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Abstract 

Background:  Predicting cis-regulatory modules (CRMs) in a genome and their functional states in various cell/tissue 
types of the organism are two related challenging computational tasks. Most current methods attempt to simultane-
ously achieve both using data of multiple epigenetic marks in a cell/tissue type. Though conceptually attractive, they 
suffer high false discovery rates and limited applications. To fill the gaps, we proposed a two-step strategy to first 
predict a map of CRMs in the genome, and then predict functional states of all the CRMs in various cell/tissue types 
of the organism. We have recently developed an algorithm for the first step that was able to more accurately and 
completely predict CRMs in a genome than existing methods by integrating numerous transcription factor ChIP-seq 
datasets in the organism. Here, we presented machine-learning methods for the second step.

Results:  We showed that functional states in a cell/tissue type of all the CRMs in the genome could be accurately 
predicted using data of only 1~4 epigenetic marks by a variety of machine-learning classifiers. Our predictions are 
substantially more accurate than the best achieved so far. Interestingly, a model trained on a cell/tissue type in 
humans can accurately predict functional states of CRMs in different cell/tissue types of humans as well as of mice, 
and vice versa. Therefore, epigenetic code that defines functional states of CRMs in various cell/tissue types is univer-
sal at least in humans and mice. Moreover, we found that from tens to hundreds of thousands of CRMs were active in 
a human and mouse cell/tissue type, and up to 99.98% of them were reutilized in different cell/tissue types, while as 
small as 0.02% of them were unique to a cell/tissue type that might define the cell/tissue type.

Conclusions:  Our two-step approach can accurately predict functional states in any cell/tissue type of all the CRMs 
in the genome using data of only 1~4 epigenetic marks. Our approach is also more cost-effective than existing 
methods that typically use data of more epigenetic marks. Our results suggest common epigenetic rules for defining 
functional states of CRMs in various cell/tissue types in humans and mice.
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Background
Since the completion of the Human Genome Project 
20 years ago [1, 2], we have largely categorized cod-
ing sequences in the genome [3] and gained a good 

understanding of their functions in various human 
cell/tissue types. In contrast, although cis-regulatory 
sequences can be as important as coding sequences in 
specifying human traits [4–6], our understanding of them 
falls largely behind due to more technical difficulties in 
categorizing them in the genome and in characterizing 
their functional states and target genes in various human 
cell/tissue types [7, 8]. Cis-regulatory sequences are also 
known as cis-regulatory modules (CRMs), as they often 
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function independently of their locations and orienta-
tions relative to their target genes [9]. A CRM is generally 
made of a cluster of closely located transcription factor 
(TF) binding sites (TFBSs) of the same and/or different 
TFs in a genome region, to which specific TFs can bind 
[10]. Some CRMs function as promoters to which TFs 
bind, thereby initiating the transcription of the down-
stream target genes through the interactions between the 
TFs and the RNA transcription machinery [11]. Some 
CRMs function as insulators to which TFs bind, thereby 
facilitating the formation of the cohesin complex to iso-
late regulatory domains of the genome from one another 
[12]. Some CRMs function as enhancers or silencers to 
which TFs bind, thereby increasing or decreasing the 
expression of the target genes through the interactions 
between the TFs and relevant promoters by forming a 
DNA loop [13]. However, the classification of promot-
ers and enhancers is not clear-cut, as it has been shown 
that some promoters can also function as distal enhanc-
ers of remote genes [14, 15]. CRMs function in a cell/tis-
sue type-specific manner for programming the distinct 
spatial and temporal gene expression patterns during 
animal development and physiological homeostasis [10, 
11]. In other words, the activity of a CRM in a cell/tissue 
type depends on whether the constituent TFBSs in the 
CRM are accessible and on whether the cognate TFs are 
expressed and available to bind their TFBSs [10, 11]. In 
this study, we consider a CRM to be active in a cell/tissue 
type if at least some of its binding sites are bound by cog-
nate TFs, and non-active, otherwise.

Although traditional experimental methods for char-
acterizing CRMs are highly accurate [16, 17], they are 
laborious and time consuming. Hence, various forms 
of massively parallel reporter assays (MPRA) have been 
developed [18]. In particular, self-transcribing assay 
of regulatory regions sequencing (STARR-seq) clones 
randomly sheared D. melanogaster genomic sequences 
between a minimal-promoter-driven green fluorescent 
protein (GFP) open reading frame and a downstream 
polyA sequence [19]. If a sequence is an active enhancer, 
this results in transcription of the enhancer sequence, 
allowing to assess more and relatively longer candidate 
sequences than earlier MPRA that used short (~200bp) 
synthetic sequences [20]. Variants of STARR-seq have 
been developed to accommodate to large mammalian 
genomes, such as whole-genome STARR-seq (WHG-
STARR-seq) [21] and ATAC (assay for transposase-acces-
sible chromatin) enrichment coupled with STARR-seq 
(ATAC-STARR-seq) [22]. However, since all forms of 
STARR-seq methods are based on episomal expression 
vectors, the results may not reflect the native chromo-
somal contexts [19–21, 23]. Moreover, sequences that 
can be assessed by STARR-seq are still much shorter 

(~500bp) than the mean length (~2049bp) of known 
human enhancers in the VISTA database [17], they there-
fore suffer high false discovery rates (FDRs) as well as 
high false negative rates [19–26].

Since active and non-active CRMs in a cell/tissue type 
have distinct epigenetic marks [27–35], many machine-
learning methods have been proposed to simultane-
ously predict CRM loci and their functional states in a 
given cell/tissue type based on genome segments’ chro-
matin accessibility (CA) as measured by DNase I hyper-
sensitive sites sequencing (DNase-seq) [36] or assay for 
transposase-accessible chromatin using sequencing 
(ATAC-seq) [37], histone modifications as measured 
by chromatin immunoprecipitation sequencing (ChIP-
seq) [38], and cytosine methylation in CpG dinucleotide 
(mCG) as measured by bisulfite sequencing [39]. Earlier 
methods using this one-step approach include hidden 
Markov models (ChromHMM) [40, 41], dynamic Bayes-
ian networks (segway) [42, 43], neural networks (CSI-
ANN) [44], random forest (RFECS and REPTILE) [39, 
45–47], support vector machines (SVM) [47, 48], and 
AdaBoost (DELTA) [49]. Although conceptually attrac-
tive and a great deal of insights into CRMs have been 
gained, these one-step methods have several critical 
limitations [39, 47, 50–55]. First, the boundaries of pre-
dicted CRMs are not well defined because of the broad 
enrichment of most epigenetic histone modifications in 
regions around CRMs, although it has been shown that 
using mCG as additional feature can somewhat relieve 
the problem [39]. Thus, the resolution of predicted 
CRMs is low. Second, almost all earlier methods do not 
predict constituent TFBSs in CRMs, in particular novel 
TFBSs, although it is TFBSs that largely determine the 
functions of CRMs. Third, many predicted CRMs cannot 
be validated experimentally, resulting in high FDRs [54, 
55], due probably to the facts that a genome segment that 
has CA [19] and histone marks such as H3K4me1 [56–
58], H3K4me3 [59], and H3K27ac [60] are not necessarily 
CRMs [50–53, 61]. Fourth, in some supervised machine-
learning methods, a mark such as H3K27ac was used 
both as a feature and as the label of training sets [62, 63], 
these models therefore were actually trained to differ-
entiate sequences with and without the H3K27ac mark, 
instead of the functional states of CRMs, while an active 
CRM may not necessarily have the mark [53, 60].

To overcome the limitations of these existing meth-
ods, we proposed a two-step approach [52, 64] (Fig.  1). 
Specifically, in the first step, we aim to solve the CRM 
finding problem, i.e., given a genome, find the loci of all 
encoded CRMs, which is reminiscent of the earlier gene-
finding problem [65], i.e., given a genome, find the loci 
of all encoded genes. We proposed to use all available 
TF ChIP-seq datasets in the organism for CRM finding, 
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since it has been shown that multiple TF bindings are 
a more reliable predictor of the loci of CRMs than CA 
and histone marks [50]. This is reminiscent of using all 
available transcripts data in the organism for gene-find-
ing. We then predict functional states of all the putative 
CRMs in any cell/tissue type using few epigenetic marks 
in the very cell type. This goal is likely achievable, since it 
was found that when the locus of a CRM was accurately 
anchored by the bindings of multiple key TFs, epigenetic 
marks could be an accurate predictor of the functional 
state of the CRM [47, 50, 51, 55, 66]. It appears that a pat-
tern of epigenetic marks on a CRM is sufficient to define 
its functional state, although a genome segment with 
such a pattern is not necessarily a CRM [50–52, 60, 61].

For the first step, we have recently developed a pipeline 
dePCRM2 [52] and demonstrated its high accuracy for 

predicting CRMs and constituent TFBSs in the human 
genome using then available 6092 TF ChIP-seq data-
sets for different TFs in various cell/tissue types. None-
theless, although dePCRM2 can also predict functional 
states (active or non-active) in a cell/tissue type of the 
CRMs whose constituent TFBSs overlap binding peaks of 
ChIP-ed TFs in the cell/tissue type [52], the CRMs whose 
functional states in a cell/tissue type can be so predicted 
depends on the availability of TF ChIP-seq data in the 
very cell/tissue type. Since in most cell/tissue types, only 
few or even no TF ChIP-seq datasets are currently avail-
able, the fraction of CRMs whose functional state can be 
predicted by dePCRM2 is generally very low or even zero 
[52]. Obviously, to predict functional states in a cell/tis-
sue type of all the putative CRMs in this way, one might 
need ChIP-seq data for all annotated TFs in the cell/

Fig. 1  Schematic of our two-step approach and workflow of our machine-learning classifiers models. In the first step, dePCRM2 maps (1-1) 1kbp 
binding peaks in all available TF binding data to the genome and then partitions (1-2) the peak-covered genome regions into a CRMs set (solid 
lines) and a non-CRMs set (dotted lines). In a cell/tissue type, a subset of the CRMs in the genome are active (red lines in the red box), while the 
remaining subset are non-active (blue lines in the blue box). Next, dePCRM2 predicts (1-3) a subset of the active CRMs in the cell type to be active 
based on their overlaps with available TF binding peaks in the very cell type (red lines with two binding peaks of pair-end TF ChIP-seq reads), while 
dePCRM2 typically cannot predict the remaining active CRMs to be active due to the lack of TF binding data (red lines without two binding peaks 
of pair-end TF ChIP-seq reads). In the second step, we construct (2-1) a positive set (CRM+TF+) using the active CRMs predicted by dePCRM2 in 
the cell type, and a negative set either by randomly selecting predicted non-CRMs in the genome (Non-CRM), or using the putative CRMs in the 
genome that do not overlap STARR-seq peaks in the cell type and cannot be predicted to be active by dePCRM2 (CRM+S−). We compute feature 
vectors (2-2) and train (2-3) a classifier model using a few epigenetic marks on the positive and negative sets in the cell type, or on pooled positive 
and negative sets from multiple cell types. We then use (2-4), the trained model to predict functional states of all the CRMs whose functional states 
cannot be predicted by dePCRM2 in the cell type (both red and black lines in the green box) or in an any different cell type
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tissue type. This can be too costly or currently unfeasi-
ble. Therefore, functional states of most putative CRMs 
in most cell/tissue types of the organism are largely 
unknown, and thus needed to be predicted.

In this study, we aimed to fulfill the second step of our 
two-step approach for predicting functional states (active 
or non-active) in any cell/tissue type of all the putative 
CRMs, particularly, those whose functional states cannot 
be predicted by dePCRM2 due to insufficient availabil-
ity of TF binding data in the cell/tissue type (Fig. 1). We 
showed that, using only 1~4 epigenetic marks, machine-
learning models trained on a set of CRMs whose func-
tional states in a cell/tissue type could be predicted by 
dePCRM2 was able to very accurately predict functional 
states of the CRMs whose functional states in the cell/
tissue type could not be predicted by dePCRM2. More-
over, our models using fewer epigenetic marks substan-
tially outperform existing methods using more epigenetic 
marks. Thus, our two-step approach is highly accurate 
and cost-effective for predicting CRMs in a genome and 
their functional states in various cell/tissue types of the 
organism. Intriguingly, our models trained on certain 
cell/tissue types in human or mouse using only four epi-
genetic marks as the features were able to very accurately 
predict functional states of CRMs in developmentally 
distal cell/tissue types in the same and the other species. 
These results strongly suggest that epigenetic rules that 
define functional states of CRMs are common for differ-
ent cell/tissue types of at least mammalian species.

Results
Genome‑wide de novo prediction of CRMs in the human 
and mouse genomes
In our proposed two-step approach (Fig.  1), we first 
predict a map of CRMs and constituent TFBSs in the 
genome using all available TF binding data in the organ-
ism. In order to predict a more complete map of CRMs 
in the human and mouse genomes than we did earlier 
using then (6/1/2019) available 6092 and 4786 TF bind-
ing datasets in the organisms [52, 67], we collected addi-
tional 5256 and 4274 TF binding-peak datasets in human 
and mouse cell/tissue types, respectively (“Methods”). 
The extended peaks (1000bp) of the 11,348 (6092+5256, 
Additional file 1: Table S1) and 9060 (4,785+4,274, Addi-
tional file  1: Table  S2) datasets cover 85.5 and 79.9% of 
the human and mouse genomes, respectively. We have 
shown that extension of called short binding peaks to 
500~1000bp could substantially increase the chance of 
finding TFBSs of collaborative TFs of the ChIP-ed TF, 
while the introduced noise had a little effect on identify-
ing the primary motifs of ChIP-ed TFs [68]. dePCRM2 
[52] first identifies motifs in each dataset using our ultra-
fast ProSampler [68] as recently evaluated by Bailey 

et  al. [69], and then predicts a closely located cluster of 
putative TFBSs whose motifs significantly co-occur in 
multiple TF binding datasets as a CRM candidate, and 
a sequence between two adjacent CRM candidates in a 
peak-covered genome region as a non-CRM, thereby 
partitioning the peak-covered genome into two exclusive 
sets, i.e., the CRM candidate set and the non-CRM set, 
as illustrated in Fig. 1. Applying dePCRM2 to these bind-
ing-peak datasets, we predicted 1,426,947 and 912,197 
CRM candidates as well as 1,755,876 and 1,270,937 non-
CRMs in the peak-covered regions in the human and 
mouse genomes, respectively. These putative CRM can-
didates occupy higher proportions of the human (47.1%) 
and mouse (55.5%) genomes than those (44.0 and 50.4%, 
respectively) that we predicted earlier using smaller 
numbers of TF binding datasets (6092 and 4786, respec-
tively). Therefore, we predicted more complete maps of 
CRMs and TFBSs in the genomes. Similar to our earlier 
predicted CRM candidates in the human genome using 
then available 6092 TF ChIP-seq datasets [52], the vast 
majority (96%) of the predicted CRM candidate positions 
are located in non-coding regions in both the human 
and mouse genomes, and they are under either strongly 
positive selection (with negative phyloP scores [70]) or 
strongly negative selection (with positive phyloP scores 
[70]), while the predicted non-CRM positions in non-
coding regions are largely selectively neutral (with near 
zero phyloP scores [70]) (Additional file  2: Figs. S2A, 
S2B), strongly suggesting that the CRMs are likely func-
tional, while the non-CRMs are likely not [52]. Moreover, 
we also validated the predicted CRMs in both the human 
and mouse genomes using various sources of experimen-
tally verified, manually curated, and computationally 
predicted datasets, such as the VISTA enhancers [17], 
FANTOM enhancers [71] and promoters [72], Enhancer-
Atlas2.0 enhancers [73], ENCODE candidate cis-regula-
tory element (cCREs) [74] and GeneHancer enhancers 
[75], and obtained similar results as we did earlier (data 
not shown, but see [52]), indicating that our predicted 
CRMs in both genomes are highly accurate.

Also similar to our earlier results [52], of the genome 
positions covered by the originally called TF bind-
ing peaks in the human or mouse genomes, only 58.7 
or 75.6% were predicted to be CRM candidate posi-
tions, while the other 41.3 or 24.4% were predicted to 
be non-CRMs. Therefore, a called binding peak cannot 
be equated to a CRM. On the other hand, like our ear-
lier results [52], of the genome positions covered by the 
extended parts of the originally called binding peaks, 48.7 
or 58.7% were predicted to be CRM candidates, while 
the other 51.2 or 41.3% were predicted to be non-CRMs. 
The extended parts of the originally called binding peaks 
contribute 29.4 and 30.5% of the total predicted CRM 
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candidate positions in the human and mouse genomes, 
respectively. Therefore, appropriate extension of the 
called short peaks can largely increase the power of the 
available datasets [52].

dePCRM2 [52] further evaluates each CRM candi-
date by computing a score and associated p-value. At a 
p-value cutoff of 0.05, dePCRM2 predicted 1,225,115 and 
798,257 CRMs in the human and mouse genomes. We 
will use these putative CRMs predicted in the genomes in 
the remaining analysis in this study. Moreover, dePCRM2 
is able to predict some putative CRMs to be active in a 
cell/tissue type based on overlaps between the constitu-
ent TFBSs in the CRMs and TF binding peaks available 
in the cell/tissue type [52]. As expected, the number of 
active CRMs predicted by dePCRM2 in a cell/tissue type 
vary widely, depending on the number of TF ChIP-seq 
datasets available in the cell/tissue type (Additional file 2: 
Figs. S1A, S1B).

Machine‑learning models trained on CRM+TF+/CRM+S− 
and CRM+TF+/non‑CRM sets outperform those trained 
on positive and negative sets defined by other methods
After predicting a map of CRMs in the genome of an 
organism, in the second step of our two-step approach 
(Fig. 1), we predict functional states of all the putative 
CRMs in any cell/tissue types of the organism using 
few epigenetic marks by training supervised machine-
learning models. Due to the lack of large gold stand-
ard sets of active CRMs and non-active CRMs in any 
human and mouse cell/tissue types, different meth-
ods have been used to define operational positive and 
negative sets of CRMs in a cell/tissue type for training 
machine-learning models [39, 44, 45, 49, 62, 63]. Par-
ticularly, it was recently reported [62] that STARR-seq 
peaks overlapping H3K27ac peaks in a cell type can be 
used as a high-confident set of CRMs that are active 

in the cell type. To find the best ways for constructing 
the positive (active) and negative (non-active) sets of 
CRMs, we evaluated the following seven methods in 
the six human cell lines (A549, HCT116, HepG2, K562, 
MCH-7, and SH-HY5Y) where WHG-STARR-seq data 
were available (Table 1).

(1)	 CRM+TF+/Non-CRM, where the positive set 
CRM+TF+ in a cell/tissue type consists of the 
active CRMs predicted by dePCRM2 in the cell/
tissue type, and the negative set Non-CRM is ran-
domly selected putative non-CRMs in the genome, 
with the matched number and lengths of sequences 
in the positive set (Table 1). The CRM+TF+ set is 
generally a small portion of all active CRMs in the 
cell/tissue type (see later). Clearly, we should not 
consider to be non-active a CRM that does not 
overlap any available TF binding peak in the cell/tis-
sue, because the CRM may be bound by a TF that 
has not been ChIP-ed, and thus is actually active.

(2)	 CRM+TF+/CRM+S−, where the positive set 
CRM+TF+ in a cell/tissue type is defined in the 
same way as above, and the negative set CRM+S− 
is randomly selected putative CRMs in the genome 
that are not predicted to be active by dePCRM2 and 
does not overlap any STARR-seq peaks in the cell/
tissue type, with the matched number and lengths 
of sequences in the positive set.

(3)	 CRM+S+/Non-CRM, where the positive set 
CRM+S+ in a cell/tissue type consists of our pre-
dicted CRMs in the genome that overlap STARR-
seq peaks in the cell/tissue type, and the negative 
set Non-CRM is randomly selected from the puta-
tive non-CRMs in the genome, with the matched 
number and lengths of sequences in the positive 
set.

Table 1  Methods for defining seven pairs of positive/negative training sets in a cell type with STARR-seq data available

Methods Labels Size (sequences) Positive set Negative set

CRM+TF+/Non-CRM TF binding 17,558~272,128 CRMs overlapping TF binding peaks Randomly selected non-CRMs

CRM+TF+/CRM+S− TF binding 17,558~272,128 CRMs overlapping TF binding peaks CRMs that cannot be predicted to 
be active and do not overlap STARR 
peaks

CRM+S+/Non-CRM STARR peaks 22,610~71,176 CRMs overlapping STARR peaks Randomly selected non-CRMs

CRM+S+/CRM+S− STARR peaks 22,610~71,176 CRMs overlapping STARR peaks CRMs that cannot be predicted to 
be active and do not overlap STARR 
peaks

Bin+S+/Bin+S− STARR peaks 60,668~109,118 700bp bin overlapping STARR peaks 700bp bin not overlapping STARR 
peaks

Bin+ac+/Bin+ac− H3K27ac peaks 175,530~1,688,868 700bp bin overlapping H3K27ac 700bp bin not overlapping H3K27ac

Bin+S+&ac+/Bin+S−&ac− STARR & H3K27ac peaks 7220~49,462 700bp bin overlapping 
STARR&H3K27ac peaks

700bp bin not overlapping 
STARR&H3K27ac peaks
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(4)	 CRM+S+/CRM+S−, where the positive and nega-
tive sets in a cell/tissue type are constructed in 
the same ways as in (3) and (2), respectively, with 
the negative set having the matched number and 
lengths of sequences in the positive set.

(5)	 Bin+S+/Bin+S−, where the positive set Bin+S+ 
in a cell/tissue type is formed by 700bp genomic 
sequence bins that overlap STARR-seq peaks in 
the cell/tissue type, and the negative set Bin+S− 
is randomly selected 700bp genomic bins that did 
not overlap any STARR-seq peaks in the cell/tis-
sue type, with the matched number and lengths of 
sequences in the positive set.

(6)	 Bin+ac+/Bin+ac−, where the positive set Bin+ac+ 
in a cell/tissue type is formed by 700bp genomic 
bins that overlap H3K27ac peaks in the cell line, 
and the negative set Bin+ac− is randomly selected 
700bp genomic bins that does not overlap any 
H3K27ac peaks in the cell/tissue type, with the 
matched number and lengths of sequences in the 
positive set. A similar method was used in an earlier 
study [63].

(7)	 Bin+S+&ac+/Bin+S−&ac−, where the positive 
set Bin+S+&ac+ in a cell/tissue type is formed by 
700bp genomic bins that overlap both H3K27ac 
and STARR-seq peaks in the cell line, and the nega-
tive set Bin+S−&ac− is randomly selected 700bp 
genomic bins that overlap neither H3K27ac nor 
STARR-seq peaks in the cell/tissue type, with the 
matched number and lengths of sequences in the 
positive set. A similar method was used in an earlier 
study [62]. As the number and lengths of sequences 
in a negative set match those of the cognate posi-
tive set, all pairs of the positive and negative sets are 
well-balanced.

Although the number of sequences in a pair of positive 
and negative sets is well-balanced (“Methods”), it varies 
greatly in different cell/tissue types for the same method 
as well as for different methods due to multiple factors 
involved in defining the positive sets (Table  1). Particu-
larly, as shown in Additional file 2: Fig. S1, the size of a 
positive set CRM+TF+ set (Table  1) depends on the 
number of available ChIP-seq datasets in the cell/tissue 
type. Moreover, since the number of predicted CRMs 
is much smaller than the number of 700bp bins in the 
genomes, the sizes of positive sets defined based on the 
CRMs are generally smaller than those defined based on 
the genomic sequence bins (Table 1).

We first trained a logistic regression (LR) model on 
each pair of the seven positive and the negative sets 
defined by each method (Table  1) in each of the six 
cell lines (A549, HCT116, HepG2, K562, MCH-7, and 

SH-HY5Y) using four widely available epigenetic marks 
(CA, H3K4me1, H3K27ac, and H3K4me3) as the fea-
tures (Fig. 1), and validated the performance of each pair 
of training sets by 10-fold cross-validation. When the 
LR models were trained on the CRM+TF+/Non-CRM 
or CRM+TF+/CRM+S− sets, they performed almost 
equally very well with a median AUROC of 0.975 and 
0.976, respectively (Fig.  2A). Consistently, the positive 
set CRM+TF+ had distinct patterns of the four marks 
from both the negative sets, i.e., Non-CRM (Additional 
file  2: Fig. S3A) and CRM+S− (Additional file  2: Fig. 
S3B). Interestingly, the two negative sets had similarly 
low levels of the four marks (Additional file 2: Fig. S3C), 
suggesting that the CRM+S− sets are indeed non-active 
and that non-active CRMs in a cell/tissue type might 
also have highly similarly low levels of the four marks. 
Distributions of phyloP scores [70] indicate that non-
coding positions of both the CRM+TF+ sets (Additional 
file 2: Fig. S4A) and the CRM+S− sets (Additional file 2: 
Fig. S4B) are subject to substantially more evolutionar-
ily constrained than those of the entire 85.5% genome 
regions covered by the extended TF binding peaks, and 
thus might be true CRM loci as we argued earlier [52]. 
Nonetheless, it is not surprising that the CRM+TF+ sets 
and the CRM+S− sets differ in their functional states, 
as they have very differed in epigenetic mark patterns 
(Additional file 2: Fig. S3B). In stark contrast, non-coding 
positions of the negative sets Non-CRM are more likely 
selectively neutral than those in the entire peak-covered 
genome regions (Additional file  2: Fig. S4A) and are 
unlikely CRMs as we argued earlier [52]. Consistently, 
genes closest to the CRM+TF+ sets had significantly 
higher expression levels (p<2.23×10−302) than those clos-
est to the CRM+S− or Non-CRM sets, and the latter two 
groups of genes had very low expression levels (Fig. 2B). 
Taken together, these results suggest that the CRM+TF+ 
sequences are indeed active CRMs in the cell line and the 
CRM+S− sequences are CRMs but are not active in the 
cell line, while Non-CRM sequences are even not CRMs.

When trained on the CRM+S+/non-CRM sets and 
the CRM+S+/CRM+S− sets, the models also per-
formed well with a median AUROC of 0.972 and 0.943 
(Fig.  2A), respectively, albeit slightly worse than those 
trained on the CRM+TF+/Non-CRM sets (median 
AUROC=0.975) or on the CRM+TF+/CRM+S− sets 
(median AUROC=0.976) (Fig.  2A). Consistently, the 
positive sets CRM+S+ have distinct patterns of the 
four epigenetic marks from those on the two nega-
tive sets Non-CRM (Additional file  2: Fig. S3D) and 
CRM+S− (Additional file  2: Fig. S3E). As expected, 
non-coding positions of the CRM+S+/Non-CRM 
sets (Additional file  2: Fig. S4C) and of the CRM+S+/
CRM+S− sets (Additional file  2: Fig. S4D) evolve 
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quite similarly to those of the CRM+TF+/Non-CRM 
sets (Additional file  2: Fig. S4A) and those of the 
CRM+TF+/CRM+S− sets (Additional file 2: Fig. S4B), 

respectively. In agreement, genes closest to the positive 
sets CRM+S+ had significantly higher expression levels 
(p<2.23×10−302) than those closest to the negative sets 
CRM+S− or Non-CRM sets (Fig.  2B). Taken together, 

Fig. 2  Evaluation of the seven methods for defining active and non-active CRMs. A Performance of LR models trained on the pairs of positive and 
negative sets defined by the seven methods (Table 1) in the six cell lines using the four (CA, H3K4me1, H3K4me3, and H3K27ac) or three epigenetic 
marks (omitting H3K27ac) as the features. Models trained on the CRM+TF+/Non-CRM sets or on the CRM+TF+/CRM+S− sets outperformed 
significantly those trained the other pairs of datasets when three epigenetic marks (omitting H3K27ac) were used as the features; **p<0.001 
(Wilcoxon signed-rank test). B Boxplot of expression levels of genes closest to the positive and negative sets defined by each method in the six cell 
lines. ∆∆p<4.64×10−56, **p<2.2×10−302 (Mann-Whitney U test). C Boxplot of weights (coefficients) of the four epigenetic marks in the LR models for 
discriminating the positive and negative sets defined by each method in the six cell lines. **p<0.001 (Wilcoxon signed-rank test), the weights of 
the marks are significantly higher than those on the other three marks. D Performance of the seven types of classifiers trained on the CRM+TF+/
Non-CRM sets or on the CRM+TF+/CRM+S− sets in the six cell lines using the four epigenetic marks as the features
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these results suggest that at least most of the CRM+S+ 
sequences are indeed active CRMs in the cell line.

To our surprise, the models trained on the Bin+S+/
Bin+S− sets only achieved a mediocre median AUROC 
of 0.621 (Fig.  2A), indicating that the models had lit-
tle capability to discriminate genome sequence bins that 
overlapped STARR-seq peaks (Bin+S+) and those that 
did not (Bin+S−). Consistently, the two sets had lit-
tle differences in their patterns of the four epigenetic 
marks (Additional file 2: Fig. S3F). Moreover, as shown in 
Additional file 2: Fig. S4E, non-coding positions in both 
sets evolve much like non-coding positions of the entire 
peak-covered regions of the human genome [52], sug-
gesting that like the negative sets Bin+S−, a large por-
tion of the positive sets Bin+S+ were not even CRMs. 
In agreement, genes closest to the Bin+S+ sets had very 
low expression levels, which were only slightly, yet sig-
nificantly higher (p<4.64×10−58) than those closest to the 
Bin+S− sets (Fig. 2B). Such low expression levels of the 
genes are understandable, as it has been shown that epi-
somal expression vectors used to define WHG-STARR-
seq peaks do not mimic native chromosomal contexts of 
assessed sequences, resulting in up to 87.3% FDR [21].

When trained on the Bin+ac+/Bin+ac− sets or on the 
Bin+S+&ac+/Bin+S−&ac− sets, the models could very 
accurately discriminate the positive sets and the negative 
sets with a very high median AUROC of 0.996 and 0.973, 
respectively (Fig.  2A), in agreement with the earlier 
reports [62, 63] that used similarly constructed positive 
and negative sets. Consistently, the positive sets and neg-
ative sets defined by both methods had distinguishable 
patterns of the four epigenetic marks (Additional file  2: 
Figs. S3G, S3H). However, we suspected that the supe-
rior performance on both pairs of training sets might be 
artifacts due to the aforementioned reason that H3K27ac 
was used both as one of the features and as the label of 
the training sets in both methods (Table 1). Indeed, when 
the models were trained on the Bin+ac+/Bin+ac− sets or 
the Bin+S+&ac+/Bin+S−&ac− sets using only the other 
three marks (CA, H3K4me1, and H3K4me3) as the fea-
tures, their performance reduced by 17.1 and 8.0% with 
an intermediate median AUROC of 0.826 and 0.895, 
respectively (Fig. 2A). Although non-coding positions of 
both positive sets Bin+ac+ and Bin+S+&ac+ are under 
moderately more evolutionary constraints than those in 
the respective negative sets Bin+ac− and Bin+S−&ac−, 
their phyloP score distributions differ only slightly from 
those of the entire peak-covered regions of the genome 
(Additional file 2: Figs. S4F, S4G), suggesting that a con-
siderable portion of the positive sets defined by both 
methods might not be even CRMs, although they were 
heavily marked by H3K27ac (Additional file 2: Figs. S3G, 
S3H) and genes closest to Bin+ac+ and Bin+S+&ac+ sets 

had higher expression levels (p<2.23×10−302) than those 
closest to Bin+ac− and Bin+S−&ac− sets, respectively 
(Fig.  2B). Since sequences marked by H3K27ac are not 
necessarily CRMs [50, 51], and H3K27ac is not essential 
for active CRMs [60], it appears that the models were 
trained to differentiate genomic sequence bins that were 
marked by H3K27ac or not, rather than active and non-
active CRMs.

Unlike cases of the Bin+ac+/Bin+ac− and 
Bin+S+&ac+/Bin+S−&ac− sets that used H3K27ac as the 
label, omitting H3K27ac as one of the features had little 
effects on the performance of the models trained on all 
the other five pairs of positive and negative sets that did 
not use H3K27ac as the label (Fig. 2A, Table 1). Notably, 
when H3K27ac was omitted as a feature, models trained 
on the CRM+TF+/non-CRM sets and the CRM+TF+/
CRM+S− sets performed significantly better (p<0.001) 
than those trained on all the other pairs of datasets 
(Fig. 2A, Table 1). Consistently, H3K27ac had the highest 
weights (p<0.001) in the models trained on the Bin+ac+/
Bin+ac− and Bin+S+&ac+/Bin+S−&ac− sets, while 
CA had the highest weights (p<0.001) in the models 
trained on the other five pairs of datasets except for the 
CRM+S+/CRM+S− sets where H3K4me1 had the high-
est weights (p<0.001) (Fig. 2B). These results indicate that 
a mark should not be used both as a feature and as the 
label in training datasets to avoid artifacts.

Notably, models trained on the positive set CRM+TF+ 
perform better than those trained on the positive set 
CRM+S+ no matter whether the Non-CRM set or the 
CRM+S− set was used as the negative set (Fig. 2A). To 
reveal the subtle differences in their epigenetic modifi-
cations, we plotted heat maps of signals of the four epi-
genetic marks around each positive set (CRM+TF+ or 
CRM+S+) and its two size-matched negative sets (non-
CRM and CRM+S−) in a cell line. As shown in Fig.  3, 
Additional file 2: Fig. S5, in all the cell lines (raw data in 
SH-HY5Y cells were not available to us), the two nega-
tive sets indeed had virtually indistinguishable patterns 
of the four marks as indicated earlier (Additional file  2: 
Fig. S3C), while the positive set CRM+TF+ had stronger 
CA and H3K4me3 signals than the positive set CRM+S+, 
and the reverse was true for the H3K27ac and H3K4me1 
signals. The stronger CA signals of the CRM+TF+ set 
might largely account for the better performance of 
models trained on it than those trained on the CRM+S+ 
set, given that CA was the most important feature in 
the models (Fig.  2C). Taken together, these results sug-
gest that the putative CRMs that are predicted by deP-
CRM2 to be active in a cell/tissue type (i.e., CRM+TF+) 
are more likely to be active than our putative CRMs that 
overlap STARR-seq peaks in the cell type (CRM+S+). 
Consistent with this conclusion, it was reported that not 



Page 9 of 29Ni et al. BMC Biology          (2022) 20:221 	

all STARR-seq peaks would be active in the native chro-
matin environment, as the method quantifies enhancer 
activity in an episomal fashion [19–21, 23]. In summary, 
the LR models trained on the CRM+TF+/Non-CRM 
sets and CRM+TF+/CRM+S− sets perform equally well, 
and they substantially outperform models trained on the 
other five pairs of positive/negative sets.

We next asked how six other machine-learning clas-
sifiers (AdaBoost, SVM, neural network, naïve Bayes, 
decision tree, random forest) perform when their mod-
els are trained on the CRM+TF+/Non-CRM sets and 
CRM+TF+/CRM+S− sets in the six cell lines using the 
four marks as the features. As shown in Fig. 2D, like LR 
models, models of all these six classifiers trained either 
on the CRM+TF+/Non-CRM sets or on the CRM+TF+/
CRM+S− sets also achieved a very high median AUROC 
(>0.970), indicating that both pairs of positive and nega-
tive sets can be accurately and robustly differentiated, 
presumably due to the distinct patterns of the four epi-
genetic marks on the two positive sets and the two nega-
tive sets (Fig.  3, Additional file  2: Figs. S3A, S3B, S5). 
Notably, random forest, decision tree, and AdaBoost 
slightly outperformed the other four classifiers includ-
ing LR. However, we chose LR for further analysis, as the 

weights (coefficients) in the models are consistent with 
those of the linear SVM models (data not shown) and 
are more explainable. Moreover, models of all the clas-
sifiers trained on the CRM+TF+/CRM+S− sets slightly 
outperformed those trained on the CRM+TF+/Non-
CRM sets (Fig. 2D). Using the CRM+S− sequences as the 
negative set also logically makes more sense than using 
the Non-CRM sequences. Nonetheless, since STARR-
seq data were available in only few cell lines, and since 
the Non-CRM and CRM+S− sets in a cell types had vir-
tually indistinguishable patterns of the four epigenetic 
marks (Fig.  3, Additional file  2: Figs. S3C, S5), we used 
the CRM+TF+/Non-CRM sets as the training sets in the 
remaining predictions and analyses in the 67 human and 
64 mouse cell/tissue types that have datasets available of 
the four epigenetic marks (Methods).

Few epigenetic marks are sufficient to accurately predict 
functional states of the CRMs
It was recently reported that machine-learning models 
trained using six epigenetic marks (H3K27ac, H3K4me1, 
H3K4me2, H3K4me3, H3K9ac, and CA) had almost the 
same power as models trained using 30 marks in differen-
tiating STARR-seq peaks overlapping H3K27ac peaks and 

Fig. 3  Heat maps of signals of the four epigenetic marks around the positive sets CRM+TF+ and CRM+S+, and the negative sets non-CRM and 
CRM+S− in the HCT116 cells. We plotted signals of CA, H3K27ac, H3K4me1, and H3K4me3 around the sequences in each set. To make the density 
plots, we first extended the centers of sequences to 10 kb, and then for each 100-bp tiling window in the extended regions, we calculated the 
signal scores using EnrichedHeatmap (w0 mode) [76]. Note that the scales of vertical axes of the density plots on the top of heat maps are different 
in the right and left panels. The sequences in each set are sorted in the descending order of the CA signals for all the marks
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negative control sequences [62]. We thus asked whether 
an even smaller set of epigenetic marks in a cell/tissue 
type can accurately predict functional states of all the 
putative CRMs in the genome of the organism, respec-
tively, particularly of those CRMs whose functional states 
cannot be predicted by dePCRM2 due to the lack of suf-
ficient TF binding data in the cell/tissue type. To this 
end, we first evaluated the 15 possible combinations of 
the four arguably most important epigenetic marks (CA, 
H3K4me1, H3K27ac, and H3K4me3) that have widely 
available data. Using each of the 15 combinations of the 
four marks as the features, we trained a LR model on 
the CRM+TF+/Non-CRM sets in each of the 67 human 
and 64 mouse cell/tissue types, and evaluated the model 
using 10-fold cross-validation. As shown in Fig. 4A, in a 
human cell/tissue type, H3K27ac peaks on average cov-
ered the largest number of genome positions, followed 
by H3K4me1, H3K4me3, and CA peaks. Although there 
were on average extensive overlaps between each pair of 

the four marks in a cell/tissue type, only a small number 
of genome positions were covered by peaks of all the four 
marks. For each mark, its unique genome positions were 
the most predominant form among all possible ways that 
it overlapped other marks (Fig. 4A).

Each single mark on average had varying capability of 
differentiating the CRM+TF+/Non-CRM sets, with CA 
(model 3) performing best, followed by H3K4me1 (model 
1), H3K27ac (model 2), and H3K4me3 (model 4), with a 
median AUROC of 0.953, 0.818, 0.803, and 0.755, respec-
tively (Fig. 4A). This result is in excellent agreement with 
the earlier finding that CA alone can be a good predictor 
of activities of CRMs when combined with multiple TF 
binding data [55]. However, we noted that the models for 
each single mark could perform poorly in some cell/tissue 
types (Additional file 2: Fig. S6), due probably to the low 
quality of the datasets collected from them. Among the 
six models using a combination of two marks as the fea-
tures, models 7, 9, and 10 using CA as one the two marks 

Fig. 4  Identification of optimal minimal sets of epigenetic marks for predicting functional states of CRMs in human cell/tissue types. A Upset plot 
showing the mean unique genome positions of the peaks of each mark and the mean intersections of genome positions covered by the peaks of 
the four marks (upper and middle panels), and boxplot of AUROCs of the 15 LR models using the 15 different combinations of the four marks in the 
67 human cell/tissue types. Models 13, 14, and 15 have similar AUROCs, each is significantly higher than those of the other 12 models, **p<0.001 
(Wilcoxon signed-rank test). B ROC curves of model 15 using the four marks in the human cell/tissue types. Each gray curve is the ROC curve for a 
cell/tissue type, and the red one is the mean ROC curve of the 67 cell/tissue types. C Boxplot of weights (coefficients) of the four marks in model 15. 
**p<0.001 (Wilcoxon signed-rank test), the weights of CA are significantly higher than those of the other three marks
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performed better than models 4, 6, and 8 not using CA 
(Fig. 4A). Of those using CA, model 10 (CA+H3K4me1) 
achieved the highest median AUROC of 0.974, followed 
by model 7 (CA+H3K27ac, median AUROC=0.968) 
and model 9 (CA+H3K4me3, median AUROC=0.965). 
These results suggest that information about the func-
tional states of a CRM in CA can be best complemented 
by that in H3K4me1, followed by that in H3K27ac and 
that in H3K4me3. Of the four models using a combi-
nation of three marks as the features, model 13 using 
CA+H3K4me1+H3K27ac (median AUROC=0.981) 
and model 14 using CA+H3K4me1+H3K4me3 (median 
AUROC=0.980) outperformed the other two models (11 
and 12) (p<0.001) (Fig. 4A). Model 15 using all the four 
marks (CA+H3K4me1+H3K27ac+ H3K4me3) had 
the highest median AUROC of 0.986 among all the 15 
models (p<0.001) (Fig.  4A,B). CA had the highest con-
tribution among the four marks to predicting functional 
states of CRMs in model 15 (Fig. 4C), in agreement with 
the earlier result based on the six cell lines (Fig. 2C). This 
is in stark contrast with the earlier result that H3K27ac 
was the most important feature for predicting H3K27ac 
labeled sequences [62], due probably to the aforemen-
tioned reason that the mark was used both as a fea-
ture and as the label (Fig.  2A,C). Interestingly, with the 
increase in the number of marks used as the features, the 
variation of performance of the models in different cell/
tissue types decreased (Additional file 2: Fig. S6), suggest-
ing that the effects of a low-quality dataset for a mark can 
be compensated by using datasets of other marks in the 
cell/tissue type.

As shown in Fig.  4A, adding an additional mark 
to the feature list of a model always led to a new one 
that outperformed the original one. However, the 
infinitesimal increments of 0.005 (0.5%) and 0.006 
(0.6%) in the median AUROC of model 15 over mod-
els 13 (CA+H3K4me1+H3K27ac) (0.981) and 14 
(CA+H3K4me1+ H3K4me3) (0.980) (Fig.  4A), respec-
tively, suggest that the improvement of accuracy is 
already in the later phase of saturation. To verify this, 
we trained LR models using five (adding H3K4me2 or 
H3K9ac to the four marks) or six (adding both H3K4me2 
and H3K9ac to the four marks) marks as the features 
on 22 human cell/tissue types in which all the six marks 
datasets were available (Additional file  1: Table  S3). As 
shown in Additional file 2: Fig. S7A, the models trained 
on the four marks achieved a median AUROC of 0.9696 
in the 22 human cell/tissue types, while adding H3K9ac 
or H3K4me2 to the four marks improved the median 
AUROC (0.9701 or 0.9710) by only 0.0005 (0.05%) or 
0.0014 (0.14%), respectively, and adding both marks 
improved the median AUROC (0.9718) by only 0.0022 
(0.22%). Thus, improvement of accuracy by using more 

than four marks is indeed very limited. Therefore, four 
marks (CA+H3K4me1+ H3K4me3+H3K27ac), optimal 
combinations of three marks (CA+H3K4me1+H3K27ac, 
or CA+H3K4me1+H3K4me3), optimal combination 
of two marks (CA+H3K4me1), or even single mark 
(i.e., CA) is sufficient to very accurately predict func-
tional states of our putative CRMs in a human cell/tis-
sue type, though the more marks used as the features, 
the more accurate prediction obtained (Fig.  4A). In the 
model using the six marks as the features, CA again had 
the highest weights, followed by H3K4me1, H3K4me2, 
H3K4me3, H3K27ac, and H3K9ac (Additional file 2: Fig. 
S7B).

The rapid saturation of AUROC values with the 
increase in the number of marks used as the features 
suggests redundancy of information in data of different 
marks. To reveal this, we computed Pearson’s correlation 
coefficients (γ) between each pair of the six marks on the 
CRMs in the positive set (CRM+TF+) that were pre-
dicted by dePCRM2 to be active in each of the 22 human 
cell/tissue types. Indeed, all pairs of the six marks have 
varying levels of positive correlations (Additional file  2: 
Fig. S7C). Specifically, H3K4me1 and H3K9ac (γ=0.13) 
as well as H3K4me1 and H3K4me3 (γ=0.14) have low 
correlations; H3K4me3 and H3K9ac (γ=0.86) as well as 
H3K27ac and H3K9ac (γ=0.81) have high correlations; 
and all the other pairs have intermediate (γ=0.27~0.73) 
correlations. The correlations can also be seen from 
heat maps of signals of the six marks around the posi-
tive sets (CRM+TF+) in each cell/tissue type as shown 
in Additional file 2: Fig. S7D for the GM12878 cells as an 
example.

The same conclusions are drawn from the results 
obtained using the mouse datasets (Additional file 2: Figs. 
S8~S10). However, the models generally performed bet-
ter in the mouse datasets (Additional file 2: Figs. S8~S10) 
than in the human datasets (Fig. 4, Additional file 2: Figs. 
S6, S7), due probably to the better quality of mouse data-
sets, as evidenced by the less variation of the performance 
of the models using single marks (Additional file 2: Fig. 
S9 vs Additional file  2: Fig. S6). Therefore, we used the 
four marks (CA+H3K4me1+H3K4me3+H3K27ac) as 
the features in the remaining predictions and analyses, 
considering the wider availability of their data, albeit 
H3K4me2 had slightly higher weights in the models than 
H3K4me3, H3K27ac and H3K9ac (Additional file 2: Figs. 
S7B, S10B).

Epigenetic rules defining functional states of CRMs 
are the same in different cell types in human or mouse 
and even across human and mouse
It has been shown that when mCG is used along with 
other six epigenetic marks (H3K4me1, H3K4me2, 
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H3K4me3, H3K27me3, H3K9ac, H3K27ac), machine-
learning models trained on mouse embryonic stem cells 
(mESCs) or human H1 embryonic stem cells (H1-hESCs) 
could accurately predict active CRMs in other develop-
mentally closely related mouse and human cell/tissue 
types [39]. To see whether distinct epigenetic patterns 
of the four epigenetic marks (CA, H3K4me1, H3K4me3, 
and H3K27ac) on our positive sets CRM+TF+ and nega-
tive sets Non-CRM (Fig.  3, Additional file  2: Figs. S3A, 
S5) learned in many cell/tissue types in a species can be 
transferred to any other cell/tissue types in the same spe-
cies, we trained LR models on pooled positive and nega-
tive sets from n-1 human cell/tissue types (n=67), and 
tested it on the left-out cell/tissue type (leave-one-out 
cross-validation, see “Methods”). As shown in Fig.  5A, 
the models trained on different cell/tissue types achieved 
quite a high median AUROC of 0.985 in the left-out ones, 
which was not significantly different from that (0.986) 
achieved by the models that were trained and tested on 
the same cell/tissue types using 10-fold cross-validation 
(p<0.327). Similar results (median AUROC= 0.990 vs. 
0.990) were obtained using the datasets from 64 mouse 
cell/tissue types (Fig.  5B, p<0.353). Given the highly 
developmentally distal nature of these human (Additional 
file  1: Table  S3) and mouse (Additional file  1: Table  S4) 
cell/tissue types, these results strongly suggest that the 
rules that define active and non-active CRMs might be 
the same in even developmentally distal cell/tissue types 
in the same species.

Moreover, in a more recent study, it was found that 
that machine-learning model trained on Drosophila S2 
cells using six epigenetic marks (CA, H3K9ac, H3K27ac, 
H3K4m1,H3K4m2, and H3K4m3) as the features could 
be transferred to predict active promoters and enhanc-
ers in mouse and human cell/tissues [62]. To see whether 
patterns of the four epigenetic marks on active and non-
active CRMs learned in multiple cell/tissue types of a 
mammal can be transferred to various cell/tissue types 
of another mammal, we trained LR models on pooled 
training datasets from the 64 mouse cell/tissue types 
and tested it on each of the 67 human cell/tissue types, 
and vice versa. As shown in Fig.  5A and B, very high 
median AUROCs of 0.984 and 0.991 were achieved in 
the human and mouse cell types using the models trained 
on the mouse and human cell/tissue types, respectively, 
which were only slightly, though significantly different 
(p<8.27×10−12 and p<4.49×10−9) from those achieved 
by the models that were trained and tested in the same 
species (median AUROC=0.985 and 0.990), respectively. 
These results strongly suggest that epigenetic patterns 
that define active and non-active CRMs are highly con-
served in different cell/tissue types of humans and mice. 
As in the earlier case where the models were trained and 

tested in the same cell/tissue types (Fig.  4C, Additional 
file 2: Fig. S8C), CA was the most important feature for 
predicting functional states of CRMs in these two latter 
cases (Fig.  5C~F). Therefore, it appears that epigenetic 
rules defining functional states of CRMs are the same in 
different cell/tissue types of different mammalian species, 
though only two species (humans and mice) were tested 
here.

The models have similar performance in predicting 
proximal and distal CRMs
CRMs can be largely classified into proximal and distal 
ones based on their distances to their nearest transcrip-
tion start sites (TSSs). The former category often overlaps 
TSSs and functions as core or proximal promoters, while 
the latter category often functions as enhancers or silenc-
ers, though such classification is not clear-cut, as some 
promoters can also function as distal CRMs of remote 
genes [14, 15]. The distances between our predicted 
CRM and their nearest TSSs show a bimodal distribu-
tion in both the human (Additional file 2: Fig. S11A) and 
mouse (Additional file 2: Fig. S11B) genomes. The proxi-
mal CRMs (distance to the nearest TSS ≤ 1000bp) make 
up 10.5 and 9.5% of the putative CRMs in the human and 
mouse genomes, while the remaining 89.5 and 91.5% of 
the CRMs are distal, respectively. To see how well the LR 
models perform for predicting these two categories of 
CRMs, we split both a positive set and a negative set into 
a proximal set and a distal set, and evaluated the mod-
els using these split proximal and distal sets. We found 
that models trained on the CRM+TF+/Non-CRM sets 
in a cell/tissue type achieved similarly high accuracy for 
predicting active proximal and distal CRMs in the same 
cell/tissue types in both human (0.989 and 0.983, respec-
tively) and mouse (0.992 and 0.988, respectively) cell/tis-
sue types (data not shown).

To further verify this and to see whether active proxi-
mal and distal CRMs have distinct epigenetic mark 
patterns, we separately trained LR models on the split 
proximal and distal positive and negative sets. When 
trained and tested in the same cell/tissue types using 
10-fold cross-validation, the models performed well 
for predicting active proximal and distal CRMs in both 
human and mouse cell/tissue types, with a median 
AUROC of 0.989 and 0.983 (Fig.  6A,B), and 0.992 and 
0.988 (Fig.  7A,B), respectively. The models trained on 
n-1 cell/tissue types in human and mouse also per-
formed well in left-out cell types in the same species in 
predicting active proximal and active distal CRMs, with 
a median AUROC of 0.988 and 0.984 (Fig.  6A,B), and 
0.993 and 0.988 (Fig. 7A,B), respectively, which were not 
significantly different from or even better than those of 
models trained and tested in the same cell/tissue types 
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(Figs. 6A,B and 7A,B), due probably to the larger training 
stets (n−1 vs 1). The models trained on multiple mouse 
or human cell/tissue types also performed well in various 
cell/tissue types in the other species in predicting active 
proximal (Fig. 6A,B) and active distal CRMs (Fig. 7A,B), 
with a median AUROC of 0.988 and 0.982, and 0.993 and 
0.989, respectively. Thus, the performance of the models 

was only slightly though significantly (p<2.23×10−11 and 
p<5.87×10−11) different from that of the models trained 
and tested in the same species. Interestingly, in all the 
models of the three scenarios in both human and mouse, 
CA and H3K4me3 contributed more (p<0.001) than 
H3K4me1 and H3K27ac for predicting active proximal 
CRMs (Fig. 6C~H), while CA and H3K4me1 contributed 

Fig. 5  Common epigenetic rules defining functional states of CRMs in various cell/tissue types of the same and different species. A, B Boxplots 
of AUROCs of the models trained and tested in the same cell/tissue types in human (A) or mouse (B), of the models trained in multiple cell/tissue 
types in human (A) or mouse (B) and tested in different cell/tissue types in the same species, and of the model trained in multiple cell/tissue types 
in mouse (A) or human (B) and tested in various cell/tissue types in human or in mouse, respectively. The statistical tests were done using Wilcoxon 
signed-rank test. C, D Boxplots of coefficients of the four marks in the LR models trained in multiple cell/tissue types in human (C) or mouse (D) and 
tested in different cell/tissue types in the same species. **p<0.001 (Wilcoxon signed-rank test), the weights of CA are significantly higher than those 
of the other three marks. E, F Coefficients of the four marks in the model trained in multiple cell/tissue types of mouse (E) or human (F) and tested 
in various cell/tissue types of human or mouse, respectively
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more (p<0.001) than H3K4me3 and H3K27ac for pre-
dicting active distal CRMs (Fig. 7C~H). These results are 
consistent with the findings that both active promoters 
and active enhancers are nucleosome free [27–29], but 
the former tend to have a higher level of H3K4me3 and 
a lower level of H3K4me1 in flanking regions, and the 
opposite is true for the latter [58, 59, 77–81].

Active proximal and distal CRMs can be largely 
differentiated by classifier models based on their 
epigenetic marks
We next asked whether the two categories of active 
CRMs can be discriminated based on their four 

epigenetic marks by a LR model trained on the active 
proximal CRMs as the positive sets and active distal 
CRMs as the negative sets. When trained and tested on 
the datasets from the same cell/tissue types, the mod-
els performed moderately well in differentiating active 
proximal CRMs and active distal CRMs in both human 
and mouse with a median AUROC of 0.798 and 0.815, 
respectively (Additional file  2: Figs. S12A, S12B). The 
models trained on n−1 cell/tissue types in the human 
and mouse also performed moderately well in the left-
out cell/tissue types in the same species with a median 
AUROC of 0.787 and 0.788, respectively, which were 
significantly (p<1.41×10−10 and p<6.42×10−11) lower 

Fig. 6  Performance of the models for predicting the functional states of proximal CRMs. A, B Boxplots of AUROCs of the models trained and tested 
in the same cell/tissue types in human (A) or mouse (B), of the models trained in multiple cell/tissue types in human (A) or mouse (B) and tested in 
different cell/tissue types in the same species, and of the model trained in multiple cell/tissue types in mouse (A) or human (B) and tested in various 
cell/tissue types in human or mouse, respectively. The statistical tests were done using Wilcoxon signed-rank test. C, D Boxplots of coefficients of 
the four marks in the models trained and tested in the same cell/tissue types in human (C) or mouse (D). E, F Boxplots of coefficients of the four 
marks in the models trained in multiple cell/tissue types in human (E) or in mouse (F) and tested in different cell/tissue types in the same species. 
**p<0.001 (Wilcoxon signed-rank test), the weights of the labeled mark are significantly higher than those of the other three marks; ∆∆p<0.001 
(Wilcoxon signed-rank test), the weights of the labeled mark are significantly higher than those of the other two marks. G, H Coefficients of the 
four marks in the model trained in multiple cell/tissue types in mouse (G) or human (H) and tested in various cell/tissue types in human or mouse, 
respectively
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than those of the models trained and tested in the 
same cell/tissue types (Additional file  2: Figs. S12A, 
S12B). The model trained on mouse or human cell/tis-
sue types also performed moderately well in human or 
mouse cell/tissue types with a median AUROC of 0.761 
and 0.809, respectively, which were significantly lower 
(p<5.42×10−11, p<1.27×10−7) than those of the models 
trained and tested in cell/tissue types in the same spe-
cies (Additional file 2: Figs. S12A, S12B). In almost all 
the models in the three scenarios, H3K4me3 had the 
highest positive weights (p<5.49×10−9) and H3K4me1 
the lowest negative weights (p<0.001), while CA and 
H3K27ac had near zero weights (Additional file 2: Figs. 

S12C~ S12H). These results suggest that the two cat-
egories of active CRMs have largely opposite patterns 
of H3K4me3 and H3K4me1 modifications, but largely 
indistinguishable CA and H3K27ac modifications, con-
sistent with the current understanding of histone modi-
fications on promoters and enhancers [58, 59, 77, 78]. 
Taken together, active proximal and distal CRMs might 
have distinct patterns of H3K4me1 and H3K4me3 
modifications across various cell/tissue types in the 
same and even in different species, and they can be 
largely differentiated simply based on such differences 
by LR models, though the accuracy is not very high due 
probably to their often-overlapping functions [14, 15].

Fig. 7  Performance of the models for predicting the functional states of distal CRMs. A, B Boxplots of AUROCs of the models trained and tested in 
the same cell/tissue types in human (A) or mouse (B), of the models trained in multiple cell/tissue types in human (A) or mouse (B) and tested in 
different cell/tissue types in the same species, and of the model trained in multiple cell/tissue types in mouse (A) or human (B) and tested in various 
cell/tissue types in human or mouse, respectively. The statistical tests were done using Wilcoxon signed-rank test. C, D Boxplots of coefficients of the 
four marks in the model trained and tested in the same cell/tissue types in human (C) or mouse (D). E, F Boxplots of coefficients of the four marks in 
the models trained in multiple cell/tissue types in human (E) or in mouse (F) and tested in different cell/tissue types in the same species. **p<0.001 
(Wilcoxon signed-rank test), the weights of the labeled mark are significantly higher than those of the other three marks; ∆∆p<0.001 (Wilcoxon 
signed-rank test), the weights of the labeled mark are significantly higher than those of the other two marks. G, H Coefficients of the four marks in 
the model trained in multiple cell/tissue types in mouse (G) or human (H) and tested in various cell/tissue types in human or mouse, respectively
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Functional states in a cell/tissue type of all putative CRMs 
in the genome can be accurately predicted by a universal 
predictor using few epigenetic marks
As expected, the size of the CRM+TF+ set in a human 
(Fig. 8A) or mouse (Additional file 2: Fig. S13A) cell/tis-
sue type is highly variable, depending on the number 
of available TF binding datasets in the cell/tissue types 
(Additional file  2: Figs. S1A, S1B). For example, deP-
CRM2 predicted the largest CRM+TF+ sets in the most 
well-studied cell/tissue types with the largest numbers 
of available TF ChIP-seq datasets, such as the K562, 
LNCaP, and MCF5 human cell lines (Fig.  8A, Addi-
tional file 2: Fig. S1A) and mouse liver, macrophages, and 
embryonic stem cells (ESC) (Additional file 2: Figs. S1B, 
S13A), while it predicted much smaller CRM+TF+ sets 
in most of the other cell/tissue types with fewer available 
TF ChIP-seq datasets (Fig. 8A, Additional file 2: Figs. S1, 
S13A). The results support our earlier argument that the 
functional states in most cell/tissue types of the most of 
the 1,225,115 and 798,258 putative CRMs in the human 
and mouse genomes, respectively, cannot be predicted 
by dePCRM2, thus, are unknown and needed to be pre-
dicted. Having demonstrated the power of our machine-
learning classifier models to differentiate the positive 
and negative sets CRM+TF/Non-CRM or CRM+TF/
CRM+S− constructed in the 67 human and 64 mouse 
cell/tissue types with relatively larger numbers of availa-
ble TF binding datasets, we asked whether the functional 
states in any cell/tissue type of all the putative CRMs in 
the genome, including those CRMs whose functional 
states cannot be predicted by dePCRM2 due to the lack 
of sufficient TF binding data [52], can be accurately pre-
dicted using data of a few epigenetic marks. To this end, 
since we have demonstrated in this study that at least 
human and mouse share the same epigenetic rules for 
defining functional states of putative CRMs in various 
cell/tissue types (Figs. 5, 6 and 7), we constructed pairs of 
positive and negative sets by pooling all the positive sets 
CRM+TF+ and all the negative sets Non-CRM in the 67 
human and 64 mouse cell/tissue types except the target 
cell/tissue type, respectively. Using these pairs of com-
prehensive positive and negative sets and the four epige-
netic marks (CA, H3K4me1, H3K27ac, and H3K4me3) 
as the features, we trained LR models called universal 

functional state predictors (UFSPs) of mammal CRMs. 
Using these UFSPs, we predicted functional states in each 
of the 67 human and 64 mouse cell/tissue type of all the 
1,225,115 and 798,258 putative CRMs in the human and 
mouse genomes, respectively (“Methods”).

The UFSPs predicted a highly varying number of 
active CRMs in a cell/tissue type, ranging from 37,792 
(3.1%) to 313,389 (25.6%) and from 37,899 (4.8%) 
to 180,827 (22.7%), with a mean of 133,250 (10.9%) 
and 89,751 (11.2%) in the human and mouse cell/tis-
sue types, respectively (Fig.  8A, Additional file  2: Fig. 
S13A). The UFSPs also predicted the remaining CRMs 
to be non-active in the cell/tissue types (“Methods”). As 
expected, in each cell/tissue type, the number of active 
CRMs predicted by the UFSP trained on all the other 
cell/tissue types is larger than the size of the positive 
set CRM+TF+ in the cell/tissue type (Fig.  8A, Addi-
tional file 2: Fig. S13A). Almost the entire positive set in 
the cell/tissue type, which was not used in training, was 
predicted to be active (data not show but see Fig. 5A,B), 
suggesting that the UFSP is able to predict active CRMs 
in the cell/tissue type, which were missed by dePCRM2 
using currently available TF binding data. Notably, even 
in the most well-studied human cell lines such as K562, 
LNCaP, and MCF5 (Additional file 2: Fig. S1) and mouse 
cell/tissue types such as live, macrophage, and ESCs 
(Additional file  2: Fig. S2), UFSP was still able to pre-
dict active CRMs missed by dePCRM2 (Fig. 8A, Addi-
tional file 2: Fig. S13A). This result indicates that, even 
in these most ChIP-ed cell/tissue types, more TF ChIP-
seq datasets for more diverse TFs are needed to predict 
all active CRMs in them if only TF ChIP-seq data are 
used, and thus, this method is highly costly. Interest-
ingly, in both human (Fig.  8A) and mouse (Additional 
file 2: Fig. S13A), pluripotent embryonic stem cells and 
complex tissues (such as stomach and brain) generally 
had more active CRMs than purified terminally differ-
entiated cell types (such as T or B lymphocytes). This is 
not surprising as pluripotent stem cells tend to express 
more genes than more differentiated cell types [82, 83], 
while the number of active CRMs in a complex tissue is 
the sum of active CRMs in each cell type in it that may 
contain many diverse cell types.

(See figure on next page.)
Fig. 8  Genome-wide predictions of active CRMs in a human cell/tissue type and their reutilizations in different cell/tissue types. A Number of 
active CRMs predicted by the UFSP (active CRMs) versus the size of the positive set CRM+TF+ (positive CRMs) in a cell/tissue type. B Boxplots of 
gene expression levels in a cell/tissue type showing that genes closest to the CRM+TF+ set (positive) or to the active CRMs predicted by the UFSP 
model but missed by dePCRM2 (active CRMs-UFSP) have significantly higher expression levels than genes closest to the predicted non-active CRMs 
(p<2.23×10−302, Mann-Whitney U test). C Number of predicted active CRMs shared by different numbers of cell/tissue types. D Number of closest 
genes to the uniquely active CRMs shared by different numbers of cell/tissue types. E Distributions of phyloP scores of all-shared active CRMs, 
uniquely active CRMs, all active CRMs, and all non-active CRMs in the cell/tissue types. All distributions are significantly different from one another, 
p<2.23X10−302 (K-S test). F The levels of shared active CRMs reflect lineage relationships of the cell/tissue types. Cell/tissue types were clustered 
based on the Jaccard index of predicted active CRMs in each pair of the cell/tissue types
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Fig. 8  (See legend on previous page.)
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To verify the predictions, in each of the 19 human 
(Additional file  1: Table  S3) and 14 mouse (Additional 
file 1: Table S4) cell/tissue types with RNA-seq data avail-
able, we split the active CRMs predicted by the UFSP into 
two sets: those that were also predicted to be active by 
dePCRM2 using available TF binding data (positive), and 
those that could not be predicted to be active by deP-
CRM2 due to the lack of sufficient TF binding data (active 
CRMs-UFSP). In each cell/tissue type, we then compared 
the expression levels of genes closest to the active CRMs-
UFSP, positive CRMs (CRM-TF+), or non-active CRMs. 
We found that genes closest to the active CRMs-UFSP 
had similarly high expression levels as those closest to the 
positive CRMs, while both sets of genes had significantly 
higher (p<2.23×10−302) expression levels than those clos-
est to the predicted non-active CRMs in all the 19 human 
(Fig. 8B) and 14 mouse (Additional file 2: Fig. S13B) cell/
tissue types. These results strongly suggest at least most 
of the active CRMs and non-active CRMs predicted by 
the UFSPs in both the human and mouse cell/tissue types 
might be authentic. Therefore, functional states in a cell/
tissue type of all the putative CRMs in the genome can be 
accurately predicted by a universal classifier model using 
few epigenetic marks in the very cell/tissue type.

Most CRMs are extensively reutilized in different cell/tissue 
types
Our predictions of the functional states of all the 
1,225,115 and 798,258 putative CRMs in the human and 
the mouse genomes in the 67 human and 64 mouse cell/
tissue types, respectively, positioned us to analyze the 
usage patterns of all the putative CRMs. We found that 
68.28% (836,527) and 63.26% (505,016) of the putative 
CRMs in the human and mouse genome were predicted 
to be active in at least one of the 67 human (Fig. 8C) and 
64 mouse (Additional file 2: Fig. S13C) cell/tissue types, 
respectively. The remaining 31.72 and 36.14% of the puta-
tive CRMs were predicted to be non-active in all the 
human and mouse cell/tissue types analyzed, respec-
tively. It is likely that these non-active CRMs are active 
in other cell/tissue types that were not analyzed in this 
study. Interestingly, of all the predicted active CRMs in 
the 67 human (n=836,527) and 64 mouse (n=505,016) 
cell/tissue types, only 22.44% (187,688) and 20.61% 
(104,074) were used in a single cell/tissue type, while the 
remaining 77.56 and 79.39% were reused in at least two 
cell/tissue types analyzed (Fig. 8C, Additional file 2: Fig. 
S13C), respectively, indicating that most CRMs were 
reused in the different human and mouse cell/tissue 
types. The number of uniquely active CRMs in a cell/tis-
sue type ranged from 27 to 43,333 and from 32 to 6,914 
with a mean of 2801 and 1626, comprising from 0.02 
to 13.83% and from 0.08 to 5.62% of predicted active 

CRMs in a human (Additional file  2: Figs. S14A, S14B) 
and mouse (Additional file 2: Figs. S14C, S14D) cell/tis-
sue type, respectively. Gene ontology (GO) term analysis 
[84–86] indicates that genes closest to uniquely active 
CRMs in a cell/tissue type are involved in functions spe-
cific to the cell/tissue type. For example, uniquely active 
CRMs in human H1-hESCs (H1) are closest to genes 
enriched for 236 GO terms for developments, such as 
tongue development (GO:0043586), establishment of 
epithelial cell polarity (GO:0090162), and negative regu-
lation of axon extension (GO:0030517), to name a few 
(Additional file 1: Table S5), while uniquely active CRMs 
in human brain tissues are closest to genes enriched for 
177 GO terms for neuronal functions, such as inhibitory 
synapse assembly (GO:1904862), neuron cell-cell adhe-
sion (GO:0007158), and ionotropic glutamate recep-
tor signaling pathway (GO:0035235), etc. (Additional 
file  1: Table  S6). Similar results are seen for uniquely 
active CRMs in mouse embryonic stem cells (Additional 
file 1: Table S7) and mouse brain cells (Additional file 1: 
Table  S8). These results suggest that a cell/tissue type 
might be determined by a set of the uniquely active CRMs 
in it. On the other hand, there were a total of 39,942 and 
29,857 genes (including non-protein genes) closest to 
the uniquely active CRMs in the human and mouse cell/
tissue types, however, only a total of 12,389 (31.0%) and 
11,741 (39.2%) of them were unique to a human (Fig. 8D) 
and mouse (Additional file 2: Fig. S13D) cell/tissue type, 
respectively. The remaining majority (69.0 and 60.8%) of 
genes were shared by at least two cell/tissue types, but no 
gene was shared by all the 67 human or 64 mouse cell/
tissue types (Fig.  8D, Additional file  2: Fig. S13D). This 
result is in agreement with the notion that a cell type is 
determined by a unique combination of otherwise more 
widely expressed genes [87, 88].

Interestingly, in both the human and mouse cell/tis-
sue types, the number of shared active CRMs decreased 
largely monotonously with the increase in the number 
of sharing cell/tissue types, with the exception that the 
number of active CRMs shared by all the cell/tissue types 
analyzed in human (9537 (1.14%)) and in mouse (8869 
(1.11%)) was larger than that shared by some fewer num-
bers of cell/tissue types (Fig.  8C, Additional file  2: Fig. 
S13C). The 9537 and 8869 active CRMs shared by all the 
human and mouse cell/tissue types comprised from 3.04 
to 25.25% and from 4.91 to 23.4% of active CRMs in a 
human and mouse cell/tissue type, respectively. GO term 
analysis [84–86] indicates that genes closest to these all-
shared active CRMs are enriched for 929 and 859 GO 
terms for house-keeping functions in human (Additional 
file 1: Table S9) and mouse (Additional file 1: Table S10), 
respectively, such as amino acid activation (GO:0043038), 
cell death (GO:0008219), and ribosomal large subunit 
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biogenesis (GO:0042273), to name a few, suggesting that 
the functions of all-shared CRMs are largely conserved.

The all-shared active CRMs are more likely under 
either positive selection or negative selection than the 
uniquely active CRMs (p<2.23×10−302) and the predicted 
non-active CRMs (p<2.23×10−302) as indicated by their 
respective phyloP score [70] distributions (Fig. 8E, Addi-
tional file  2: Fig. S13E). It is likely that these non-active 
CRMs might be uniquely active in or only shared by other 
cell/tissue types yet to be analyzed. To see to what extent 
the shared active CRMs in cell/tissue types reflect their 
developmental lineage relationships, we hierarchically 
clustered the cell/tissue types based on the Jaccard index 
of the predicted active CRMs of each pair of the cell/tis-
sue types of an organism. As shown in Fig. 8F and Addi-
tional file 2: Fig. S13F, cell/tissue types with close lineages 
indeed formed clusters. These results support the notion 
that cell/tissue types are produced in a stepwise manner 
through cell differentiation, so that the closer cell types in 
a developmental lineage, the more gene regulatory pro-
grams they share [89–91].

Our two‑step approach is substantially more accurate 
and cost‑effective than state‑of‑the‑art one‑step 
approaches
Having demonstrated that the functional states in a cell/
tissue type of all the putative CRMs in either human or 
mouse genome, predicted by dePCRM2 using more 
available TF ChIP-seq datasets can be very accurately 
predicted by the UFSP model using only four epigenetic 
marks, we finally compared the performance of our two-
step approach with five state-of-the-art machine-learn-
ing-based methods that attempt to predict active CRMs 
in a cell/tissue type using epigenetic marks in the very 
cell/tissue type (“Methods”). As summarized in Table 2, 
due to the lack of large sets of gold standard active CRMs 
and non-active CRMs in any animal cell/tissue types, to 
construct a positive set in a cell/tissue type, Matched Fil-
ter uses 2-kb genome regions overlapping STARR-seq 
and H3K27ac or CA peaks in the cell/tissue type, while 
the other earlier method generally use 2-kb regions over-
lapping histone acetyltransferase EP300 binding peaks in 
the cell/tissue type; to construct a negative set the cell/
tissue type, all these earlier methods generally use ran-
domly selected 2-kb bins without the features of the posi-
tive sets. Moreover, due to the lack of a map of CRMs in 
the genome, once trained, these earlier methods perform 
genome-wide predictions of active CRMs by evaluating a 
2-kb sliding window, attempting to simultaneously pre-
dict the loci and functional states of CRMs in a given cell/
tissue type (Table 2).

We first compared the performance of our method 
with that of the five earlier methods on four mouse 

embryonic tissues including hindbrain, limb, mid-
brain, and neural tube using training sets constructed 
(Table  2) and experimental data used in REPTILE [39] 
and Matched Filter [62]. As REPTILE [39], RFECS [45], 
DELTA [49], and CSI-ANN [44] models were trained on 
data from the mESCs [39], for a fairer comparison, we 
trained a RL model using the CRM+TF+/Non-CRM sets 
from the mESCs and pooled CRM+TF+/Non-CRM sets 
from the 67 human cell/tissue types. As shown in Fig. 9A, 
both our mouse and human models achieved almost per-
fect AUROC values (0.992~0.997) in the four mouse tis-
sues, thus substantially outperforming all the five earlier 
classifiers (Fig. 9B). This result is remarkable as we only 
used four epigenetic marks while all these earlier meth-
ods used more marks in addition to these four marks 
(Table 2). We attribute the superior performance of our 
method to the high accuracy of our predicted CRMs and 
non-CRMs, up on which high-quality training sets can 
be possibly constructed. Notably, despite being trained 
on Drosophila S2 cells, Matched Filter outperformed 
the other four earlier methods on all the four tissues, 
supporting that the epigenetic rules defining functional 
states of CRMs might be universal from insects to 
mammals.

In the recent study [62], Matched Filter has been used 
for genome-wide predictions of active CRMs in six 
ENCODE top-tier human cell lines (H1-hESC, GM12878, 
K562, HepG2, A549, and MCF-7), we therefore also 
compared our predicted active CRMs in these cell lines 
using the LR model trained on pooled CRM+TF+/Non-
CRM sets in the 64 mouse cell/tissue types. As shown in 
Fig. 10A, our method predicted a much larger number of 
active CRMs in the six cell lines than did Matched Filter. 
Our predicted active CRMs in each cell line also cover 
a much larger proportion of the genome than did those 
predicted by Matched Filter (Fig.  10B). Of the union of 
nucleotide positions covered by active CRMs in the six 
cell lines predicted by Matched Filter (213,326,167bp) 
and our method (873,473,948bp), only 82,414,070bp 
were predicted by both methods, comprising 38.63 and 
10.42% of their predicted active CRM positions, respec-
tively, while the remaining 61.37 and 89.58% were only 
predicted by Matched Filter and our method, respec-
tively (Fig.  10C). Thus, the vast majority of positions of 
active CRMs predicted by the two methods are differ-
ent, although a small portion of them are the same. To 
see which method is more accurate than the other in 
predicting active CRMs in the six cell lines, we first ana-
lyzed phyloP conservation scores of positions shared by 
active CRMs predicted by both methods and of positions 
of active CRMs predicted only by one of the two meth-
ods. As shown in Fig. 10D, positions of active CRMs pre-
dicted only by Matched Filter have a narrow, high peak 
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distribution of their phyloP scores around 0, indicating 
that most of the positions are selectively neutral, and thus 
unlikely to be functional. In contrast, positions shared by 
active CRMs predicted by the two methods have a broad, 
low peak distribution of their phyloP scores around 0, 
and the same is true for positions of active CRMs pre-
dicted only by our method (Fig.  10D), indicating that 
the vast majority of the both sets of positions are under 
evolutionary selections, and thus likely to be functional. 
Therefore, most positions (61.37%) of active CRMs pre-
dicted by Matched Filter are even not CRM loci at all. To 
further confirm this conclusion, we next compared the 
expression levels of genes closest to the active CRMs in 
a cell line predicted by each method, although the clos-
est gene is not necessarily the target of an active CRM. 
As shown in Fig. 10E, in all the six cell lines, genes clos-
est to active CRMs predicted only by Matched Filter (no 
overlaps with any active CRMs predicted by our meth-
ods) had significantly lower expression levels than genes 
closest to the active CRMs predicted by both methods 
(the two putative active CRMs overlap at least half of the 
short one), as well as genes closest to the active CRMs 
only predicted by our method, suggesting that these 

active CRMs predicted only by Matched Filter might not 
be active or even not CRMs at all. Taken together, these 
results indicate that our two-step approach not only 
has achieved thus far the best performance for predict-
ing both CRM loci in genomes and functional states of 
all the putative CRMs in a given cell/tissue type, but also 
is more cost-effective than existing methods as it only 
needs four or even fewer epigenetic marks to achieve 
such high accuracy.

Discussion
Annotation of CRMs in a genome has three tasks. The 
first is to identify all CRMs and constituent TFBSs in 
the genome; the second is to characterize the functional 
state (active or non-active) of each CRM in each cell/
tissue type of the organism; and the third is to deter-
mine the target genes of each active CRM in each cell/
tissue type. The first and the second tasks are clearly 
two facets of the same coin, solving one would facili-
tate solving the other, and thus, it is attractive to solve 
them simultaneously. Indeed, most existing methods 
attempt to predict active CRMs in a cell/tissue type, 
and thus jointly predict CRM loci and their functional 

Fig. 9  Comparison of the performance of our method with five earlier state-of-the-art methods on four mouse embryonic tissues. A ROC curves 
in the mouse tissues of our LR model trained on the CRM+TF+/Non-CRM sets in the mESCs or in the 67 human cell/tissue types. Notably, the 
performance of the two models is almost indistinguishable. B AUROCs in the mouse tissues of our LR models trained on the mESCs or on the 
human cell/tissue types in comparison with those of the five earlier methods. REPTIPLE, RFECS, DELTA, and CSI-ANN models were trained on the 
positive/negative sets (Table 2) in the mESCs as reported in reference [39], and the Matched Filter model was trained on the positive/negativize sets 
(Table 2) in the Drosophila S2 cells as reported in reference [62]. Experimental data reported in references [39, 62] were used for the predictions in 
the four mouse tissues
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states in one step, by integrating epigenetic data in the 
very cell/tissue type using various machine-learning 
methods [40–47, 73, 75, 92]. Although conceptually 
attractive, these methods in practice have limitations 
due to the reasons we indicated earlier. In particular, a 
sequence segment with broader epigenetic marks such 
as H3K4me1 [56–58], H3K4me3 [59] and H3K27ac [60] 
or even narrow marks such as CA [19, 39] mGC [39], or 
their combinations [50–52, 60, 61] are not necessarily 
CRMs, although active CRMs do bear a certain pattern 
of them [30–35]. Moreover, it is difficult if not impos-
sible, to de novo predict TFBSs in CRMs using histone 
marks and CA data alone. As a result, CRMs predicted 
by these methods are of low resolution with high FDRs 
[39, 47, 50–55] and lack information of constituent 

TFBSs, although some methods scan predicted CRMs 
for TFBSs of known motifs [75].

One way to circumvent the limitations of these meth-
ods might be to integrate epigenetic marks data with 
TF ChIP-seq data in a cell/tissue type, since it has been 
shown that an active CRM can be more accurately pre-
dicted using information of both chromatin modifications 
and bindings of key TFs [47, 50, 51, 55, 66]. However, the 
application of this approach is limited because sufficient 
TF ChIP-seq data are available only in very few well-
studied cell lines [52]. A more cost-effective way to cir-
cumvent the limitations of these existing methods might 
be to take a two-step approach as we proposed earlier 
[52, 64] and fully implemented in this study (Fig. 1). By 
developing the new pipeline dePCRM2 [52], we have 

Fig. 10  Comparison of the performance of our method and Matched Filter for genome-wide predictions of active CRMs in six human cell lines. A 
Number of active CRMs predicted by the two methods in the cell lines. B Proportion of the human genome covered by active CRMs predicted by 
the two methods in the cell lines. C Venn diagram of the union of nucleotide positions covered by active CRMs predicted by each method in the six 
cell lines. D Distributions of phyloP scores of nucleotide positions covered by active CRMs predicted by both methods (shared) and by active CRMs 
predicted only by Matched Filter (Matched Filter only) or only by our method (our method only). E Boxplots of the expression levels of genes closest 
to active CRMs predicted by both methods (overlapping each other by at least 50% of the shorter one) in a cell line (shared) and of genes closest to 
active CRMs predicted only by Matched Filter (Matched Filter only) or only by our method (our method only). In each cell/tissue type, genes closest 
to active CRMs predicted by both methods and genes closest to active CRMs predicted only by our method have significantly higher expression 
levels than genes closest to active CRMs predicted only by Matched Filter (p<3.37×10−41, Mann-Whitney U test)
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provided a more efficient method for the first step to 
predict a highly accurate and more complete, yet largely 
cell/tissue type agnostic map of CRMs and constituent 
TFBSs in the genome at single-nucleotide resolution by 
integrating all available ChIP-seq datasets for differ-
ent TFs in various cell/tissue types of the organism. We 
have shown that even using a relatively smaller number 
(6097) of TF ChIP-seq datasets then available, the puta-
tive CRMs predicted by dePCRM2 in the human genome 
are more accurate and complete than those predicted by 
existing state-of-the-art methods such as SCREEN [74], 
EnhancerAtlas [73], and GeneHancer [75] that integrates 
CRMs predicted by ChromHMM [93] and Segway [42] in 
various cell/tissue types. In this study, we first predicted 
even more complete maps of putative CRMs in both the 
human and mouse genome using much larger numbers 
of TF binding datasets only available recently. We then 
presented a method for the second step of our approach 
to predict functional states in any cell/tissue type of all 
the putative CRMs in the genomes using optimal mini-
mal sets of epigenomic mark data in the cell/tissue type. 
The rational of our method is the observation that once 
the locus of a CRM is accurately anchored by key binding 
TFs, its epigenetic marks in a cell/tissue type can be an 
accurate predictor of its functional state in the cell/tissue 
type [47, 50, 51, 66].

We showed that this two-step approach achieved sub-
stantially higher accuracy for predicting the functional 
states in both mouse and human cell/tissue types of all 
the putative CRMs than the existing state-of-the-art 
methods (Figs.  2, 9 and 10). We attribute the outstand-
ing performance of our methods to two novelties. First, 
based on the active CRMs predicted by dePCRM2 in 
a cell/tissue type with a relatively large number of TF 
ChIP-seq datasets available, we are able to construct a 
relatively large high-quality positive set CRM+TF+ and 
negative set CRM+S− if STARR-seq data are available in 
the cell/tissue type; and if STARR-seq data are unavail-
able in the cell/tissue type, we can construct a large high-
quality negative set Non-CRM (Table  1). Importantly, 
we showed that these two negative sets (CRM+S− or 
Non-CRM) have virtually indistinguishable patterns of 
light modifications of the four epigenetic marks (CA, 
H3K4me1, H3K4me3. and H3K27ac) analyzed, while 
the positive set CRM+TF+ show distinct patterns of 
heavy modifications of the four epigenetic marks from 
those of the two negative sets (Fig.  3, Additional file  2: 
Figs. S3, S5). By contrast, the positive and negative sets 
constructed by other methods (Table  1) show less dis-
tinct patterns of the epigenetic marks (Fig. 3, Additional 
file 2: Figs. S3, S5). Therefore, it is not surprising that the 
LR models trained on the CRM+TF+/CRM+S− sets or 
on the CRM+TF+/non-CRM sets performed equally 

well, and both models substantially outperformed those 
trained on the positive and negative sets constructed 
using other methods (Table 1, Fig. 2A). It also is under-
standable that models of all the seven machine-learning 
classifiers trained on the positive sets CRM+TF+ and 
negative sets CRM+S− (or non-CRM) performed almost 
equally very well (Fig.  2E). It is also not surprising that 
our LR model trained on the CRM+TF+/Non-CRM sets 
in the mESCs or human cell/tissue types substantially 
outperformed on the four mouse embryonic tissues the 
earlier five machine-learning methods (Fig. 9) trained on 
their positive and negative sets, which were typically con-
structed using 2-kb regions overlapping or not overlap-
ping EP300 binding peaks or STARR-seq peaks (Table 2).

Second, dePCRM2 provides us highly accurate and 
unprecedentedly complete maps of putative CRMs 
in 85.5 and 79.9% regions of the human and mouse 
genomes, respectively. Using these putative CRMs as 
candidate makes our genome-wide predictions of active 
CRMs in a cell/tissue less challenging, because it has 
been shown that once the locus of a CRM is anchored 
by the binding of key TFs, epigenetic marks on the CRM 
become an accurate predictor of its functional state [47, 
50, 51, 55, 66]. By contrast, without such maps of putative 
CRMs, the existing methods generally use a 2-kb slid-
ing window with a step size 100bp to scan the genome 
for predicting active CRMs in a cell/tissue type (Table 2), 
making the task more challenging. Indeed, our LR model 
that use the 1.2M putative CRMs predicted by dePCRM2 
at p-value cutoff 0.05 in the human genome as CRM 
candidates, substantially outperformed the best earlier 
method Matched Filter that used 2-kb sliding windows as 
CRM candidates, for genome-wide predictions of active 
CRMs in the six human cell lines (Fig. 10), although the 
different training sets (mouse data vs Drosophila data) 
used by the two methods might also contribute to the 
performance discrepancies.

Although dozens of epigenetic marks have been found 
to modify CRMs in different cellular contexts [62, 94], 
it remains elusive which and how many of them are 
required to define functional states of CRMs [39, 50, 58–
60]. Recently, it was found that machine-learning models 
trained using as few as six marks (H3K27ac, H3K4me1, 
H3K4me2, H3K4me3, H3K9ac, and CA) performed 
equally well as the models trained using as many as 30 
marks in differentiating STARR-seq peaks and negative 
control sequences, with H3K27ac being the most impor-
tant feature [62]. In this study, we show that functional 
states in a cell/tissue type of all the putative CRMs in 
the genome can be very accurately (AUROC>0.95) pre-
dicted using peaks of optimal minimal sets of one (CA), 
two (CA+H3K4me1), three (CA+H3K4me1+H3K4me3, 
or CA+H3K4me1+H3K27ac) and four 
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(CA+H3K4me1+H3K4me3+H3K27ac) epigenetic 
marks with data widely available in cell/tissue types 
(Fig.  4A, Additional file  2: Fig. S8A). Using more than 
four epigenetic marks data could only infinitesimally 
increase the accuracy due to the redundant informa-
tion in the data as indicated by the positive correlations 
between the peak signals of the six marks analyzed (Addi-
tional file 2: Figs. S7C, S10C). Therefore, once a map of 
CRMs in a genome is highly accurately and more com-
pletely predicted, our two-step approach can be highly 
cost-effective for predicting functional states in any 
cell/tissue type of all the putative CRMs in the genome 
by generating data of few (1~4) epigenetic marks in the 
very cell/tissue type, although the more marks data used, 
the higher accuracy achieved. Our identified optimal 
minimal sets of epigenetic marks with the highest com-
binatory or complementary effects might suggest a pri-
oritization of data generation (Fig. 4A, Additional file 2: 
Figs. S7B, S8A, S10B).

Furthermore, we show that machine-learning mod-
els trained on pooled positive and pooled negative sets 
from multiple cell/tissue types in human or mouse can 
accurately predict functional states of CRMs in other 
cell/tissue types in the same species as well as in vari-
ous cell/tissue types in the other species. These results 
confirm that the epigenetic rules for defining functional 
states of CRMs are common in developmentally closely 
related cell/tissue types in human and mouse [39] as well 
as from insects to mammals [62]. However, we found 
that the most critical epigenetic mark for defining func-
tional states of CRMs is CA, rather than H3K27ac as 
suggested earlier [62]. On the contrary, our results show 
that H3K27ac is one of the three less important marks 
among the six marks analyzed (Additional file  2: Figs. 
S7B, S10B), consistent with a recent report that H3K27ac 
is dispensable in mouse embryonic stem cells [60]. It is 
highly likely that the earlier conclusion [62] was errone-
ously drawn since H3K27ac was used both as a feature 
and as the label in the training datasets as we replicated 
in this study (Fig. 2A,C).

It is worth noting that the machine-learning classifi-
ers actually differentiate the different labels on the posi-
tive and negative sets as defined in Tables  1 and 2. For 
instance, a classifier trained on the CRM+TF+/CRM+S− 
sets (Table 1) in a cell type differentiated CRMs with TF 
binding from CRMs without STARR-seq signals. In other 
words, the classifier was trained to predict whether a 
CRM was bound by TFs or did not overlap a STARR-seq 
peak in the cell/tissue type, given the epigenetic profile 
of the CRM. Thus, the labels may not necessarily reflect 
the activities of the CRMs. However, before the avail-
ability of large gold standard active and non-active CRMs 
sets in a cell/tissue type, such operational definition of 

positive and negative sets using a certain label on candi-
date CRMs might be the only choice that one can use to 
train machine-learning models. Nonetheless, although 
TFs binding to a silencer might reduce gene expression, 
while TFs binding to an enhancer may not necessar-
ily enhance gene expression, we found that genes clos-
est to the putative CRMs in the positive sets CRM+TF+ 
(Fig. 2B) and the predicted active CRMs (Fig. 8B, Addi-
tional file 2: Fig. S13B) have significantly higher expres-
sion levels than those closest to the sequences in the 
negative sets non-CRM or CRM+S− (Fig.  2B) and the 
predicted non-active CRMs (Fig.  8B, Additional file  2: 
Fig. S13B), which had very low expression levels. These 
results strongly suggest that putative CRMs in the posi-
tive sets CRM+TF+ and the predicted active CRMs tend 
to enhance gene expression, while sequences in the nega-
tive sets and predicted non-active CRMs tend to not. 
Therefore, our definitions of active and non-active states 
largely reflect the functional states of CRMs.

The high accuracy of our predicted active CRMs posi-
tioned us to address two related interesting questions. 
(1) How many of the 1.2M and 0.8M CRMs predicted by 
dePCRM2 in the human and mouse genomes, respec-
tively, are active in a cell/tissue type of the organisms? 
and (2) how many active CRMs are needed to define a 
cell/tissue type? We found that different cell/tissue types 
of humans and mice have widely varying numbers of 
active CRMs, ranging from 37,792 to 313,389 and from 
37,899 to 180,827, respectively, depending on their cellu-
lar complexity and differentiation stages. Of these active 
CRMs, from only 27 (0.02%) to 43,333 (13.83%) and from 
only 32 (0.08%) to 6914 (5.62%) are unique to a human 
and mouse cell/tissue type, respectively. We show that 
genes closest to the uniquely active CRMs are enriched 
for GO terms related to the functions of the cell/tissue. 
Thus, it appears that uniquely active CRMs in a cell/tis-
sue type largely specify the cell/tissue type. Moreover, 
only a third of genes closest to uniquely active CRMs are 
unique to a cell/tissue type (Fig. 8D, Additional file 2: Fig. 
S13D), supporting the notion that a terminally differenti-
ated cell type is determined by a unique combination of 
otherwise more widely expressed genes [87, 88]. In this 
regard, we note that the human genome encodes 33.4 
times CRMs (n=1.47M) [52] as genes (n=44K), making 
it possible to use a set of uniquely active CRMs to reg-
ulate a specific combination of otherwise more widely 
expressed genes that ultimately determine the cell type. 
On the other hand, the vast majority of active CRMs in a 
cell/tissue type are reutilized in at least one of the other 
cell/tissue types analyzed. However, since many complex 
tissues in our analysis, such as brain, testis, and stomach, 
to name a few, might contain multiple cell types, and 
since the numbers of cell/tissue types we analyzed are 
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still small, it is likely that we might have overestimated 
the upper bounds of uniquely active CRMs in both the 
human and mouse cell types. Interestingly, cell/tissue 
types with related lineages form clusters based on the 
extent to which they share active CRMs (Jaccard index). 
This result is consistent with the notion that cell types are 
produced in a stepwise manner during cell differentia-
tion, and thus, cell types that differentiate more recently 
from the last common ancestral type share more active 
CRMs [89–91].

Conclusions
We present a two-step approach to predict functional 
states in any cell/tissue type of all putative CRMs using 
optimal minimal sets of four widely available epigenetic 
marks in the very cell/tissue type. Our approach substan-
tially outperforms existing state-of-the-art methods that 
attempt to jointly predict CRM loci and their functional 
states in a given cell type using at least six epigenetic 
marks. The next step would be to develop a method to 
more accurately predict the target genes of active CRMs 
in a cell/tissue type beyond the “closest gene principle” as 
used in this study and others [95].

Methods
The datasets
We downloaded from CISTROME [96] (12/20/2020) 
11,348 and 9060 TF ChIP-seq binding peak files for 1360 
and 701 TFs in 722 and 569 human (Additional file  1: 
Table  S1) and mouse (Additional file  1: Table  S2) cell/
tissue types, respectively. Of these human and mouse 
cell/tissue types, 67 (Additional file  1: Table  S3) and 64 
(Additional file 1: Table S4), respectively, are most well-
studied with ChIP-seq datasets available for four epige-
netic marks (CA (measured by DNase-seq or ATAC-seq), 
H3K4me1, H3K27ac, and H3K4me3) and varying num-
ber of TFs (Additional file  2: Fig. S1). Of the 67 human 
and 64 mouse cell/tissue types, 22 (Additional file  1: 
Table  S3) and 29 (Additional file  1: Table  S4), respec-
tively, also have data available for two additional epige-
netic marks (H3K4me2 and H3K9ac), and 19 (Additional 
file  1: Table  S3) and 14 (Additional file  1: Table  S4), 
respectively, have RNA-seq datasets available. We down-
loaded from CISTROME peak files of these epigenetic 
marks in the cell/tissue types. All the TF binding, CA 
and histone mark peaks were uniformly produced by 
the CISTROME team using the peak-calling tool MACS 
[97]. Of the 67 human cell/tissue types, six cell lines 
(A549, HCT116, HepG2, K562, MCH-7, and SH-HY5Y) 
have WHG-STARR-seq data available (Additional file 1: 
Table  S3). We downloaded gene expression data and 
WHG-STARR-seq peaks from the ENCODE data portal. 
We downloaded experimental data in mouse embryonic 

tissues using access numbers and website links provided 
in Tables S3 and S4 in reference [39]. We downloaded 
predicted active enhancers and promoters in six human 
cell lines (H1-hESC, GM12878, K562, HepG2, A549, and 
MCF-7) [62].

De novo genome‑wide prediction of CRMs in the human 
and mouse genomes
For each called binding peak in each TF ChIP-seq data-
set, we extracted 1000bp genomic sequence centering 
on the summit of the peak. As most of the called peaks 
were shorter than 500bp (data not shown, but see [52]), 
we extended most of the called binding peaks. We have 
shown earlier that such extension could greatly increase 
the power of the datasets without including much noise 
[52, 68] (also see “Results”). We applied dePCRM2 [52] 
to the extended binding peaks in the 11,348 and 9060 
datasets in the human and mouse cell/tissue types to pre-
dict the loci of CRMs and non-CRMs in the human and 
mouse genome regions covered by the extended binding 
peaks, respectively. Using DePCRM2, we also predicted 
a CRM to be active in a cell/tissue type if at least one of 
constituent TFBSs in the CRM overlaps the summit of a 
binding peak of a ChIP-ed TF in the cell/tissue type [52].

Computing the epigenetic feature vector of a sequence
Given a sequence t (a predicted CRM, non-CRM or a 
genomic sequence bin), we compute a M-element raw 
feature vector Sraw(t) for M epigenetic marks. If t overlaps 
at least one peak of the mth epigenetic mark by at least 
50% of the length of the shorter one, then the mth ele-
ment of Sraw(t) is defined as

where Nm is the number of peaks of the mth mark over-
lapping t by at least 50% of the length of the shorter one, 
wi, m the ratio of the length of t over the length of the ith 
peak of the mth mark, si, m the MACS signal score [97] of 
the ith peak of the mth mark. Clearly, if t does not over-
lap any peak of the mth mark by at least 50% of the length 
of the shorter one, Sraw(t, m) = 0. We then normalize the 
values of each mth mark by

where min(Sraw (t, m)) and max(Sraw (t, m)) are the mini-
mum and maximum of Sraw (t, m) over all t, respectively. 
We use the normalized feature vectors S(t) to train 
machine-learning models and predict functional (TF 
binding) states of sequences.

(1)Sraw (t,m) =
Nm

i=1
wi,msi,m,

(2)S(t,m) =
Sraw (t,m)−min (Sraw (t,m))

max (Sraw (t,m))−min (Sraw (t,m))
,
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Model training, testing, and evaluation
We evaluated seven machine-learning classifiers, includ-
ing logistic regression, AdaBoost, SVM, neural net-
work, naïve Bayes, decision tree, and random forest. 
In a cell/tissue type, we trained a classifier model on a 
pair of positive and negative sets defined in the cell/tis-
sue type (Table  1) using their normalized feature vec-
tors of epigenetic marks. Shown in Fig. 1 is the workflow 
of our machine-learning classifier models trained on 
the CRM+TF+/Non-CRM sets or on the CRM+TF+/
CRM+S− sets of a cell/tissue type. We conducted 10-fold 
cross-validation of the model in the cell/tissue type. In 
addition, in each species (human or mouse), we con-
structed a positive set and a negative set by pooling posi-
tive sets and negative sets in all cell/tissue types in the 
species, respectively. We trained a classifier model on the 
pooled human or mouse positive and negative sets using 
epigenetic marks as the features. We conducted leave-
one-out cross-validation of a model in a species (human 
or mouse) by training the model on datasets in n − 1 cell/
tissue types, and testing the model on the left-out cell/tis-
sue type. We assessed the performance of a model using 
the area under the ROC (receiver operator character-
istic) curve (AUROC), because each pair of the positive 
set and the negative set were well-balanced in both the 
number and lengths of sequences. We also evaluated the 
importance of epigenetic marks using their coefficients in 
logistic regression and SVM models. All of the classifier 
models were implemented using sci-kit learn v.0.24.2.

Prediction of functional states in a cell/tissue type of all 
the CRMs in the genome
To predict the functional states in a given human or 
mouse target cell/tissue type of all the putative CRMs in 
the human or mouse genomes, we trained a LR model 
on the pooled positive (CRM+TF+) and pooled nega-
tive (Non-CRM) sets from the 67 human and 64 mouse 
cell/tissue types, except the target cell/tissue type using 
four epigenetic marks (CA, H3K4me1, H3K27ac, and 
H3K4me3). We call this model a universal functional 
states predictor (UFSP) of mammal CRMs. Given a 
cell/tissue type with data for the four epigenetic marks, 
we applied UFSP to each of the putative CRMs in the 
genome, and predicted a CRM to be active in the cell/
tissue type if the CRM’s LR value ≥ 0.5, or non-active, 
otherwise.

Comparison with other state‑of‑the‑art methods
We compared our two-step approach with six earlier 
machine-learning methods that aim to simultaneously 
predict the loci and functional states of CRMs in a given 
cell/tissue type using epigenetic data from the very cell/

tissue types. These methods include Matched Filter, a 
most recent method that combines a signal processing 
technique called matched filter [98] with a linear SVM, 
random forest or ridge regression model [62]; REPTILE 
[39], recent random forest-based models that integrate 
histone modifications and bisulfite sequencing data 
for mGC modifications; RFECS [45], an earlier random 
forest-based model; DELTA, an AdaBoost-based ensem-
ble method [49]; and CSI-ANN, a neural network-based 
method [44]. For a fair comparison, we evaluated the 
performance of our methods and these earlier methods 
on the four mouse embryonic tissues (neural tube, mid-
brain, hindbrain, and limb) and/or six ENCODE top-tier 
human cell lines (H1-hESC, GM12878, K562, HepG2, 
A549, and MCF-7) using training sets constructed and 
experimental data used in REPTILE [39] and Matched 
Filter [62].
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