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Abstract 

Background Monogenetic inborn errors of metabolism cause a wide phenotypic heterogeneity that may even differ 
between family members carrying the same genetic variant. Computational modelling of metabolic networks may 
identify putative sources of this inter‑patient heterogeneity. Here, we mainly focus on medium‑chain acyl‑CoA dehy‑
drogenase deficiency (MCADD), the most common inborn error of the mitochondrial fatty acid oxidation (mFAO). It 
is an enigma why some MCADD patients—if untreated—are at risk to develop severe metabolic decompensations, 
whereas others remain asymptomatic throughout life. We hypothesised that an ability to maintain an increased free 
mitochondrial CoA (CoASH) and pathway flux might distinguish asymptomatic from symptomatic patients.

Results We built and experimentally validated, for the first time, a kinetic model of the human liver mFAO. Metabo‑
lites were partitioned according to their water solubility between the bulk aqueous matrix and the inner membrane. 
Enzymes are also either membrane‑bound or in the matrix. This metabolite partitioning is a novel model attribute 
and improved predictions. MCADD substantially reduced pathway flux and CoASH, the latter due to the seques‑
tration of CoA as medium‑chain acyl‑CoA esters. Analysis of urine from MCADD patients obtained during a meta‑
bolic decompensation showed an accumulation of medium‑ and short‑chain acylcarnitines, just like the acyl‑CoA 
pool in the MCADD model. The model suggested some rescues that increased flux and CoASH, notably increas‑
ing short‑chain acyl‑CoA dehydrogenase (SCAD) levels. Proteome analysis of MCADD patient‑derived fibroblasts 
indeed revealed elevated levels of SCAD in a patient with a clinically asymptomatic state. This is a rescue for MCADD 
that has not been explored before. Personalised models based on these proteomics data confirmed an increased 
pathway flux and CoASH in the model of an asymptomatic patient compared to those of symptomatic MCADD 
patients.

Conclusions We present a detailed, validated kinetic model of mFAO in human liver, with solubility‑dependent 
metabolite partitioning. Personalised modelling of individual patients provides a novel explanation for phenotypic 
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heterogeneity among MCADD patients. Further development of personalised metabolic models is a promising direc‑
tion to improve individualised risk assessment, management and monitoring for inborn errors of metabolism.

Keywords Medium‑chain acyl‑CoA dehydrogenase deficiency, Mitochondrial fatty acid oxidation, Personalised 
medicine, Metabolite partitioning, Kinetic modelling, Phenotypic heterogeneity, Inborn error of metabolism

Background
Inborn errors of metabolism (IEMs) are distinct mono-
genetic diseases that cause pronounced systemic aber-
rations. While individually rare, the over 1450 different 
IEMs together have serious consequences in terms of 
morbidity and mortality, especially in children [1]. A 
better understanding of metabolism and its regulation, 
therefore, has wide implications [2–4]. Computational 
kinetic modelling of biochemical pathways is a promising 
tool for understanding and predicting complex pathway 
behaviour. Ultimately, coupling computational models of 
individual pathways could form a comprehensive repre-
sentation of human biochemistry in silico. This concept 
has variously been referred to as the ‘Silicon Cell’ or the 
‘Digital Twin’ [5–8].

IEMs provide a logical starting point for studying 
metabolism due to the presence of well-defined causative 
genetic variations. People with IEMs show large pheno-
typic heterogeneity, even between individuals carrying 
the same genetic variant [9]. Medium-chain acyl-CoA 
dehydrogenase deficiency (MCADD; OMIM #201450), 
the most common mitochondrial fatty acid oxidation 
(mFAO) disorder (mFAOD), is an illustrative example 
[10].

The deficient enzyme in MCADD, medium-chain 
acyl-CoA dehydrogenase (MCAD; EC: 1.3.8.7; Uni-
ProtKB: P11310) is one of a triad of enzymes in human 
cells (together with short- and very-long-chain acyl-
CoA dehydrogenases, SCAD and VLCAD, respectively) 
that catalyse the first step of the mFAO. These three 
enzymes have distinct but overlapping substrate speci-
ficity [11]. Mainly before the age of 5  years, MCADD 
poses the risk of life-threatening metabolic decompen-
sations elicited by fasting and/or infections [12, 13]. 
These metabolic decompensations are characterised 
by hypoketotic hypoglycaemia, metabolic acidosis and 
hepatic dysfunction [10]. Symptomatic patients might 
present with lethargy, nausea and vomiting and rap-
idly progress to coma or seizures. Avoidance of fasting 
and the implementation of an emergency regimen dur-
ing illness can prevent the development of these symp-
toms [14–17]. In nine out of ten clinically ascertained 
MCADD patients [9, 18], homozygosity for the com-
mon c.985G > A ACADM variant (< 1% residual MCAD 
activity) is found. But this variant is also seen in many 
clinically asymptomatic patients [9]. The introduction 

of MCADD in newborn screening has substantially 
reduced morbidity and mortality [19, 20]. However, 
the newborn screening also identifies children with 
other ACADM variants, with higher residual MCAD 
activities, of which the clinical implications are incom-
pletely understood. To improve individual patients’ 
risk assessment, management and monitoring, a better 
understanding of what underlies the phenotypic heter-
ogeneity is needed [21, 22].

CoA sequestration, toxicity or redistribution (CAS-
TOR) has previously been posited as a possible patho-
genic mechanism in MCADD and a number of other 
IEMs with a similar phenotype [23, 24]. A computa-
tional kinetic model of mFAO in mouse liver suggested 
that a loss of MCAD activity can indeed make the 
mFAO vulnerable to free CoA (CoASH) depletion, as 
well as to a decline of mFAO flux [25–27].

CoASH depletion and flux decline could impair 
ketogenesis and cause hypoglycaemia. Under fasted 
conditions, ketogenesis supplements the body’s energy 
needs by producing ketone bodies. To make ketone 
bodies, acetyl-CoA is used, of which around 85% 
comes from the mFAO [28]. The ketogenesis flux var-
ies proportionally to the mFAO flux, increasing 1:1 
when mFAO increases and vice versa [29–31]. Moreo-
ver, pharmacological inhibition of mFAO impairs glu-
coneogenesis [32]. This may be caused by the reduced 
availability of ATP for gluconeogenesis due to impaired 
mFAO flux [33, 34]. Alternatively, it may be due to a 
lack of gluconeogenic precursors, many of which are 
products or intermediates of the branched-chain amino 
acid degradation and tricarboxylic acid (TCA) cycle 
[34, 35]—both pathways that use CoASH as a substrate 
and would be impaired by CoASH depletion.

Here we developed a systems medicine approach 
to identify putative compensatory mechanisms in 
MCADD patients. We hypothesise that an ability to 
maintain sufficient mitochondrial CoASH and pathway 
flux might distinguish asymptomatic from symptomatic 
patients. Therefore, we constructed a computational, 
kinetic model of human liver mFAO—the first such 
model for human liver of which we are aware. Build-
ing on a previous model of mFAO in rat liver [26], we 
updated kinetic constants with human parameters, 
added two enzymes important to mitochondrial CoA 
metabolism. As an additional innovation, we made the 
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spatial partitioning of hydrophobic acyl-CoA esters 
between the mitochondrial matrix and the membrane-
bound enzymes explicit. The model was validated 
against experimental data, including the profile of even-
chain saturated acylcarnitines in MCADD patient crisis 
urine samples. To personalise the model, targeted prot-
eomics data were collected from fibroblasts of MCADD 
patients and used to adjust model parameters. The 
personalised model of an asymptomatic MCADD indi-
vidual showed proteomic adaptations that increased 
CoASH and pathway flux, mainly increased SCAD.

Results and discussion
Construction of a human mFAO model
We constructed a dynamic model of human mitochon-
drial fatty acid β-oxidation, including the carnitine 

shuttle and mitochondrial acyl-CoA thioesterase activity 
(Fig. 1). A detailed description of the model is available in 
Additional File 1: Text S1 [11, 25–27, 36–152].

As a starting point, we took an existing kinetic model 
of mFAO in rat liver, which has been validated quantita-
tively with detailed acylcarnitine time-course data [26]. 
The kinetic parameters, where possible, were replaced 
by human liver-derived values. Metabolite pools were 
modelled as being located either in the cytosol or in 
the mitochondrial matrix, with distinct volumes. Long-
chain acyl-CoA dehydrogenase (LCAD), which is not 
expressed in human liver [87, 98, 109], was omitted. 
The model was extended with three enzymes important 
to mitochondrial CoA metabolism: carnitine acetyl-
CoA transferase (CrAT [120]), a CoASH-sensitive acyl-
CoA thioesterase (ACOTcs, based on the kinetics of 

Fig. 1 Schematic overview of the human hepatic mitochondrial fatty acid oxidation model. Enzyme names are written in white with their chain 
length specificity as subscript (C16, for example, for a 16‑carbon acyl group). The enzymes depicted in green are membrane‑bound enzymes 
while the blue boxes indicate soluble enzymes. These enzymes interconvert metabolites (in black text). Subscripts identify the metabolites’ 
chain lengths (Long or Short & Medium) and their primary localization according to their solubility. Metabolites in red are present at constant 
concentrations:  ETFox and  ETFred refer to the oxidised and reduced form of the electron‑transferring flavoprotein, and FFA indicates free fatty 
acids. Free coenzyme A (CoASH; yellow boxes) and L‑carnitine (L‑car; black boxes) are the non‑acylated fraction of CoA and L‑carnitine, of which 
the total pool forms a conserved moiety. The model includes the following enzymes: carnitine palmitoyltransferase 1a (CPT1; EC 2.3.1.21), carnitine/
acylcarnitine translocase (CACT; PathwayCommons: O43772), carnitine palmitoyltransferase 2 (CPT2; EC 2.3.1.21), carnitine acetyltransferase (CrAT; 
EC 2.3.1.137), very‑long‑chain acyl‑CoA dehydrogenase (VLCAD; EC 1.3.8.9), medium‑chain acyl‑CoA dehydrogenase (MCAD; EC 1.3.8.7), short‑chain 
acyl‑CoA dehydrogenase (SCAD; EC 1.3.8.1), crotonase (CROT; EC 4.2.1.17), medium‑ and short‑chain hydroxyacyl‑CoA dehydrogenase (M/SCHAD; 
EC 1.1.1.35), medium‑chain ketoacyl‑CoA thiolase (MCKAT; EC 2.3.1.16), mitochondrial trifunctional protein (MTP: EC 4.2.1.17, EC 1.1.1.211, EC 
2.3.1.16), coenzyme A‑insensitive acyl‑CoA thioesterase (ACOTci; equivalent to ACOT2; EC 3.1.2.2), coenzyme A‑sensitive acyl‑CoA thioesterase 
(ACOTcs; equivalent to ACOT7 and ACOT13 combined; EC 3.1.2.2)
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ACOT7 and ACOT13) and a CoASH-insensitive one 
(ACOTci, representing ACOT2) [131].

Where human liver kinetic parameters were not avail-
able, the most suitable alternatives were chosen. Values 
from other human tissues were privileged. If measure-
ments from human tissues were not available, parameters 
from other mammals were also considered. If tissue-spe-
cific isoforms exist (e.g. carnitine palmitoyltransferase 
1, or CPT1 [153]), parameters from the liver of other 
mammals were preferred over human parameters from 
other tissues. We used equilibrium constants (Keq) gener-
ated by the online tool eQuilibrator [66, 67]. Finally, all 
metabolites indicated in red in Fig.  1 were modelled as 
boundary metabolites with constant concentrations. This 
included acetyl-CoA, which was kept constant to allow 
the model to reach steady state. These constant boundary 
concentrations are model parameters, which can be var-
ied in a realistic range, to assess their impact.

As a qualitative innovation, to reflect more accurately 
the physicochemical conditions inside the mitochon-
drion, we introduced partitioning of the mitochondrial 
metabolites between a water-soluble matrix pool and 
a hydrophobic mitochondrial inner-membrane pool. 
Longer acyl chains render metabolites less water-solu-
ble, which causes a large fraction of the metabolite pool 
to localise to the membrane rather than dissolving in 
the aqueous matrix [55, 147, 152]. This would mean that 
membrane-embedded enzymes (green boxes in Fig.  1) 
would encounter a higher local concentration of these 
more hydrophobic intermediates, while soluble, matrix-
localised enzymes (blue boxes in Fig. 1) would be exposed 
to a lower concentration of hydrophobic metabolites. 
Water-soluble metabolites, on the other hand, would dif-
fuse more evenly throughout the mitochondrion, mean-
ing that membrane-bound and soluble enzymes would 
be exposed to a similar, more dilute, concentration. It 
has been proposed that long-chain, hydrophobic acyl-
CoAs ‘surface crawl’ along the mitochondrial inner mem-
brane from active site to active site instead of diffusing 
into the bulk aqueous medium after each reaction [37, 
38, 50, 133]. To mimic this phenomenon in the compu-
tational model, chain-length-specific ‘relative partition-
ing factors’ were introduced, which effectively split each 
mitochondrial metabolite pool into a fraction that reacts 
with the membrane-bound enzymes and one that reacts 
with matrix-localised enzymes. Enzymes were then also 
assigned a localisation—either membrane-bound or in 
the matrix. A more detailed discussion of the underlying 
assumptions and physical basis of metabolite partitioning 
is presented in the model description in Additional File 1: 
Text S1.

The final model contains the mitochondrial fatty acid 
oxidation reactions that pertain to even-chain, saturated 

acyl esters of 16 carbons or shorter [154]. All rate equa-
tions in the final model are reversible, except for those of 
ACOTci and ACOTcs, for which no reverse activity has 
been described [131]. Model simulations predict steady-
state fluxes, metabolite concentrations, and dynamic 
rates. The model contains 49 variable metabolite concen-
trations, 75 reactions and 369 experimentally obtained 
parameters.

Model validation
Steady-state fluxes and reaction rates were then simu-
lated and compared to three sets of experimental and 
MCADD patient data. Details of unit conversions and 
simulation conditions are given in full in Additional File 
2: Text S2 [28, 29, 69, 78, 84, 92, 97, 101, 155–163].

First, oxygen consumption with palmitoyl-CoA as a 
substrate was measured in permeabilised control and 
MCAD-knockout (KO) HepG2 cells and compared to the 
fluxes predicted by the model (Fig.  2A). The knockouts 
were generated with CRISPR-Cas9 [164] and confirmed 
with genotyping (Additional File 3: Table  S1), Western 
blot (Additional File 4: Fig.  1A) and proteomics (Addi-
tional File 4: Fig. 1B).

Since the reference model is based on human liver 
and these experiments were performed on HepG2s, the 
model was adapted based on literature-derived differ-
ences in protein concentration between healthy primary 
human hepatocytes and HepG2 cells [78, 159]. This was 
done by adjusting the Vmax values in the model, which are 
linearly related to the corresponding enzyme concentra-
tions. The effect of including metabolite partitioning and 
HepG2 proteomics in the model was assessed separately 
and in combination. The healthy control model predicted 
pathway flux within the range of the experimentally 
measured values after the inclusion of both metabolite 
partitioning factors and the adjustment of Vmax values to 
HepG2 proteomics. Experimentally, the MCAD knock-
out reduced the mean  O2 consumption by 30%, which 
was best reproduced by simulation when both metabolite 
partitioning and HepG2 proteomics were included in the 
model (Fig. 2A). The correspondence between the model 
and the experiment is encouraging, particularly in the 
light of the fact that proteomics data were from an inde-
pendent study.

Second, we predicted whole-body ketogenic flux 
from the model simulations. Although the model does 
not directly predict ketogenic flux, the rate of acetyl-
CoA production dictates the maximum rate of ketone 
body synthesis from fatty acids [29–31]. Fletcher et  al. 
[28] measured whole-body ketogenic flux using stable 
isotope-labelled substrates in healthy adults after 24  h 
of fasting (n = 17). The ketogenic flux was predicted 
within the measured range by the human model, with 
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the prediction from the model including metabolite 
partitioning more closely approximating the mean of 
the measurements (Fig.  2B). That the predictions are at 
the lower end of the measured values might be partially 
explained by ‘pseudoketogenesis’: a methodological issue 
that leads to artificially high ketogenic flux measure-
ments [165, 166]. No suitable quantification of this phe-
nomenon was available, to our knowledge, so we could 
not correct for it in the model itself; however, it does 
explain why our model predictions fall at the lower end of 
the measured range.

Third, in  vitro octanoyl- and palmitoyl-CoA dehy-
drogenation rates were predicted. Aoyama et  al. [97] 
measured these rates in crude human liver lysate 
(− antibody in Fig. 2D) and in lysate with immunologi-
cally inactivated VLCAD or MCAD (+ anti-VLCAD 
and + anti-MCAD, respectively). We mimicked the 
immunological inactivation of VLCAD and MCAD 

in the computational model by setting the maximum 
velocity (Vmax) of the inactivated enzyme to zero. Since 
the assay was performed in tissue lysate, in the absence 
of membranes, metabolite partitioning was not con-
sidered. The palmitoyl-CoA dehydrogenation rate and 
the effect of VLCAD inactivation were predicted within 
5% of the measured range (Fig.  2C). The octanoyl-
CoA dehydrogenation rate for both the crude and the 
MCAD-inactivated lysates was overpredicted by about 
30%; however, both the model prediction and the 
measured data showed an 85% reduction of this rate 
upon MCAD inactivation (Fig.  2D). The discrepancy 
between the measured and predicted rates of octanoyl-
CoA dehydrogenation might be explained by natural 
variation in gene expression, which can be quite large 
among mitochondrial enzymes [167]. Considering this 
natural variation, the agreement that we did find was 
already good.

Fig. 2 Model validation. Model predictions compared to experimentally measured data (blue). All model adjustments and conversions are 
described in Additional File 2: Text S2. The bars represent the mean of the different data, while error bars indicate the range of the data (minimum 
and maximum). A Simulated NADH production flux, stoichiometrically converted to  O2 consumption, compared to the uncoupled oxygen 
consumption flux of permeabilised MCAD‑KO and control HepG2 cells. In converting an NADH production flux to an oxygen consumption 
flux, the contribution of  FADH2 and reducing equivalents from the downstream TCA cycle were also considered (Additional File 2: Text S2). The 
experiment and simulation contained 25 µM of palmitoyl‑CoA and 2 mM of L‑carnitine (blue; n = 4 in both groups). B Simulated acetyl‑CoA 
production flux, stoichiometrically converted to a ketogenic flux, compared to measured ketogenesis in 24 h‑fasted, healthy human subjects 
(n = 17). C, D Comparison of simulated and measured palmitoyl‑CoA (C16‑CoA, C) and octanoyl‑CoA (C8‑CoA, D) dehydrogenation rates (acyl‑CoA 
substrate at 30 µM) in crude lysate compared to cell lysates after immunoprecipitation of VLCAD or MCAD, respectively (blue; n = 3 or n = 4)
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Taken together, Fig.  2 shows that experimental data 
across different scales, ranging from lysates to cells to 
whole-body data, are reliably predicted by the model. 
A realistic representation of metabolite partitioning 
between the mitochondrial matrix and the hydrophobic 
space close to the membrane substantially improved the 
correspondence between the model and the experiments.

Modelling a metabolic decompensation in MCADD 
patients
An important question was how accurately, and under 
which conditions, the model mimics the characteristics 
of MCADD patients experiencing metabolic decom-
pensation. The model predicts acyl-CoA concentrations 
in the liver, but these are not accessible in patients. It is 
often assumed, however, that acylcarnitine patterns in 
blood or urine qualitatively reflect the acyl-CoA profile 
in the mitochondria [26, 45]. Therefore, acylcarnitine 
concentrations were quantified in urine from clinically 
asymptomatic and symptomatic patients, collected under 
fed, fasted or metabolic decompensation conditions. All 
patients were diagnosed before MCADD was included 

in the neonatal screening and symptomatic patients 
had not undergone any treatment or observation prior 
to the crisis, making this a precious and unique dataset. 
Asymptomatic patients were identified during proband 
follow-up after their siblings had been admitted to hospi-
tal with hypoketotic hypoglycaemia. Under fed and over-
night fasted conditions, symptomatic and asymptomatic 
MCADD patients showed similar urinary acylcarnitine 
concentrations (Table 1 and Additional File 5: Table S2), 
with a characteristically increased C8 compared to other 
metabolites [168]. In healthy controls, C8 is at compa-
rable levels to other acylcarnitines [169]. Acylcarnitine 
accumulation also seemed unaffected by an overnight 
fast. During a metabolic decompensation, the total con-
centration of acylcarnitines increased and the C8/C10 
ratio reached its highest levels. The increased acylcarni-
tines mainly comprised free carnitine, acetyl-, hexanoyl- 
and octanoylcarnitine (Table 1).

We then compared the patterns of measured urinary 
acylcarnitines to liver mitochondrial acyl-CoAs pre-
dicted by model simulation under stress. To mimic stress, 
the cytosolic palmitoyl-CoA concentration was set to 

Table 1 Patient urine acylcarnitine profiles

n.d. not detectable, i.e. < 0.01 µmol/mmol creatinine

Parameter in µmol/mmol 
creatinine

Asymptomatic. n = 4
Median (min.–max.)

Symptomatic. n = 3
Median (min.–max.)

Fed Fasted Fed Fasted Decompensation

Total acylcarnitine 3.19
(2.93–37.49)

2.72
(2.04–4.84)

5.83
(2.16–30.92)

1.87
(1.56–9.94)

141.78
(28.03–198.87)

C0 0.95
(0.60–17.44)

0.47
(0.34–1.39)

2.36
(1.05–5.74)

0.63
(0.42–0.92)

27.15
(2.27–77.20)

C2 0.24
(0.18–8.77)

0.14
(0.09–0.94)

0.76
(0.11–18.68)

0.09
(0.02–5.08)

75.60
(8.11–98.28)

C4 0.22
(0.12–0.39)

0.14
(0.06–0.20)

0.14
(0.02–0.30)

0.03
(0.02–0.12)

1.17
(0.60–2.46)

C6 0.065
(0.04–0.74)

0.06
(0.04–0.09)

0.08
(0.01–0.50)

0.02
(0.01–0.23)

3.84
(0.58–4.06)

C8 0.295
(0.20–6.72)

0.26
(0.20–0.74)

0.67
(0.01–3.22)

0.16
(0.13–0.93)

8.34
(7.12–24.35)

C10:1 0.11
(0.07–0.55)

0.07
(0.05–0.11)

0.11
(0.03–0.52)

0.06
(0.03–0.15)

0.93
(0.38–1.57)

C10 0.04
(0.02–0.10)

0.04
(0.03–0.05)

0.05
(0.01–0.11)

0.02
(0.02–0.15)

0.53
(0.42–0.97)

C12 0.015
(0.01–0.04)

0.02
(0.01–0.02)

0.02
(0.01–0.03)

0.01
(0.01–0.03)

0.12
(0.07–0.25)

C14 n.d
(n.d.–0.01)

n.d
(n.d.)

n.d
(n.d.–0.01)

n.d
(n.d.–0.01)

0.15
(0.15–0.28)

C16 n.d
(n.d.)

n.d
(n.d.)

n.d
(n.d.)

n.d
(n.d.)

0.03
(0.01–0.03)

C8/C2 1.14
(0.77–1.29)

1.76
(0.79–2.89)

0.17
(0.09–0.88)

1.78
(0.18–6.50)

0.32
(0.08–0.88)

C8/C10 8.83
(7.20–67.20)

7.67
(6.25–14.80)

13.40
(1.00–29.27)

6.50
(6.20–8.00)

19.86
(13.43–25.10)
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150 µM: this is a realistic high-fat concentration in liver 
cells, such as under fasting conditions [150, 170]. A large 
influx of fat to the liver is characteristic of the stress con-
ditions that might precipitate in metabolic decompensa-
tion in MCADD [10]. The chain-length distribution of 
mitochondrial acyl-CoAs at different cytosolic palmitoyl-
CoA increments can be seen in Additional File 6: Fig. S2. 
Simulated patterns of mitochondrial acyl-CoA concen-
trations recapitulated those of hexanoyl- and octanoyl-
carnitines in patient crisis urine (Fig. 3). Interestingly, if 
the metabolite partitioning attribute was removed from 
the model, the accumulation of C8 and C6 was no longer 
apparent (Additional File 7: Fig. S3). This suggests that 
metabolite solubility is important to our understanding 
of pathogenicity in MCADD.

MCADD could cause severe CoASH depletion
The isoenzymes SCAD and VLCAD catalyse the same 
reaction as MCAD, but with a preference for shorter or 
longer acyl-chain lengths, respectively. To get insight 
into the effects of these different acyl-CoA dehydroge-
nases (ACADs) on mFAO flux and CoA sequestration, 
we compared MCAD deficiency to SCAD and VLCAD 
deficiency.

First, the acyl-CoA profiles of the three human acyl-
CoA dehydrogenase deficiencies (ACADDs) were 
simulated at a high substrate concentration (Fig.  4A). 
Typical residual activities for symptomatic patients with 
the respective deficiencies were chosen: 0% activity for 
MCADD and SCADD [171, 172], and 10% for VLCADD 
[173]. The acyl-CoA species that accumulated in each dis-
ease, matched the substrate preferences of the deficient 
enzymes: C12, C14 and C16 in VLCADD, C8 in MCADD 
and C6 and C4 in SCADD. These chain lengths are all 

known to accumulate as blood acylcarnitines in patients 
with the corresponding ACAD deficiency [19, 174–178]. 
mFAO flux was quantified as the rate of production of 
one of its end products, NADH (Fig.  4B). The SCADD 
model maintained a residual flux of more than 90% of 
the control. In contrast, the MCADD model reached a 
maximum flux of about 60%, and the VLCADD model no 
more than 30% of control. This reflects the relative sever-
ity of the corresponding deficiencies [179–181]. It also 
highlights one of the strengths of the model, namely that 
the ACAD isoenzymes with overlapping substrate speci-
ficity in part compensate for each other. Consequently, 
a full ablation of SCAD or MCAD did not entirely block 
the flux through the pathway.

Figure  4C shows the free, non-esterified mitochon-
drial CoASH concentration as a function of the con-
centration of the cytosolic substrate palmitoyl-CoA. All 
models started with the same amount of CoASH, which 
decreased sharply as a function of an increasing palmi-
toyl-CoA concentration. MCADD caused the sharpest 
decline of CoASH and led to the lowest free CoASH con-
centration, about 50% of the control model at high pal-
mitoyl-CoA. In the VLCADD model, CoASH remained 
even higher than in the control model. In VLCADD, the 
sequestration of CoASH is limited by the fact that the 
blockage occurs at the beginning of the pathway. First, 
VLCAD is upstream of MCAD and SCAD. Second, the 
long-chain acyl-CoA esters that are still formed (Addi-
tional File 6: Fig. S2B) cause a strong product inhibition 
(Additional File 1: Text S1) of the carnitine shuttle, thus 
limiting the further entry of substrate into the pathway. 
These effects also contribute to the low flux in VLCADD.

The combined results point to a qualitative dif-
ference between SCADD, MCADD and VLCADD. 

Fig. 3 Patient crisis modelling. Simulated acyl‑CoA accumulation in the mitochondrial compartment at 150 µM cytosolic palmitoyl‑CoA compared 
to measured acylcarnitines in the urine of MCADD patients during hypoketotic hypoglycaemia (n = 3). The blue bars (measured data, y‑axis 
on the right) represent the median and the range of the data (minimum and maximum)
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SCADD and MCADD lead to the accumulation of 
short- and medium-chain acyl-CoAs, which only 
weakly inhibit the carnitine shuttle. This permits sub-
strates to continue entering the mitochondrion even 
at very high acyl-CoA concentrations and thereby 
allows more extensive sequestration of the CoA pool. 
One might interpret these results as indicating that 
MCADD and SCADD are acute CASTOR diseases, 
MCADD the more severe, in which an increase in 
substrate concentration can lead to a depletion of 
CoASH [23]. In MCADD, we see a combination of 
two effects: a substantial reduction in pathway flux 
and severe CoASH depletion. In this model, the flux 
was decreased even if CoASH was set to a constant 
concentration (Additional File 8: Fig. S4), indicating 
that the reduced flux is not a consequence of CoASH 
depletion but simultaneous with it. A model version 
without metabolite partitioning exhibited no CoASH 
depletion, milder acyl-CoA accumulations and smaller 
differences in pathway flux (Additional File 7: Fig. S3).

MCADD poses a threat to mitochondrial metabo-
lism because it simultaneously causes the loss of about 
35% of pathway flux relative to the control, as well as a 
40% drop in CoASH. This is in contrast to VLCADD, 
which substantially decreases flux by 70%, but not 
CoASH. SCADD lowers both, but less strongly than 

MCADD (10% flux reduction and 20% CoASH reduc-
tion). In our subsequent analyses, we further investi-
gated both of these effects.

Metabolic control analysis identifies possible rescues 
for MCADD
We hypothesised that clinically asymptomatic MCADD 
patients may implement compensatory mechanisms 
that increase pathway flux and CoASH concentration. 
To identify these, we analysed which enzymes exert a 
large control over these two model readouts (Fig. 5).

Metabolic control analysis is a theoretical frame-
work that quantifies the sensitivity of the steady-state 
outputs of a metabolic network to changes in the 
underlying parameters [139]. Flux control coefficients 
(Fig.  5A) quantify the percentage change in the flux 
in response to a 1% increase in enzyme concentration. 
The flux, again, refers to the rate of NADH production. 
A positive flux control coefficient means that the flux 
increases in response to an increased concentration of 
a given enzyme, while a negative value indicates that 
flux goes down as the concentration of that enzyme 
goes up [139]. MTP, VLCAD and MCAD had the larg-
est positive flux control coefficients in the healthy 
control model, while CPT2 had a large negative flux 
control coefficient, and the third-highest absolute value 

Fig. 4 Comparison of different ACAD deficiencies in silico. The behaviour of one control and three different ACADD computational models 
of mFAO are shown. The residual activity reflects typical symptomatic patients: 0% for MCADD and SCADD, and 10% for VLCADD. All other ACADs 
have 100% of control activity. A Model mitochondrial acyl‑CoA profile at 150 µM cytosolic palmitoyl‑CoA. B NADH production flux at 150 µM 
cytosolic palmitoyl‑CoA. C Steady‑state mitochondrial CoASH. Inset gives the same data with a smaller y‑axis
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(Fig.  5A). In the MCADD model, this pattern was the 
same, except that no flux control coefficient exists for 
MCAD, leaving SCAD in fourth place and ACOTcs not 
far behind (Fig. 5A).

Interestingly, CPT1, which is canonically considered 
the dominant flux-controlling enzyme of the mitochon-
drial β-oxidation [11], has a very low flux control coef-
ficient in our model. This is in line with other studies, 
which show that depending on the physiological con-
ditions, control may shift from CPT1 to downstream 
enzymes [27, 182, 183]. As expected, under conditions 
of high malonyl-CoA (100 μM), low cytosolic palmitoyl-
CoA (2  μM) and abundant free mitochondrial CoA (no 
sequestration outside mFAO assumed), mitochondrial 
acetyl-CoA at 120 μM as in fed rats the CPT1 has a much 
higher FCC (Additional File 9: Fig. S5).

Concentration control coefficients (Fig.  5B) quantify 
the percentage change in specific steady-state metab-
olite concentration in response to a 1% increase in 
enzyme concentration. CPT2 had a large negative con-
centration control coefficient with respect to the mito-
chondrial CoASH concentration (Fig.  5B), in both the 
healthy control and MCADD models. Other enzymes 
with large flux control coefficients all had large posi-
tive concentration control coefficients with respect to 
the CoASH concentration, except for VLCAD, which 

exerted no control at all on CoASH in the healthy con-
trol. At a low mitochondrial acetyl-CoA concentration 
(120 µM; [184]), the concentration control coefficient of 
VLCAD towards CoASH even became negative (Addi-
tional File 10: Fig. S6). Response coefficients (which are 
calculated in the same way as control coefficients but 
pertain to all parameters) were also computed for the 
control model (Additional File 11: Table  S3). VLCAD, 
MTP, CPT2 and MCAD parameters often showed 
strong responses, as did parameters that directly 
increase or sequester free CoASH (e.g. total CoA and 
acetyl-CoA concentration). This sensitivity analysis 
is consistent with the flux and concentration control 
coefficients.

Taken together, these results indicate a sensitivity of 
the pathway flux and CoASH to changes in the levels 
of CPT2, VLCAD, SCAD, MTP and the ACOTs. For 
most of these enzymes, increased levels would result in 
increased CoASH and flux. For CPT2, the relationship is 
inverted. Most interestingly, VLCAD, which always has a 
positive flux control, can have either positive or negative 
control over the CoASH concentration, depending on 
the conditions at which the analysis is performed. These 
suggested rescue mechanisms could now serve as candi-
dates for explaining some of the phenotypic heterogene-
ity between MCADD patients.

Fig. 5 Metabolic control analysis. Flux and mitochondrial CoASH concentration control coefficients (blue and yellow, respectively) in a control 
(A) and an MCADD (B) model. Enzymes are displayed in descending order according to absolute flux control. Flux was defined as the sum of all 
NADH‑producing reactions. Simulations were carried out at 150 µM cytosolic palmitoyl‑CoA
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Increased SCAD, MTP and ACOT could attenuate CoASH 
depletion and flux decline
A limitation of metabolic control analysis is that it only 
considers small changes in enzyme activities, while larger 
changes are required for a substantial rescue. Therefore, 
six enzymes with high absolute flux or CoASH concen-
tration control in the MCADD model (VLCAD, CPT2, 
MTP, SCAD, ACOTcs and ACOTci) were varied incre-
mentally from 20 to 200% of their default levels (Fig. 6). 
The two ACOTs were varied together for simplicity. In 
agreement with its negative flux control (Fig. 5), decreas-
ing CPT2 increased the pathway flux, while the other 
enzyme concentrations needed to be increased to get this 

effect (Fig. 6A). At the higher SCAD or MTP levels, the 
flux increase plateaued, as other enzymes took over con-
trol. In agreement with its negative CoASH concentra-
tion control, decreasing CPT2 increased CoASH, while 
increasing SCAD, MTP and ACOT, which had posi-
tive CoASH concentration control, indeed did increase 
mitochondrial CoASH (Fig. 6B). In the MCADD model, 
CoASH (Fig.  6B) was always lower than in the control 
model (Additional File 12: Fig. S7).

To see what would be the impact of increasing CoASH 
in the MCADD model, we compared it to the Km values 
of mitochondrial enzymes that consume CoASH. These 
included enzymes of the mFAO but also from the TCA 

Fig. 6 Possible rescues of CoASH and steady‑state mFAO flux in an MCADD model. An MCADD computational mFAO model was simulated 
at different expression levels of the enzymes identified as possible rescues by metabolic control analysis. The reference value (onefold expression) 
is given in black. All simulations were performed at 150 µM cytosolic palmitoyl‑CoA. The dashed lines in B indicate the Km values of various 
mitochondrial enzymes that require CoASH as substrate (Table 2). CPT2, VLCAD, SCAD, MTP and ACOT were varied between 20 and 200% of basal 
expression levels. ACOT was varied by simultaneously increasing the expression of both ACOTs in the model. The inset shows the trajectory 
of CoASH concentration when VLCAD is incrementally varied with the mitochondrial acetyl‑CoA concentration set to 120 µM (lowest value 
retrieved from literature), compared to the default concentration of 700 µM. A NADH production flux. B Steady‑state mitochondrial CoASH
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cycle (0.0022–0.0888  mM; Table  2 and dashed lines in 
Fig. 6B). A Km is an indication of the metabolite concen-
trations at which an enzyme is most sensitive to concen-
tration changes, so it serves as a guide to where CoASH 
might become limiting. In the MCADD model, the 
CoASH concentration varied in the range of the Km values, 
implying that even a small increase should have a positive 
impact on the activity of CoASH-dependent pathways. 
In comparison, in the control model CoASH concentra-
tions were much higher than the Km values at any condi-
tion (Additional File 12: Fig. S7), implying that changes in 
the CoASH concentration would have little impact on the 
activity of these CoASH-consuming enzymes.

In the MCADD model, increasing VLCAD leads to 
an increase of CoASH (Fig. 6B). However, if the concen-
tration of acetyl-CoA is low (120  µM [184]), increases 
in VLCAD can cause a reduction in CoASH (inset in 
Fig. 6B). This may be realistic because a reduced mFAO 
flux might reduce the acetyl-CoA concentration [29–31]. 
This suggests a scenario in which increased VLCAD 
could aggravate CoASH depletion (Table 2).

It may seem surprising that increased ACOT led to 
consistent flux increases, in both an MCAD (Fig.  6B) 
and a control (Additional File 12: Fig. S7B) model. Given 
that ACOTs siphon off pathway intermediates from the 
β-oxidation, one would expect lower, not higher, NADH 
production. This suggests that at our chosen simula-
tion conditions CoASH may be limiting or CoA esters 
might be inhibitory. If CoASH is set to constant levels, 
increased ACOT decreases flux in the control model 
but increases it in the MCADD model (Additional File 
13: Fig. S8). In the control model, the negative effect of 
losing pathway intermediates via ACOT seems to domi-
nate. In the MCADD model, however, ACOTs still have 
a positive effect on pathway flux, although more modest, 
even if ACOTs do not affect CoASH anymore. We con-
clude that not only depleted CoASH but also accumulat-
ing CoA esters inhibit pathway flux in MCADD. ACOTs 
alleviate both of these. This is in agreement with the 
idea that ACOTs modulate acyl-CoA levels and free up 
CoASH during periods of high substrate influx into the 
mitochondrion [131, 188].

In summary, the upregulation of SCAD, MTP and the 
ACOTs, as well as the downregulation of CPT2, were 
found to have a positive effect on flux and CoASH con-
centration in MCADD under overload conditions. This 
renders them potential compensatory mechanisms for 
mFAO function. A patient with one of these adaptations 
would be less at risk of a disastrous CoASH depletion 
than one without them. This is potentially useful infor-
mation for risk stratification.

Increased SCAD and MTP in a clinically asymptomatic 
MCADD patient lead to higher flux and CoASH
Proteome remodelling is known to occur in response to 
enzyme deficiencies [167, 189]. As shown above, certain 
changes in protein levels could theoretically lead to an 
increased flux and CoASH. To test whether the corre-
sponding adaptations were recapitulated in real patients, 
targeted proteomics were measured on fibroblasts from 5 
control and 10 MCADD patients [109].

The MCADD patients belonged to different phenotypic 
groups. The members of the ‘control’ group are not sus-
pected to have a metabolic disease (n = 5). The MCADD 
patients were all diagnosed before neonatal screening for 
MCADD was implemented. They were subdivided into 
three phenotypic subgroups: ‘symptomatic’ (n = 4), i.e. 
patients that were clinically diagnosed upon admission to 
hospital with hypoglycaemia; ‘early diagnosis’ (‘ED’, n = 5), 
patients that were diagnosed at a young age (0–11 years) 
as siblings of the symptomatic patients and then put on 
preventative dietary regimens; and one ‘asymptomatic’ 
patient, who was discovered as an adult (30  years) and 
never exhibited clinical symptoms nor received treat-
ment (n = 1).

As expected, cells from MCADD patients had unde-
tectable MCAD protein levels, in contrast to those from 
the control group (Additional File 14: Fig. S9, original 
data available at [190]). The other protein concentra-
tions of symptomatic and ED patients did not differ sig-
nificantly from each other, nor from the control group. 
Table 3 shows the average protein concentrations of the 
asymptomatic patient, of all groups together, and of the 
MCADD groups together (all excluding controls). The 
asymptomatic patient had the highest average SCAD 
level out of any of the subjects (Fig. 7A). Moreover, the 
asymptomatic patient’s SCAD was above the upper limit 
of the 95% confidence interval when all subjects were 
combined into one group (Table 3). This was not the case 
for any other peptide. The two subunits of MTP (HADHa 
and HADHb) were at the higher end of the concentra-
tion range in the asymptomatic patient (Fig. 7A), but still 
within the confidence interval. CPT2’s concentration 
did not differ between the asymptomatic patient and the 

Table 2 Km values for CoASH of CoASH‑requiring mitochondrial 
enzymes

Enzyme Pathway Km (mM) Reference

CrAT Carnitine shuttle 0.038–0.0888 [86, 91]

MCKAT mFAO 0.0022–0.0384 [108, 185]

αKDH TCA cycle 0.0025 [186]

PDH TCA cycle / glycolysis 0.013–0.025 [186, 187]
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other subjects in the cohort. ACOT was not included in 
the applied proteomics panel.

The computational mFAO model was then personalised 
using the proteomics data and fluxes and CoASH con-
centrations simulated per person. To this end, the Vmax 
of each of the enzymes was multiplied by the correspond-
ing enzyme concentration in an individual relative to that 
of the average control. This yielded a model of the liver 
mFAO in each individual patient. First and foremost, the 
asymptomatic patient model had a higher pathway flux 
than all the symptomatic MCADD patient models. None 
of the other groups differed significantly from each other 
in terms of flux, including the control group. The mito-
chondrial CoASH of all MCADD models differed from 
that of the control models (p = 0.080 with the asympto-
matic patient model included; p = 0.061 when excluded), 
suggesting a trend that might be validated with a larger 
sample size. In addition, the asymptomatic patient model 
showed higher CoASH than all symptomatic MCADD 
models (Fig. 7B, C), even reaching the range seen in the 
healthy control models. Since the CoASH concentra-
tions remain close to the Km values of CoASH-dependent 
enzymes in the mitochondrion (Table  2), this elevated 
CoASH concentration in the asymptomatic patient is 
likely to have a stimulatory effect on CoASH-dependent 
reactions.

If we hypothesise that flux decline and CoASH deple-
tion contribute to the development of hypoketotic 
hypoglycaemia, then our results suggest that altered 

expression of genes encoding for SCAD and MTP has 
contributed to the lack of symptoms in the asympto-
matic patient. The ED patients did not show such adap-
tations. Of course, the model is blind to adaptations 
outside its included reactions, such as in gluconeogenesis 
or ketogenesis, and to changes in the pathway kinetics 
due to post-translational modifications like acetylation 
[191]. TCA cycle enzymes and selected respiratory chain 
subunits were included in the proteomics, but were not 
altered in any of the MCAD groups compared to the con-
trols (Additional File 14: Figure S9). Alternatively, the 
lack of symptoms in ED patients may be due to their early 
detection and subsequent dietary advice, which might 
have interfered with the natural disease development.

Finally, the availability of fibroblast proteomics from 
only a single clinically certain asymptomatic individual 
complicates the statistical interpretation of the per-
sonalised model predictions. The limited availability of 
patients in this category is due to the rarity of the disease 
and the early detection by newborn screening, which 
was introduced in 2007 [19]. We are dependent on his-
torical samples, as interventions introduced after detec-
tion by newborn screening can interfere with natural 
disease progression. This is in line with the development 
of so-called ‘N of 1’ trials for rare diseases [192], which 
may in the future also benefit from computational mod-
els. We could partially address the lack of asymptomatic 
replicates by comparing the results of the asymptomatic 
individual to the confidence intervals belonging to other 
clinical groups.

Towards the digital twin
We have shown how a kinetic model can be used to 
investigate the pathophysiology of an inborn error of 
metabolism (IEM). It can not only be used to identify 
theoretical sources of phenotypic heterogeneity but—
together with phenotypical knowledge—it can also be 
personalised to predict individual phenotypes. In this 
respect, kinetic models are complementary to genome-
scale metabolic models (GEMs; [193, 194]). In contrast 
to the latest version of the GEM Recon3D [154], which 
maps more than 230 IEMs, kinetic models focus on 
specific pathways and contain fewer enzymes and reac-
tions. For this study, however, a kinetic model is better 
suited, as it allows the explicit simulation of metabolite 
concentrations and the phenomenon of sequestration of 
CoA in acyl-CoA esters [25, 27]. Metabolite partitioning 
can also be intuitively included into a model with explicit 
metabolite concentrations. Also, the compensatory role 
of SCAD in MCADD is better represented by a kinetic 
model, since it depends on the relative affinities of the 
enzymes for their substrates, as quantified by the Km val-
ues. Steps have been taken towards enzyme-constrained 

Table 3 Peptide concentrations per group (fmol.μg‑total‑
protein−1)

Peptide Asymptomatic All subjects
(n = 14)

All MCADD
(n = 10)

Mean
(95% confidence intervals, based on t distribution)

CPT2 0.21 0.19
(0.09–0.29)

0.19
(0.10–0.28)

VLCAD 1.60 1.33
(0.30–2.36)

1.41
(0.44–2.38)

MCAD 0.23 0.52
(‑0.65–1.68)

0.18
(0.06–0.29)

SCAD 0.38 0.21
(0.06–0.37)

0.21
(0.04–0.38)

ETFa 0.36 0.32
(0.14–0.50)

0.34
(0.13–0.54)

ETFb 1.03 1.09
(0.37–1.81)

1.12
(0.37–1.81)

MCKAT 2.84 2.68
(0.53–4.83)

2.71
(0.58–4.83)

HADHa 1.80 1.34
(0.57–2.10)

1.41
(0.64–2.17)

HADHb 1.80 1.26
(0.35–2.18)

1.29
(0.39–2.20)
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GEM models, incorporating some of the detail of kinetic 
models into large networks [193].

The use of personalised computational models to strat-
ify patients requires that these models become increas-
ingly accurate and comprehensive. This highlights the 
importance of systematically measuring and report-
ing enzyme kinetics—an endeavour which is facilitated 
by databases and consortia such as SABIO-RK and 
STRENDA DB [195, 196]. Advances in enzymology will 
help to further establish accurate kinetic descriptions of 
individual reactions, leading to more clinically relevant 
computational models.

A limitation of this study is that the model only com-
prises the mitochondrial fatty acid oxidation. An exten-
sion of the model with gluconeogenesis, TCA cycle 
and ketogenesis would introduce an explicit link to the 
clinical phenotype of hypoketotic hypoglycaemia [29–
31, 33, 34]. In an extended model, we expect that the 
decline of the fatty acid oxidation flux reduces the pro-
duction of ATP as an important source of Gibbs energy 

for gluconeogenesis and the production of acetyl-CoA 
as a precursor for ketogenesis. Moreover, the deple-
tion of CoASH would directly impact other enzymes 
that require this cofactor. Another important extension 
could be fatty acid oxidation in peroxisomes and micro-
somes [197]. The peroxisome can take over the oxida-
tion of some straight long- and medium-chain fatty acids 
when the mFAO is impaired [198]. Moreover, this exten-
sion would make a direct link to diagnostic markers of 
MCADD, such as dicarboxylic acids [19, 168] and glycine 
conjugates of fatty acids [19, 168].

Many factors may contribute to phenotypic hetero-
geneity among people with mFAO disorders, includ-
ing genetic, post-translational, and environmental 
differences [2, 3, 199–202]. We considered one of these 
sources of heterogeneity—changes in enzyme concentra-
tions—and incorporated it into a computational model. 
This type of personalisation relies on the availability of 
patient-specific proteomics. Improved measurement 
techniques and patient-specific in  vitro models are 

Fig. 7 Steady‑state mFAO flux and mitochondrial CoASH in personalised patient models. Fibroblasts proteomics from four phenotypic groups 
were used to personalise the kinetic model of mFAO: Controls (n = 5), symptomatic (n = 4), early diagnosis, (ED, n = 5) and asymptomatic (n = 1). All 
simulations were done at 150 µM cytosolic palmitoyl‑CoA. A Normalised, measured expression of key β‑oxidation proteins per clinical group. 
Individual people are averages of at least three technical replicates and are represented as data points in the distribution bars. HADHa and HADHb 
are the two subunits of MTP. B, C Simulation results from personalised computational models: flux and mitochondrial CoASH concentration. Dashed 
lines indicate the region of the Km,CoASH values of key mitochondrial enzymes: PDH, αKDH, MCKAT and CrAT (Table 2). Control and MCADD were 
compared using a t‑test
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important for this. Recent advances in targeted proteom-
ics have allowed for increasingly accurate quantification 
of the proteome, also from human cells [203–205]. Here 
we used the QConCAT technology to generate 13C-lysine 
and -arginine labelled peptide standards [109]. The 
advantage of this method is not only the efficient genera-
tion of many standards together but also that it allows to 
correct for the loss of protein during sample treatment. 
The limitation is, however, that the set of measured pro-
teins is predetermined and cannot be flexibly adapted. 
Here, for instance, analysis of the various ACOTs would 
have been of interest, but these are not present in the 
applied mitochondrial panel. With respect to in  vitro 
models, this study was based on fibroblast proteom-
ics, but ideally, a computational model of liver metabo-
lism would be personalised with liver proteomics. Since 
direct biopsies from patient livers are too invasive, more 
representative in  vitro models of MCADD patients and 
other IEM patients have to be generated. One promis-
ing way forward is the generation of induced pluripotent 
stem cells (iPSCs) from cells collected in less invasive 
ways, like fibroblasts from skin grafts [206]. These iPSCs 
can be differentiated into liver organoids, which, if cul-
tured under appropriate physiological conditions, would 
be a better representation of a native liver [207–210]. A 
limitation of current hepatic organoid cultures is, how-
ever, that they produce little or no glucose, and therefore 
lack an important clinical readout [211–213]. Finally, 
the patient fibroblasts used in this study were historical, 
which complicated phenotypical assessment, since the 
conditions that triggered metabolic crisis were obviously 
not controlled. Controlled clinical human studies, such 
as the Fasting Tolerance in MCADD Infants study [214], 
are necessary to generate (patho)physiologically rel-
evant patient data under standardised conditions and to 
increase the statistical power of personalised modelling.

Eventually, advances in personalised kinetic model-
ling hold the promise of increasingly accurate in silico 
representations of individual patients. Such ‘digital 
twins’ of increasing scope and complexity [5, 7, 8] 
would capture the interaction of a pathogenic mutation 
embedded within the biochemical networks that deter-
mine the trajectory of disease development [3, 215]. 
This would allow researchers to non-invasively simu-
late patient outcomes under a variety of perturbations. 
These simulations would aid in diagnosis, prognosis and 
predictions of treatment efficacy in a precise and per-
son-specific way.

Conclusions
In this paper, we presented—to our knowledge—the first 
computational, kinetic model of mFAO in human liver, 
and certainly, the first in which differential metabolite 

localisation due to differences in water solubility has 
been explicitly addressed. Model simulations identified 
the risk of a simultaneous reduction in pathway flux and 
a depletion of CoASH in MCADD. In theory, upregu-
lation of SCAD, MTP and/or the ACOTs are possible 
rescues to preserve pathway flux and CoASH. Indeed, 
proteomics analysis of individual patients’ cells revealed 
the upregulation of SCAD and MTP in an asymptomatic 
patient. This was also the first time that patient data were 
directly employed to personalise computational models 
for the investigation of MCADD. Increased SCAD as a 
rescue for MCADD has also not been explicitly reported 
before. Altogether, this study shows the potential and 
direction of personalised computational modelling for 
unravelling disease evolution, stratifying risk among 
patients, and, in future, testing interventions.

Methods
Generation of HepG2 MCAD‑KO cell line
ACADM was knocked out in HepG2 cells (order num-
ber: ATCC-HB-8065, ATCC, Manasses, Virginia, USA) 
by CRISPR-Cas9, with guide sequence 5′-GGG GTT 
CGG GCG ATG CTG CA-3′, which was designed using 
the online CRISPR Design Tool [216]. The sequence of 
the T7 promoter is added 5′ of the guide sequence and 
additional nucleotides are included for cloning into a 
pX459 vector (pSpCas9(BB)-2A-Puro) [164]. These oli-
gonucleotides were ordered from Invitrogen (Waltham, 
Massachusetts, USA). Correct insertion was con-
firmed by Sanger sequencing (GATC Biotech, Ebers-
berg, Germany). The HepG2 cells were transfected with 
the sgRNA-coding plasmids using Lipofectamine 3000 
according to the manufacturer’s instructions [217].

Human fibroblasts
Fibroblasts of patients without a documented herit-
able metabolic disease (n = 5;  control) and fibroblasts of 
patients with MCADD were obtained from the Depart-
ment of Genetics of the University Medical Centre Gro-
ningen. All patients with MCADD were homozygous 
for c.985A > G missense mutation in the ACADM gene 
and were born before neonatal screening for MCADD 
was implemented in the Netherlands (< 2007). Three 
subgroups were distinguished. Symptomatic (n = 4), 
patients that suffered from at least one recorded meta-
bolic crisis leading to hospitalisation with hypoglycae-
mia (< 2.6  mmol/L), coma and/or seizures (n = 4). Early 
diagnosis individuals (n = 5; abbreviated ED), siblings 
of the symptomatic patients who were diagnosed dur-
ing proband follow-up (ages 0–11  years), were detected 
and subsequently received preventative dietary advice. 
Asymptomatic (n = 1) was discovered well into adulthood 
(30  years of age), without having ever had noticeable 



Page 15 of 22Odendaal et al. BMC Biology          (2023) 21:184  

symptoms. Case characteristics are given in Additional 
File 15: Table S4.

Genotyping
Genomic DNA was isolated and part of the MCAD gene 
was amplified by PCR using forward (CTG GCA GCT 
CTT CTC AAA GC) and reverse (TTC AAG GAG TAG 
CTG CTC ) primers. The PCR product of 350 bp was sub-
cloned into pZERO-blunt and at least 7 colonies per cell 
line were genotyped by Sanger sequencing.

Immunoblotting
Western blotting was performed according to a previ-
ously described method [218]. GAPDH was used as a 
positive control. Commercially available antibodies were 
used to detect GAPDH (AB8245, Abcam, Cambridge, 
UK) and MCAD (AB92461, Abcam, Cambridge, UK). 
The original images can be found in Additional File 16: 
Fig. S10.

Proteomics
Concentrations of mFAO enzymes and carrier proteins 
were quantified by liquid chromatography coupled to 
mass spectrometry in selected reaction monitor mode 
(LC–MS-SRM), with 13C-lysine and -arginine labelled 
QConCATs targeting a panel of mitochondrial proteins 
according to [109].

Acylcarnitine analysis in MCADD patients’ urine
Seven MCADD patients were included, all of whom were 
homozygous for the c.985A > G missense mutation in the 
ACADM gene and identified before the introduction of 
MCADD to the Dutch newborn screening. The median 
age at inclusion was 29 years (range 14–76). The MCADD 
patients were retrospectively categorised as symptomatic 
(n = 3) or asymptomatic (n = 4) according to the same cri-
teria used for the patient fibroblasts. For all patients, acyl-
carnitines were measured according to Derks et al. [176] 
in urine obtained after an overnight fast (fasting), and in 
the first urine after breakfast (fed). For the symptomatic 
patients, historic urine samples taken during a first meta-
bolic derangement (at ages 11–13  months) (crisis) were 
retrieved from storage (stored at − 80 °C) and measured.

Informed consent
For the use of patient urine for the measurement of acyl-
carnitines, written consent was obtained.

For the use of historical patient fibroblasts, the Medical 
Ethical Committee of the University Medical Centre Gro-
ningen confirmed that according to Dutch law, the Medi-
cal Research Involving Human Subjects Act (WMO) does 
not apply to this study and that an official approval by the 
Ethical Committee was not required (METc 2016/590).

Cell culture
Cell cultures were kept at 37 °C and 5%  CO2. Wild-type 
and MCAD-KO HepG2 cells were cultured in Dulbecco’s 
modified Eagle’s medium with 1 g.L−1 glucose, 3.7 g.L−1 
 NaHCO3, 0.11  g.L−1 sodium pyruvate, and amino acids 
(catalogue number P04-01500, PAN Biotech™, Aiden-
bach, Germany) with glutamine and NaCl added to a 
final concentration of 3  mM, supplemented with 10% 
foetal calf serum (FCS, Gibco™). Assays were performed 
only on cells that had been passaged fewer than 20 times. 
Human fibroblasts were cultured in Ham’s F-10 Nutrient 
Mix (Thermo Fisher Scientific 11550,043), supplemented 
with 10% foetal calf serum (FCS, Gibco™), 1% penicillin/
streptomycin (PenStrep, Gibco™). Seventy-two hours 
before harvesting the cells, the medium was changed and 
supplemented with 0.4 mmol.L−1 L-carnitine.

High‑resolution respirometry
HepG2 cells were detached by trypsinisation (0.25% 
Trypsin–EDTA, Gibco™). After 10 min, the trypsin was 
inactivated by washing with cell culture medium contain-
ing 10% FCS.  O2 consumption flux was then measured 
in a miRO5 buffer containing 25  μM palmitoyl-CoA, 
2  mM L-carnitine and 2  mM malate as the substrates, 
using an Oroboros Oxygraph-2 k (O2k, Oroboros Instru-
ments, Austria) as described by Van Zutphen et al. [219]. 
Instead of an ADP-generating system, we directly added 
1 mM of ADP. For normalisation to cellular protein, cells 
were sonicated twice at 20 kHz, 40% amplitude for 30 s 
(VCX130, Sonics & Materials Inc., Newton, CT., USA). 
Protein was quantified in the lysate with the BCA protein 
assay kit (Pierce, Thermo Fisher Scientific Inc., Rockford, 
IL., USA). Each point in the data set represents one bio-
logical repeat.

Computational model
Model construction and analysis were performed in 
Wolfram Mathematica version 12.1. Ordinary differ-
ential equations (ODEs) were solved with the NDSolve 
function. Steady states were then calculated by the New-
ton–Raphson method as the point at which the time 
derivatives in all ODEs equalled zero (FindRoot func-
tion with MaxIterations—> Infinity), with the end point 
of the time evolution as an initial guess. All inspected 
steady states fulfilled the criterion that time derivatives 
were close to zero (<  10−10). Varying the initial metabo-
lite concentrations did not result in alternative steady 
states. Where metabolic control analysis (MCA) was 
performed, the summation theorem was satisfied in all 
cases, confirming the internal consistency of the analy-
sis. Thus, the sum of all flux control coefficients equals 
unity and the sum of all concentration control coeffi-
cients equals zero [139]:
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A detailed model description is included in Additional 
File 1: Text S1. In keeping with FAIR data practices, the 
model is available on the repository JWS Online Biologi-
cal Systems Modelling [220]. The model can be viewed, 
downloaded and simulated directly via on JWS Online 
[221].

To simulate metabolic stress that could lead to a meta-
bolic crisis, the cytosolic palmitoyl-CoA concentration 
was set to 150  µM, which is approximately the highest 
concentration of liver cytosolic long-chain acyl-CoAs 
reached in  vivo [150]. All other parameters were set to 
their default values (Additional File 1: Text S1) unless 
otherwise noted.

Personalised models of individual patients
To transform the generic model of human mFAO into 
personalised models, we made use of the property that 
the maximal catalytic activity (Vmax) of a protein is pro-
portional to its concentration. The Vmax values in the 
model were retrieved directly from the literature, while 
the underlying protein concentration was not explicitly 
quantified. In model personalisation, the mean protein 

∑

i

Flux control coefficienti = 1

∑

i

Concentration control coefficienti = 0

concentration of the control fibroblasts was chosen as 
the reference value, effectively equal to the implicit pro-
tein concentration underlying the model’s Vmax values. 
The measured protein concentration of each enzyme in 
an individual’s fibroblasts was normalised to the corre-
sponding reference ( [E]person [E]controlmean

 ). The default Vmax 
values (and the ETF concentration) in the default model 
were multiplied by this relative fibroblast protein con-
centration to yield the personalised parameters (Table 4). 
Proteins that could not be quantified were set to control 
levels.

Statistical methods
The grouped fluxes and mitochondrial CoASH concen-
trations from the personalised models were compared 
using Student’s two-tailed t-test. Before performing 
the test, the normality of the data was inspected   using 
a quantile–quantile plot. This was done for all pheno-
typic groups, as well as for the phenotypically grouped 
MCADD models grouped.

Abbreviations
IEM  Inborn error of metabolism
mFAO  Mitochondrial fatty acid β‑oxidation
CASTOR  Coenzyme A sequestration, toxicity and redistribution
CoASH  Free coenzyme A
MCAD  Medium‑chain acyl‑CoA dehydrogenase
MCADD  MCAD deficiency
ED  Early diagnosis
CPT1  Carnitine palmitoyltransferase 1

Table 4 Personalised parameters based on fibroblast proteomics data

a Vmax,MCAD activity was set to zero in all MCADD patients
b Vmax,SCAD was set to the default value for all patients except P10, since the measurements were too close to the limit of detection to be precisely quantified. For P10, 
however, the SCAD concentration could be concluded to differ from the other persons in the cohort and was adapted

Phenotype Person Vmax,VLCAD Vmax,MCAD
a Vmax,SCAD

b Vmax,MCKAT Vmax,MTP Total ETF
Unit μmol.min−1.mg‑mitochondrial‑Protein−1 μM

Default 0.076 0.038 0.01668 2.98 0.167 46.0

Control C103 0.042 0.037 0.01668 2.82 0.178 27.4

C104 0.066 0.025 0.01668 1.78 0.088 39.8

C105 0.104 0.059 0.01668 5.32 0.243 65.2

C106K 0.110 0.030 0.01668 2.92 0.187 57.5

C106W 0.032 0.038 0.01668 2.07 0.122 28.0

Symptomatic P1 0.044 0 0.01668 2.41 0.132 24.7

P5 0.118 0 0.01668 2.22 0.145 48.0

P7 0.059 0 0.01668 4.74 0.181 44.5

P8 0.094 0 0.01668 3.88 0.258 52.5

Early diagnosis P2 0.069 0 0.01668 2.73 0.159 39.4

P3 0.058 0 0.01668 1.32 0.097 35.7

P4 0.121 0 0.01668 4.02 0.252 65.7

P6 0.094 0 0.01668 4.03 0.193 70.8

P9 0.096 0 0.01668 2.12 0.166 48.9

Asymptomatic P10 0.096 0 0.02776 3.22 0.257 43.6
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CPT2  Carnitine palmitoyltransferase 2
CACT   Carnitine acylcarnitine translocase
VLCAD  Very‑long‑chain acyl‑CoA dehydrogenase
SCAD  Short‑chain acyl‑CoA dehydrogenase
ACAD  Acyl‑CoA dehydrogenase
CROT  Crotonase
M/SCHAD  Medium‑/short‑chain hydroxyacyl‑CoA dehydrogenase
MCKAT  Medium‑chain ketoacyl‑CoA thiolase
MTP  Mitochondrial trifunctional protein
ACOTcs  Acyl‑CoA thioesterase (CoA‑sensitive)
ACOTcs  Acyl‑CoA thioesterase (CoA‑insensitive)
ETF  Electron‑transferring flavoprotein
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Additional file 11: Table S3. Full sensitivity analysis. Flux and CoASH con‑
centration response coefficients for all model parameters at [palmitoyl‑
CoA] = 10 µM and 150 µM.

Additional file 12: Figure S7. Effect of possible rescues of mitochondrial 
CoASH and steady‑state mFAO flux in a control model. Effect of incre‑
mental changes in VLCAD, SCAD, MTP, ACOT, and CPT2 in a control model 
activity on NADH flux and CoASH concentration.
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