “knowledge burden,” showing that 
as the frontier of knowledge expands more quickly, 
individuals reach it later in life. This observation holds 
for even the most lauded inventors and scientists in 
recent history [5]. Viewed through the lens of the invis-
ible college, specialization determines the community 
of researchers within which the researcher falls—the 
group that one knows and is known to [2]. Research has 
shown that these weak ties play a crucial role in a vari-
ety of matters central to a researcher’s career [6, 7] and 
allow them to accumulate social capital [8].

Measuring specialization and impact  While spe-
cialization is understood to play an essential role in 
research and researchers’ careers, most attention has 
been paid to how specialization emerges  [9] and to 
the “content” of specialization  [10], that is, the fields, 
sub-fields, and topics in which researchers choose 
to work. Here, we examine a very different aspect of 
specialization, namely the extent of specialization. In 
plain language, we capture how focused a researcher is 
on the topics they are working on the most. We then 
statistically examine the effect of specialization upon 
the researcher’s citation-based impact. Our operation-
alization allows a very fine-grained characterization 
of specialization, rather than one defined by journal 
classifications [11–13].

This operationalization of specialization is quite different 
from notions of monodisciplinarity. That is, the oppo-
site of specialization, as defined here, is not interdisci-
plinarity—working at the intersection of fields is differ-
ent from publishing work on many different topics—but 
rather generalization. A researcher working in a highly 
interdisciplinary space but publishing exclusively on the 
same small set of topics would be classified as a specialist 
within our framework. As such, our operationalization of 
specialization relates to the so-called “balance” dimen-
sion that is commonly referred to in the extant literature 
on interdisciplinarity  [14, 15], though we note that this 
term is usually applied on the level of research outputs 
and not to researchers themselves [16, 17].

We use citations as a measure of impact for two primary 
reasons. First, while undoubtedly noisy and narrow in 
scope, citations remain a popular indicator of research 
impact  [18], most perniciously in the context of career 
development. We note that the pervasiveness of citation-
based averages is widely seen as a problem within scien-
tometric circles [19, 20]. In this paper, we do not advocate 
for the use of citations as a performance metric generally, 
and we merely use them as an indicator of the level of 
attention an individual receives from their peers that may 
nonetheless form the basis for professional judgments 
during their research career [21]. Secondly, and relatedly, 
while it is unclear how well citation counts of individual 
articles correlate with conceptions of the intrinsic qual-
ity of those articles [22], we also expect that social status 
within a research community moderates the number of 
citations received [23, 24]. That is, in the framing of our 
research question and the interpretation of our results, 
we make the implicit assumption that scientific impact as 
reflected in citations are generated jointly by both judg-
ment of research quality and citers’ perception of the 
author’s social status or ability, rather than solely as indi-
cators of publication quality alone [25, 26], as we expect 
both of these factors to be moderated by one’s specializa-
tion level.

The effect of specialization  Considering the frontier 
of knowledge point of view, it is unclear what effect the 
extent of specialization should have upon a researcher’s 
impact. From the “burden of knowledge” perspective [4], 
it is reasonable to expect that greater specialization will 
lead to a greater volume of output, particularly if one is 
working within teams with low coordination costs  [27]. 
However, this reasoning does not necessarily extend 
to the impact of the output. A body of literature shows 
that combining bits of atypical  [28] or less obvious  [29] 
knowledge produces the highest impact papers. This 
literature would seem to indicate that as a researcher 
becomes more specialized and focuses more narrowly, 
they will produce lower impact research, as they will be 
sourcing ideas from an ever-smaller portion of the fron-
tier of knowledge. However, collaboration can offset this 
effect, allowing the team as a whole to source ideas from 
any area in which a single member is specialized, no mat-
ter how narrowly the members specialize individually. As 
such, it is important to recognize that specialization on 
individual level, as a phenomenon, is distinct from disci-
plinarity on the level of particular outputs.

Viewed through the lens of the sociology of science and 
the invisible college, the expected professional benefits to 
specialization are more straightforward. Researchers can 
raise their visibility within a specific community more 



Page 3 of 33de Rassenfosse et al. BMC Biology          (2022) 20:211 	

effectively by specializing to a greater extent, thereby 
attracting more citations. This line of thinking is con-
sistent with one of the few previous studies using the 
extent of specialization that we are aware of [30]. In that 
work, the author finds that greater specialization leads 
to greater (financial) compensation for a sample of pro-
fessors in linguistics and sociology. While the definition 
of specialization in that paper aims to capture the same 
concept as we do in the current work, the dependent var-
iable does not capture the effect of specialization on indi-
viduals’ citation impact in a dynamic, within-researcher 
empirical setting, as used in the current work. Further-
more, our approach has been developed to take advan-
tage of both the large numbers of keywords that can be 
applied to biomedical research, as well as the significant 
variation in the frequencies of these keywords assigned 
to different authors and publications. In a follow-on 
work  [31], the authors incorporate a dynamic aspect to 
assess the various dynamic impacts of specialization on 
productivity and visibility within the fields of sociol-
ogy and linguistics. Our work builds on this research, 
constructing a much finer-grain measure of specializa-
tion that is sensitive to topic popularity. Additionally, 
we apply the measure within the biomedical sciences—a 
very different research environment to that of sociology 
or linguistics. Indeed, our researcher fixed-effects econo-
metric approach uncovers contrasting results to those of 
[31]; however, this may be due to the differences in pub-
lication and citation practices between biomedical fields 
and the social sciences.

A more recent work, using journal classifications to 
construct a researcher-level measure of interdisciplinar-
ity, found that while more interdisciplinary researchers 
attracted more citations per paper, this effect was more 
than offset by lower productivity  [11]. However, in that 
case, the researcher-level interdisciplinarity metric is 
explicitly designed to measure the diversity of fields from 
which a researcher draws upon for their research—it 
does not directly consider the prevalence distribution 
across these fields. In contrast, our definition measures 
the diversity of topics a researcher consistently works 
on. This difference in definition makes it difficult to com-
pare our results directly, but research outside the sociol-
ogy domain suggests that these research avenues may be 
complementary [16, 17, 32].

In this paper, we conduct an exploratory investigation 
into the scientific rewards associated with specialization 
using a dataset of 29,197 biomedical researchers. We esti-
mate the extent to which a researcher is specialized using 
a novel measure that captures how intensely focused they 
are on specific topics. We measure scientific rewards in 

terms of research impact, proxied by citations per pub-
lication. In addition to measuring whether greater spe-
cialization positively or negatively affects a researcher’s 
impact, we also examine the role of career age, publish-
ing rate, and recent changes in research topics in this 
relationship. Specifically, we answer four questions. First, 
does the extent to which a researcher is specialized affect 
the impact of their research? Second, does the effect of 
specialization on impact change with career age? Third, 
does the effect of specialization depend on the number 
of papers a researcher is producing? Finally, do recent 
changes in a individual’s research interests affect impact?

To provide answers to these questions, we need to use 
data that are rich in both longitudinal and cross-sectional 
dimensions, because we wish to measure the levels of 
specialization and impact at each point in a researcher’s 
career. To assess the trends that may be moderated by 
seniority or experience, we need to repeat these measure-
ments over a long period. These considerations lead us to 
select a restricted cohort of nearly 30,000 well-published 
biomedical researchers. Each of these researchers is likely 
to be considered to be “successful” in the biomedical field 
by almost any measure. As such, all results are necessar-
ily conditional on long-term success and should be inter-
preted with this caveat in mind. We discuss the details 
and implications of this restriction in the following sec-
tions. The “Methods” section describes the data, the vari-
ables, and the regression models.

Results
Table 1 presents our main econometric results exploring 
the relationships between impact, specialization, career 
age, publishing rate, and changes in research orienta-
tion. We proxy the latter by a cosine similarity measure-
ment that captures the extent of changes to a researcher’s 
topical interests since the previous observation period, as 
reflected in the subject matter of their published works. 
Column 1 shows the coefficients for a researcher fixed-
effect panel regression model with no interaction terms. 
This baseline model indicates that a one standard devia-
tion increase in specialization (calculated at the popula-
tion level) results in a 25.7% increase in impact. That is, 
every paper that the researcher published in that time 
window receives on average 25% more citations than 
it would have otherwise (i.e., without the boost in spe-
cialization). Column 2 introduces the interaction term 
between specialization and career age, with the negative 
coefficient indicating that the rewards for specialization 
decrease over the course of a career. In other words, the 
payoff to specialization is lower for more experienced 
researchers, but it is never deleterious for the career 
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stages we observe. Column 3 introduces the interac-
tion term between specialization and yearly publication 
counts, with the negative coefficient indicating that the 
rewards for specialization decrease as a researcher pub-
lishes more.

However, care should be taken in interpreting these 
coefficients: the benefits of specialization decrease as a 
function of career age and publishing rate, but the overall 
impact is always positive. That is, hypothetically increas-
ing a researcher’s specialization appears to be associated 
systematically with a boost in impact. When the same 
hypothetical increase in specialization is applied to the 
same researcher later in their career (column 2) or for 
higher publishing rates (column 3), the boost in impact 
is less pronounced but always positive during the 35-year 
period we observe.

Lastly, column 4 shows the estimates for the complete 
interaction model. It includes the interaction between 
publishing rate and career age and the triple interaction 
term of specialization, publishing rate, and career age.

The variable cosine similarity maintains a negative 
impact on the average citation counts across all specifica-
tions. Thus, a researcher who makes greater changes in 
research direction from one period to the next achieves 
greater impact in the next period. This result, which is 
not causal, indicates that researchers are likely to reori-
ent their research direction toward topics that result in 
higher future impact. Indeed, at least for our success-
ful cohort, the ability of researchers to identify promis-
ing new avenues of research and immerse themselves in 
those areas may play a large role in the benefits of spe-
cialization we observe, adding color to previous work on 
the evolution of research interests [33]. More importantly 
in our context, this finding also provides some evidence 

against reverse causality of the relationship between spe-
cialization and impact—the idea that researchers may 
choose to specialize in topics that they expect to be more 
promising. The cosine similarity variable captures the 
changes in research topics and, therefore, picks up this 
effect. Thus, holding research topics constant, we do find 
strong positive returns to specialization.

As our observation periods are 3 years long, it is dif-
ficult to assess whether drastic changes in research direc-
tion on shorter timescales are rewarded with greater 
future impact, but recent work examining this question 
at the individual-paper level indicates that the reverse 
is likely true  [34]. These contrasting results suggest that 
a balance between topic evolution and specialization 
is optimal for mid-to-long-term citation-based impact 
at the individual researcher level—at very short time-
scales, a sudden change in research interest appears to 
harm impact, while at longer timescales, a complete 
lack of topic evolution actively attenuates the benefits of 
specialization.

Figure  1 provides a clear picture of the rewards for 
specialization—plotting the marginal effect (expected 
citation boost) for a one standard deviation increase 
in specialization as a function of career age for groups 
with a high or low publishing rate. These effects rely 
on the model found in column 4 of Table  1. The fig-
ure unambiguously answers the first three questions 
posed previously regarding the rewards for speciali-
zation. First, the returns to specialization are positive 
and significant, both in a statistical and a real-world 
sense. In the early stages of a career, these returns can 
exceed 70%, and even in mid-career, remain well above 
10%. Indeed, in the early years of a researcher’s career, 
the returns to specialization can be great, boosting a 

Table 1  Fixed-effects panel regression results. Dependent variable is the log number of citations per paper, and the “specialization” 
variable is standardized. Standard errors are in parentheses. All control variables described in the text are included. Based on 29,197 
unique biomedical researchers for a total of 213,019 researcher—time window observations

***p < 0.0001

(1) (2) (3) (4)

Specialization 0.257*** 0.361*** 0.444*** 0.732***

(0.003) (0.004) (0.006) (0.010)

Specialization × career age − 0.007*** − 0.022***

Specialization × papers − 0.061*** − 0.096***

Career age × papers 0.015***

Specialization × career age × papers 0.003***

Cosine similarity − 0.404*** − 0.409*** − 0.437*** − 0.416***

(0.013) (0.012) (0.012) (0.012)

Control variables Yes Yes Yes Yes

Year fixed-effects Yes Yes Yes Yes

Researcher fixed-effects Yes Yes Yes Yes
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typical researcher’s expected citations by 50% or more 
for a one standard deviation increase in specialization. 
Interestingly, the returns are never negative, regardless 
of career age or publishing rate. Second, the benefits 
associated with specialization decrease as a function 
of career age, regardless of publishing rate. Third, these 
benefits are higher for researchers with a lower pub-
lishing rate, although we observe a crossover around 
the end of the career in Fig. 1. However, the difference 
between the two groups after crossover is not statisti-
cally significantly different from zero.

Robustness checks  To evaluate the validity of these 
results, we carry out a number of robustness checks, 
each described in more detail in the Appendix. First, we 
further analyze a sample of 22,577 biomedical research-
ers having published between 75 and 99 papers (rather 
than 100 or more) during their careers. We find quantita-
tively and qualitatively similar results. This finding gives 
us confidence that the results would hold for researchers 
having a lower publishing rate, although we cannot for-
mally test this assertion because our measure of speciali-
zation would lose statistical power.

Second, we break the 100 or greater, and 75 to 99, publi-
cation samples into field-specific subsets and repeat the 
analysis on each of the eight most frequent fields found 
in our datasets. These fields include molecular and cell 
biology, medicine, neuroscience, gastroenterology, infec-
tious diseases, radiology, nephrology, and psychology. In 
each of the eight fields, for each of the publication thresh-
olds, we find that our main findings are qualitatively 

similar—however, the statistical significance is weaker for 
the smaller subfields.

Lastly, while our specialization measure is, by definition, 
conceptually distinct from interdisciplinarity, we also 
confirm that the measure is also empirically distinct. We 
split the cohort into monodisciplinary and interdiscipli-
nary researchers (based on whether a researcher has pub-
lished research in multiple sub-fields within the 3-year 
window). We then conduct several non-parametric sta-
tistical tests to detect any differences between the spe-
cialization distributions of these groups. We do not find 
any significant differences, providing evidence that our 
specialization measure is not sensitive to the differences 
in the levels of interdisciplinarity between researchers, at 
least at the sub-field level.

Discussion
These results have significant implications for how we 
view and manage academic careers, especially in their 
fragile early stages. In the context of long-term success 
in biomedical research, working continuously on a rela-
tively small and stable set of topics is rewarded by cita-
tions to the output of this research. Furthermore, there 
likely exists a complex web of interacting mechanisms 
that conspire to reinforce this phenomenon in ways that 
are not necessarily positive for the scientific enterprise. 
The remainder of this section will discuss these potential 
mechanisms, the limitations that may reduce the gener-
alizability of this work, and open questions that may add 
more color to the current findings.

Fig. 1  Increase in impact estimated for a one σ increase in specialization as a function of career age, for two different publishing rates. Low 
publishing rate is estimated at the 12.5th percentile (middle of the first quartile) of papers per year. High publishing rate is estimated at the 
87.5th percentile (middle of the fourth quartile) of papers per year. The shaded envelope of each line is the 99.9% confidence interval. Based on 
29,197 unique biomedical researchers for a total of 213,019 researcher-time window observations
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The broader contexts of specialization  These find-
ings also raise a great many questions. A critical one, of 
course, concerns the mechanisms that generate these 
rewards. From the frontier-of-knowledge point of view, it 
would seem that by focusing more intensely, a researcher 
may be in a better position to push the research frontier 
and attract more citations (perhaps by establishing prior-
ity on new findings). Taking the perspective of the soci-
ology of science, one explanation is that by specializing 
more narrowly, a researcher may be better positioned 
to raise their visibility within a specific community. 
Indeed, the fact that we observe much greater rewards 
for specialization early in a researcher’s career (when a 
researcher has little reputation or visibility, to begin with) 
suggests that a young researcher’s impact is maximized 
by focusing on a community that is as specific as possible. 
However, the degree to which a researcher can “choose” a 
community at this early stage is unclear. We suggest that 
the choice of research direction likely comes before any 
intentional choice of community. The benefits diminish 
with career age could imply that it is easier to transfer 
visibility, accumulated advantage, or reputation across 
communities than it is to earn such things simultane-
ously across several communities.

It is also likely that current reward systems in contempo-
rary science systems favor scientific specialization. While 
we draw a conceptual distinction between monodisci-
plinarity and specialization, there is almost certainly a 
strong relationship between the disciplinary nature of a 
particular scientific output and the level of specialization 
of the authors. The fact that science systems may pun-
ish interdisciplinary research  [35, 36], due to perceived 
risk or otherwise, could nudge researchers to special-
ize or otherwise conform to more mainstream topics or 
career pathways [37]. Indeed, biomedicine often requires 
considerable resources to conduct high-impact, cutting-
edge science. When the attraction of those resources for 
potentially risky projects is moderated by reputation, we 
expect to see the benefits of specialization decrease as a 
researcher becomes more established.

Our results are in line with prior work in the field of bib-
liometrics on so-called interdisciplinarity. That body of 
literature often breaks down interdisciplinarity into vari-
ous components, most commonly variety, balance, and 
disparity  [14]. While these concepts are usually applied 
to individual publications and have various operationali-
zations, we can make some useful comparisons between 
the current work and previous research in this area. In 
particular, the “balance” dimension generally attempts 
to capture the uniformity of the proportions of differ-
ent component types that exist within some object of 

interest. For example, a bag containing candy in a vari-
ety of colors in roughly equal proportions would have a 
high balance, while one in which the vast majority are 
blue would have a low balance. This concept is often 
operationalized on the paper level using either the Shan-
non entropy or the reverse Gini coefficients of the set of 
disciplinary categories extracted from the references in 
each paper [16, 17, 32, 38, 39]. By categorizing interdisci-
plinarity into variety, balance, and disparity, it is possible 
to jointly estimate the effects of each of these concepts 
on impact. Within that framework, at the paper reference 
level, balance is almost universally negatively associated 
with impact in prior work, while the other two dimen-
sions are either positively or ambiguously associated with 
impact. This nuanced point is very pertinent to the cur-
rent work: the diversity of information sources and the 
evenness of the distribution of inputs across these sources 
have distinct and generally opposing relationships with 
impact. We note that the total number of unique Medical 
Subject Headings (MeSH) terms, a metric more related 
to the “variety” dimension, is included as a control in 
our main model. In sum, while it is not straightforward 
to directly compare the impact of individual articles with 
the impact of researchers more broadly, nor to compare 
operationalizations based on input knowledge with those 
based on research topics, our results are at least consist-
ent with this prior research, although our researcher-
focused approach allows for additional nuance arising 
from access to the temporal dimension.

Our analysis considers the quantity and broad patterns 
of collaboration by including control variables at the 
researcher level. However, the role of collaboration and 
division of labor in these results merits further discus-
sion. An established body of literature shows that papers 
with a distinct interdisciplinary character [16, 17] or that 
arise from atypical combinations of knowledge  [28] are 
more highly cited on average or more likely to represent 
a breakthrough than conventional disciplinary research. 
In the context of that literature, our results suggest that 
atypical combinations and interdisciplinarity may be best 
achieved by specialized researchers working together 
in teams. Although, there is likely a limit at which this 
hypothesis breaks down: as researchers become more 
specialized, they may have more difficulty communi-
cating effectively, which in turn raises coordination 
costs [27, 40, 41].

Limitations and open questions  Several outstanding 
issues moderate the practical usefulness of the results 
presented herein, especially in the context of academic 
careers. The first concerns the extent to which research-
ers can control their specialization actively. That is to 
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say, how do the concrete day-to-day, project-to-project, 
and job-to-job decisions a researcher faces map on to 
specialization? Clearly, some subset of these decisions 
does affect specialization—for example, the selection of 
a specific new project. Researchers may perceive a risk 
of being “left behind” if they spend too much time work-
ing on projects outside of their usual specialized research 
path. These concerns raise an additional question, 
namely, if researchers do not control their own extent of 
specialization, who or what does? And in turn, how may 
those individuals, institutions, or systems craft policy to 
bring about a better configuration of the academic career 
in light of these findings? After all, we do not claim that 
the observed rewards associated with specialization are a 
good thing for science or society. The patterns we see are, 
in part, the result of a complex set of incentives and Mat-
thew effects that are embedded in research ecosystems, 
many aspects of which have been heavily criticized for 
their various biases and inequitable outcomes  [42–45]. 
While these incentives create an environment wherein 
specialization is a way for early-career researchers to 
“get ahead” in science, there is little to suggest that these 
incentives lead to efficient or equitable scientific pro-
gress. In fact, many prominent scholars suggest that the 
opposite is true for both individual researchers  [35, 37, 
46–48] and society-at-large [37, 46, 49, 50]. Furthermore, 
the relative inelasticity of research direction to fund-
ing  [51] could entrench early-career specialization and 
exacerbate both opportunity costs and coordination costs 
associated with an over-specialized scientific workforce.

A second concern is the inherent selection bias in the 
above analysis that is necessary to obtain enough data for 
our method to be effective. The results in Table 1 pertain 
to researchers with at least 100 publications—our main 
sample comprises successful researchers by virtue of this 
threshold. While an alternative sample used as a robust-
ness check includes those with between 75 and 99 pub-
lications, these researchers have achieved at least mod-
erate success. The results for both samples are almost 
identical, which provides some evidence for the gen-
erality of these results, at least for biomedical research-
ers. However, even the 75-paper threshold may exclude 
many successful but less productive generalists  [11]. At 
the same time, the interaction term between speciali-
zation and productivity in Table  1 indicates that higher 
productivity lowers total returns for a given level of spe-
cialization. As such, less productive specialists also reap 
greater reward for specialization. Therefore, our results 
are consistent with the idea that monodisciplinary and 
interdisciplinary specialists may both benefit from lower 
productivity at the individual output level. A more com-
prehensive investigation of the relationships between 

productivity, impact, and a researcher’s precise location 
on the specialization-disciplinarity plane may be a fruit-
ful avenue for future research on this topic. While nec-
essary for the operationalization of specialization used in 
this work, the imposed publication threshold implies that 
several lines of research are closed to us, such as the rela-
tionships between early specialization, academic career 
length, and opportunities outside of academia. For exam-
ple, it may be the case that less-specialized high-impact 
early career researchers have a large selection of stable, 
well-compensated jobs outside of academia due to this 
breadth. In contrast, their specialized high-impact col-
leagues may have more choice of fellowships and posi-
tions within academia. In other words, funding systems 
and entrenched departmental structures at research 
institutions may act as filters in early academic careers, 
with a bias toward high-impact specialized research-
ers. Furthermore, it is possible that our results may be 
driven in part by Matthew effects  [52]—a strong cita-
tion bias toward specialization could lead to specialized 
researchers remaining active and publishing for a longer 
period than less specialized researchers, leading to inclu-
sion in our sample. In any case, it is clear that the ben-
efits, or lack thereof, to producing a more or less special-
ized stream of research outputs remain a very pertinent 
aspect of career progression in science.

Finally, in the analysis presented above, we did not find 
a point after which increasing one’s extent of specializa-
tion becomes significantly deleterious in any discipline 
we examined (see Appendix for disciplinary breakdown). 
However, when taken to its absolute extreme, increas-
ing specialization further may start to reduce a research-
er’s impact. For example, by focusing exclusively on an 
extremely narrow subfield, a researcher may significantly 
limit the size of the audience for their work, effectively 
placing a low ceiling on the potential impact of any paper 
they publish. It is also entirely possible that the rewards 
for specialization break down in some periods, fields, or 
populations due to idiosyncracies in publishing, citation 
behavior, or institutional factors. This work focuses on 
biomedical researchers, and while one might expect simi-
lar results for other disciplines characterized by growing 
lab science and publishing rates (e.g., physics and chem-
istry), it is unclear whether specialization is universally 
beneficial across disciplines. For example, recent work 
suggests that the field-dependent speeds of the knowl-
edge frontier could lead to disciplinary variation in the 
returns to specialization  [53]—a generalist may find it 
more challenging to keep up with multiple fast-moving 
fields and identify new and salient knowledge recombi-
nation opportunities. However, it does stand to reason 
that the benefits of specialization may differ significantly 
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for researchers in disciplines characterized by smaller 
teams and lower publishing rates, such as economics and 
mathematics. Further work is required to investigate how 
these dimensions of academic research affect the rewards 
for specialization.

Conclusions
Given the magnitude of the scientific rewards to speciali-
zation presented in this article, it is critical to consider 
these benefits in the context of the rich and fast-moving 
discussion surrounding the academic career [37, 54]. The 
fact that the rewards for specialization are much greater 
early in a researcher’s career has clear implications for aca-
demic careers. Indeed, it is precisely in the early stages that 
such a career is the most fragile [55] while simultaneously 
being a period when researchers are expected to build a 
foundation from which they may explore and develop the 
ideas that may eventually yield research grants and per-
manent positions. Choosing to be more specialized early 
in one’s career not only boosts one’s impact during that 
period, but the early boost is compounded throughout the 
career by way of various Matthew effects [52, 56, 57]. The 
observation that rewards decrease with increased publish-
ing also informs our understanding of the academic career. 
Researchers with limited resources are rewarded for maxi-
mizing their specialization and focusing on their core 
competencies.

Overall, this analysis points to significant scientific 
rewards to specialization in academic research in the bio-
medical context. Those rewards are significant in a sta-
tistical sense and magnitude—a 10 to 70% boost in the 
expected number of citations is entirely possible for an 
individual researcher given an increase in specialization of 
one standard deviation (depending on career stage). The 
rewards for specialization are most pronounced early in 
a researcher’s career and decrease monotonically there-
after. The benefits are greatest for researchers publish-
ing at a lower rate relative to their cohort and decrease 
monotonically as the publishing rate increases. While the 
returns to specialization decrease with age and publishing 
rate, increasing one’s extent of specialization has no ben-
eficial impact only at the longest times we observe, typi-
cally 25–35 years after a researcher first publishes. Lastly, 
changes in research direction at the scales of the time 
windows considered (3 years) appear to increase (within-
researcher) citation-based impact.

Methods

Data  Our researcher dataset is drawn from the Author-
ity disambiguation of PubMed  [58, 59]. Each researcher 
in our sample meets three criteria. First, they published 
their first paper in 1975 or later. Second, they have pub-
lished at least 100 publications up to the year 2009. 
Third, their primary area of research was determined 
to be biomedical using the algorithm outlined in the 
Appendix exploiting the journal clustering of Rosvall and 
Bergstrom  [60]. To be explicit, we are not considering 
researchers publishing prior to 1975, publishing fewer 
than 100 papers (although this threshold is lowered to 
75 papers in the Appendix), or primarily active in non-
biomedical fields. For each researcher, we have a full pub-
lication record, which we cross reference from PubMed 
to the Clarivate Analytics Web of Science database. We 
analyze a total of 4,574,973 publications.

We broke each researcher’s career into 3-year windows 
and identified the papers they published during each 
period. From the papers published in each time window, 
we calculated our main explanatory variable, specializa-
tion, as well as additional explanatory and control vari-
ables, described below. This panel data was then analyzed 
using a researcher fixed-effect panel regression approach.

Specialization measure  Our method for estimating the 
extent to which a researcher is specialized is based on 
Medical Subject Headings (MeSH) as outlined in Fig. 2. 
MeSH terms are a set of descriptors that make up a con-
trolled vocabulary managed by the US National Insti-
tutes of Health (NIH). Each publication in the PubMed 
database is assigned a set of MeSH terms characterizing 
its content by an independent indexer at the National 
Library of Medicine (an institute based at the NIH). 
MeSH terms have found broad use as topic tags across 
a wide variety of applications, including the identifica-
tion of emerging research avenues  [61]; the mapping of 
the medical research landscape  [62]; the modeling of 
medical innovation dynamics  [63], measuring research 
subject boundaries and research similarity  [64]; and the 
construction of disease-symptom networks  [65]. We 
note that the use of MeSH terms for identifying specific 
relationships between or trends within given research 
topic is not perfect. However, we suggest that as long as 
the assignments of similar works are themselves similar, 

(See figure on next page.)
Fig. 2  Workflow for calculating the specialization measure. First a researcher’s career is broken into 3-year windows. Publications are extracted 
for each window. From those publications, the Medical Subject Headings counts extracted, then the revealed comparative advantage calculated 
for each. Finally, each RCA is transformed into a z-score, and the 90th of the researcher’s z-score is that researcher’s extent of specialization in that 
window ( speci,w)
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Fig. 2  (See legend on previous page.)
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then the intuition behind our specialization measure, 
described below, will hold.

For each MeSH term assigned to a researcher’s papers 
in a given time window, we calculate the researcher’s 
revealed comparative advantage (RCA) in that MeSH 
term:

where ni,m,w is the number of researcher i’s papers from 
time window w on which MeSH term m appears, and pi,w 
is the number of papers published by that researcher in 
the same time window. The variable Nm,w is the number 
of papers in that time window with MeSH term m in the 
PubMed database, and Pw is the total number of papers 
published in that time window. In words, RCA captures 
the fraction of a researcher’s output that is associated 
with a particular MeSH heading, relative to the same 
fraction averaged across all researchers in the cohort.

We then apply a z-score transform to the quantity 
RCAi,m,w:

in which the standard deviation of RCAi,m,w is calcu-
lated assuming counting statistics (see Appendix for 
derivation):

For example, a z-score of 1.2 for a specific MeSH term 
indicates that the MeSH term is assigned to the research-
er’s publications 1.2 standard deviations more than would 
be expected from the global average (within the same 
time window). Hence, the z-score measures how focused 
the researcher is on specific topics or concepts at various 
points in their career. For each window of a researcher’s 
career, we have a z-score for each MeSH term assigned to 
their publications in that window. Treating these z-scores 
as a distribution over MeSH terms for a given individual 
in a particular time window, our measure of speciali-
zation ( speci,w ) is the 90th  percentile of this distribu-
tion. The higher a researcher’s value of speci,w , the more 
intensely focused that researcher is upon the topics they 
are working on the most, relative to other researchers. A 
lower value indicates that the researcher is more diffused 
in the topics they are working on the most. In short, 
the measure concerns only the topics the researcher is 

(1)RCAi,m,w =
ni,m,w

pi,w

Nm,w

Pw

(2)zi,m,w =
RCAi,m,w − 1

σRCAi,m,w

,

(3)σRCA = RCA

(

1

n
+

1

p
+

1

P
+

1

N
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.

working on the most, relative to the effort expended on 
these topics by other researchers. Researchers can obtain 
a high score by publishing on several rare topics or a 
much smaller number of more mainstream topics—spe-
cialization is effectively measured relative to the average 
expertise within the biomedical field.

For example, a researcher whose publications are 
almost entirely at the intersection of Alzheimer’s disease, 
electrophysiology, and drug discovery would be consid-
ered very specialized (even though they produce highly 
interdisciplinary work), because the same few MeSH 
terms appear in many of publications they produce, 
despite these fields being relatively large. In contrast, a 
researcher working in the above fields in roughly equal 
proportions but without much MeSH-term overlap on 
individual publications would be considered more gener-
alized, even if these publications were relatively monodis-
ciplinary. In this way, a specialist can produce exclusively 
interdisciplinary work, and a generalist can produce 
exclusively monodisciplinary work, which distinguishes 
our measure from those in the extant literature. In reality, 
while we consider specialization and disciplinarity to be 
distinct concepts in this work, we expect that there is a 
strong inverse relationship between the interdisciplinar-
ity of particular publications and the specialization of the 
authors.

With respect to dynamics, because we calculate spe-
cialization in 3-year blocks, the mid- to long-term evolu-
tion of the MeSH dictionary have minimal impact on our 
measure. Furthermore, any effects of short-term popular-
ity dynamics of particular MeSH headings are mitigated 
by considering the RCA rather than considering only 
the usage of terms by each individual. For example, the 
measure can differentiate between a particular researcher 
starting to study a specific topic more frequently and an 
entire field doing the same.

Figure  3 illustrates the distribution of the specializa-
tion measure as a function of career age. It shows a slight 
increase early in the career, followed by an extended 
period of minimal variation.

Regression model  Next, we estimate the extent to which 
specialization affects a researcher’s scientific impact 
using an econometric regression model. As researchers 
are active over many time windows in the dataset (up to 
ten time windows covering 30 years), we are able to use 
variation in each researcher’s specialization across time 
windows as the source for econometric identification. 
The specific model we estimate is as follows:

(4)

Ii,w = �1speci,w + �2(speci,w × pi,w) + �3(speci,w × agei,w)

+ ��
�,� + �w + ci + �i,w .
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where Ii,w is the logarithm of the average number of cita-
tions accumulated by researcher i’s papers published in 
window w up to 5 years after publication.1 The variable 
speci,w is the main variable of interest described above 
(standardized for the regression tables), and career age 
( agei,w , number of years since first publication), publish-
ing rate ( pi,w , number of papers published in w), and 
cosine similarity cosinei,w are secondary variables of 
interest. The term xi,w contains agei,w , pi,w , cosinei,w , and 
additional variables controlling for the number of unique 
co-authors within a window and the number of unique 
MeSH terms extracted from the researcher’s papers in 
each window. The variables δw and ci represent time and 
researcher fixed-effects, while ǫi,w is an error term.

The interpretation of the specialization parameter is as 
follows: a one-standard deviation increase in the speciali-
zation measure of the researcher in a given time window 
is associated with a β1 ∗ 100 % increase in the number of 
citations that they received for the papers published in 
the time window. This time window-based approach also 
means that researchers who transition between fields 

appear less specialized only briefly—such transitions 
do not lead to persistently lower level of observed spe-
cialization. Furthermore, because analyses are conducted 
within-researcher, we do not apply any explicit subject-
level citation normalizations.

Cosine similarity, cosinei,w , captures the degree to 
which a researcher’s topical output has changed since the 
last window. This variable is calculated as follows:

where Mi,w is a vector wherein the jth entry captures the 
number of articles that researcher i publishes in win-
dow w that are tagged with the jth MeSH term (from the 
universe of n ordered MeSH terms). This value is maxi-
mized (equal to unity) when the vectors Mi,w and Mi,w−1 
are identical and minimized (equal to 0) when the sets of 
MeSH represented by Mi,w and Mi,w−1 are disjoint. This 
variable is set to 0 for the first window during which a 
researcher is active.

(5)

cosinei,w =

∑n

j=1
Mi,w[j]Mi,w−1[j]

�

∑n

j=1
(Mi,w[j])

2
�

∑n

j=1
(Mi,w−1[j])

2

,

Fig. 3  Specialization as a function of career age. Here, the distribution of raw researcher-window specialization values ( speci,w ) is plotted as a 
function of career age. There is a slight increase early in the career, followed by an extended period of minimal variation in the heart of the career. 
The slight drop after career age 30 may be attributable to the fact that not all careers in our dataset extend beyond that age. Based on 29,197 
unique biomedical researchers for a total of 213,019 researcher-time window observations

1  The citation count for each publication is calculated by summing over its 
first 5 years (and not the 5 years from the center of the window).
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Appendix
Discipline breakdown  To better understand the sample 
of researchers, and also facilitate the discipline by disci-
pline robustness checks, the discipline of each researcher 
is estimated using the following process. First, the jour-
nals a researcher has published in are extracted from 
his or her publications. In this stage, we also eliminate 
highly interdisciplinary journals (PNAS, Science, Nature, 
Annals of the New York Academy of Science, and PLoS 
ONE). Second, these journal titles are matched to the 
map equation journal classifications developed by Rosvall 
and Bergstrom  [60]. To assign disciplines, the following 
algorithm is then followed:

A breakdown of the disciplines assigned can be found in 
Figs. 4 and 5.

Fig. 4  Breakdown of researcher disciplines for our sample of 29,208 researchers with at least 100 publications

Fig. 5  Breakdown of disciplines for researchers assigned to more than one discipline for the associated subsample of 1716 researchers with at least 
100 publications
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Derivation of standard deviation of RCA​  Starting with 
the equation for revealed comparative advantage:

We note it is an equation of four variables, namely ni,m,w , 
pi,w , Nm,w , and Pw . Drawing from propagation of uncer-
tainties, we understand that the covariance (C) of an arbi-
trary function f can be expressed as follows:

where x in the right hand side covariance matrix ( Cx ) 
denotes it is over the independent variables of Eq. 6, and 
J is the Jacobian matrix. Executing this for the RCAi,m,w 
and assuming no correlation between the independent 
variables, we get the following relationship:

It is straightforward to show that this equation simplifies 
to:

Making the assumption that the probability that any 
given MeSH term appears on a paper arises from a bino-
mial distribution, we can use the property σ 2

x = x to fur-
ther simplify:

Canceling common factors and factoring out RCA, we 
arrive at:

as used in the main manuscript.

Robustness checks  To check the robustness of our 
results, we carry out a number of additional regressions. 
First, we perform the same analysis as found in the main 
manuscript, but on a different, less published, sample 
of biomedical researchers. Second, we conduct a non-
parametric test to demonstrate the lack of a relationship 
between our specialization measure and a more general 
measure of interdisciplinarity. Finally, we carry out the 
same analysis as in the main manuscript, but on research-
ers of specified disciplines of the biomedical sciences.
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Lower publishing sample  Here, we carry out the same 
regression as found in the main manuscript but on a 
sample of biomedical researchers publishing between 
75 and 99 publications over the course of their careers. 
The results can be found in Table 2 and Fig. 6 and are 
consistent with the findings in the main body of the 
paper.

Specialization and interdisciplinarity  Our measure of 
specialization captures the diversity of topics on which 
a scientist is working. As such, if a scientist is working 
on a small set of topics that are spread across tradition-
ally defined fields, this person would be considered to 
be specialized and interdisciplinary. For this reason, in 
the main body of the paper, we claim that the opposite 
of specialization is not interdisciplinarity but rather 
generalization.

Here, we conduct simple statistical tests to demon-
strate the lack of relationship between our specializa-
tion measure and a measure of interdisciplinarity. For 
this purpose, we consider a researcher to be interdisci-
plinary if they have been assigned multiple disciplines 
(as defined above) where, importantly, these disciplines 
are defined independently from MeSH terms. This defi-
nition is quite strict, which provides some assurance 
that these interdisciplinary researchers have indeed 
published a significant number of papers in multiple 
disciplines throughout their career. However, we also 
accept that this could occur when a researcher moves 
between disciplines rather than working across disci-
plines. Therefore, to give the best possible chance for 
a significant difference in specialization to be found 
between interdisciplinary and non-interdisciplinary 
researchers, we consider both the minimum and the 
average levels of specialization for each researcher 
throughout their career. This precaution will pick up a 
transition between disciplines as the least specialized 
period of the researcher’s career, and taken alone, this 
period would be challenging to distinguish from “true” 
generalization (as opposed to a transient state).

If generalization and interdisciplinarity were signifi-
cantly correlated, we would expect the least special-
ized period in interdisciplinary researchers’ careers to 
be lower than that of non-interdisciplinary researchers. 
We may also expect their average specialization to be 
lower. Furthermore, as average specialization levels do 
not appear to stabilize until about 10 years into a career, 
we may wish to consider this latter part of the career 
separately. As such, we test all four of these scenarios 
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for significant differences between interdisciplinary 
researchers and non-interdisciplinary researchers: min-
imum specialization across the whole career, minimum 
specialization for career age greater than 10 years, aver-
age specialization across the whole career, and aver-
age specialization for career age greater than 10 years. 
We use two non-parametric tests for this purpose: the 
Mann-Whitney U test and the two-sample Kolmogo-
rov-Smirnov test. The former calculates the probability 
that a randomly chosen interdisciplinary researcher is 
less specialized than a randomly chosen non-interdis-
ciplinary researcher, while the latter directly compares 
the cumulative specialization distributions of each 
group and tests the significance of any differences. We 
conduct these tests for all researchers in the primary 
cohort (greater than 100 publications) for whom we 
were able to obtain sufficient information about disci-
plines (not assigned “NULL”). In total, 29,670 research-
ers are included in this analysis, of which 1709 (5.8%) 
are classified as interdisciplinary.

Table 3 displays the results of these tests. The p-values 
for all tests indicate that any differences in specializa-
tion levels between interdisciplinary researchers and 
non-interdisciplinary researchers are not significant. 
This result is consistent with our assertion that the spe-
cialization measure does not measure interdisciplinar-
ity (or lack thereof ), at least for biomedical researchers 

with long careers. While not displayed here, the same 
(qualitative) results are found when the threshold of the 
distribution over MeSH terms, used to obtain our spe-
cialization measure, is set to 80% or 95%.

Separate disciplines  To again better understand the 
robustness of our findings, we carry out the same 
regression analysis as in the main manuscript for each 
of the eight most common disciplines in our dataset of 
researchers. Disciplines are assigned according to the 
procedure outlined in Section  1 above. Note that these 
regressions include all researchers assigned to each spe-
cific discipline, and hence, a research assigned to multi-
ple disciplines will appear in more than one regression. 
For each discipline, we further report results for both 
the standard sample consisting of researcher publishing 
100 or more papers in their career, as well as the set of 
researchers publishing 75 to 99 papers. These results are 
presented in Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 
16, 17, 18, and 19 and Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, 
16, 17, 18, 19, 20, 21, and 22.

Even though these disciplines span a wide range of 
subject matters, norms, sample sizes, and career/labora-
tory structures (e.g., hospital-based clinical research vs. 
university experimental labs), the results across all are 
qualitatively consistent with those presented in the main 
manuscript.

Fig. 6  Marginal effects for biomedical researchers with 75 to 99 career publications. Low publishing rate is estimated at the 12.5th percentile 
(middle of the first quartile) of papers per year. High publishing rate is estimated at the 87.5th percentile (middle of the fourth quartile) of papers 
per year. The shaded envelope of each line is the 99.9% confidence interval. Based on 22,589 unique biomedical researchers with between 75 and 
99 career publications career publications, for a total of 145,143 researcher-time window observations
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Table 2  Fixed-effects panel regression results. Dependent variable is the log number of citations per paper, and the “specialization” 
variable is standardized. Standard errors are in parentheses. All control variables described in the main manuscript are included. 
Based on 22,589 unique biomedical researchers with between 75 and 99 career publications career publications, for a total of 145,143 
researcher-time window observations

*p < 0.01; **p < 0.001; ***p < 0.0001

(1) (2) (3) (4)

Specialization 0.265*** 0.359*** 0.410*** 0.727***

(0.004) (0.006) (0.008) (0.014)

Specialization × career age − 0.007*** − 0.025***

(0.0003) (0.001)

Specialization × papers − 0.055*** − 0.098***

(0.002) (0.005)

Career age × papers 0.021***

(0.001)

Specialization × career age × papers 0.004***

(0.0003)

Observations 145,143 145,143 145,143 145,143

R2 0.174 0.178 0.178 0.186

Adjusted R2 0.022 0.026 0.026 0.036

Control variables Yes Yes Yes Yes

Year fixed-effects Yes Yes Yes Yes

Researcher fixed-effects Yes Yes Yes Yes

Table 3  p-values from two non-parametric tests of the differences in specialization between interdisciplinary researchers and non-
interdisciplinary researchers. M-W corresponds to the Mann-Whitney U test, while K-S corresponds to the two-sample Kolmogorov-
Smirnov test. No significant differences are found between the two groups at any conventional p-value threshold. Analysis conducted 
for the sample of 29,208 researchers with at least 100 publications

M-W test K-S test

All years (p-values)

Min. specialization 0.97 0.78

Ave. specialization 0.60 0.47

> 10 years (p-values)

Min. specialization 0.24 0.50

Ave. specialization 0.17 0.15
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Table 4  Fixed-effects panel regression results. Dependent variable is the log number of citations per paper, and the “specialization” 
variable is standardized. Standard errors are in parentheses. All control variables described in the main manuscript are included. Based 
on 10,889 unique biomedical researchers assigned to the discipline molecular and cell biology with at least 100 publications

*p < 0.01; **p < 0.001; ***p < 0.0001

(1) (2) (3) (4)

Specialization 0.251*** 0.323*** 0.422*** 0.708***

(0.005) (0.007) (0.009) (0.015)

Specialization × career age − 0.005*** − 0.022***

(0.0003) (0.001)

Specialization × papers − 0.057*** − 0.105***

(0.002) (0.004)

Career age × papers 0.015***

(0.001)

Specialization × career age × papers 0.004***

(0.0003)

Observations 81,398 81,398 81,398 81,398

R2 0.163 0.166 0.169 0.177

Adjusted R2 0.033 0.037 0.040 0.049

Control variables Yes Yes Yes Yes

Year fixed-effects Yes Yes Yes Yes

Researcher fixed-effects Yes Yes Yes Yes

Table 5  Fixed-effects panel regression results. Dependent variable is the log number of citations per paper, and the “specialization” 
variable is standardized. Standard errors are in parentheses. All control variables described in the main manuscript are included. 
Based on 8135 unique biomedical researchers assigned to the discipline molecular and cell biology with between 75 and 99 career 
publications

*p < 0.01; **p < 0.001; ***p < 0.0001

(1) (2) (3) (4)

Specialization 0.249*** 0.342*** 0.395*** 0.696***

(0.006) (0.009) (0.012) (0.021)

Specialization × career age − 0.007*** − 0.025***

(0.0004) (0.001)

Specialization × papers − 0.057*** − 0.100***

(0.004) (0.007)

Career age × papers 0.020***

(0.001)

Specialization × career age × papers 0.004***

(0.001)

Observations 53,890 53,890 53,890 53,890

R2 0.133 0.138 0.137 0.146

Adjusted R2 − 0.022 − 0.016 − 0.017 − 0.007

Control variables Yes Yes Yes Yes

Year fixed-effects Yes Yes Yes Yes

Researcher fixed-effects Yes Yes Yes Yes
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Table 6  Fixed-effects panel regression results. Dependent variable is the log number of citations per paper, and the “specialization” 
variable is standardized. Standard errors are in parentheses. All control variables described in the main manuscript are included. Based 
on 6722 unique biomedical researchers assigned to the discipline medicine with at least 100 publications

*p < 0.01; **p < 0.001; ***p < 0.0001

(1) (2) (3) (4)

Specialization 0.275*** 0.365*** 0.478*** 0.636***

(0.007) (0.010) (0.013) (0.024)

Specialization × career age − 0.006*** − 0.012***

(0.0005) (0.001)

Specialization × papers − 0.064*** − 0.068***

(0.003) (0.007)

Career age × papers 0.011***

(0.001)

Specialization × career age × papers 0.001

(0.0004)

Observations 48,433 48,433 48,433 48,433

R2 0.261 0.264 0.267 0.270

Adjusted R2 0.141 0.144 0.148 0.151

Control variables Yes Yes Yes Yes

Year fixed-effects Yes Yes Yes Yes

Researcher fixed-effects Yes Yes Yes Yes

Table 7  Fixed-effects panel regression results. Dependent variable is the log number of citations per paper, and the “specialization” 
variable is standardized. Standard errors are in parentheses. All control variables described in the main manuscript are included. Based 
on 4825 unique biomedical researchers assigned to the discipline medicine with between 75 and 99 career publications

*p < 0.01; **p < 0.001; ***p < 0.0001

(1) (2) (3) (4)

Specialization 0.292*** 0.343*** 0.411*** 0.572***

(0.010) (0.013) (0.018) (0.034)

Specialization × career age − 0.004*** − 0.012***

(0.001) (0.002)

Specialization × papers − 0.044*** − 0.065***

(0.006) (0.011)

Career age × papers 0.010***

(0.002)

Specialization × career age × papers 0.002

(0.001)

Observations 30,440 30,440 30,440 30,440

R2 0.217 0.218 0.219 0.220

Adjusted R2 0.068 0.069 0.070 0.072

Control variables Yes Yes Yes Yes

Year fixed-effects Yes Yes Yes Yes

Researcher fixed-effects Yes Yes Yes Yes
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Table 8  Fixed-effects panel regression results. Dependent variable is the log number of citations per paper, and the “specialization” 
variable is standardized. Standard errors are in parentheses. All control variables described in the main manuscript are included. Based 
on 2994 unique biomedical researchers assigned to the discipline neuroscience with at least 100 publications

*p < 0.01; **p < 0.001; ***p < 0.0001

(1) (2) (3) (4)

Specialization 0.225*** 0.365*** 0.479*** 0.749***

(0.009) (0.013) (0.017) (0.029)

Specialization × career age − 0.009*** − 0.022***

(0.001) (0.002)

Specialization × papers − 0.082*** − 0.111***

(0.005) (0.009)

Career age × papers 0.013***

(0.001)

Specialization × career age × papers 0.003***

(0.001)

Observations 22,006 22,006 22,006 22,006

R2 0.219 0.229 0.231 0.240

Adjusted R2 0.094 0.106 0.108 0.119

Control variables Yes Yes Yes Yes

Year fixed-effects Yes Yes Yes Yes

Researcher fixed-effects Yes Yes Yes Yes

Table 9  Fixed-effects panel regression results. Dependent variable is the log number of citations per paper, and the “specialization” 
variable is standardized. Standard errors are in parentheses. All control variables described in the main manuscript are included. Based 
on 2423 unique biomedical researchers assigned to the discipline neuroscience with between 75 and 99 career publications

*p < 0.01; **p < 0.001; ***p < 0.0001

(1) (2) (3) (4)

Specialization 0.245*** 0.373*** 0.415*** 0.777***

(0.012) (0.016) (0.022) (0.040)

Specialization × career age − 0.009*** − 0.029***

(0.001) (0.003)

Specialization × papers − 0.065*** − 0.116***

(0.007) (0.014)

Career age × papers 0.022***

(0.002)

Specialization × career age × papers 0.005***

(0.001)

Observations 15,992 15,992 15,992 15,992

R2 0.175 0.183 0.180 0.193

Adjusted R2 0.026 0.034 0.031 0.046

Control variables Yes Yes Yes Yes

Year fixed-effects Yes Yes Yes Yes

Researcher fixed-effects Yes Yes Yes Yes
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Table 10  Fixed-effects panel regression results. Dependent variable is the log number of citations per paper, and the “specialization” 
variable is standardized. Standard errors are in parentheses. All control variables described in the main manuscript are included. Based 
on 1713 unique biomedical researchers assigned to the discipline gastroenterology with at least 100 publications

*p < 0.01; **p < 0.001; ***p < 0.0001

(1) (2) (3) (4)

Specialization 0.294*** 0.396*** 0.492*** 0.647***

(0.013) (0.018) (0.025) (0.045)

Specialization × career age − 0.007*** − 0.013***

(0.001) (0.003)

Specialization × papers − 0.065*** − 0.076***

(0.007) (0.014)

Career age × papers 0.007***

(0.002)

Specialization × career age × papers 0.002

(0.001)

Observations 12,164 12,164 12,164 12,164

R2 0.294 0.298 0.300 0.303

Adjusted R2 0.176 0.181 0.183 0.186

Control variables Yes Yes Yes Yes

Year fixed-effects Yes Yes Yes Yes

Researcher fixed-effects Yes Yes Yes Yes

Table 11  Fixed-effects panel regression results. Dependent variable is the log number of citations per paper, and the “specialization” 
variable is standardized. Standard errors are in parentheses. All control variables described in the main manuscript are included. Based 
on 1304 unique biomedical researchers assigned to the discipline gastroenterology with between 75 and 99 career publications

*p < 0.01; **p < 0.001; ***p < 0.0001

(1) (2) (3) (4)

Specialization 0.324*** 0.380*** 0.471*** 0.612***

(0.018) (0.026) (0.034) (0.065)

Specialization × career age − 0.004* − 0.011

(0.001) (0.004)

Specialization × papers − 0.056*** − 0.074**

(0.011) (0.022)

Career age × papers 0.007

(0.003)

Specialization × career age × papers 0.001

(0.001)

Observations 8,017 8,017 8,017 8,017

R2 0.260 0.261 0.263 0.264

Adjusted R2 0.112 0.113 0.116 0.117

Control variables Yes Yes Yes Yes

Year fixed-effects Yes Yes Yes Yes

Researcher fixed-effects Yes Yes Yes Yes
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Table 12  Fixed-effects panel regression results. Dependent variable is the log number of citations per paper, and the “specialization” 
variable is standardized. Standard errors are in parentheses. All control variables described in the main manuscript are included. Based 
on 1396 unique biomedical researchers assigned to the discipline infectious diseases with at least 100 publications

*p < 0.01; **p < 0.001; ***p < 0.0001

(1) (2) (3) (4)

Specialization 0.264*** 0.395*** 0.436*** 0.763***

(0.014) (0.020) (0.027) (0.047)

Specialization × career age − 0.009*** − 0.027***

(0.001) (0.003)

Specialization × papers − 0.057*** − 0.105***

(0.007) (0.014)

Career age × papers 0.013***

(0.002)

Specialization × career age × papers 0.005***

(0.001)

Observations 10,073 10,073 10,073 10,073

R2 0.262 0.269 0.267 0.276

Adjusted R2 0.140 0.149 0.146 0.156

Control variables Yes Yes Yes Yes

Year fixed-effects Yes Yes Yes Yes

Researcher fixed-effects Yes Yes Yes Yes

Table 13  Fixed-effects panel regression results. Dependent variable is the log number of citations per paper, and the “specialization” 
variable is standardized. Standard errors are in parentheses. All control variables described in the main manuscript are included. Based 
on 1154 unique biomedical researchers assigned to the discipline infectious diseases with between 75 and 99 career publications

*p < 0.01; **p < 0.001; ***p < 0.0001

(1) (2) (3) (4)

Specialization 0.263*** 0.326*** 0.357*** 0.461***

(0.018) (0.026) (0.034) (0.063)

Specialization × career age − 0.004** − 0.008

(0.001) (0.004)

Specialization × papers − 0.036* − 0.026

(0.011) (0.021)

Career age × papers 0.009*

(0.003)

Specialization × career age × papers − 0.0004

(0.001)

Observations 7460 7460 7460 7460

R2 0.225 0.226 0.226 0.228

Adjusted R2 0.078 0.079 0.079 0.082

Control variables Yes Yes Yes Yes

Year fixed-effects Yes Yes Yes Yes

Researcher fixed-effects Yes Yes Yes Yes
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Table 14  Fixed-effects panel regression results. Dependent variable is the log number of citations per paper, and the “specialization” 
variable is standardized. Standard errors are in parentheses. All control variables described in the main manuscript are included. Based 
on 1086 unique biomedical researchers assigned to the discipline radiology with at least 100 publications

*p < 0.01; **p < 0.001; ***p < 0.0001

(1) (2) (3) (4)

Specialization 0.216*** 0.311*** 0.379*** 0.382***

(0.016) (0.023) (0.033) (0.061)

Specialization × career age − 0.006*** − 0.002

(0.001) (0.004)

Specialization × papers − 0.053*** − 0.027

(0.009) (0.019)

Career age × papers − 0.0004

(0.002)

Specialization × career age × papers − 0.001

(0.001)

Observations 7757 7757 7757 7757

R2 0.269 0.273 0.273 0.275

Adjusted R2 0.146 0.150 0.150 0.152

Control variables Yes Yes Yes Yes

Year fixed-effects Yes Yes Yes Yes

Researcher fixed-effects Yes Yes Yes Yes

Table 15  Fixed-effects panel regression results. Dependent variable is the log number of citations per paper, and the “specialization” 
variable is standardized. Standard errors are in parentheses. All control variables described in the main manuscript are included. Based 
on 902 unique biomedical researchers assigned to the discipline radiology with between 75 and 99 career publications

*p < 0.01; **p < 0.001; ***p < 0.0001

(1) (2) (3) (4)

Specialization 0.223*** 0.288*** 0.344*** 0.465***

(0.021) (0.030) (0.042) (0.080)

Specialization × career age − 0.005* − 0.009

(0.002) (0.005)

Specialization × papers − 0.045** − 0.044

(0.013) (0.027)

Career age × papers 0.007

(0.004)

Specialization × career age × papers − 0.0001

(0.002)

Observations 5483 5483 5483 5483

R2 0.212 0.214 0.214 0.217

Adjusted R2 0.050 0.052 0.052 0.055

Control variables Yes Yes Yes Yes

Year fixed-effects Yes Yes Yes Yes

Researcher fixed-effects Yes Yes Yes Yes
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Table 16  Fixed-effects panel regression results. Dependent variable is the log number of citations per paper, and the “specialization” 
variable is standardized. Standard errors are in parentheses. All control variables described in the main manuscript are included. Based 
on 944 unique biomedical researchers assigned to the discipline nephrology with at least 100 publications

*p < 0.01; **p < 0.001; ***p < 0.0001

(1) (2) (3) (4)

Specialization 0.236*** 0.292*** 0.378*** 0.479***

(0.018) (0.023) (0.034) (0.059)

Specialization × career age − 0.004** − 0.008

(0.001) (0.004)

Specialization × papers − 0.046*** − 0.047*

(0.009) (0.017)

Career age × papers 0.007*

(0.002)

Specialization × career cge × papers 0.0004

(0.001)

Observations 6738 6738 6738 6738

R2 0.266 0.268 0.270 0.271

Adjusted R2 0.142 0.144 0.146 0.147

Control variables Yes Yes Yes Yes

Year fixed-effects Yes Yes Yes Yes

Researcher fixed-effects Yes Yes Yes Yes

Table 17  Fixed-effects panel regression results. Dependent variable is the log number of citations per paper, and the “specialization” 
variable is standardized. Standard errors are in parentheses. All control variables described in the main manuscript are included. Based 
on 638 unique biomedical researchers assigned to the discipline nephrology with between 75 and 99 career publications

*p < 0.01; **p < 0.001; ***p < 0.0001

(1) (2) (3) (4)

Specialization 0.266*** 0.329*** 0.446*** 0.600***

(0.024) (0.035) (0.046) (0.087)

Specialization × career age − 0.005  − 
0.012

(0.002) (0.006)

Specialization × papers − 0.068*** − 0.082*

(0.015) (0.028)

Career age × papers 0.009

(0.004)

Specialization × career age × papers 0.001

(0.002)

Observations 3962 3962 3962 3962

R2 0.246 0.248 0.251 0.253

Adjusted R2 0.093 0.095 0.099 0.101

Control variables Yes Yes Yes Yes

Year fixed-effects Yes Yes Yes Yes

Researcher fixed-effects Yes Yes Yes Yes
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Table 18  Fixed-effects panel regression results. Dependent variable is the log number of citations per paper, and the “specialization” 
variable is standardized. Standard errors are in parentheses. All control variables described in the main manuscript are included. Based 
on 828 unique biomedical researchers assigned to the discipline psychology with at least 100 publications

*p < 0.01; **p < 0.001; ***p < 0.0001

(1) (2) (3) (4)

Specialization 0.212*** 0.328*** 0.428*** 0.722***

(0.018) (0.024) (0.031) (0.058)

Specialization × career age − 0.008*** − 0.025***

(0.001) (0.004)

Specialization × papers − 0.068*** − 0.139***

(0.008) (0.016)

Career age × papers 0.005

(0.002)

Specialization × career age × papers 0.006***

(0.001)

Observations 5990 5990 5990 5990

R2 0.338 0.344 0.347 0.354

Adjusted R2 0.227 0.234 0.237 0.245

Control variables Yes Yes Yes Yes

Year fixed-effects Yes Yes Yes Yes

Researcher fixed-effects Yes Yes Yes Yes

Table 19  Fixed-effects panel regression results. Dependent variable is the log number of citations per paper, and the “specialization” 
variable is standardized. Standard errors are in parentheses. All control variables described in the main manuscript are included. Based 
on 603 unique biomedical researchers assigned to the discipline psychology with between 75 and 99 career publications

*p < 0.01; **p < 0.001; ***p < 0.0001

(1) (2) (3) (4)

Specialization 0.186*** 0.233*** 0.259*** 0.303**

(0.026) (0.036) (0.046) (0.085)

Specialization × career age − 0.003 − 0.004

(0.002) (0.006)

Specialization × papers − 0.026 − 0.028

(0.014) (0.026)

Career age × papers 0.001

(0.004)

Specialization × career age × papers 0.0005

(0.002)

Observations 3882 3882 3882 3882

R2 0.240 0.240 0.241 0.241

Adjusted R2 0.091 0.092 0.092 0.092

Control variables Yes Yes Yes Yes

Year fixed-effects Yes Yes Yes Yes

Researcher fixed-effects Yes Yes Yes Yes
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Fig. 7  Marginal effects for researchers in molecular and cell biology with more than 100 publications. Low publishing rate is estimated at the 
12.5th percentile (middle of the first quartile) of papers per year. High publishing rate is estimated at the 87.5th percentile (middle of the fourth 
quartile) of papers per year. The shaded envelope of each line is the 99.9% confidence interval. Based on 10,889 unique researchers with a total of 
81,398 researcher-time window observations

Fig. 8  Marginal effects for researchers in molecular and cell biology with 75 to 99 career publications. Low publishing rate is estimated at the 
12.5th percentile (middle of the first quartile) of papers per year. High publishing rate is estimated at the 87.5th percentile (middle of the fourth 
quartile) of papers per year. The shaded envelope of each line is the 99.9% confidence interval. Based on 8135 unique researchers with a total of 
53,890 researcher-time window observations
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Fig. 9  Marginal effects for researchers in medicine with more than 100 publications. Low publishing rate is estimated at the 12.5th percentile 
(middle of the first quartile) of papers per year. High publishing rate is estimated at the 87.5th percentile (middle of the fourth quartile) of papers 
per year. The shaded envelope of each line is the 99.9% confidence interval. Based on 6722 unique researchers with a total of 48,433 researcher-time 
window observations

Fig. 10  Marginal effects for researchers in medicine with 75 to 99 career publications. Low publishing rate is estimated at the 12.5th percentile 
(middle of the first quartile) of papers per year. High publishing rate is estimated at the 87.5th percentile (middle of the fourth quartile) of papers 
per year. The shaded envelope of each line is the 99.9% confidence interval. Based on 4825 unique researchers with a total of 30,440 researcher-time 
window observations
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Fig. 11  Marginal effects for researchers in neuroscience with 100 or more career publications. Low publishing rate is estimated at the 
12.5th percentile (middle of the first quartile) of papers per year. High publishing rate is estimated at the 87.5th percentile (middle of the fourth 
quartile) of papers per year. The shaded envelope of each line is the 99.9% confidence interval. Based on 2994 unique researchers with a total of 
22,006 researcher-time window observations

Fig. 12  Marginal effects for researchers in neuroscience with between 75 and 99 career publications. Low publishing rate is estimated at the 
12.5the percentile (middle of the first quartile) of papers per year. High publishing rate is estimated at the 87.5th percentile (middle of the fourth 
quartile) of papers per year. The shaded envelope of each line is the 99.9% confidence interval. Based on 2423 unique researchers with a total of 
15,992 researcher-time window observations
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Fig. 13  Marginal effects for researchers in gastroenterology with 100 or more career publications. Low publishing rate is estimated at the 
12.5th percentile (middle of the first quartile) of papers per year. High publishing rate is estimated at the 87.5th percentile (middle of the fourth 
quartile) of papers per year. The shaded envelope of each line is the 99.9% confidence interval. Based on 1713 unique researchers with a total of 
12,164 researcher-time window observations

Fig. 14  Marginal effects for researchers in gastroenterology with between 75 and 99 career publications. Low publishing rate is estimated at the 
12.5th percentile (middle of the first quartile) of papers per year. High publishing rate is estimated at the 87.5th percentile (middle of the fourth 
quartile) of papers per year. The shaded envelope of each line is the 99.9% confidence interval. Based on 1304 unique researchers with a total of 
8017 researcher-time window observations
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Fig. 15  Marginal effects for researchers in infectious diseases with 100 or more career publications. Low publishing rate is estimated at the 
12.5th percentile (middle of the first quartile) of papers per year. High publishing rate is estimated at the 87.5th percentile (middle of the fourth 
quartile) of papers per year. The shaded envelope of each line is the 99.9% confidence interval. Based on 1396 unique researchers with a total of 
10,073 researcher-time window observations

Fig. 16  Marginal effects for researchers in infectious diseases with between 75 and 99 career publications. Low publishing rate is estimated at the 
12.5th percentile (middle of the first quartile) of papers per year. High publishing rate is estimated at the 87.5th percentile (middle of the fourth 
quartile) of papers per year. The shaded envelope of each line is the 99.9% confidence interval. Based on 1154 unique researchers with a total of 
7460 researcher-time window observations
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Fig. 17  Marginal effects for researchers in radiology with 100 or more career publications. Low publishing rate is estimated at the 12.5th percentile 
(middle of the first quartile) of papers per year. High publishing rate is estimated at the 87.5th percentile (middle of the fourth quartile) of papers 
per year. The shaded envelope of each line is the 99.9% confidence interval. Based on 1086 unique researchers with a total of 7757 researcher-time 
window observations

Fig. 18  Marginal effects for researchers in radiology with between 75 and 99 career publications. Low publishing rate is estimated at the 
12.5th percentile (middle of the first quartile) of papers per year. High publishing rate is estimated at the 87.5th percentile (middle of the fourth 
quartile) of papers per year. The shaded envelope of each line is the 99.9% confidence interval. Based on 902 unique researchers with a total of 5483 
researcher-time window observations



Page 30 of 33de Rassenfosse et al. BMC Biology          (2022) 20:211 

Fig. 19  Marginal effects for researchers in nephrology with 100 or more career publications. Low publishing rate is estimated at the 
12.5th percentile (middle of the first quartile) of papers per year. High publishing rate is estimated at the 87.5th percentile (middle of the fourth 
quartile) of papers per year. The shaded envelope of each line is the 99.9% confidence interval. Based on 944 unique researchers with a total of 6738 
researcher-time window observations

Fig. 20  Marginal effects for researchers in nephrology with between 75 and 99 career publications. Low publishing rate is estimated at the 
12.5th percentile (middle of the first quartile) of papers per year. High publishing rate is estimated at the 87.5th percentile (middle of the fourth 
quartile) of papers per year. The shaded envelope of each line is the 99.9% confidence interval. Based on 638 unique researchers with a total of 3962 
researcher-time window observations
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Fig. 21  Marginal effects for researchers in psychology with 100 or more career publications. Low publishing rate is estimated at the 
12.5th percentile (middle of the first quartile) of papers per year. High publishing rate is estimated at the 87.5th percentile (middle of the fourth 
quartile) of papers per year. The shaded envelope of each line is the 99.9% confidence interval. Based on 828 unique researchers with a total of 5990 
researcher-time window observations

Fig. 22  Marginal effects for researchers in psychology with between 75 and 99 career publications. Low publishing rate is estimated at the 
12.5th percentile (middle of the first quartile) of papers per year. High publishing rate is estimated at the 87.5th percentile (middle of the fourth 
quartile) of papers per year. The shaded envelope of each line is the 99.9% confidence interval. Based on 603 unique researchers with a total of 3882 
researcher-time window observations
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