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Abstract 

Background  Among the major challenges in next-generation sequencing experiments are exploratory data analysis, 
interpreting trends, identifying potential targets/candidates, and visualizing the results clearly and intuitively. These 
hurdles are further heightened for researchers who are not experienced in writing computer code since most avail-
able analysis tools require programming skills. Even for proficient computational biologists, an efficient and replicable 
system is warranted to generate standardized results.

Results  We have developed RNAlysis, a modular Python-based analysis software for RNA sequencing data. RNAlysis 
allows users to build customized analysis pipelines suiting their specific research questions, going all the way from 
raw FASTQ files (adapter trimming, alignment, and feature counting), through exploratory data analysis and data 
visualization, clustering analysis, and gene set enrichment analysis. RNAlysis provides a friendly graphical user inter-
face, allowing researchers to analyze data without writing code. We demonstrate the use of RNAlysis by analyzing RNA 
sequencing data from different studies using C. elegans nematodes. We note that the software applies equally to data 
obtained from any organism with an existing reference genome.

Conclusions  RNAlysis is suitable for investigating various biological questions, allowing researchers to more accu-
rately and reproducibly run comprehensive bioinformatic analyses. It functions as a gateway into RNA sequencing 
analysis for less computer-savvy researchers, but can also help experienced bioinformaticians make their analyses 
more robust and efficient, as it offers diverse tools, scalability, automation, and standardization between analyses.

Keywords  RNA sequencing, Clustering analysis, Gene set enrichment analysis, Data visualization, Pipeline, Graphical 
interface, Differential expression, Computational analysis

Background
RNA sequencing continues to grow in popularity as an 
investigative tool for biologists. A vast variety of RNA 
sequencing analysis methods allow researchers to com-
pare gene expression levels between different biologi-
cal specimens or experimental conditions, cluster genes 
based on their expression patterns, and characterize 
expression changes in genes involved in specific biologi-
cal functions and pathways.

Specific tools exist to perform the tasks described 
above (see the Discussion section and Additional File 1: 
Table  S1 for a detailed comparison of available tools). 
However, most analysis tools can only perform a subset of 
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these tasks. Any out-of-the-ordinary research questions 
require researchers to write customized analysis scripts, 
which may not be easy to share or replicate. Moreover, 
many of the existing tools require users to be familiar 
with reading and writing code, making them usable only 
by researchers experienced in computer programming.
RNAlysis offers a solution to these problems by (1) 

using a modular approach, allowing users to either ana-
lyze their data step-by-step, or construct reproducible 
analysis pipelines from individual functions; and (2) pro-
viding an intuitive and flexible graphical user interface 
(GUI), allowing users to answer a wide variety of bio-
logical questions, whether they are general or highly spe-
cific, and explore their data interactively without writing 
a single line of code. RNAlysis includes thorough docu-
mentation and step-by-step guided analyses, to help new 
users to learn the software quickly and acquire good data 
analysis practices (available online or as Additional File 2: 
Tutorial).

Implementation
RNAlysis was designed to perform three major tasks: (1) 
pre-processing and exploratory data analysis; (2) finding 
gene sets of interest through filtering, clustering, and set 
operations; (3) visualizing intersections between gene 
sets and performing enrichment analysis on those sets 
(Fig. 1).

Input
RNAlysis can interface with existing tools, such as Cut-
Adapt, kallisto, bowtie2, featureCounts, limma, and 
DESeq2 [1–8], to enable users to run basic adapter-trim-
ming, RNA sequencing quantification, read alignment, 
feature counting, and differential expression analysis 
through a graphical user interface. That is to say, users 
can begin their analysis with RNAlysis with sequencing 
data at any stage. Alternatively, users can load into RNAl-
ysis data tables that were generated elsewhere. RNAly-
sis has a tab interface, which allows users to examine 
and analyze multiple data tables in parallel, seamlessly 
switching between them.
RNAlysis can accept data from any organism. RNAly-

sis can analyze gene expression matrices (raw or nor-
malized), differential expression tables, or user-defined 
gene sets of interest. Moreover, RNAlysis accepts annota-
tions for user-defined attributes of genes. Since RNAly-
sis works with tabular data, RNAlysis is applicable to any 
type of data table.

Data validation and pre‑processing
First, RNAlysis allows users to validate their data by sum-
marizing and visualizing its patterns and distribution. 
For instance, users may compare the distribution of gene 

expression between samples through scatter plots and 
pair plots, or examine general trends in the data, as well 
as potential batch effects, via clustergram plots and PCA 
projections.

Moreover, RNAlysis allows users to pre-process their 
data by normalizing it through one of the various meth-
ods (such as median of ratios, relative log ratio, trimmed 
mean of M-values, and more) [3, 9–12], filtering out 
lowly-expressed genes, and eliminating rows with miss-
ing data from their tables.

Data filtering and clustering
After data pre-processing, users can filter their data 
tables according to a broad array of parameters, depend-
ing on the nature of their data and biological questions. 
These filtering functions can be applied in particular 
orders and combinations to suit the user’s specific needs. 
These functions include, among many others, filtering 
by statistical significance and/or the direction and mag-
nitude of fold change, filtering genomic features by their 
type, performing set operations between different data 
tables and gene sets (for instance — intersections, differ-
ences, majority vote intersections, and so on) between 
tables, etc.

One of the powerful features of RNAlysis is the ability 
to easily extract gene lists from set operations applied 
to the user’s tables and gene sets, and use these lists in 
downstream analyses. Users can do this by applying a 
pre-defined set operation (like intersection or difference) 
or by hand-picking subsets of interest through an inter-
active graphical platform.

Finally, RNAlysis allows users to cluster genes based 
on the similarity of their expression patterns. RNAly-
sis supports an extensive selection of clustering algo-
rithms, including distance-based clustering (K-Means, 
K-Medoids, Hierarchical clustering), density-based clus-
tering (HDBSCAN) [13], and ensemble-based clustering 
(a modified version of the CLICOM algorithm) [14].

Moreover, RNAlysis provides users with a wide array 
of distance metrics for clustering analysis. This includes 
the implementation of distance metrics that were spe-
cially developed for biological applications, such as time-
course gene expression data [15], and distance metrics 
that were empirically found to best suit transcriptomics 
analysis [16].

Modularity and building customized pipelines
Filtered data tables can be saved or loaded at any stage 
during the analysis. The operations performed on the 
data and their order will be automatically reflected in the 
output files’ names. Additionally, any operation applied to 
the data can be undone with a single click, and RNAlysis 
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displays the history of commands applied to each table in 
the order they were applied.

As mentioned earlier, users can “bundle” any of the 
functions RNAlysis offers into distinct Pipelines, which 
can then be applied in the same order and with the same 
parameters to any number of similar data tables. This 
helps users to save time and avoid mistakes and incon-
sistencies when analyzing a large number of datasets. 
Pipelines can also be exported and shared with other 

researchers, who can then use these Pipelines on any 
machine that installed RNAlysis. This feature makes anal-
ysis pipelines easier to report and share, increasing the 
reproducibility and transparency of bioinformatic results.

Enrichment analysis
After applying the analyses mentioned above to summa-
rize data tables down to gene sets of interest, users can 
carry out enrichment analysis for those gene sets. Gene 

Fig. 1  The workflow of RNAlysis. Top section: a typical analysis with RNAlysis can start at any stage from raw/trimmed FASTQ files, through more 
processed data tables such as count matrices, differential expression tables, or any form of tabular data. Middle section: data tables can be filtered, 
normalized, and transformed with a wide variety of functions, allowing users to clean up their data, fine-tune their analysis to their biological 
questions, or prepare the data for downstream analysis. RNAlysis also provides users with a broad assortment of customizable clustering methods to 
help recognize genes with similar expression patterns, and visualization methods to aid in data exploration. All of these functions can be arranged 
into customized Pipelines that can be applied to multiple tables in one click, or exported and shared with others. Bottom section: Once users 
have focused their data tables into gene sets of interest, or imported such gene sets from another source, they can use RNAlysis to visualize the 
intersections between different gene sets, extract lists of genes from any set operations applied to their gene sets and data tables, and perform 
enrichment analysis for their gene sets, using either public datasets such as GO and KEGG or customized, user-defined enrichment attributes
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set enrichment analysis is a collection of methods for 
identifying classes of genes, biological processes, or path-
ways that are over- or under-represented in a gene set of 
interest [17]. Enrichment analysis is highly prevalent in 
RNA sequencing analysis since it allows researchers to 
associate a differentially-expressed gene set with underly-
ing biological functions [18, 19].
RNAlysis supports multiple approaches and statistical 

methods for enrichment analysis, including classic gene 
set enrichment analysis, permutation tests [20], back-
ground-free enrichment analysis [21, 22], and enrich-
ment for ordinal or continuous variables.
RNAlysis can automatically retrieve enrichment analy-

sis annotations of all major model organisms from widely 
accepted databases such as Gene Ontology categories 
and KEGG pathways [23, 24]. However, unlike many 
other analysis pipelines, RNAlysis also accepts annota-
tions for user-defined attributes and groups (see Addi-
tional File 1: Table  S1). This allows users to tailor their 
analyses to their specific needs and biological questions.

Documentation and accessibility
While RNAlysis can be operated entirely within a graphi-
cal interface, all the functions and features RNAlysis 
offers can also be imported and used in standard Python 
scripts, allowing users with coding experience to further 
automate and customize their bioinformatic analyses. 
Pipelines that are generated with the graphical interface 
can be imported and used through the programmatic 
interface and vice versa, maximizing the reproducibility 
and shareability of analyses performed with RNAlysis.

Moreover, whenever RNAlysis integrates with exter-
nal tools and packages for tasks such as alignment or 
differential expression, RNAlysis will export the exact 
command line or R script used to produce the results, 
allowing all users to share the full details of their analysis.
RNAlysis includes extensive documentation to guide 

new and returning users. A user guide and a tutorial offer 
a bird’s eye view of the modules and features of RNAlysis, 
along with video demonstrations, usage examples, and 
recommended practices. A frequently asked questions 
page offers solutions to common questions and issues 
posed by users of RNAlysis. The remainder of the docu-
mentation provides a complete reference of the functions 
and features available in RNAlysis. Users can look up spe-
cific entries for a more thorough review of their theoreti-
cal background, use cases, and optional parameters.
RNAlysis can either be installed as a Python package 

on all standard operating systems, or downloaded as a 
stand-alone application, which does not require users to 
install any mandatory dependencies. This simplifies the 
acquisition process of RNAlysis, eliminating the initial 
barrier of entry for less computationally-oriented users.

The project is available as an open-source, public 
GitHub repository. Numerous test cases are also pro-
vided within the package, which are executed automati-
cally every time the source code is updated, ensuring 
that data analysis with RNAlysis remains consistent and 
reliable.
RNAlysis is powered by various open-source projects 

[15, 25–34] which are installed automatically and used 
when needed.

Results
We examined the ability of RNAlysis to facilitate analy-
ses of multiple different publicly available datasets [35–
38]. First, we analyzed time-series gene expression data, 
using clustering analyses to group genes based on their 
expression pattern. Then, we demonstrated the analysis 
of multiple RNA sequencing datasets from raw FASTQ 
files, showing the applications of analysis Pipelines and 
set operations between datasets. A step-by-step tuto-
rial of these analyses is available in the online RNAly-
sis documentation (also available as Additional File 2: 
Tutorial).

Analysis #1: Exploring gene expression patterns 
across the development of Caenorhabditis elegans
In the first analysis, we examined a dataset describing 
average gene expression under different developmen-
tal stages of Caenorhabditis elegans nematodes, derived 
from the control samples of many publicly available RNA 
sequencing experiments [35].

Exploratory data analysis revealed that the differ-
ent developmental stages show the highest correlations 
between contiguous developmental stages (Fig. 2A), and 
PCA uncovered a semi-circular pattern, with over 75% 
of the data’s variance explained by the first two princi-
pal components (Fig.  2B). Interestingly, the first prin-
cipal component arranges the samples by their relative 
germline content, with embryos and adult nematodes 
on one end, L1–L3 larvae on the other, and L4 larvae in 
between. The second principal component arranges the 
samples by their developmental stage, with embryos at 
the top of the graph and adults at the bottom.

Next, we extracted clustering results at three differ-
ent resolutions by using exemplars from three differ-
ent classes of clustering algorithms: a distance-based 
algorithm (K-Medoids) (Additional File 3: Figure S1), a 
density-based algorithm (HDBSCAN) (Additional File 4: 
Figure S2), and an ensemble-based algorithm (CLICOM) 
(Fig.  3). While one of the most challenging aspects of 
RNA sequencing clustering analysis is the requirement 
to specify in advance the number of clusters, RNAlysis 
provides unbiased clustering methods that can either 
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estimate a good number of clusters to detect, or require 
no such input at all — instead specifying the smallest 
cluster size that would be of interest to the user.

While the data examined here only contains a single 
entry for each experimental condition, RNAlysis is well 
suited for clustering analysis of replicate data, since it’s 

Fig. 2  Exploratory data analysis reveals patterns in time-series gene expression data. A Principal component analysis projection of the time-series 
data. Depicted are the first two principal components, explaining > 75% of the variance in the data. Data was power-transformed and standardized 
before the analysis. B Pair-plot, depicting the pairwise Spearman correlation between each pair of samples, and a histogram of normalized gene 
expression in each sample. Each dot represents the log of normalized expression of a single gene

Fig. 3  Clustering analysis of time-series gene expression data. A Clustering analysis of the data using modified CLICOM clustering, using five 
underlying clustering setups, an evidence threshold of 50%, and a minimal cluster size of 75 [14]. Clusters are sorted by their size. Each graph 
depicts the power-transformed and standardized expression of all genes in the cluster, with the center lines denoting the clusters’ means and 
standard deviations across developmental stages of C. elegans nematodes. B PCA projection of the power-transformed and standardized gene 
expression data. Each dot represents a gene. The points are colored according to the cluster they belong in the CLICOM clustering result depicted 
in A 
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able to cluster each batch of replicates separately and 
combine the results of those batches, resulting in more 
accurate and robust clustering results [39].

Finally, we plotted the expression level of specific genes 
of interest under the different developmental stages 
(Fig.  4A) and performed GO enrichment  analysis on 
one of the clusters we previously detected, revealing a 
robust enrichment for neuropeptide signaling pathways 
(Fig. 4B).

Analysis #2: Measuring the effect of stress 
on the expression of small RNA factors
In the second analysis, we analyzed three datasets 
that examined the effects of three different stress 

conditions (osmotic stress, heat shock, and starvation) 
on gene expression [36–38]. This is a replication of our 
previously published analysis [40] done with an earlier 
version of RNAlysis (version 1.3.5, 2019), where the 
purpose was to examine the effects of stress exposure 
on the expression of small RNA factors. This analysis 
shows how RNAlysis facilitates answering highly spe-
cific biological questions in an intuitive manner.

We started the analysis with raw FASTQ files, applying 
adapter trimming, pseudo-alignment, transcript expres-
sion quantification, and differential expression analysis 
to the three datasets, all executed through the RNAlysis 
graphic interface.

Fig. 4  Gene expression plots and enrichment analysis of time-series gene expression data. A Normalized gene expression values of the time-series 
data for the two sample genes oma-1 (WBGene00003664) and skn-1 (WBGene00004804). B GO enrichment ontology graph, depicting enrichment 
results for cluster #9 (genes whose expression decreases along development from L1s to adults) (see Fig. 3). The graph depicts the hierarchical 
relationship between the GO terms. Each GO term was colored according to its log2 (Fold Enrichment) score if it was statistically significant 
(q-value ≤ 0.05)
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Next, we examined the distribution of differentially 
expressed genes under each condition with a Volcano 
Plot (Fig.  5A) and extracted from each differential 
expression table the lists of significantly up-regulated 
and down-regulated genes. This step was automated by 
building and applying a Pipeline, allowing us to analyze 
all three tables in the exact same manner with the click 
of a button.

Following these filtering steps, we examined the 
intersection of the up- and down-regulated genes 
between the different stress conditions (Fig.  5B) and 
extracted the list of genes that are significantly up/
down-regulated under all stress conditions. We then 
created an appropriate background set for enrichment 
analysis by calculating the union gene lists of all genes 
which are sufficiently expressed under at least one 
stress condition.

Finally, we ran an enrichment analysis on the stress-
downregulated genes, measuring whether they are 
significantly enriched for a user-defined list of epi-
genetic-related genes (Fig.  5C). We found the stress-
downregulated genes to be significantly enriched for 
epigenetic-related genes, as previously shown [40]. 
Enrichment for user-defined attributes is a feature unique 
to RNAlysis, allowing users to answer highly specific 

biological questions. This means that the users are not 
limited to widely available datasets, but can directly ana-
lyze any gene sets and attributes of interest without the 
need to write any code.

Discussion
RNAlysis offers researchers a robust, scalable, and 
easy-to-use tool to analyze RNA sequencing data. 
RNAlysis was designed not only to be intuitive and 
approachable for new users, but also to provide a high 
degree of efficiency, control, and robustness to experi-
enced bioinformaticians.

Other useful software tools for the analysis of RNA 
sequencing data exist (see Additional File 1: Table  S1). 
For example, Galaxy [41, 42] is a web-based scientific 
analysis platform for the analysis of biological data. Gal-
axy offers many shared features with RNAlysis, including 
integration of existing analysis tools, extensive documen-
tation, shareable pipelines, and the ability to filter, sort, 
and intersect data tables. Galaxy has a large following 
[42] and supports a wide array of established tools from 
various fields of bioinformatics. Contrary to Galaxy, 
RNAlysis aims to simplify commonly used actions for 
RNA sequencing analysis in particular, such as filtering 
and set operations. This is done by providing users with 

Fig. 5  Analysis of stress-induced gene expression changes. A Volcano plot depicting differential expression results, comparing worms that 
experienced starvation (str) to worms that grew under normal conditions. Each dot represents a gene. Differentially expressed genes with log2 
(fold change) ≥ 1 were painted in red, and differentially expressed genes with log2 (fold change) ≤  − 1 were painted in blue. B A proportional 
Venn Diagram depicting the intersections between genes that are significantly downregulated under heat shock, osmotic stress, or starvation, 
compared to their matching control samples. C Log2 (Fold enrichment) score for a curated list of epigenetic genes, in the set of genes significantly 
downregulated under all stress conditions. The p-value for enrichment was calculated using 10,000 random gene sets identical in size to the tested 
group. *** indicates adj. p-value ≤ 0.001
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dozens of ready-made filtering functions relevant to RNA 
sequencing data and supporting set operations on an 
arbitrary number of datasets with an intuitive, point-and-
click interface. Moreover, RNAlysis offers analysis meth-
ods that are especially useful to RNA sequencing data, 
such as advanced clustering methods and enrichment 
analysis for user-defined attributes, which are not avail-
able on Galaxy.

Tools such as ARPIR [43] and NetSeekR [44] can take 
users all the way from the alignment of reads and differ-
ential expression analysis through GO enrichment and 
other tertiary analyses such as gene network analysis. 
Other tools like ideal [45], PIVOT [46], and DEBrowser 
[47] provide users with a graphical interface to perform 
differential expression analysis and enrichment analysis.

While these tools allow less experienced bioinformati-
cians to perform basic transcriptomic analysis, they are 
limited in their capability to filter datasets, perform set 
operations between datasets, use more advanced cluster-
ing algorithms, or automate and streamline data analy-
sis with pipelines. In contrast to these tools, RNAlysis is 
highly modular and customizable, allowing users to tailor 
their investigations to their biological questions through 
advanced data filtering, intersecting multiple datasets, 
and a high degree of control over analysis parameters at 
every stage of the process. Moreover, RNAlysis can ana-
lyze RNA sequencing experiments from start to finish 
since it supports pre-processing, alignment, and quanti-
fication utilities of FASTQ files.

Conclusions
RNAlysis offers a modular toolbox for RNA sequencing 
data analysis, with the unique combination of an intui-
tive graphical interface and highly customizable analy-
sis workflows, making it distinct  from many other RNA 
sequencing analysis tools.

We believe  that the ability to build customized and 
reproducible analysis pipelines, combined with the user-
friendly interface, will allow researchers to gain novel 
biological insights from RNA sequencing data easily.

Methods
For a detailed description of the analysis pipelines used to 
generate the results displayed here, see Additional File 2: 
Tutorial.

Statistical analysis
GO Enrichment analysis (Fig.  4) was performed as fol-
lows: GO annotations were retrieved through the GO 
Solr search engine API called GOlr. Annotations were 
filtered using the parameters described in Additional File 
2: Tutorial: kept only annotations for C. elegans (taxon 
ID 6239), excluded “NOT” annotations. Annotations 

were propagated using the ELIM algorithm [48]. P-val-
ues were calculated using the hypergeometric test, and 
corrected for multiple comparisons using the Benjamini/
Yekutieli FDR method for general or negatively corre-
lated tests [49].

Enrichment for user-defined attributes (Fig.  5) was 
performed as follows: Annotations were generated as 
described in Additional File 2: Tutorial. P-value was 
calculated using a permutation test, using 10,000 ran-
dom gene groups identical in size to that of the exam-
ined group of differentially expressed genes. P-value was 
then calculated using the formula p = (successes + 1)/
(repeats + 1), where success are defined as randomized 
gene set with a proportion of positively-annotated genes 
equal to or larger than the proportion in the test set. This 
formula results in a positively-biased estimator of the real 
p-value (a conservative estimate of the p-value).

Availability and requirements
Project name: RNAlysis.
Project home page: https://​github.​com/​GuyTe​ichman/​ 
RNAly​sis
Operating system(s): Platform independent
Programming language: Python 3
Other requirements: Python 3.7.9 or higher (optional), 
GraphViz 3.0 or higher (optional), kallisto 0.44.0 or 
higher (optional), bowtie2 2.3.5 or higher (optional), R 
4.0.0 or higher (optional), Microsoft C++ Build Tools 
14.0 or higher (optional, on Windows computers only), 
Perl 5.9 or higher (optional)
License: MIT
Any restrictions to use by non-academics: none

Abbreviations
GUI	� Graphical user interface
GO	� Gene Ontology
PCA	� Principal component analysis
RNA-Seq	� RNA sequencing
MRN	� Median ratio normalization
TMM	� Trimmed mean of M-values
RLE	� Relative log expression
WT	� Wild type
KEGG	� Kyoto Encyclopedia of Genes and Genomes

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12915-​023-​01574-6.

Additional file 1: Table S1. Comparison between RNAlysis and other 
existing analysis tools.
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Additional file 3: Figure S1. K-Medoids Clustering analysis of time-series 
gene expression data. Clustering analysis of the data using K-Medoids 
clustering, after selecting an appropriate number of clusters (K = 11) using 
the Gap Statistic method [50]. Clusters are sorted by their size. Each graph 
depicts the power-transformed and standardized expression of all genes 
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in the cluster, with the center lines denoting the clusters’ Medoids and 
standard deviations across developmental stages of C. elegans nematodes.

Additional file 4: Figure S2. HDBSCAN Clustering analysis of time-series 
gene expression data. Clustering analysis of the data using HDBSCAN 
clustering, with a minimal cluster size of 75 [13]. Clusters are sorted by 
their size. Each graph depicts the power-transformed and standardized 
expression of all genes in the cluster, with the center lines denoting the 
clusters’ means and standard deviations across developmental stages of C. 
elegans nematodes.
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