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Abstract 

Background  Immune cells that infiltrate lesions are important for atherosclerosis progression and immunothera-
pies. This study was aimed at gaining important new insights into the heterogeneity of these cells by integrating the 
sequencing results of multiple samples and using an enhanced single-cell sequencing workflow to overcome the 
limitations of a single study.

Results  Integrative analyses identified 28 distinct subpopulations based on gene expression profiles. Further analysis 
demonstrated that these cells manifested high heterogeneity at the levels of tissue preferences, genetic perturba-
tions, functional variations, immune dynamics, transcriptional regulators, metabolic changes, and communication 
patterns. Of the T cells, interferon-induced CD8+ T cells were involved in the progression of atherosclerosis. In con-
trast, proinflammatory CD4+ CD28null T cells predicted a poor outcome in atherosclerosis. Notably, we identified two 
subpopulations of foamy macrophages that exhibit contrasting phenotypes. Among them, TREM2- SPP1+ foamy 
macrophages were preferentially distributed in the hypoxic core of plaques. These glycolytic metabolism-enriched 
cells, with impaired cholesterol metabolism and robust pro-angiogenic capacity, were phenotypically regulated by 
CSF1 secreted by co-localised mast cells. Moreover, combined with deconvolution of the bulk datasets, we revealed 
that these dysfunctional cells had a higher proportion of ruptured and haemorrhagic lesions and were significantly 
associated with poor atherosclerosis prognoses.

Conclusions  We systematically explored atherosclerotic immune heterogeneity and identified cell populations 
underlying atherosclerosis progression and poor prognosis, which may be valuable for developing new and precise 
immunotherapies.
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Background
Atherosclerosis, a major cause of cardiovascular disease, 
is a chronic inflammatory disease caused by the accumu-
lation of cholesterol-containing low-density lipoprotein 
(LDL) particles under the intima, which leads to the for-
mation of plaques containing lipids, connective tissue, 
and immune cells [1, 2]. Immunotherapy, the next step in 
treating cardiovascular diseases (CVDs), can potentially 
address residual cardiovascular risks beyond the ceiling 
of benefits that current conventional treatment options 
provide, such as LDL-cholesterol-lowering regimens and 
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therapies targeting other traditional CVD risk factors [2, 
3]. However, the negative results of the Cardiovascular 
Inflammation Reduction Trial and the increased risks 
of infection associated with systemic anti-inflamma-
tory treatments (as observed in the Canakinumab Anti-
inflammatory Thrombosis Outcomes Study [CANTOS] 
and Colchicine Cardiovascular Outcomes Trial [COL-
COT]) suggest that a one-size-fits-all approach without 
considering immune heterogeneity is inadequate [4, 5].

Single-cell technologies have proven ideal for studying 
immune heterogeneity and can be used to identify spe-
cific pathogenic cell populations, which is key for advanc-
ing drug discovery [6]. The single-cell RNA sequencing 
(scRNA-seq) datasets, data analysis tools, and various 
applications continue to grow in scope as sequencing 
costs continue to fall. Early knowledge of the immune 
landscape of atherosclerotic lesions gained in previ-
ous studies may be insufficient because of the difficul-
ties in obtaining fresh human atherosclerosis samples 
and limitations in the number of cells and tools used 
for data analysis [7, 8]. Here, we integrated multiple 
scRNA-seq datasets for 44,120 immune cells obtained 
from 17 human atherosclerosis samples. Using a variety 
of state-of-the-art analytical tools, we identified the tis-
sue preferences, genetic perturbations, functional vari-
ations, immune dynamics, transcriptional regulators, 
metabolic changes, and communication atlas that under-
lie the heterogeneity of immune cells. Additionally, pro-
inflammatory CD4+ CD28null T cells and dysfunctional 
TREM2- SPP1+ foamy macrophages, which were associ-
ated with atherosclerosis progression and poor progno-
sis, were expected to be potential therapeutic targets for 
future precision medicine.

Results
Integrated scRNA‑seq analysis quantified the diversity 
of major cell populations in atherosclerotic lesions
To understand gene-expression perturbations and gen-
erate a comprehensive map of the immune landscape 
of human atherosclerosis at single-cell resolution, three 
scRNA-seq datasets were analysed using an integrated 
bioinformatics method (Fig. 1a). After stringent quality-
control filtering and clustering analysis to remove non-
immune cells, 44,120 immune cells were further analysed 
(Additional file 1: Figure S1a-d). These cells were identi-
fied as T cells, myeloid cells, B cells, innate lymphoid cells 
(ILCs), mast cells, and plasma cells based on canonical 

markers (Fig. 1b, c). Pearson correlation analysis revealed 
groups of clusters with similar transcriptional profiles 
that coincided with the main immune cell type (Addi-
tional file  1: Figure S1e). In addition, B and mast cells 
exhibited higher purity, whereas myeloid and plasma 
cells showed higher heterogeneity (Fig.  1d). Pearson’s 
correlation analysis also revealed that plasma cells had 
their own significant and unique transcriptional features 
when compared with those of B cells and other types 
of immune cells (Additional file  1: Figure S1e). GSEA 
revealed that B cells exhibited specific enrichment for cell 
cycle-related pathways, whereas the plasma population 
was significantly enriched for biological processes related 
to protein production and secretion (Additional file  1: 
Figure S1f ).

We quantified the tissue enrichment of all these popu-
lations based on Ro/e analysis [9]. Among all populations, 
mast and myeloid cells were preferentially distributed 
in the atherosclerotic core (AC), whereas lymphocytes 
were preferentially located in the adjacent portion (PA) 
(Fig. 1e). To further investigate variations in the regula-
tory network of lesion-infiltrating cell subsets, we used 
hallmark gene sets to assess differences in the pathways 
of major immune cell populations between the AC and 
PA. Intriguingly, mast and myeloid cells showed upregu-
lation of a wide variety of pathway activities, including 
different aspects of immunology, metabolism, signalling, 
and proliferation (Fig. 1f ), implying that distinct anatom-
ical contexts may preferentially remodel these cells and 
induce specific functional states. Furthermore, inflam-
matory-response and interferon (IFN)-related pathways 
were upregulated in AC-filtrating mast cells, and myeloid 
cells showed greater enrichment for metabolism-related 
pathways than PA cells (Fig. 1f ). The hypoxia-related gene 
set was also more enriched in mast and myeloid cells 
from AC samples than in those from PA samples (Fig. 1f ). 
These traits might reflect that immune cell interactions 
were localised to the hypoxic region of plaques that 
links mast cells and macrophages, and remodels the AC 
microenvironment.

Dissection and clustering of T and ILC cells 
in atherosclerotic plaques
In total, 24,183 cells were clustered into 13 separate sub-
sets, namely four CD4+ T cell subsets, six CD8+ T cell 
subsets, and three ILC subsets (Fig. 2a, Additional file 2: 
Figure S2a). The subpopulations of T lymphocytes that 

Fig. 1  Dissection of the immune landscape in atherosclerosis with scRNA-seq. a Schematic of the overall study design. AC, atherosclerotic core; PA, 
adjacent portion. b t-SNE plots showing 44,120 immune cells from atherosclerosis lesions. ILC, Innate lymphoid cells. c Dot plot showing average 
expression of known markers in indicated immune cell types. d Boxplot showing cell purity for each cell type by ROGUE. e Line chart showing 
tissue prevalence for each cell type estimated by Ro/e score. f Dot plots showing differentially enriched pathways in the global cell type between 
AC and PA tissues

(See figure on next page.)



Page 3 of 23Xiong et al. BMC Biology           (2023) 21:46 	

Fig. 1  (See legend on previous page.)
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infiltrate atherosclerosis were identified and charac-
terised using the expression of functional markers and 
marker genes (Fig.  2b, c, Additional file  2: Figure S2b). 
Based on the Ro/e index, CD8-C5-GZMB T cells was 
preferentially distributed in the PA, whereas the opposite 
was true for CD8-C3-IFI44L and CD8-C6-TOP2A T cells 
(Fig. 2d). To the best of our knowledge, CD8-C3-IFI44L 
and CD8-C6-TOP2A T cells have not been previously 
reported in similar studies.

The infiltration of CD8-C3-IFI44L T cells increased 
with disease progression (Fig.  2e), suggesting that these 
cells may participate in the development of atheroscle-
rosis. The high expression of IFN-induced genes and 
enrichment of IFN-related responses observed here sug-
gest that accumulation of type-1 and type-2 IFNs (Fig. 2f, 
g, Additional file 2: Figure S2c), due to chronic inflamma-
tion or viral infections, might have a significant impact 
on the make-up and functionality of these T cells.

TOP2A and MKI67, well-established proliferation 
markers, were highly expressed in the CD8-C6-TOP2A 
T cells (Fig. 2b). Interestingly, CTLA4, LAYN, ENTPD1, 
and HAVCR2 (biomarkers of exhausted T cells) were sig-
nificantly upregulated in these T cells (Fig. 2b). In addi-
tion, IFNG and GZMA, which are effector molecules, 
were highly expressed in these cells (Fig.  2b). Taken 
together, we identified a population of cells expressing 
both cell proliferation-, cytotoxic-, and exhausted-related 
genes, with a preference for distribution in the AC.

For the three populations obtained from the ILCs 
reclustering, we first compared CD7-C1 and CD7-
C2 clusters, which were particularly high expression 
of KLRF1 that is well-defined NK cell marker (Addi-
tional file 2: Figure S2b) [10]. Previous studies have fur-
ther defined NK cells as CD56bright having an increased 
capacity of cytokine production and CD56dim NK cells 
having potently cytotoxic [11]. And phylogenetically, 
CD56bright NK cells are believed to be the precursors of 
CD56dim NK cells with a preponderance of evidence sup-
porting this linear progression model [12]. Interestingly, 
in our study, the cytotoxicity-associated genes, such as 
FGFBP2, SPON2, GZMH, GZMB, PRF1, and GNLY, 
were upregulated in C2, suggesting that these cells have a 
more mature and cytotoxic phenotype (Additional file 2: 
Figure S2d). In addition, C2 overexpressed the dimNK-
related marker FCGR3A, while C1 overexpressed the 

briNK-related marker XCL1 which has been shown to 
recruit conventional type 1 DCs to the tumour microen-
vironment (Additional file 2: Figure S2d) [13]. Therefore, 
we identified that C1 cluster is briNK and the C2 cluster 
is dimNK. GSEA analyses also confirmed our results. It 
is worth noting that Proteasome, Fc gamma R-mediated 
phagocytosis, and Antigen processing and presentation 
were upregulated in dimNK, indicating these cells play an 
essential role in linking the innate and adaptive immune 
systems. Besides, a number of pathways that determine 
cell migration, such as cell adhesion molecules (CAMs), 
focal adhesion, and leukocyte transendothelial migration, 
were also found (Additional file  2: Figure S2e). For the 
remaining C3 cluster, these cells expressed the markers of 
NK cells, but GATA3 that require for ILC2 cell develop-
ment were highly expressed, indicating that they might 
be ILC2 cells (Additional file 2: Figure S2b). Furthermore, 
Zernecke et al. also found such cells in plaques in mice by 
meta-analysis [7]. Combined with our study, we suggest 
that these cells are conserved across species in athero-
sclerotic lesions.

Trajectory analysis revealed pathogenic, activated CD4+ T 
populations
To further understand the immune dynamics, the pseu-
dotime developmental trajectory analysis was carried out 
independently with CD4+ and CD8+ T cells. The lineage 
structure of T lymphocytes in the atherosclerotic plaque 
milieu was inferred by the developmental trajectory, 
which offered a distinctive picture.

The trajectory of CD4+ T cells showed that CD4-C1-
SELL T cells were positioned at the opposite end from 
CD4-C4-GZMA T cells and that CD4-C2-CXCR5 T and 
CD4-C3-FOXP3 T cells were mainly located at the cen-
tre (Fig.  3a). CytoTRACE also predicted that CD4-C1-
SELL T cells have higher differentiation potential and 
that CD4-C4-GZMA T cells have lower differentiation 
potential (Additional file  3: Figure S3a). Notably, with 
pseudotime progression, the CD4-C4-GZMA popula-
tion differentiated into two distinct branches, indicating 
the internal heterogeneity of these cells. Thus, we inves-
tigated the underlying mechanism of this heterogene-
ity. Evaluating the expression levels of known pathway 
members in both CD4-C4-GZMA populations revealed 
a strong enrichment for metabolism-related pathways 

(See figure on next page.)
Fig. 2  The lineage and characteristics of T and ILC cells in atherosclerotic lesions. a t-SNE plot of 24,183 T and ILC cells. b Heatmap showing 
the normalised average expression of selected T cell function-associated genes in each cell subpopulation. c Feature plots of canonical marker 
genes. d Line chart showing tissue prevalence for each cell type estimated by Ro/e score. e Boxplots showing infiltrating score for CD8-C3-IFI44L 
subset in atherosclerotic lesions (n = 29) and control arteries (n = 12) without atherosclerotic lesions (left) and paired early (n = 32) and advanced 
(n = 32) lesions (right). ****, P ≤ 0.0001. Student’s t test (left) and paired Student’s t test (right). f Volcano plot showing differential gene expression 
for CD8-C3-IFI44L subset. Genes labelled have log-fold change > 1, Δ Percentage Difference > 30% and adjusted P-value from Wilcoxon rank sum 
test < 0.05. g Gene set enrichment analysis of CD8-C3-IFI44L subset
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Fig. 2  (See legend on previous page.)
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for cell fate 1, whereas inflammatory and immune-
related pathways were significantly increased in cell 
fate 2 (Fig.  3b). Strikingly, cell fate 2 additionally exhib-
ited specific enrichment for pathways related to lipids 
and atherosclerosis (Fig.  3b). We further examined the 
tissue distributions of these cells in larger pairs of sam-
ples. Higher proportions of these cells were observed 
in advanced plaques (Fig.  3c), supporting the possibil-
ity that these cells can accumulate in lesions and play 

important roles in the progression of atherosclerosis. 
Furthermore, survival analyses revealed that the high 
gene-signature scores of these cells significantly pre-
dicted the rate of ischemic post-endarterectomy events 
in an atherosclerotic patient cohort, suggesting that these 
cells can significantly lower the prognosis of patients 
with cardiovascular disease (Fig. 3c). In addition, we used 
RegNetwork to predict upstream TFs for the 30 most 
upregulated genes in cell fate 2 and Cytoscape to build a 

Fig. 3  Trajectory analysis of CD4+ T populations. a The developmental trajectory of CD4+ T cells, coloured-coded by the associated cell 
subpopulations (left) and states (right). b Gene set enrichment analysis of the CD4-C4-GZMA population with different cell fates. NES, normalised 
enrichment score. c Boxplots showing infiltrating score of cell fate2 cells in paired early (n = 32) and advanced (n = 32) lesions (left). Kaplan–Meier 
survival curve of the ischemic event (IE)–free survival in patients undergoing endarterectomy, stratified high and low according to the mean 
infiltration score of cell fate2 (right). *, P ≤ 0.05. Paired Student’s t test (left) and two-sided log-rank test (right). d The gene regulatory network 
constructed by Cytoscape, coloured for the associated gene type (red: top 30 upregulated genes from cell fate2 cells, blue: the upstream 
transcription factors predicted by RegNetwork, green: the targeted genes predicted by GeneMANIA). e Scatter plots showing the expression of 
selected transcription factors in different cell states as the pseudotime progresses
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regulatory gene network (Fig.  3d). Intriguingly, inflam-
matory regulators were significantly upregulated in these 
cells during pseudotime progression (Fig.  3e). Taken 
together, these results indicate that the presence of these 
proinflammatory activated T cells may drive the progres-
sion of atherosclerotic lesions and lead to the subsequent 
occurrence of ischemic events.

For CD8+ T cells, CytoTRACE and pseudotime analy-
sis also predicted that CD8-C5-GZMB have higher dif-
ferentiation potential while CD8-C3-IFI44L have lower 
(Additional file 3: Figure S3b). In order to further under-
stand the state transitions among CD8+ T cell subtypes, 
the functional scores were calculated by AUCell. A 
descending cytotoxic score and an increasing exhaustion 
score were also observed concerning CD8-C5-GZMB, 
CD8-C2-ZNF683, CD8-C4-GZMK, and CD8-C3-IFI44L 
(Additional file 3: Figure S3c). Remarkably, a lack of tis-
sue-resident markers, such as CD69, CCR5, and ITGAE, 
was observed in the expression profile of CD8-C5-GZMB 
(Fig. 2b), which seems to suggest that these cells may have 
an additional source. In order to probe this question, we 
further assess the expression patterns of the genes related 
to migration among CD8+ T subsets. And an interesting 
phenomenon exhibited by CD8-C5-GZMB is that high 
expression of CX3CR1 and S1P receptors was observed 
in these cells (Additional file 3: Figure S3d).

Dissection and clustering of myeloid cells in atherosclerotic 
lesions
Myeloid cells (n = 13,963) were the most common popu-
lation in atherosclerosis. Reclustering revealed 14 clus-
ters: namely DC-C1-CLEC9A (cDC1s), DC-C2-CD1C 
(cDC2s), DC-C3-FSCN1 (mature DCs), DC-C4-IL3RA 
(pDCs), Mono-C1-CD14 (classical monocytes), Mono-
C2-CD14-CD16 (intermediate monocytes), and Mono-
C3-CD16 (non-classical monocytes) cells, as well as 
seven different macrophage subpopulations (Fig.  4a, 
Additional file  4: Figure S4a). The expression levels of 
marker genes and functional signatures were used to 
identify and characterise the subpopulations of athero-
sclerosis-infiltrating myeloid cells (Fig.  4b, c, Additional 
file 4: Figure S4b).

cDC1s and cDC2s showed higher HLA-DR gene 
expression than the remaining DC populations 
(Fig.  4b). Notably, cDC2 appeared to exhibit broader 
and more complex functions. The pathways terms, 
response to interleukin 1, regulation of osteoclast dif-
ferentiation, and vascular endothelial growth factor 
production were significantly enriched in cDC2s (Addi-
tional file  4: Figure S4c), suggesting that these cells 
contributed to plaque inflammation, calcification, and 
neovascularisation, which are key factors in atheroscle-
rosis progression. Mature DCs with high expression of 

FSCN1, CCR7, and LAMP3 were previously identified 
in atherosclerotic plaques of mice [7]. In this study, 
cells with low expression of HLA-DR and complement-
related genes were preferentially distributed in the AC, 
based on the Ro/e index (Fig.  4b, d). It is noteworthy 
that the mature DCs closely resembled “mregDCs,” 
which were recently identified in lung cancer [14]. 
Importantly, mregDCs comprise a group of DCs that 
exhibited high expression of maturation molecules, 
regulatory genes, and migratory markers, as well as 
TH2 response markers, according to a detailed exami-
nation of the signature genes and similarity analysis 
(Additional file 4: Figure S4d).

By comparing the numbers and distributions of the 
monocyte subgroups, we found that intermediate mono-
cytes were the most abundant, that classical monocytes 
were the least abundant, and that all of these subpopu-
lations were preferentially distributed in the PA (Fig. 4a, 
d). Intriguingly, proinflammatory characteristics were 
observed in all monocyte subpopulations (Fig. 4b), which 
prompted us to explore them further. Classic mono-
cytes were predominantly enriched in chemotaxis- and 
migration-related pathways, whereas non-classical 
monocytes exhibited a more mature and proinflamma-
tory phenotype (Fig. 4e). However, in addition to exhibit-
ing a stronger antigen-presentation ability, intermediate 
monocytes also showed a wide range of regulatory effects 
and enrichment of cholesterol and lipid metabolic path-
ways (Fig. 4e).

Among the seven subgroups of macrophages identified 
by reclustering, we found that C1 corresponded to IFINC 
macrophages; C2 and C3 corresponded to inflammatory 
macrophages; and C4 corresponded to resident mac-
rophages [8]. In addition, the C5 subset expressed only 
pro-fibrotic markers such as TREM2 and CD9 (Fig. 4f ), 
indicating that these cells comprised a population of 
pro-fibrotic macrophages [15]. The C6 and C7 subsets, 
which expressed foam cell-related genes (Fig. 4f ), corre-
spond to foam cells [8]. The absence of the SMC-lineage 
TFs MYOCD and MRTFA in the C6 and C7 subsets, and 
expression of the myeloid-lineage TFs PU.1 (SPI1) and C/
EBPß (CEBPB) also suggested that all of these cells origi-
nated from myeloid cells rather than SMCs (Additional 
file  4: Figure S4e) [16]. Ro/e analysis revealed that the 
inflammatory and resident macrophages were prefer-
entially distributed in the PA, whereas the foamy mac-
rophages were preferentially located in the AC (Fig. 4d). 
Previous data revealed that functional macrophage phe-
notypes exist across an in vitro M1/M2 dualistic polarisa-
tion state [17]. We discovered the co-expression of both 
M1 and M2 gene signatures in all macrophage subsets 
(Additional file 4: Figure S4f ). Our findings further dem-
onstrate the limitations of such an in  vitro polarisation 
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Fig. 4  The lineage and characteristics of myeloid cells in atherosclerotic lesions. a t-SNE plot of 13,963 myeloid cells. DC, dendritic cells. Mono, 
monocytes. Mac, macrophages. b Heatmap showing the normalised average expression of selected myeloid cells function-associated genes in 
each cell subpopulation. c Feature plots of canonical marker genes. d Line chart of tissue prevalence for each cell type estimated by Ro/e score. e 
Gene set enrichment analysis of monocyte subsets. f Dot plot showing average expression of foamy cell-related genes in macrophage subsets
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paradigm and point to a more complex macrophage phe-
notype in vivo.

Identification of a novel dysfunctional foamy macrophage 
population and its potential regulatory relationships
Previous data showed that foamy cells are exclusively 
TREM2+ macrophages and, thus, have been named as 
TREM2+ foamy cells [8, 18, 19]. Unexpectedly, in this 
study, TREM2 was highly expressed only in the C6 subset 
and was expressed at low levels in the C7 subset, which 
exclusively showed high SPP1 expression (Fig. 4f ). There-
fore, to further characterise the diversity between both 
types of two foam cells, we first examined the TREM2-
expression pattern at different lesion sites. Interestingly, 
TREM2 was highly expressed in both the PA and AC 
regions of pro-fibrotic macrophages. In contrast, TREM2 
was highly expressed only in TREM2+ SPP1− foamy 
macrophages at the AC site (Additional file  5: Figure 
S5a), suggesting that it may be related to the function of 
foamy cells. Consistently, this finding was verified in the 
bulk datasets (Additional file  5: Figure S5b). To inves-
tigate TREM2-mediated function, we compared the 
functional annotations of TREM2 in both groups. Such 
analysis revealed that several regulatory pathways (lipo-
protein particle clearance, cholesterol esterification, and 
cholesterol efflux) were significantly upregulated in C6 
foamy cells (Fig.  5a), suggesting that TREM2 may help 
maintain foam cell cholesterol metabolism in the lipid-
rich AC. In addition, correlation analysis also confirmed 
this finding (Additional file  5: Figure S5c). Therefore, 
given the gene profiles of SPP1+ TREM2- foamy mac-
rophages, we hypothesised that these cells may have been 
dysfunctional.

To test this hypothesis, we computed and compared 
the classic phenotypic scores of foamy macrophages. The 
SPP1+ macrophages harboured significantly decreased 
scores related to lysosomes, cholesterol esterification, 
and cholesterol efflux, but not phagocytosis (Fig.  5b, 
Additional file 5: Figure S5d). These results illustrate that 
the abnormal accumulation of lipids and cholesterol in 
SPP1+ macrophages may have been due to imbalanced 
cholesterol metabolism, which in turn can induce mac-
rophage endoplasmic reticulum stress and death after 
the formation of necrotic cores, thereby exacerbating the 
progression of atherosclerosis. Subsequently, we found 
that SPP1+ foamy cells showed significantly higher endo-
plasmic reticulum stress, apoptosis, and autophagy scores 
than TREM2+ macrophages, confirming our hypothesis 
(Fig.  5b, Additional file  5: Figure S5d). Intriguingly, we 
also found that the angiogenesis score was significantly 
higher in SPP1+ macrophages (Fig.  5b). Intimal neovas-
cularisation represents a type of intraplaque haemor-
rhage that contributes to an increased risk of plaque 

rupture [20]. To further validate the relationship between 
SPP1+ macrophages and atherosclerosis progression, 
the gene signatures of SPP1+ macrophages were tested 
using bulk mRNA arrays from isolated macrophage-rich 
regions of stable and ruptured human atherosclerotic 
plaques by performing GSEA, which revealed that the 
gene signatures were significantly upregulated in rup-
tured plaques (Additional file 5: Figure S5e). In addition, 
we detected grater infiltration by these cells in advanced 
atherosclerosis and lesions with intraplaque haemor-
rhages (Fig.  5c). Taken together, these findings reveal 
that the unique and dysfunctional SPP1+ TREM2− type 
of foamy cells played an important role in atherosclerosis 
progression, which has not been elucidated in previous 
single-cell studies.

To investigate the underlying causes of the SPP1+ foamy 
macrophage phenotype in atherosclerosis, pseudo-
time developmental trajectory was first performed with 
monocytes and macrophages to assess potential dif-
ferentiation relationships. Our results indicate that the 
trajectory originated from monocytes and bifurcated 
into distinct developmental pathways, with SPP1+ mac-
rophages located at one end of the bifurcations, sugges-
tive of a unique differentiation fate (Additional file  5: 
Figure S5f ). Interestingly, the intermediate monocytes 
were connected to SPP1+ foamy macrophages and 
showed enrichment of lipid and cholesterol metabolism 
pathways, indicating that the intermediate monocytes 
may function as precursor cells for SPP1+ foamy mac-
rophages (Fig. 4e, Additional file 5: Figure S5f ). Pathway-
enrichment analyses showed a strong enrichment for 
metabolic pathways in cells with different differentiation 
fates, indicating that metabolic regulation might mediate 
the phenotypic and functional shift during myeloid dif-
ferentiation in response to distinct microenvironmental 
cues (Fig. 5d).

Clearly, the maintenance of cellular phenotypes 
involves coordinated actions with many regulatory fac-
tors, including the regulation of internal cellular TFs 
and external cell-to-cell communication. Thus, we 
first discovered a sequence of regulons that under-
pins SPP1+ foamy macrophages using SCENIC analysis 
[21]. These included the unknown  SOX13, PAX8, and 
THAP11 regulons, as well as the known PPARG and 
CEBPE regulons (Fig.  5e) [22]. Subsequently, we used 
NicheNet analysis to investigate external regulators of 
the SPP1+ foamy macrophage phenotype [23]. We found 
that CSF1, which is produced in large quantities by mast 
cells, may function as a ligand to drive the phenotype of 
SPP1+ foamy macrophages (Fig. 5f ). Mast cells were also 
more likely to interact with SPP1+ foamy macrophages 
according to the CellphoneDB, and CSF1–SIRPA inter-
actions were among the most significantly enriched 
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Fig. 5  Characterisation of a novel dysfunctional foam macrophage population. a Radar plot showing enrichment of GO term for TREM2-related 
top 30 genes in C5 and C6 macrophage populations. b Boxplots showing phenotypic scores of TREM2+ Mac and SPP1+ Mac. ****, P ≤ 0.0001. 
Wilcoxon rank sum test. c Boxplots showing infiltrating score of SPP1+ Mac in paired early (n = 32) and advanced (n = 32) lesions (left) and non-IPH 
(n = 16) and IPH (n = 27) lesions. non-IPH, non-intraplaque haemorrhage; IPH, intraplaque haemorrhage. ****, P ≤ 0.0001. Wilcoxon rank sum test. 
d Heatmap showing different blocks of DEGs along the pseudotime trajectory (left). Selected KEGG pathways related to corresponding DEGs in 
heatmap (right). e Scatter plot showing the specificity scores of regulons of SPP1+ Mac. The top 5 regulons are highlighted. f Heatmap showing 
potential ligands driving the phenotype of SPP1+ Mac. g Heatmap showing the selected ligand-receptor pairs between SPP1+ Mac and other cells 
in lesions. h Boxplots showing CSF1 expression levels in paired early (n = 32) and advanced (n = 32) lesions. ****, P ≤ 0.0001. Paired Student’s t test. i 
Scatter plot showing the Pearson correlation of the proportion of CSF1+ mast cells and SPP1+ Mac cells
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ligand-receptor combinations (Fig. 5g). Furthermore, we 
detected a significant increase in CSF1 expression during 
the progression of atherosclerotic plaques by mining the 
bulk data (Fig. 5h, Additional file 5: Figure S5g). Besides, 
lesions were found to harbour a higher proportion of 
mast cells (Additional file 5: Figure S5g). A positive corre-
lation was also observed between the proportion of mast 
cells and SPP1+ foamy macrophages in atherosclerotic 
lesions (Fig.  5i). Taken together, these results identify 
plausible candidate TFs that drove the phenotypic differ-
ences in SPP1+ foamy macrophages and indicate that the 
presence of CSF1+ mast cells may drive the phenotype of 
SPP1+ foamy macrophages in atherosclerosis.

Observation of a cell‑type‑specific metabolic program, 
especially with macrophages
Immunometabolism and the associated phenotypic biol-
ogy in atherosclerotic disease remain unclear [24]. To 
understand the metabolic landscape of immune cells in 
plaques, the scores of all 77 active metabolic pathways 
were calculated using scMetabolism. Of all major cell 
types, myeloid cells consistently had the highest meta-
bolic activity scores at both AC and PA sites (Fig.  6a, 
Additional file 6: Figure S6a). Interestingly, a comparison 
of pathway activities between AC and PA in the cell types 
shared by the two regions (excluding SPP1+ foamy mac-
rophages) revealed high concordance between the coun-
terparts (Additional file 6: Figure S6b).

Given that macrophages show the highest meta-
bolic activity and play an important role in athero-
sclerotic lesions, we further explored the metabolic 
heterogeneity among different macrophage subpopula-
tions. We selected the 20 most variable metabolic scores 
from among all subgroups and ordered macrophage clus-
ters based on the average metabolic scores of all meta-
bolic pathways (Fig.  6b). Intriguingly, TREM2+ foamy 
macrophages showed the greatest metabolic activ-
ity among all macrophages studied, whereas that of 
SPP1+ foamy macrophages were relatively low, which 
could be related to their specific functional differences in 
atherosclerotic plaques (Fig. 6b).

Further analysis of the differences in metabolic path-
ways between the two subpopulations revealed strong 
metabolic profiles associated with the cell type, identify-
ing 25 metabolic pathways that were potentially upregu-
lated in SPP1+ foamy macrophages and 52 that were 
upregulated in TREM2+ foamy macrophages (Fig.  6c). 
Among them, arachidonic acid, linoleic acid, and alpha-
linolenic acid metabolism (the main sources of special-
ised pro-resolving mediators in plaques) were highly 
expressed in TREM2+ foamy macrophages, demonstrat-
ing the important role of these cells in orchestrating the 
resolution of tissue inflammation (Fig.  6c). In addition, 

variations in mitochondrial programs have also been 
found to be major contributors to cellular metabolic 
heterogeneity. In SPP1+ foamy macrophages, glycolysis 
has primacy over the citrate cycle, suggesting that these 
cells may require more rapid, short-term bursts of ATP 
production (Fig. 6c). Consistent with this possibility, the 
pentose phosphate pathway and fatty acid biosynthe-
sis were also upregulated in SPP1+ foamy macrophages, 
whereas fatty acid degradation was upregulated in 
TREM2+ foamy macrophages (Fig. 6c). Previous findings 
have shown that metabolic reprogramming of the mito-
chondrial program to glycolysis may occur in the pres-
ence of hypoxia or normoxia, the latter being known as 
the Waberg effect [24]. Therefore, we next asked whether 
such highly state glycolysis metabolic activated states in 
SPP1+ foamy macrophages were induced by the War-
burg effect. Surprisingly, the highest hypoxia score was 
observed for these cells (Fig.  6d). Indeed, the hypoxia-
dependent HIF-1α signalling pathway was significantly 
enriched in SPP1+ foamy macrophages compared to that 
in other myeloid subtypes (Additional file 6: Figure S6c). 
In addition, we found that hypoxia correlated signifi-
cantly with glycolysis, whereas the opposite was true for 
the mitochondrial program (Fig.  6e). In conclusion, our 
results indicate that SPP1+ foamy macrophages, undergo-
ing endoplasmic reticulum stress caused by cholesterol 
overload, are more likely located in the hypoxic region of 
the AC, which jointly induces metabolic reprogramming 
of the mitochondrial programme.

Notably, some amino acid metabolism pathways, such 
as those for phenylalanine and tyrosine, were also sig-
nificantly upregulated in SPP1+ foamy macrophages 
(Fig. 6c). Inhibition of such metabolic activity may mobi-
lise dysfunctional efferocytosis to control the accumula-
tion of oxidised low-density lipoproteins and apoptotic 
cells in advanced plaques. In addition, validation of these 
findings with a bulk data revealed that ruptured plaques 
showed upregulation of all energy-metabolism pathways 
(Additional file 6: Figure S6d), suggesting that they reflect 
the average expression levels over a mixture of different 
cell types, thereby masking the differences between cell 
types in the same sample and, in turn, demonstrating the 
importance of understanding the heterogeneity of cell 
metabolism at single-cell resolution.

To demonstrate the link between metabolic repro-
gramming and macrophage phenotypic changes, we 
further examined the relationship between the 25 
upregulated metabolic pathways and phenotype scores 
of SPP1+ foamy macrophages. Several macrophage-
specific metabolic processes were associated with 
autophagy, apoptosis, and endoplasmic reticulum stress 
(Fig.  6f ). Analysis of the metabolic and marker genes 
upregulated in SPP1+ foamy macrophages revealed 
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MIF (a critical enzyme for phenylalanine metabolism) 
and FBP1 (a key enzyme in gluconeogenesis) as poten-
tial metabolic regulatory targets (Fig.  6g). The Enrichr 
was used to subsequently identify some potential drug 

candidates for these targets, including the well-known 
flavonol quercetin (Additional file 6: Figure S6e), which 
significantly reduce atherosclerotic plaque areas and 
lipid accumulation in the aorta of ApoE -/- mice [25]. 

Fig. 6  Metabolic heterogeneity of immune cell populations, especially macrophages. a Boxplot showing the metabolic pathway activity of the 
major immune cell populations. b Dotplot showing the activity of the top 20 variable metabolic pathways in the macrophage subpopulations 
(left). Boxplot showing the activity of all metabolic pathways in the macrophage subpopulations (right). c Volcano plot showing the differentially 
metabolic pathways between SPP1+ Mac and TREM2+ Mac. d Boxplot showing the hypoxic score of macrophage subpopulations. Kruskal–Wallis 
test. e Scatter plots comparing activities of glycolysis, citrate cycle, and oxidative phosphorylation response to hypoxia in SPP1+ Mac. Spearman 
rank test. f Heatmap showing the correlation between phenotypic score and metabolic activity score in SPP1+ Mac. *, P < 0.05 and Spearman 
rho > 0.3. Spearman rank test. g Venn diagram showing potential metabolic regulatory targets of SPP1+ Mac
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Taken together, these findings reveal that gaining 
insight into the metabolic phenotypes of immune cells 
may help elucidate the mechanisms of plaque progres-
sion and establish future therapeutic strategies.

Cell–cell communications between infiltrating immune 
cells and correlations between immune cell characteristics 
and patient survival
To characterise discrepancies in the molecular interac-
tions between cells derived from different spatial sites of 
lesions, we utilised CellChat to construct a cell–cell-com-
munication network based on known ligand-receptor 
pairs and their cofactors [26]. Interestingly, the PA region 
showed more intercellular interactions than the AC 
region, which was possibly due to reduced interactions 
between ILCs and myeloid cells and between myeloid 
and myeloid cells in the latter region (Fig. 7a, b).

Because of the high degree of communication 
between myeloid cells, we further visualised cellular 
communications between myeloid subpopulations. By 
comparing the overall information flow between the 
PA and AC, we identified 23 signalling pathways that 
were enriched in either the AC or PA, including a few 
other pathways were equally enriched in both regions 
(Fig.  7c). Notably, some pathways enriched in the 
AC have been implicated in the pathogenesis of ath-
erosclerosis. For example, previous data showed that 
ANGPTL4 was the most upregulated gene in foamy 
macrophages and that its deletion in haematopoietic 
cells led to a larger necrotic core and increased mac-
rophage apoptosis [27]. We further demonstrated at 
the single-cell level that ANGPTL4-dependent signal-
ling was sent from SPP1+ foamy macrophages to all 
macrophage subpopulations and that the signalling 
predominantly involved ANGPTL4–SDC2 interac-
tions, among all known ligand-receptor pairs (Fig.  7d, 
e). We also performed a detailed analysis of changes in 
signalling-receptor levels for all important pathways. 
Some pathways were occurred active in AC cells, such 
as the ncWNT pathway that targets pro-fibrotic mac-
rophages (Fig.  7f ). In addition, VEGF signalling only 

targeted non-classical monocytes and SPP1+ foamy 
macrophages in AC (Fig. 7f ). Some pathways were lim-
ited to cells in the PA, such as the CALCR signalling 
pathway that targets pDCs and resident macrophages, 
and the PROS signalling pathway that targets cDC2s 
and multiple macrophages (Fig.  7f ). Some of the 
remaining pathways were found to vary with anatomi-
cal location. For example, IL1 signalling mainly targeted 
cDC2s and classical monocytes in the PA, whereas it 
only targeted cDC2s in the in AC (Fig. 7f ). In addition, 
VISFATIN signalling only targeted monocytes in the in 
PA, whereas it only targeted SPP1+ foamy macrophages 
in the AC (Fig. 7f ).

Finally, for validation purposes, we correlated eight 
major immune subtype-specific signatures using a larger 
patient cohort containing 223 samples from carotid 
plaques and peripheral blood mononuclear cells [28]. 
Based on the immune scores, these patients were sub-
sequently divided into three groups, with blood being 
dominated by lymphocytes and plaques being domi-
nated by macrophages and mast cells, which could be 
further divided into immune-activated and inactivated 
subgroups (Additional file  7: Figure S7a). Consistent 
with these observations, immune-related pathways 
were also upregulated in immune-activated plaques 
(Additional file 7: Figure S7b). However, survival analy-
sis revealed no significant difference in the incidence 
of ischemic events after endarterectomy between the 
two groups, suggesting that further validation may 
be required (Additional file  7: Figure S7c). Then, we 
assessed the risk ratio for each macrophage subpopula-
tion and patient population, as macrophages represent 
the main type of immune cells that infiltrate plaques. 
The results showed that TREM2+ foamy macrophage 
levels correlated with a better disease prognosis (Fig. 7g). 
Specifically, a higher abundance of SPP1+ foamy mac-
rophages were significantly associated with a worse 
prognosis, which may be related to the dysfunction of 
these cells (Fig.  7g). Furthermore, MuSiC and Scaden, 
based on different deconvolution principles, also showed 
consistent results, further validating the important role 

Fig. 7  Cell–cell communications and prognostic analysis of major immune cell populations, especially macrophage subsets. a Circle plot showing 
the number of interactions between major immune cell types. Blue lines indicate that the displayed communication is decreased in AC, whereas 
red lines indicate that the displayed communication is increased in AC compared with PA. The thickness of the line is proportional to the number 
of unique ligand-receptor interactions, with loops representing autocrine circuits. b A detailed view of ligand and cognate receptor interaction for 
major immune cell types in the AC group. c Significant signaling pathways ranked based on differences in the overall information flow within the 
inferred networks between the PA and AC groups. Red, top pathways enriched in PA; black, equally enriched in PA and AC; green, enriched in AC. d 
The inferred ANGPTL signaling networks. Edge width represents the communication probability. e Relative contribution of each ligand-receptor pair 
to the overall communication network of ANGPTL signaling pathway. f Comparison of incoming signaling patterns of cells between the PA and AC 
groups. The colour is proportional to the contribution score computed from pattern recognition analysis. A higher score implies that the signaling 
pathway is more enriched in the corresponding cell group. g The correlation between estimated subpopulations and ischemic event (IE)–free 
survival in patients undergoing endarterectomy (n = 125). P-value was evaluated by the Cox proportional hazards model with 95% CI. P ≤ 0.05 were 
considered statistically significant in prognosis, whereas p > 0.05 and ≤ 0.1 were considered marginally significant in prognosis and represented as + 

(See figure on next page.)
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of SPP1+ foamy macrophages in poor prognosis in ather-
osclerosis (Additional file 7: Figure S7d). In conclusion, 
clinical models for the stratification, survival prediction, 
and therapeutic evaluation of the immune microenvi-
ronment in patients with atherosclerosis are currently 

lacking [6]. In view of future anti-inflammatory thera-
pies that specifically target plaques, it is imperative to 
establish reliable clinical models based on the interpre-
tation of the plaque immune microenvironment enabled 
by single-cell sequencing.

Fig. 7  (See legend on previous page.)
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Discussion
The uncertain and even contradictory results of the previ-
ous extensive anti-inflammatory treatments necessitates 
a more detailed characterisation of the complex immune 
microenvironment of atherosclerotic lesions and, thus, 
of locally targeted immunotherapies for plaques [2]. In 
this study, by integrating three human scRNA-seq data-
sets and using state-of-the-art analysis tools to overcome 
the limitations of a single study, we demonstrated that 
the atherosclerosis microenvironment is in fact more 
complex and heterogeneous than previously reported [7, 
8]. Briefly, we analysed 44,120 cells from 17 human ath-
erosclerosis samples and identified 28 different immune 
cell populations. Among these, we describe the func-
tional properties and potential regulatory relationships 
of several cell subpopulations that have not been previ-
ously reported in similar studies, with an emphasis on 
TREM2- SPP1+ foamy macrophages (Fig. 8). In addition, 
a landscape of cellular metabolisms and communications 
was constructed within the single-cell resolution, which 
will greatly contribute to the development of personal-
ised diagnosis and treatment approaches.

Analysis of the integrated data revealed several previ-
ously uncharacterised T cell subsets. CD8-C3-IFI44L 
T cells expressed various interferon-stimulated genes, 
and interferon-response and virus-related pathways 
were enriched in these cells, suggesting that they served 
a proinflammatory role in plaques. Consistent with this 
possibility, type-I interferons within plaques can worsen 
atherogenesis [29]. Notably, previous data showed a 
potential causal relationship between viral infections 
and cardiovascular diseases [30]. A study by Chowdhury 

et  al. further demonstrated the presence of numerous 
activated CD8+ T cells in plaques, which coincided with 
disease progression, and revealed that these cells were 
highly reactive to various viral antigens, including those 
from influenza, cytomegalovirus, EBV, and even SARS-
CoV-2, suggesting that activation of these antigens by 
T cells could trigger a proinflammatory and soluble cell 
cascade, which in turn could increase mechanical stress 
and the size of the necrotic core in plaques [31]. Our 
current findings and these previous data help consoli-
date evidence for a potential causal relationship between 
viral infection and atherosclerosis, and further identify a 
potential cell population that may play an important role 
during the course of a viral response. In addition, these 
findings may highlight a potential candidate cell popula-
tion for preventing and treating cardiovascular complica-
tions caused by various virus-related vaccines, including 
vaccines against SARS-CoV-2.

Fernandez et  al. previously showed that T cells were 
more activated in the plaques of asymptomatic patients, 
whereas more exhausted T cells expressing PD-1 were 
found in the plaques of symptomatic patients [32]. Given 
that T cell activation exacerbates the progression of 
atherosclerosis, an urgent concern is that immunosup-
pressants such as PD-1 may have unanticipated effects 
in patients with underlying cardiovascular disease [33]. 
In contrast to their findings, we did not detect a clear 
exhausted phenotype in CD8+ T cells. However, we 
identified a population of cells expressing cell prolifera-
tion-, cytotoxicity-, and exhaustion-related genes, with 
a preference for distribution in the AC. CD8+ T cell 
exhaustion is currently a major obstacle to anti-tumour 

Fig. 8  A model of the complex and heterogeneous immune microenvironment of atherosclerotic lesions
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immunotherapies, and in-depth studies of these cells 
in cancer have defined a four-stage developmental 
framework: Texprog1 (quiescent), Texprog2 (proliferative), 
Texint (moderately cytotoxic), and Texterm (terminally 
exhausted), and PD-1 pathway blockade has been shown 
to preferentially amplify Texprog2 and Texint subpopula-
tions [34]. Therefore, in conjunction with the results of 
that study, we believe that the group of cells in our study 
is more likely to resemble Texprog2 cells or Texprog2 cells 
just before transitioning to Texterm cells. Therefore, it is 
worth mentioning that the exhausted T cells were pre-
viously described as a relatively homogenous popula-
tion in plaques were possibly highly heterogeneous and 
displayed at least two different phenotypes, i.e., Texprog2 
and Texterm. It was also demonstrated that this activation-
to-exhaustion transition and the clonal expansion of cells 
with both phenotypes is a continuous and gradual pro-
cess under long-term inflammatory stimulation. How-
ever, the simultaneous presence of these subsets has not 
been observed in a single study of plaques to date, so 
we cannot help but question whether the different Tex 
phenotypes correlate with atherosclerosis severity. Fur-
thermore, given the paradoxical nature of anti-cancer 
immunotherapy and autoimmune diseases, the stage 
where using immunosuppressants (such as PD-1) will 
minimise unnecessary cardiovascular toxicity in patients 
with cardiovascular diseases remains to be determined.

Link with Chowdhury et  al.’s studies, we found that 
CD8-C5-GZMB may correspond to CD8 CTL Tem2, 
and CD8-C4-GZMK may correspond to CD8 CTL Tem1 
[31]. Simultaneously, they also indicated that CD8 CTL 
Tem2 were most abundant in the complex plaque phe-
notype characterised by rupture, erosion, or thrombosis 
and least abundant in the calcified plaque phenotype, 
which is consistent with our Ro/e analysis. Notably, pre-
vious studies have also reported that KLRG1+ T effec-
tor cells may have developmental plasticity and that 
CX3CR1+ T effector cells are primarily a circulatory and 
vascular patrolling population [35–37]. In summary, inte-
grating pseudotime analyses, cytoTRACE analyses, and 
migration molecule expression patterns, we revealed the 
possibility that more cytotoxic CD8+ T cells circulating 
in peripheral blood can home to lesions and differentiate 
with tissue-resident CD8+ T cells into less cytotoxic and 
more exhausted cells stimulated by a long-term chronic 
low-grade inflammatory plaque environment. Fur-
ther detailed analysis of the immune dynamics of T cell 
development in atherosclerosis and the heterogeneity of 
exhausted T cells is needed in the future.

In this study, partially activated CD4+ T cells (CD4-C4-
GAMA cells) showed high expression levels of cytokines 
and cytotoxic molecules, but lacked CD28 expression, 
suggesting that these cells may be CD4+ CD28null T cells 

previously identified in peripheral blood and plaques [16, 
38]. Previous analyses of these cells have supported con-
sensus views that a higher proportion of these cells are 
present in the peripheral blood of patients with acute 
coronary syndrome and that a significant positive cor-
relation exist between their frequency and the num-
ber of cardiovascular events in patients with advanced 
atherosclerosis [39]. However, the results of one study 
revealed a positive association between the frequency of 
CD4+ CD28null T cells and the first cardiovascular event 
in patients with diabetes, but without overt CVD [40]. 
In another population-based case–control cohort study, 
an increased frequency of these cells was associated with 
fewer first-time incidents of cardiovascular events [41].

These conflicting conclusions prompted us to con-
duct further research on CD4+ CD28null T cells. Surpris-
ingly, distinct differentiation fates were observed within 
these cells in this study, demonstrating that they do not 
comprise a homogeneous population. Cells with one 
differentiation fate in particular exhibited strong proin-
flammatory properties and significantly enriched lipids 
and atherosclerotic pathways. Apart from the pro-ath-
erosclerotic features described above, these cells were 
also associated with the rate of post-endarterectomy 
ischemic events in patients with atherosclerosis. In 
summary, we believe that the above contradictory phe-
nomena may be partly due to the fact that the homog-
enous CD4+ CD28null T cells previously considered were 
essentially a relatively heterogeneous population, which 
confounds the interpretation of the variability between 
studies. Further in-depth studies based on the clarifica-
tion of heterogeneity will help clarify the potential sig-
nificance of these cells more accurately in cardiovascular 
disease.

Most notably, our findings paint a more refined and 
comprehensive picture of the immune landscape of mye-
loid cells, when compared to previous studies [7, 8]. For 
instance, at the single-cell level, we identified three well-
defined monocyte subpopulations in human atheroscle-
rotic plaques and analysed their functional heterogeneity. 
More importantly, we identified a previously unreported 
cell subpopulation. The high SPP1 expression and low 
TREM2 expression suggest that this group of cells does 
not belong to the previously described TREM2+ foamy 
macrophages [8, 18, 19]. The lower lysosome, cholesterol 
esterification, and cholesterol efflux scores, and higher 
endoplasmic reticulum stress, apoptosis, and autophagy 
scores (versus those of TREM2+ foamy macrophages) 
suggest that these cells may be dysfunctional foamy 
macrophages.

Comprehensive metabolic analysis at single-cell reso-
lution revealed greater metabolic activities in myeloid 
cells, but also revealed unique metabolic heterogeneity 
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in SPP1+ foamy macrophages, such as enhanced activ-
ity of glycolysis, pentose phosphate pathways, fatty acid 
biosynthesis, and phenylalanine- and tyrosine-metabo-
lism pathways. Interestingly, in previous study, targeted 
metabolomics was used to demonstrate that high-risk 
carotid artery plaques obtained by endarterectomy exhib-
ited elevated glycolysis, increased amino acid utilisa-
tion, and decreased fatty acid oxidation [42]. In addition, 
accumulation of the glucose analogue 18F-fluoro-2-de-
oxy-d-glucose (18F-FDG) in lesions was associated with 
macrophage-rich lesions that also showed increased 
glycolysis and pentose phosphate-pathway levels [43]. 
Based on these observations, 18F-FDG levels were meas-
ured in lesions by positron-emission tomography, which 
revealed progressive inflammatory lesions in humans 
and showed that increased 18F-FDG uptake correlated 
with an increased risk of cardiovascular disease [24, 44]. 
Unfortunately, the lack of methods for isolating cells 
and the subsequent analysis of macrophage metabo-
lomes has hampered this research area. In this study, we 
drew upon the high-resolution capacity of scRNA-seq to 
resolve, for the first time, the metabolic heterogeneity of 
macrophages in plaques and revealed that SPP1+ foamy 
macrophages may correspond to the pathogenic cells that 
take up 18F-FDG in lesions, which have previously been 
identified at bulk levels.

Further studies showed that the increased glycolytic 
activity of SPP1+ foamy macrophages may be related to 
their location in the hypoxic region of the AC rather than 
Waberg effect [24]. Consistent with this phenomenon, 
SPP1+ foamy macrophages also exhibited upregulation 
of angiogenic pathways in response to hypoxic environ-
ments. The results of in vitro studies have confirmed that 
exposing macrophages to an anoxic environment can 
impair MerTK-mediated efferocytosis, which may be 
one of the causes of SPP1+ foamy macrophage dysfunc-
tion [45]. The interaction between mast cells co-located 
in the AC hypoxic region and SPP1+ foamy macrophages 
through CSF1–SIRPA pathways observed in this study 
may be another cause of the induced phenotype. Previous 
findings have shown that locally produced CSF1 derived 
from smooth muscle and endothelial cells appears to be 
the main driver of atherosclerosis, but the contribution of 
other cells, such as neutrophils, mast cells, and lympho-
cytes, to CSF1-dependent lesion growth requires further 
investigation [46].

Cell-communication analysis also revealed that dif-
ferent anatomical environments might shape differ-
ent signal-communication patterns, such as ANGPTL, 
VEGF, and VISFATIN signals specific to SPP1+ foamy 
macrophages in the AC, some of which have been impli-
cated in plaque progression [27, 47]. In addition, the 
presence of SPP1+ foamy macrophage signalling and 

the abundance of these cell subsets are significantly 
associated with the symptoms of disease progression in 
patients with atherosclerosis, including plaque ruptur-
ing, bleeding, and the recurrence of ischemic events after 
surgery. Therefore, we hypothesised that SPP1+ foamy 
macrophages may serve as key biomarkers of disease 
progression and targets for plaques in anti-inflammatory 
therapies.

This study had the following limitations: (1) Due to 
sample limitations, we only revealed a general disease-
related immune heterogeneity without considering the 
heterogeneity of the diversity of risk factors, degree of 
disease progression, difference in vascular beds, and vari-
ability in treatment methods. (2) Global gene expression 
is merely an indirect method of assessing metabolism, 
and a thorough understanding of metabolism necessi-
tates an understanding of metabolite concentrations and 
fluxes. (3) The loss of spatial information during cell dis-
sociation leads to inadequate prediction of cell commu-
nication. Future single-cell multiomics studies with more 
elaborately designed experiments will further elucidate 
the pathogenesis of atherosclerosis.

Conclusions
In conclusion, we further revealed the immune landscape 
in atherosclerotic plaques by integrating multiple data-
sets in an unbiased manner. These findings may provide 
insights into the function and regulation of atherosclero-
sis pathogenesis and progression, and should prove valu-
able in future immunotherapeutic strategies specifically 
targeting plaques.

Methods
Data acquisition
The scRNA-seq datasets were obtained from GSE131778 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​
GSE13​1778) [48], GSE155512 (https://​www.​ncbi.​nlm.​
nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE15​5512) [49] and 
GSE159677 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​
acc.​cgi?​acc=​GSE15​9677) [50] in the Gene Expression 
Omnibus (GEO) database. Bulk mRNA arrays were also 
downloaded from GSE21545 (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/​query/​acc.​cgi?​acc=​GSE21​545) [28], GSE41571 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​
GSE41​571) [51], GSE43292 (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/​query/​acc.​cgi?​acc=​GSE43​292) [52], GSE100927 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​
GSE10​0927) [53], and GSE163154 (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE16​3154) [20].

scRNA‑seq data preprocessing and analysis
scRNA-seq datasets of human atherosclerotic plaques 
were downloaded from GEO database and re-analysed 
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using Cellranger (v6.1.2) [54]. The raw gene-expression 
matrix was transformed into a Seurat object using the 
Seurat package (v4.0.5) of R (v4.1.1) [55]. In order to 
exclude low-quality cells, cells with greater than 25,000 
unique molecular identifiers (UMIs) were removed and 
only expressing between 200 and 4500 genes and genes 
expressed in at least 3 cells were used for further analy-
sis. The doublet cells were further identified and removed 
from the remaining cells by R package DoubletFinder 
(v2.0.3) [56]. After the above quality control, the inte-
gration workflow recommended by Seurat 4 (v4.0.5) is 
followed [57]. We identified the “anchors” in the differ-
ent batches to construct a reference. First, we used the 
“SplitObject” function to divide the combined object 
into a list. Before finding the anchors, log-normalisation 
was performed, and 2000 highly variable genes (HGVs) 
were identified using the “vst” method. Next, we used the 
“FindIntegrationAnchors” function with default parame-
ters to identify the anchors. The “IntegrateData” function, 
which returns a Seurat object with a batch-corrected 
expression matrix for all cells, was used to integrate the 
batches using the anchors. All of these cells were subse-
quently dimensionally reduced based on HGVs and top 
20 principal components estimated by an Elbow plot. 
The data clustering was done using the graph-based clus-
tering approach implemented in the Seurat package’s 
“FindNeighbor” function with the top 20 principal com-
ponents and “FindClusters” function with the “resolu-
tion” parameter set to 0.5. The “RunTSNE” function was 
used for the visualisation plot with the two-dimensional 
t-distributed stochastic neighbour embedding (t-SNE) 
model, setting “dims” to 1:30. And known cell lineages 
were assigned to major cell clusters projected in the 
t-SNE model using well-known marker genes. Cell clus-
ters were then manually assigned to the major cell types 
in accordance with these established markers. Any clus-
ter that had multiple markers for two different cell types 
was manually eliminated as a doublet. The “FindAllMark-
ers” function with default parameters was used to list the 
markers of all cell populations. For subclustering of the 
major cell populations (CD45+ cells, myeloid cells and T/
NK cells), the same procedure of finding HGVs, remov-
ing batch effects, dimensionality reduction, and cluster-
ing were repeated. Any cluster with an extraordinarily 
high number of detected genes or UMI count was manu-
ally discarded as a doublet.

Tissue distribution of clusters
To quantify the tissue preference of each cluster, the 
observed to predicted cell number (Ro/e) ratio was cal-
culated for each cluster in different tissues [9]. The chi-
square test was used to determine the predicted cell 
numbers for each combination of cell clusters and tissues.

Assessing the heterogeneity of single‑cell populations
To examine the heterogeneity of main immune lineages 
in this study, ROGUE (v1.0), an entropy-based universal 
metric for assessing the purity of single-cell populations, 
was utilised with the default parameter settings for rec-
ommended pipelines [58]. As was reported by Liu et al., 
the ROGUE index has been adjusted to a range of 0 to 1. 
One denotes a perfectly pure subtype with no important 
genes, while zero denotes the population’s most hetero-
geneous condition.

Developmental trajectory inference
The Monocle2 algorithm was used to explore the dif-
ferentiation trajectories of the selected clusters [59]. 
The “subset” command of Seurat was used to separate 
the interesting cell clusters, and the “newCellDataSet” 
function of monocle2 was used to construct a CellData-
Set object with the “lowerDetectionLimit” parameter 
set to 0.5. The low-quality cells and genes were then fil-
tered using the “detectGenes” function and the “subset” 
function, respectively, with the “min_expr” parameter 
set to 0.1. This was done after computing size factors 
and estimating dispersions. The “differentialGeneTest” 
function was used to find differentially expressed genes 
among clusters along the trajectory. The “reduceDimen-
sion” function used the “DDRTree” method to reduce 
the dimensions. The functions “plot cell trajectory,” 
“plot genes in pseudotime,” and “plot genes branched 
heatmap” were used for visualisation after cell order-
ing. CytoTRACE (v0.3.3) analysis [60], an unsupervised 
framework for predicting relative differentiation states 
from single-cell transcriptomes, was also performed 
using the default settings of recommended pipelines 
to supplement the trajectory analysis. The functions 
“plotCytoGenes” and “plotCytoTRACE” were used for 
visualisation.

SCENIC analysis
We used the Single-Cell Regulatory Network Inference 
and Clustering (SCENIC) approach to identify regu-
lons, modules of one TF, its potential targets, and their 
activities [21]. Briefly, the workflow starts from the 
count matrix depicting the gene abundances for all cells 
and consists of three stages. First, co-expression mod-
ules are inferred using a regression per-target approach 
(GRNBoost2). Next, the indirect targets are pruned 
from these modules using cis-regulatory motif discov-
ery (cisTarget). Lastly, the activity of these regulons is 
quantified via an enrichment score for the regulon’s tar-
get genes (AUCell) [61]. The SCENIC pipeline’s Python-
based computational analysis tool, pySCENIC, was used 
in this study to analyse TF activity. Its command-line 
implementation, databases for cis-target (+ / − 10  kb 
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from hg19-tss-centred-10 kb-7species.mc9nr), TF motifs 
(motifs-v9-nr.hgnc-m0.001-o0.0), and command-line 
options were used. Additionally, we used all 1839 TFs 
with motifs available in the motif database as input. 
Finally, the “CalcRSS” function was applied to identify 
the regulon with a high Regulon Specificity Score (RSS), 
and cell-type-specific regulon was obtained by RSS order 
[62].

Cell–cell‑communication analysis
NicheNet is an effective method for predicting the ligands 
triggering target cell transcriptome alterations [23]. We 
used NicheNet, which integrated gene expression data 
of cells from our Seurat object with a database of prior 
knowledge on signaling and gene regulatory networks, to 
discover potential ligands that may be responsible for the 
distinct phenotype of SPP1+ macrophages. We initially 
determined which genes were differentially expressed 
in SPP1+ macrophages, and we used the set of genes of 
interest to be those with log2FC > 0.5 and adjusted P-val-
ues < 0.05. All expressed genes in SPP1+ macrophages 
were used as a background of genes. When a gene has 
non-zero values in at least 10% of the cells of a cell type, 
it is deemed to be expressed. Additionally, SPP1+ mac-
rophages were used to characterise sender cells and mye-
loid subpopulations to define receiver cells. The Pearson 
correlation coefficient between the ligand’s target predic-
tions and the observed transcriptional response was used 
to rank the ligands expressed by one or more sender cells. 
Based on the NicheNet prebuilt prior model, which uses 
many curated ligand-receptor and signaling databases to 
infer interactions between sender ligands, receiver recep-
tors, and downstream target genes, receiver cell receptors 
were deduced. CellPhoneDB was used to infer cell–
cell interactions between SPP1+ macrophages and the 
remaining myeloid populations using the log-normalised 
expression data [63]. The parameters “iterations,” “thresh-
old,” and “p-value” were set to 1000, 0.1, and 0.05, respec-
tively. Based on the expression of ligand-receptor pairs, 
it was possible to determine the strength of the potential 
interaction between two cell groups. Based on a permu-
tation test, the enriched ligand-receptor interactions 
between two cell groups were calculated. To comprehen-
sively describe the cell–cell interactions, CellChat (v1.1.3) 
with the default settings of recommended pipelines was 
also used to infer the ligand-receptor pairs among all cell 
populations identified in this study [26]. CellChat makes 
predictions about the key signaling inputs and outputs 
for cells and how those cells and signals interact together 
to perform activities. CellChat uses diverse learning and 
quantitative contrasts to categorise signaling pathways 
and identify conserved and context-specific pathways. 
CellChat uses a law of mass action model to determine 

the communication likelihood of a ligand-receptor pair 
between two cell types. This model depends on the con-
centration of the ligand and receptor, any known cofac-
tor concentrations, and the number of cells in each cell 
type. It is significant if the communication probability 
is statistically higher between these known cell types 
than between cell groupings that have been randomly 
permuted.

Assessing the scores of different phenotypes
The signature genes of different phenotypes (cholesterol 
efflux, lysosome, endoplasmic reticulum stress, angio-
genesis, phagocytosis, cholesterol esterification, apop-
tosis, autophagy, and HIF1A signal) were collected from 
the Molecular Signatures Database (MSigDB) [64]. The 
M1/M2 phenotype-related signature genes were obtained 
from Azizi, Elham et al. [65]. Genes associated with “clas-
sically activated” (M1) macrophages include IL23, TNF, 
CXCL9, CXCL10, CXCL11, CD86, IL1A, IL1B, IL6, CCL5, 
IRF5, IRF1, CD40, IDO1, KYNU, CCR7, while IL4R, 
CCL4, CCL13, CCL20, CCL17, CCL18, CCL22, CCL24, 
LYVE1, VEGFA, VEGFB, VEGFC, VEGFD, EGF, CTSA, 
CTSB, CTSC, CTSD, TGFB1, TGFB2, TGFB3, MMP14, 
MMP19, MMP9, CLEC7A, WNT7B, FASL, TNFSF12, 
TNFSF8, CD276, VTCN1, MSR1, FN1, and IRF4 were 
used to define the signature of “alternatively activated” 
(M2) macrophages. And then, the AUCell algorithm with 
the default settings is used to infer phenotype-related 
score for selected cell populations with the AUCell pack-
age (v1.16.0) [21].

Functional‑enrichment analysis
To explore the functions of different cell types, the Fin-
dAllMarkers function was used to list the markers of all 
cell populations. Gene set enrichment analysis (GSEA) 
was used to assess the pathway-enrichment status [66]. 
To investigate the function of TREM2, related genes in 
different cell types were studied separately and the 30 
genes with the highest GSEA scores were subjected to 
Gene Ontology (GO) function-annotation analysis. All 
enrichment analyses were performed using the cluster-
Profiler package (v4.2.2) [67]. Gene set variation analy-
sis (GSVA) was used to analyse functional differences in 
the corresponding cell populations at different anatomi-
cal locations. Pathways with high differences in activity 
scores were selected using the limma package (v3.50.0) 
[68].

Evaluation of metabolic activity at single‑cell resolution
The metabolic activities of individual cells within each 
cell population were visualised and quantified using 
scMetabolism (v0.2.1), a recently established compu-
tational pipeline for quantifying metabolic activities in 
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single cells [69]. The software uses a single-cell matrix file 
and the vision algorithm to calculate the activity score 
of each cell in each metabolic pathway. KEGG pathways 
and Reactome entries were pre-populated in the scMe-
tabolism software. The altered data set was homogene-
ously transformed before being used to analyse metabolic 
activity. The Vision algorithm also determined the meta-
bolic score. Finally, different groups’ metabolic activity of 
various pathways was assessed to identify pathways with 
significant differences. The KEGG metabolic gene sets 
were used for analysis in this study, with the method set 
to “VISION.” Then, “DotPlot.metabolism” and “BoxPlot.
metabolism” functions were employed for visualisation.

Bulk dataset preprocessing and analysis
The raw data were downloaded from the GEO data-
base. It contains details on the platform, samples, and 
GSE records. The obtained raw gene-expression values 
were log2-transformed. According to the annotation 
information of the platform’s normalised data, probes 
were transformed into gene symbols. Moreover, the 
probes matching multiple genes were removed from 
these datasets. The final expression value was deter-
mined by averaging the gene expression values obtained 
from multiple probe measurements. Furthermore, the 
boxplot was used to evaluate the result of the data pre-
processing. The heat maps and principal components 
plots were drawn to illustrate correlations between the 
different samples. Then, the limma package was used 
to identify differentially expressed genes, and the clus-
terProfiler package was used to perform all enrichment 
analyse [67, 68].

Correlation and survival analyses with the gene expression 
signatures
To further investigate the clinical significance of iden-
tifying signature genes in this study, the expression of 
each gene signature was evaluated using single-sample 
gene set enrichment analysis (ssGSEA) [70]. CIBER-
SORTx was also used to construct a reference matrix 
to deconvolute the immune cell abundances of mac-
rophage subpopulations in each patient [71]. In addi-
tion, CIBERSORTx results were verified by MuSiC and 
Scaden algorithms using the default settings of rec-
ommended pipelines based on different frameworks 
[72, 73]. To assess the prognostic values of the gene-
expression signatures and macrophage subsets, the 
significance of the rate of ischemic events post-endar-
terectomy based on the ssGSEA score, MuSiC score, 
and Scaden score (binary: high vs. low) was evaluated 
by the two-sided log-rank test in the Survival pack-
age. And the optimum cut-off point for each score 

was determined based on the maximally selected log-
rank statistics using the “surv_cutpoint” function of 
the “survminer” R package. In addition, hazard ratios 
(HRs) and adjusted P-values were obtained using age-
adjusted Cox proportional risk models implemented in 
the R survival package.

Statistical analysis
All statistical analyses were performed using R software 
(v4.1.1). All images were generated using R Studio. Stu-
dent’s t test, Wilcoxon rank sum test, and Kruskal–Wal-
lis test were used where indicated. P-values of > 0.05 
were not considered statistically significant and are 
represented as n.s., and p-values of ≤ 0.05 are repre-
sented as follows: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, and 
****p ≤ 0.0001. P-values were also adjusted based on the 
false discovery rate (FDR) for multiple-hypothesis test-
ing in GSEA analysis.
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Additional file 1: Figure S1. Quality of data before and after integration 
and heterogeneity of major cell subpopulations. (a)Scatter plot showing 
comparison of data quality before (left) and after (right) integration. (b)
t-SNE plot showing immune cells and non-immune cells from atheroscle-
rosis lesions, color-coded by cell types. (c)Feature plots showing canonical 
marker genes, color-coded by expression levels. (d)t-SNE plots showing 
immune cells from atherosclerosis lesions, color-coded by the GSE ID 
(left) and Sample ID (right). (e)Heatmap showing the correlation between 
major immune cell populations. (f )Radar plot showing enrichment of GO 
term of B and Plasma cells.

Additional file 2: Figure S2. Expression of selected marker genes and 
functional annotation of selected cell populations. (a)t-SNE plots showing 
T and ILCs from atherosclerosis lesions, color-coded by the GSE ID (left) 
and Sample ID (right). (b)Violin plots showing the expression of selected 
marker genes for each cell type. (c)The GSEA hallmark pathways enriched 
in the CD8-C3-IFI44L subset. NES, normalized enrichment score. (d)
Volcano plot showing differential gene expression for CD7-C1-KLRC1 
and CD7-C2-FCGR3A subsets. Genes labeled have log-fold change > 1, Δ 
Percentage Difference > 30% and adjusted P-value from Wilcoxon rank 
sum test <0.05. (e)The GSEA KEGG pathways of the CD7-C1-KLRC1 and 
CD7-C2-FCGR3A populations.
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Additional file 3: Figure S3. Trajectory analysis of CD8+ T populations. (a)
Boxplot showing the differentiation potential of CD4+ T subpopulations. 
CytoTRACE values are positively correlated with differentiation potential. 
(b)Boxplots showing the pseudotime and differentiation potential of 
CD8+ T subpopulations. (c)Boxplots showing the functional status score of 
CD8+ T. (d)Dotplot showing the expression of genes associated with the 
migration of CD8+ T subpopulations.

Additional file 4: Figure S4. Expression of selected marker genes and 
functional annotation of selected cell populations. (a)t-SNE plots showing 
myeloid cells from atherosclerosis lesions, color-coded by the GSE ID (left) 
and Sample ID (right). (b)Dotplot showing the expression of selected 
marker genes for dendritic cells and monocyte cells. DC, dendritic cells; 
Mono, monocyte cells. (c)Bar chart showing enrichment of GO term of 
DC-C1-CLEC9A and DC-C2-CD1C. (d)Heatmap showing the signatures of 
“mregDC” in different DC subsets. (e)Violin plots of Mac-C6-TREM2 and 
Mac-C7-SPP1 showing expression of myeloid lineage transcription factors 
SPI1 and CEBPB and smooth muscle cell lineage transcription factors 
MYOCD and MRTFA. Mac, macrophage. (f )Boxplots showing the M1 and 
M2 signatures across all macrophage subsets.

Additional file 5: Figure S5. Expression of TREM2 and characterization 
of SPPI+ Mac. (a)Violin plots showing the expression of TREM2 in Mac-
C5-CD9 and Mac-C6-TREM2. (b)Boxplots showing the expression of TREM2 
in atherosclerotic lesions (n = 29) and control arteries (n = 12) without 
atherosclerotic lesions (left) and paired early (n = 32) and advanced (n = 
32) lesions (right). ****, P ≤ 0.0001. Wilcoxon rank sum test (left) and paired 
Student’s t test (right). (c)Summary of the correlation between 4 pathways 
with TREM2; Spearman Rho was shown in each square. (d)Boxplots show-
ing phenotypic score of TREM2+ Mac and SPP1+ Mac. ****, P ≤ 0.0001. 
Wilcoxon rank sum test. (e)To establish a relationship between SPP1+ Mac 
and clinical disease, the enrichment of signature genes was tested on bulk 
data of macrophage-rich regions of stable (n = 5) and ruptured (n = 6) 
human plaques (top). Heatmap showing the leading genes of the SPP1+ 
Mac (bottom). (f )The developmental trajectory of monocyte and mac-
rophage subsets, colored-coded by the associated cell subpopulations. 
(g)Boxplots showing the expression of CSF1 (left) and infiltrating score 
of CSF1+ mast cells (right) in atherosclerotic lesions (n = 29) and control 
arteries (n = 12) without atherosclerotic lesions. *, P ≤ 0.05. Wilcoxon rank 
sum test (left) and Student’s t test (right).

Additional file 6: Figure S6. Metabolic characteristics of immune cell 
populations. (a)Boxplot showing the metabolic pathway activity of the 
major immune cell populations in PA (top) and AC (bottom). (b)Scatter 
plots comparing metabolic pathway activities between the PA and AC 
regions for myeloid subsets shared by the two regions. Spearman rank 
test. (c)t-SNE plots showing the enrichment score of HIF1α signal pathway. 
(d)Volcano plot showing the differentially metabolic pathways between 
ruptured and stable human plaques of bulk data GSE41571. (e)Enrichr 
analysis showing potential drug candidates targeting MIF or FBP1, sorted 
by combined score. Only the top 10 terms with P < 0.05 are shown.

Additional file 7: Figure S7. Patient immune infiltration stratification 
and prognostic analysis. (a)Heatmap showing patients were clustered 
into three groups, representing those with immune-activated (cluster 2 
and 3) and immune-inactivated (cluster 1). (b)Immune-related pathways 
enriched in the plaque immune-activated cluster. (c)Kaplan–Maier survival 
curve of the ischemic event (IE)–free survival in patients undergoing 
endarterectomy stratified according to immune-activated plaque vs 
immune-inactivated plaque. Two-sided log-rank test. (d)Kaplan–Maier 
survival curve of the ischemic event (IE)–free survival in patients undergo-
ing endarterectomy, stratified high and low according to the proportions 
of SPP1+ foamy macrophages.
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