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Abstract 

Background:  Root development and function have central roles in plant adaptation to the environment. The modifi-
cation of root traits has additionally been a major driver of crop performance since the green revolution; however, the 
molecular underpinnings and the regulatory programmes defining root development and response to environmental 
stress remain largely unknown. Single-cell reconstruction of gene regulatory programmes provides an important tool 
to understand the cellular phenotypic variation in complex tissues and their response to endogenous and environ-
mental stimuli. While single-cell transcriptomes of several plant organs have been elucidated, the underlying chroma-
tin landscapes associated with cell type-specific gene expression remain largely unexplored.

Results:  To comprehensively delineate chromatin accessibility during root development of an important crop, we 
applied single-cell ATAC-seq (scATAC-seq) to 46,758 cells from rice root tips under normal and heat stress condi-
tions. Our data revealed cell type-specific accessibility variance across most of the major cell types and allowed us to 
identify sets of transcription factors which associate with accessible chromatin regions (ACRs). Using root hair differ-
entiation as a model, we demonstrate that chromatin and gene expression dynamics during cell type differentiation 
correlate in pseudotime analyses. In addition to developmental trajectories, we describe chromatin responses to heat 
and identify cell type-specific accessibility changes to this key environmental stimulus.

Conclusions:  We report chromatin landscapes during rice root development at single-cell resolution. Our work 
provides a framework for the integrative analysis of regulatory dynamics in this important crop organ at single-cell 
resolution.

Keywords:  Rice, Root, Cell type, Chromatin accessibility, scATAC-seq, Developmental trajectory, Environmental 
stimulus

Background
Recently, single-cell RNA sequencing (scRNA-seq) has 
been applied to root cells of Arabidopsis and rice and 
revealed the transcriptional programmes of major cell 
types, as well as the heterogeneity within a given popu-
lation [1–9]. However, the mechanisms underlying these 
programmes for distinct cell types remain largely elu-
sive. In eukaryotes, gene expression is highly associated 
with open chromatin, which can be mapped by assay for 
transposase-accessible chromatin with high throughput 
sequencing (ATAC-seq) [10]. Recently, ATAC-seq has 
been applied to single cells of complex tissues in several 
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multicellular eukaryotic species [11–15], including two 
plant species, namely Arabidopsis and maize [16–18]. 
Consistent with the important role of chromatin state for 
gene expression, these studies identified distinct chro-
matin patterns across different tissues and cell types and 
revealed key regulatory sequences, which in turn could 
be associated with transcription factors (TFs).

Similar to maize, rice is one of the most important 
crop plants worldwide, and we have previously profiled 
the single-cell transcriptomes of rice root tips from two 
cultivars, which revealed species-specific expression pro-
grammes, as well as more conserved pathways [7]. To 
elucidate the regulatory mechanisms that are responsi-
ble for the observed gene expression states, we have now 
investigated the landscape of chromatin accessibility at 
single-cell resolution. To this end, we profiled over 46,000 
nuclei from rice root tips by scATAC-seq and identi-
fied almost all cell types by cell type-specific accessible 
chromatin regions (ACRs). We leverage these ACRs to 
explore the dynamics of chromatin accessibility during 
rice root development and in response to environmental 
changes.

Results and discussion
scATAC‑seq and identification of cell type clusters
We performed scATAC-seq on root tips isolated from 
rice Japonica group cultivar Nipponbare (Nip). High-
quality nuclei from 120 root tips (5 mm in length of pri-
mary roots) were obtained from 3-day-old Nip seedlings 
using our improved nuclei isolation protocol (Additional 
file  1: Fig. S1). About 16,000 nuclei per replicate were 
incubated with Tn5 transposase in bulk. The transposed 
nuclei were then loaded onto a 10x Genomics microflu-
idic device and mixed with single-cell reaction reagents 
including cell barcodes. The resulting libraries were 
sequenced in a single pool (Fig. 1a). To exclude low-qual-
ity cells, we removed cells with less than 1000 unique 
nuclear fragments and a transcription start site (TSS) 
enrichment score of < 1.5. In addition, we removed dou-
blets by using ArchR [19]. We found an excellent correla-
tion between replicates, and different samples were still 
very similar despite being processed in different batches, 
suggesting that our process was robust (Additional file 1: 
Fig. S2a-c). For further quality control (QC), we first per-
formed bulk ATAC-seq of independently isolated nuclei 
and again found a high correlation between scATAC-seq 
and bulk ATAC-seq (Additional file 1: Fig. S2a). Second, 
we compared the fragment size distribution in our sam-
ples to published data from other plants, such as maize 
[18], and found them to be similar (Additional file  1: 
Fig. S2b). Third, strong enrichment of fragments was 
observed within the regions that have been described as 
accessible chromatin (Additional file 1: Fig. S2d). Forth, 

the majority of scATAC peaks between replicates were 
overlapped (Additional file  1: Fig. S2e). Taken together, 
these results demonstrated that our scATAC-seq dataset 
is robust and of high quality. To give the community full 
access to the intuitive mining of our data, we have devel-
oped the Single-Cell Chromatin Accessibility of Rice 
root (SCAR) website, which is freely available at http://​
www.​elabc​aas.​cn/​scar/​index.​html.

Building on our quality controls, we were able to iden-
tify an average of 14,602 unique Tn5 integration sites 
in 25,312 nuclei, which corresponded to 13,848 ACRs 
covering ~ 18.6% of the rice genome (Additional file  1: 
Table  S1). Based on unsupervised uniform manifold 
approximation and projection (UMAP), cells grouped 
into nine clusters representing distinct chromatin pro-
files (Fig.  1b). Following published strategies [15, 18], 
we annotated clusters based on specific ACRs located 
in the promoters of genes with cell type-specific expres-
sion. To this end, we first identified a list of genes with 
cluster-specific ACRs using a gene score matrix (Fig. 1c; 
Additional file 2: Tables S2, S3), before cross-referencing 
with our previously published cell type marker genes 
[7] (Fig. 1d). For example, the promoter of the root hair 
marker gene LOC_Os10g42750 contains a cluster 1 (C1)-
specific ACR, the promoter of the root cap marker gene 
LOC_Os01g73700 contains a cluster 2 (C2)-specific ACR, 
the promoter of the endodermis marker gene LOC_
Os01g15610 contains a cluster 3 (C3)- and cluster 4 (C4)-
specific ACR, the promoter of the epidermis marker gene 
LOC_Os08g02300 contains a cluster 5 (C5)-specific ACR, 
the promoter of the stele marker gene LOC_Os01g15830 
contains a cluster 6 (C6)- and cluster 7 (C7)-specific 
ACR, and the promoter of the cortex marker gene LOC_
Os01g68589 contains a cluster 8 (C8)- and cluster 9 (C9)-
specific ACR (Fig. 1d, e; Additional file 1: Fig. S3a). This 
strategy allowed us to annotate all scATAC-seq clusters 
and revealed that major cell types of the root were repre-
sented in our dataset. Interestingly, not all cluster-specific 
ACRs mapped to cell type marker genes. Consequently, 
we performed RNA in situ hybridization for a gene asso-
ciated with differentially accessible regions and no prior 
evidence of cell type-specific expression. Reassuringly, 
the mRNA detection of LOC_Os04g53640 in the root cap 
was consistent with its enriched expression in the UMAP 
annotated root cap cluster (Fig.  1f, g; Additional file  1: 
Fig. S3b). It suggests that cluster-specific ACRs have the 
power to detect differentially expressed genes that single-
cell RNA-seq is unable to identify.

Next, we compared the scATAC-seq with our recently 
reported scRNA-seq data from the protoplast of rice 
root tips [7]. We embedded them by adopting the 
approach used for integrating Arabidopsis scRNA-seq 
and scATAC-seq datasets [16] and plotted all cells with 
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Fig. 1  Single-cell ATAC-seq and cluster annotation of rice root tips. a Schematic overview of the experimental workflow. b UMAP visualization 
of nine clusters of root tip cells. Each dot indicates a single cell. Colours in the diagram of the root tip indicate the corresponding cell type. c 
Enrichment of accessibility of proximal regulatory elements for marker genes as identified by single-cell RNA-seq. Dot diameter, proportion 
of cluster cells with proximal regulatory elements for a given gene; colour, mean accessibility across cells in that cluster. d UMAP visualization 
of cell type-specific gene accessibility for a subset of marker genes associated with six different cell types. Each dot indicates a single cell. e 
Cluster-aggregated chromatin accessibility surrounding the gene LOC_Os01g15610 for cells of endodermis. f RNA in situ hybridization of cell type 
accessibility marker gene LOC_Os04g53640 for rice root cap. Scale bar, 40 μm. g UMAP visualization of cell type-specific gene accessibility of LOC_
Os04g53640 for rice root cap. Each dot indicates a single cell. h Scatter plots of GO enrichment analysis of differentially accessible genes for each 
cluster. Overrepresentation analysis and visualization performed using the ClusterProfiler R package. GO terms were obtained with adjusted p-value 
< 0.05 using the Benjamini–Hochberg method
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cell type labels from each dataset (Additional file 1: Fig. 
S4a). UMAP visualization showed similar distribution 
patterns for matching cell types between scRNA-seq and 
scATAC-seq, which further supported our cluster anno-
tation. We also observed non-overlapping cells, which 
are likely caused by multiple factors, including (1) sig-
nificant expression effects induced by the protoplasting 
during scRNA-seq, absent from the scATAC-seq process, 
and (2) genes with open chromatin accessibility but low/
no expression (Additional file 2: Table S4), and genes in 
regions of closed chromatin, but high expression (Addi-
tional file 2: Table S5). Overall, cell type marker genes of 
scATAC-seq and scRNA-seq (Additional file 2: Table S6) 
showed a much higher correlation between matching 
cell types than between different cell types (Additional 
file  1: Fig. S4b), suggesting that the chromatin accessi-
bility and gene expression datasets were positively cor-
related, further substantiating our cluster annotation. 
However, we found that some cell type marker genes of 
scRNA-seq, including LOC_Os08g03450 of endodermis, 
did not show cell type-specific chromatin accessibility. 
One explanation is that scATAC-seq was performed on 
the nuclei, while RNA in situ hybridization (scRNA-seq) 
was performed on the whole tissue (cell), including the 
cytoplasm. The regulation of RNA decay, RNA transport, 
RNA methylation, etc. may contribute to the differences 
between chromatin accessibility and gene expression. On 
the other hand, it suggested that further experimental 
validation would still be required.

To categorize the function of genes associated with 
cluster-specific ACRs, we performed Gene Ontology 
(GO) analyses and found converging terms between 
scATAC-seq and scRNA-seq for all cell types. For exam-
ple, genes related to water transport were enriched 
among mRNAs of cortex cells in scRNA-seq [7], as well 
as genes associated with cortex-specific ACRs identified 
in scATAC-seq (Fig. 1h; Additional file 2: Table S7), fur-
ther highlighting the close correlation between chroma-
tin accessibility maps and cell type transcriptomes from 
rice root tips.

Characterization of cell type TF motifs in rice
We have previously described cell type-specific tran-
scriptomes for root tips of two rice cultivars [7], but the 
regulatory mechanisms leading to these highly distinct 
expression programmes remained elusive. After hav-
ing identified cell type-specific ACRs, we next asked 
which chromatin marks may be associated with these 
regions to gain an insight into their biochemical state. 
To this end, we integrated published ChIP-seq data 
on histone modifications with our ATAC-seq-based 
ACRs. Interestingly, we found that for all modifications 
tested, namely H3K4me1, H3K4me3, H3K27me3, and 

H3K9me2, the ChIP-seq signal at the middle point of 
ACRs represented a regional minimum. Furthermore, 
we found that levels of some modifications, such as 
H3K4me1 and H3K27me3, were different between 
cell types, whereas H3K9me2 appeared similar across 
all cell types (Fig.  2a). The underlying mechanism for 
this interesting pattern could be explored by future 
single-cell/cell type resolution histone modifications 
studies. These results suggested on the one hand that 
ACRs represent genomic regions with reduced histone 
methylation and on the other hand showed that these 
modifications show cell type-specific variations, which 
could contribute to chromatin accessibility and gene 
expression.

Since gene expression is dictated by the interplay of 
open chromatin with TF activity, we aimed to elucidate 
the regulatory networks responsible for cell type differ-
entiation in rice roots. Our analyses were built on the 
notion that TF-binding elements in ACRs represent the 
substrate for expressed TFs, identified by scRNA-seq, 
since most TFs can only bind to open chromatin, which 
is readily identified by scATAC-seq [18]. To establish cell 
type TF signatures, we first annotated known TF-binding 
sequences across the rice genome and plotted the average 
motif coverage around ACRs. We found that the occur-
rence of potential TF-binding sites was highly enriched 
in ACRs relative to control and flanking regions of the 
rice genome (Fig. 2b), supporting the idea that ACRs rep-
resent important regulatory regions. Next, we identified 
highly represented TF motifs for each cell type by calcu-
lating the relative enrichment of TF binding sequences 
within the top 2000 differential ACRs. An average of 
32 TF motif combinations were significantly enriched 
(Fisher exact test, FDR < 0.01) per cell type, and the larg-
est number of motif combinations was 53, found in the 
C2 root cap. Our analysis revealed many cluster-enriched 
TF motifs (Fig. 2c, d, Additional file 1: Fig. S5). For exam-
ple, WRKY family TF motifs enriched in root hair; NAC, 
AP2, and CAMTA family TF motifs enriched in root cap; 
MYB family TF motifs enriched in the stele; and C2H2 
family TF motifs enriched in the cortex (Additional file 1: 
Fig. S6). The enrichment of TF motifs was coincident 
with the known regulators of cell identity, including the 
WRKY family in root hair development [20], NAC fam-
ily TFs in root cap development [21], and DNA binding 
with one finger (Dof) TF in endodermis regulation [22]. 
Cross-referencing these findings with our scRNA-seq 
data, we found that some members of TFs with cell type-
specific expression, such as members of bHLH, MYB, 
C2H2, and ERF family TFs (Fig. 2e), coincide with their 
enriched TF-binding motifs from the same cell type 
(Fig.  2d; Additional file  1: Fig. S5a), further indicating 
that our annotation was robust.
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Fig. 2  Characterization of cell type TF motifs in rice root tips. a Distribution of histone modifications around ACRs. Colours represent different cell 
types. b The average motif coverage across 4-kb windows centred on ACRs (n = 138,481) and control regions (n = 138,481). Shaded polygon, 95% 
confidence intervals. c Heatmap showing 264 TF motif enrichments represented by average deviation scores in the top 2000 ACRs for each cell type 
cluster. d The mean TF family motif enrichment (average deviation scores per cell type per TF family) across cell type scale by row with z-score. e 
Cross-referencing cluster-enriched TF binding motifs with scRNA-seq data (Liu et al. [7]); UMAP visualization of expression of cell type-specific TFs in 
Nip. Colour bars indicate the scaled expression level



Page 6 of 12Feng et al. BMC Biology          (2022) 20:274 

Chromatin accessibility trajectory of epidermal and root 
hair cells
While these analyses allowed the reconstruction of 
potential regulatory modules active in each cell type of 
the rice root, they were insufficient to reveal develop-
mental dependencies between TF and target cell types. 
Pseudotime analysis has been a major step towards estab-
lishing causal relations in scRNA-seq data, and we have 
previously used it to reveal the differentiation trajec-
tory of root hairs from epidermal cells [7]. Importantly, 
these analyses can also be applied to scATAC-seq data to 
order ACR heterogeneity within a cell type cluster into 
time-resolved chromatin accessibility dynamics. Using 
the root hair cluster as a model, we identified 13,848 
ACRs, 131 TF motifs, and 3882 genes with significant 
differences in chromatin accessibility across the root 
hair pseudotime trajectory (Additional file  1: Fig. S7). 
Several known root hair developmental genes, including 
LOC_Os10g42750, were identified among the top differ-
entially accessible genes throughout root hair develop-
ment. Consistent with the central role of this gene for 
root hair development [23], the accessibility of chroma-
tin in its regulatory region strongly increased during the 
transition from the epidermis to root hair identity, which 
was consistent with its RNA expression profile derived 
from scRNA-seq (Fig. 3a, b) [7]. Interestingly, we found 
a WRKY-binding motif in the ACR of LOC_Os10g42750, 
and cross-referencing with our scRNA-seq data allowed 
us to identify the WRKY TF LOC_Os04g50920, which 
is only expressed in the root hair and root cap and thus 
may represent a potential upstream activator (Fig.  3c, 
d). Thus, the pseudotime analysis of chromatin accessi-
bility and RNA expression not only was able to resolve 
gene expression dynamics during root hair development 
but also allowed to resolve the regulatory mechanisms 
underlying a key developmental transition.

Single‑cell chromatin accessibility dynamics in response 
to heat stress
An important aspect of plant development is its astound-
ing plasticity in response to environmental variation. 
Therefore, we were interested to analyse how an envi-
ronmental factor, such as temperature, would affect the 
chromatin accessibility and hence the transcriptional 
programmes leading to root cell type development. We 
have previously shown that chromatin accessibility is 
responsive to heat stress (HS) in rice roots but were lack-
ing cell type resolution [24]. To explore the HS-induced 
chromatin dynamics at the single-cell level, we carried 
out two independent rounds of scATAC-seq on rice 
root tips after exposure of 3 h to 45 °C (Fig. 4, Additional 
file 1: Fig. S2; Additional file 2: Tables S8, S9). In total, we 
generated scATAC-seq profiles from 21,446 cells, which 

yielded on average 16,570 unique fragments mapping to 
the Nip genome (Additional file  1: Table  S1). For com-
parative analysis of cells that had not experienced heat 
shock, scATAC-seq reads from control and HS samples 
were merged and subsequently clustered. UMAP visu-
alization revealed nine clusters of HS-treated cells that 
overall were similar to clusters identified in controls 
(Fig.  4a, b). In addition to the general alignment of cell 
clusters, the relative numbers of cells per cluster were 
also comparable (Fig. 4c), demonstrating that chromatin 
accessibility was not massively disturbed by HS. Interest-
ingly, we observed that cells of the root cap, root hair, and 
stele showed more divergence between normal growth 
conditions and HS (Fig. 4e) than those of the epidermis, 
endodermis, and cortex, suggesting chromatin accessi-
bility in these tissues was specifically responsive to heat 
stress. To elucidate the mechanisms driving specific and 
more general responses to temperature, we identified 
heat shock-specific ACRs and searched for overrepre-
sented regulatory motifs by MotifScan [25]. Notably, heat 
stress transcription factor (HSF)-binding motifs were the 
top enriched ones for all nine cell types (Additional file 3: 
Table  S10). In the next step, we subjected genes associ-
ated with heat shock-specific ACRs to GO analysis and 
found that several GO terms were shared by all cell clus-
ters (Fig.  4d). Reassuringly, “response to heat” was the 
top GO term across all cell types, demonstrating that 
HS generally affected the chromatin accessibility of heat 
response-related genes. Interestingly, we also observed 
cluster-specific GO terms. For example, “jasmonic acid 
biosynthetic process” was found in cluster 3 endoder-
mis (Fig.  4d; Additional file  1: Fig. S8). To compare our 
scATAC and bulk ATAC data, we used gene track analy-
sis on genes that showed responses in chromatin state in 
one of the assays (Fig. 4e, f ), while we were able to iden-
tify many differential ATAC peaks between normal and 
HS that were cell type-specific in scATAC-seq (Fig. 4e), 
which could not be identified by bulk ATAC-seq (Fig. 4f ), 
suggesting scATAC-seq not only offers single-cell reso-
lution, but also is more powerful in identifying ACRs in 
response to environmental changes.

Conclusions
In this study, we applied scATAC-seq and obtained chro-
matin profiles of more than 46,000 nuclei of rice root 
tips under normal and heat stress conditions. Single-cell 
chromatin landscapes allowed us to identify nine clus-
ters of cells that covered the major cell types found in the 
root tip. This structure correlated well with scRNA-seq 
data and revealed cell type-specific regulatory modules. 
Importantly, our analysis also defined chromatin dynam-
ics during cell type development and in response to heat 
stress. Taken together, our results represent a valuable 
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resource of chromatin accessibility at single-cell resolu-
tion to study the development and function of rice root 
cell types.

Methods
Rice growth conditions and nuclei isolation
Rice Nip seeds were soaked in water in the dark until 
germination and then cultured in Hoagland’s Complete 
Nutrient Solution for 3 days (28 °C, 10-h light/14-h 
dark cycles, 300 lux). Primary root tips 5 mm in length 
from the 3-day-old rice seedlings were harvested and 
fixed with cold paraformaldehyde solution (2%) for 30 

min. Then, the root tips were transferred to a Dounce 
grinder (kimble), which was filled with cold lysis buffer 
(10 mM Tris-HCl, 10 mM NaCl, 1 mM MgCl2, 1% BSA) 
and 0.2% Tween 20 (0.2% NP-40, 0.0075% digitonin). 
0.5% 2-ME (v/v) were added, and then the roots were 
ground completely. The homogenate was filtered with 
a 20-μm mesh (Sysmex) following centrifuge at 480 rcf 
for 5 min at 4 °C. After removing the supernatant, 1% 
BSA buffer (10 mM Tris-HCl (pH7.4), 10 mM NaCl, 3 
mM MgCl2, 1% BSA (v/v)) was added to resuspend the 
pellet. Then, the mixture was placed on 80% Percoll and 
following centrifuge at 300 rcf for 25 min at 4 °C. After 

Fig. 3  Chromatin accessibility trajectory of epidermal and root hair cells. a UMAP visualization of the root hair developmental trajectory depicting 
pseudotime (left) and cell types (right). b UMAP visualization of pseudotime of chromatin accessibility (top) and gene expression (bottom) for the 
root hair marker gene LOC_Os10g42750. c Cluster-aggregated chromatin accessibility surrounding the gene LOC_Os10g42750 for cells of root hair. 
A WRKY was indicated in the ACR of LOC_Os10g42750. d UMAP visualization showing cell type-specific expression of WRKY TF LOC_Os04g50920. 
Colour bar indicates the scaled expression level
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removing 150 μl supernatant, the nuclei were trans-
ferred to a new Eppendorf tube and washed twice with 
1% BSA buffer. The nuclei were resuspended in a chilled 
Diluted Nuclei Buffer (10x Genomics, PN-2000153). 
The nuclei were stained by DAPI and trypan to check 
the quality and quantity.

scATAC‑seq library preparation and sequencing
The isolated nuclei were processed immediately through 
the 10x Chromium Single Cell Platform according to 
the manufacturer’s instructions (10x Genomics). Briefly, 
16,000 resuspended nuclei (concentration 3000–7000 
nuclei/μl) were combined with ATAC Buffer and ATAC 

Fig. 4  Single-cell chromatin accessibility dynamics in response to heat stress. a UMAP visualization of normal and HS scATAC clusters after 
alignment. Each dot indicates a single cell. The colours indicate normal or HS. b UMAP visualization of separated normal and HS samples of 
scATAC-seq clusters after alignment. Each dot indicates a single cell. c Bar plot comparison of cell percentage between normal and HS for each 
cluster. d Scatter plots of GO enrichment analysis of differentially accessible genes for each cluster between normal and HS. Overrepresentation 
analysis and visualization performed using the ClusterProfiler R package. e, f Genome browser screenshot comparison of chromatin accessibility 
between normal and HS samples from bulk ATAC-seq (f) and scATAC-seq with each cluster (e)
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Tn5 transposase (10x Genomics) to form a transposition 
mix. After incubation for 30 min at 37 °C, barcoding rea-
gent and enzyme (10x Genomics) were added, and the 
resulting mix was loaded onto a single-cell chip, which was 
subsequently placed into a Chromium Single Cell Con-
troller instrument for library construction. Quantification 
of the DNA library was done by Agilent 2100 Bioanalyzer 
then sequenced with an Illumina Hiseq 2000 sequencer.

Bulk ATAC‑seq and data processing
Bulk ATAC-seq was performed as described previ-
ously [24]. Qubit fluorometer and Agilent Bioanalyzer 
2100 were used to check library quality and concentra-
tion. DNA libraries were constructed using NEBNext 
DNA Library Prep Kit (Neb) and sequenced on an Illu-
mina HiSeq 2000 platform with 150-bp paired-end reads. 
FASTQ files were mapped to Oryza sativa Nip genome 
by using Bowtie2 [26] with “-N 1 -X 2000” parameters. 
The MACS2 software was used to call peaks with -q 0.05 
--nomodel --extsize 150. We defined differential peaks 
between two groups with the MAnorm software [27] by 
using abs (M value) ≥ 1; M value is the log2 fold change 
of normalization chromatin accessibility signal between 
two normal and HS samples.

Single‑cell ATAC‑seq data processing (QC)
FASTQ files of each sample were firstly processed by 
using cellranger-atac (v.1.2.0) count pipeline coupled with 
Oryza sativa Nip genome to generate fragment and cell 
files. Next, we used createArrowFiles function in ArchR 
[19] to filter low-quality cells following these criteria: (1) 
filterTSS = 1.5; (2) filterFrags = 1000; and (3) validBar-
codes = cellranger.cells. The cellranger.cells was generated 
with getValidBarcodes function in ArchR, which means 
we only used the cells after passing the strict quality con-
trol with cellranger-atac and ArchR softwares. At last, 
doublets (5174 cells) were filtered by addDoubletScores 
and filterDoublets functions with default parameters in 
ArchR. We used the ArchR software for most of our sin-
gle-cell ATAC-seq datasets analysis.

Estimation of gene accessibility scores
In view of smaller genome of rice than human genomes, 
we estimated the gene accessibility score by using addGe-
neScoreMatrix function with “exp(-abs(x)/2000) + exp(-
1)” geneModel, “c(500, 10000)” extendstreams and “2000” 
geneUpstream parameters. ArchR allows for the use of 
accessibility within the entire gene body and putative dis-
tal regulatory elements with complex user-supplied cus-
tom distance-weighted accessibility models contributes 
to the gene score.

Clustering and cell type annotation
We got the “TileMatrix”, which is genome-wide 500-bp 
tiles in ArchRProject. log(TF-IDF) (Term frequency-
inverse document frequency) normalization with Tile-
Matrix, Latent Semantic Indexing (LSI) dimensionality 
reduction and harmony batch effect correction methods 
were chosen for the subsequent analysis. We used 0.1 
resolution to define cell clusters and UMAP to visual-
ize single cells. Nine clusters were identified and anno-
tated cell types based on the promoter of cell type marker 
genes containing cluster-specific ACRs.

ACRs and differential chromatin accessibility identification
MACS2 was used to call ATAC peaks. Specifically, we 
generated a reproducible peak set and called union 
peaks among clusters with addReproduciblePeakSet and 
addPeakMatrix functions, respectively. The getMarker-
Features function was used to detect all kinds of differen-
tial chromatin accessibility in our analysis, in more detail, 
GeneScoreMatrix for defining cluster-specific marker 
genes and PeakMatrix for detecting cluster-specific ACRs 
among clusters. On the other hand, differential peaks and 
gene scores were also evaluated between the normal and 
HS groups in each cluster. Bias with TSS enrichment 
and log10(nFrags) were also accounted for in selecting a 
matched null group for marker feature identification, and 
the Wilcoxon test was used for statistical analysis.

RNA in situ hybridization
RNA in  situ hybridization was performed as described 
previously [28, 29]. Briefly, the specific region for the 
selected genes was cloned into pGEM-TEasy (Promega) 
vector, and then Digoxigenin RNA labelling kit (Roche) 
was used for in  vitro transcription and labelling. After 
hybridization and immunological detection, signals were 
visualized under Leica DM6 B microscopy with bright-
field mode. Primers of 5′-GCT​GAT​ATC​CTT​GCT​CTG​
GTAGC-3′ and 5′-TAA​TAC​GAC​TCA​CTA​TAG​GGA​
CCT​GAT​CCT​TTG​CGT​CAAGG-3′ were used to gener-
ate an antisense probe of LOC_Os04g53640, and primers 
5′-TAA​TAC​GAC​TCA​CTA​TAG​GGG​CTG​ATA​TCC​TTG​
CTC​TGG​TAG​C-3′ and 5′-ACC​TGA​TCC​TTT​GCG​TCA​
AGG-3′ were used to generate its sense probe.

Functional enrichment
We used cutoff (FDR ≤ 0.01 and Log2FC ≥ 1) to define 
cluster-specific marker genes and peaks, and the nearest 
gene of a peak was regarded as its target gene for func-
tional analysis. compareCluster function in the clus-
terProfiler package [30, 31] was used to do functional 
analysis with differential gene sets annotated with GO 



Page 10 of 12Feng et al. BMC Biology          (2022) 20:274 

database (Gene Ontology, http://​geneo​ntolo​gy.​org/). 
Enrichment terms were obtained with p.adjust < 0.05. 
p-value adjustment (FDR) is performed using the Ben-
jamini–Hochberg method. Here, enrichment is imple-
mented with the hypergeometric test (Fisher’s exact test).

Identification of co‑accessible ACRs
We defined co-accessibility ACRs with a correlation of 
0.5 threshold using addCoAccessibility and getCoAcces-
sibility functions in ArchR across all cells. Co-accessibil-
ity ACRs will be shown as a loop when plotting a browser 
tracks with ArchRProject.

Motif enrichment analysis and deviation score assessment
Rice TF motifs were downloaded from the PlantTFDB 
v5.0 database (http://​plant​tfdb.​gao-​lab.​org/​downl​oad.​
php#​bind_​motif). First, we used MotifScan (http://​bioin​
fo.​sibs.​ac.​cn/​shaol​ab/​motif​scan/​index.​php) to predict all 
TF motif-binding sites across union peak regions with cut-
off p-value < 1e−4. “genomecompile” and “motifcompile” 
commands had been run to get reference index and back-
ground motif score cutoff under different p-value. Next, we 
used the addPeakAnnotations function to add our motif-
binding site annotation and got a motif deviation score 
matrix with the addDeviationsMatrix function by ArchR.

Trajectory analysis and changes of features 
across pseudotime
We performed trajectory analysis by using the addT-
rajectory function in the ArchR software [19] with 
default parameters. The root hair cells are differenti-
ated from the epidermis; thus, we defined a trajectory 
backbone (C5>C1, as the addTrajectory function in 
ArchR must span at least 3 groups, we subcluster cells 
with resolution 0.3, which C1 was exactly divided into 
two parts) that provides a rough ordering of cell clus-
ters. Changes in the features about gene score, motif, 
and peak across pseudotime were calculated by using 
the getTrajectory function with default suggested 
parameters of ArchR official tutorial (https://​www.​
archr​proje​ct.​com/​bookd​own). The trajectory-associ-
ated figures were plotted by using plotTrajectoryHeat-
map and plotTrajectory functions. Some cells were 
filtered in the final trajectory by preFilterQuantile with 
the default parameters, which resulted in these cells 
were not in the final trajectory.

Integration of scRNA‑seq and scATAC‑seq datasets
We integrated our scRNA-seq [7] with scATAC-seq data 
by adopting the approach used for integrating Arabidop-
sis scRNA-seq and scATAC-seq datasets [16]. Firstly, 
we created a seurat object by using a gene-score matrix 

from scATAC-seq data, and the CCA method was cho-
sen for the integration by using FindTransferAnchors to 
get a transfer.anchors object. Secondly, the TransferData 
function was used to add the imputed data matrix to the 
scATAC-seq object in LSI reduction weight, and vari-
able genes of scRNA-seq object were used. Finally, the 
scRNA-seq and scATAC-seq object were merged, and we 
performed UMAP on this combined object to visualize 
the co-embedding.

Integration of ACRs and histone modification datasets
The ChIP-seq datasets, including H3K4me1, H3K4me3, 
H3K27me3, and H3K9me2 from 1-week-old rice Nip, 
were downloaded from http://​glab.​hzau.​edu.​cn/​RiceE​
NCODE/ [32, 33]. Python package deeptools was used to 
generate the plot.
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