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Abstract 

Background Single-cell RNA sequencing (scRNA-seq) has revolutionized the transcriptomics field by advancing anal-
yses from tissue-level to cell-level resolution. Despite the great advances in the development of computational meth-
ods for various steps of scRNA-seq analyses, one major bottleneck of the existing technologies remains in identifying 
the molecular relationship between disease phenotype and cell subpopulations, where “disease phenotype” refers 
to the clinical characteristics of each patient sample, and subpopulation refer to groups of single cells, which often 
do not correspond to clusters identified by standard single-cell clustering analysis. Here, we present PACSI, a method 
aimed at distinguishing cell subpopulations associated with disease phenotypes at the single-cell level.

Results PACSI takes advantage of the topological properties of biological networks to introduce a proximity-based 
measure that quantifies the correlation between each cell and the disease phenotype of interest. Applied to simu-
lated data and four case studies, PACSI accurately identified cells associated with disease phenotypes such as diagno-
sis, prognosis, and response to immunotherapy. In addition, we demonstrated that PACSI can also be applied to spa-
tial transcriptomics data and successfully label spots that are associated with poor survival of breast carcinoma.

Conclusions PACSI is an efficient method to identify cell subpopulations associated with disease phenotypes. Our 
research shows that it has a broad range of applications in revealing mechanistic and clinical insights of diseases.
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Background
Single-cell RNA sequencing (scRNA-seq) is revolu-
tionizing whole-transcriptomic studies from the tissue 
resolution to the cell resolution [1]. Despite the great 
advances in the development of computational meth-
ods for various steps of scRNA-seq analyses, one major 
bottleneck of the existing technologies is identifying 
the molecular relationship between disease phenotype 
and cell populations. We use “disease phenotypes” as 
the clinical characteristics of each patient sample, such 
as disease vs. normal, poor survival vs. good survival, 
responder vs. non-responder, and so on [2]. Disease 
phenotypes of interest are frequently driven by some 
critical cells with abnormal function or activity [3–6]. 
Recognizing the cell subpopulations associated with 
disease phenotype from single-cell data is of funda-
mental importance because it will assist in cell popu-
lation-specific targeted therapies and the discovery of 
biological biomarkers [7, 8].

There are multiple statistical methods that have been 
developed to explore single-cell data. Seurat utilizes 
unsupervised clustering to identify cell types and then 
associate cell types with disease phenotypes [9]. However, 
many scRNA-seq studies include only a small number of 
patient samples and generate a lot of cells for each patient 
sample [10], making this strategy less statistically power-
ful. As alternative strategies, deconvolution [11, 12] and 
single-sample gene set enrichment analysis (ssGSEA) 
[13] have also been used to identify cell subsets associ-
ated with disease phenotypes. These methods assess the 
association of disease phenotypes with the previously 
defined cell clusters rather than individual cells. In other 
words, these methods fail to distinguish cells associated 
with disease phenotype from single-cell data, especially 
if the target cells are distributed in diverse cell clusters. 
Moreover, they only compare the abundance of cell types 
between samples, neglecting transcriptional changes of 
these cells.

To address these challenges, Scissor was purposed 
to dissect phenotype-specific cell subsets from hetero-
geneous single-cell data [14]. The key step of Scissor is 
employing Pearson correlation at the whole transcrip-
tome level to quantify the similarity between cells and 
samples. Although this method focuses on the impor-
tance of genetic perturbations of cells, such a whole-
transcriptome perspective may overlook changes in gene 
expression of a small number of key genes. Currently, 
DEGAS combined deep learning and transfer learn-
ing to transfer phenotype information from patients 
to cells [15]. The main drawback of this strategy is the 
lack of effective biological interpretation. In summary, 
there is an urgent need for a method with both superior 
performance and good interpretability to identify cell 

subpopulations associated with disease phenotypes from 
single-cell data.

Therefore, we have developed PACSI (Phenotype-
Associated Cell Subpopulation Identification), a novel 
network-based method to identify cell subpopulations 
associated with disease phenotypes of interest. PACSI 
takes a single-cell transcriptome dataset, a bulk gene 
expression matrix, phenotype labels and protein-protein 
interaction (PPI) networks as inputs. PACSI consists of 
three steps: (1) cell/sample signatures in the form of gene 
sets are constructed using the highly expressed genes of 
a cell/sample relative to the others in the single-cell or 
bulk gene expression matrix; (2) network-based proxim-
ity is calculated to define similarity between cells and the 
disease phenotype of interest; (3) the significance of the 
proximity-based similarity between a cell and the pheno-
type of interest is assessed by randomly assigning genes 
in the cell signature. We tested PACSI on multiple data-
sets of various disease phenotypes to ascertain the broad 
utilities of PACSI. Our studies suggest that PACSI allows 
scientists to generate more biological insights into the 
underlying mechanisms of complex diseases, which can 
promote the development of precision medicine.

Results
PACSI: a graph‑based approach for identifying cell 
subpopulations associated with disease phenotypes
To develop a general-purpose algorithm that is suitable 
for many disease phenotypes, we integrated single-cell 
expression matrices, bulk gene expression data, bulk 
sample phenotype labels, and PPI networks to identify 
cells related to disease phenotypes (Fig.  1A). The first 
step of PACSI was to obtain a gene signature for each 
cell and each bulk sample. PACSI first selected highly 
expressed genes as the gene expression signature for each 
cell and bulk sample (Fig. 1B, left and right). In addition, 
PACSI extracted the largest connected component of the 
PPI network to calculate the network distance between 
each cell and each bulk sample in subsequent analy-
sis (Fig. 1B, middle). After this, each cell or bulk sample 
signature was genetically characterized and induced a 
module in the largest connected component of the PPI 
network (Fig. 1C, left). For each cell-sample pair, we com-
puted the average shortest path length between each cell 
module and bulk sample module to quantify the corre-
lation for each cell-sample pair. To obtain the final net-
work-based relationship between cells and the phenotype 
of interest, we averaged the shortest paths between each 
cell and the bulk samples with the phenotype labels of 
interest. Furthermore, PACSI created randomly a refer-
ence distance distribution to assess the significance of the 
relationship between cells and the phenotype of interest 
(Fig.  1C, middle). Finally, the utility of PACSI-selected 
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Fig. 1 The workflow diagram of PACSI. A The inputs for PACSI are the scRNA-seq data, the bulk expression data, phenotype labels corresponding 
to bulk data and PPI networks. B PACSI extracts separately the cell signatures and bulk sample signatures from scRNA-seq data and bulk expression 
data, respectively (left and right). Meanwhile, PACSI calculated the largest connected component of the PPI network using the R igraph package 
(middle). C Each cell signature and each bulk sample signature respectively induces a module in the largest connected component of the PPI 
network, and then the network-based cell-phenotype proximity is calculated (left). Next, the PACSI results are evaluated by calculating empirical P 
values from random permutations (middle). The PACSI-identified cells can be visualized using UMAP (right). D The cell subpopulations identified 
by PACSI are used for downstream analysis
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cells (Fig. 1C, right) was illustrated in downstream anal-
yses, such as specific regulatory analysis and functional 
analysis (Fig. 1D).

PACSI correctly detected the phenotype‑related 
subpopulations in simulated data
To evaluate the performance of PACSI in a controlled 
context, we implemented splatter [16] to generate sin-
gle-cell and bulk RNA-sequencing FPKM data. We first 
simulated 5000 cells, forming 10 groups of the same size 
with 10,000 genes per cell (Additional file  1: Supple-
mentary Fig. 1A), and 500 samples. We defined the first 
cluster of cells as the ground truth. We employed the 
receiver operating characteristic (ROC)–area under the 
curve (AUC) and the precision-recall (PR)-area under 
the curve (AUPR) as measures of predictive performance 
due to the large imbalance of classes. We first evaluated 
how the accuracy of PACSI changes in regard to the size 

of cell/sample signatures. Figure  2A showed the perfor-
mance of PACSI when the size of cell/sample signatures 
varies from 50 to 250, and we found that the size of sig-
natures did influence the performance of PACSI. PACSI 
performed best with 150-gene signature in simulated 
data, so we set 150 as the default parameter. After that, to 
further assess the performance of PACSI, we regenerated 
a new single-cell expression profile (Fig.  2B) and bulk 
expression profile using the same method and param-
eters and compared PACSI with other methods reported 
previously, including Scissor and DEGAS. We have used 
these published methods with their default hyperparam-
eters from provided tutorials. The results showed that 
PACSI achieved an AUC of 0.96 and an AUPR of 0.99 
which were substantially higher than other methods 
for identifying the ground truth cells on the simulated 
dataset (Fig.  2C, D and Additional file  1: Supplemen-
tary Fig. 1B, C). Overall, the above results indicated that 

Fig. 2 Simulation data shows the advantages of PACSI. A The ROC curves of PACSI with various sizes of cell/sample signatures. B The UMAP 
visualization of simulated single-cell data. C The UMAP visualization of PACSI-identified cells. The red dots are PACSI-identified cells associated 
with phenotype and the gray dots represent the rest of the cells in the simulated single-cell data. D The ROC curves of three methods
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PACSI could be an effective method to accurately identify 
cell subpopulations associated with disease phenotypes.

Capturing subpopulations related to HNSC
Head and neck squamous cell carcinoma (HNSC) are 
the most common malignant tumors that arise in the 
head and neck [17]. The identification of HNSC-related 
cells is critical to the biology, diagnosis, and treatment of 
HNSC. We first downloaded 69,567 experimentally veri-
fied human PPIs data from the MINT database and used 
this data for all real cases in this study [18]. The largest 
connected component extracted by PACSI retained more 
than 99% of the edges in the original PPI network. We 
employed PACSI, guided by 544 TCGA-HNSC bulk sam-
ples with the phenotype information, to infer cell subsets 
that were associated with HNSC within cells from the 
HNSC single-cell dataset. Among the 4244 cells from 
different cell types (Fig.  3A), 46 cells were identified by 
PACSI to be associated with tumor phenotype (Fig. 3B). 
Forty-five out of the 46 identified cells were malignant 
cells; the other one cell was fibroblast (Fig. 3C).

Consequently, to systematically infer crucial regula-
tors for cell subpopulations identified by PACSI, we 
performed comprehensive gene regulatory network 
analysis (the “Methods” section). The regulators that 
were specific to the identified cells were arranged from 
large to small according to the regulon specificity score 
(RSS) [19]. The top three regulators were JUND, JUNB, 
and FOSB (Fig. 3D and Additional file 2). All three fac-
tors are well known oncogenes [20–23]. Thereafter, we 
compared gene expression of PACSI-identified cells 
with the others to detect transcriptional changes in 
these cells. As a result, 65 upregulated genes and 11 
downregulated genes were uncovered to be differently 
expressed in these cells (Fig.  3E and Additional file  2). 
Multiple upregulated genes are related to HNSC such as 
CDH3 [24] (Fig. 3E and Additional file 1: Supplementary 
Fig. 2). Gene set enrichment analysis using the Hallmark 
gene sets showed that the differentially expressed genes 
(DEGs) were significantly enriched in several pathways, 
such as epithelial-mesenchymal transition [25] and 
angiogenesis [26], which are closely related to HNSC 
(Fig.  3F and Additional file  2). Finally, to explore the 
clinical relevance of PACSI-derived signature (defined 
as the upregulated genes of the identified cells related 
to HNSC; Additional file 2), we performed ssGSEA on 
independent data. We found that the PACSI-derived 
signature scores were significantly higher in tumor sam-
ples than in normal tissues from HNSC, suggesting that 
the HNSC signature was indeed associated with HNSC 
and therapeutic strategies might be developed to target 
these genes (Fig. 3G).

Identification of cell subpopulations associated with poor 
survival in breast carcinoma
Our study also extensively explored the ability of PACSI 
to identify cells related to poor survival. We applied 
PACSI on a single-cell dataset of 1534 cells from six 
breast cancer tumors [27] (Fig.  4A). The TCGA-BRCA 
bulk gene expression data and corresponding survival 
information were downloaded from the UCSC Xena 
database [28]. We identified a total of 317 cells related to 
poor survival in BRCA (Fig. 4B), among which clusters 1 
and 2 were the two main cell types (Fig.  4C). For tran-
scriptional regulatory analysis of PACSI-identified cells, 
SOX4, JUND, TWIST1, and FOS were identified as the 
most specific regulators (Fig.  4D and Additional file  3). 
Moreover, SOX4 can promote the growth and metasta-
sis of breast carcinoma and has been proposed as a bio-
marker of poor prognosis in breast carcinoma patients 
[29, 30]. TWIST1 has also been shown to promote breast 
carcinoma invasion and metastasis [31], and high expres-
sion of TWIST1 has been found to be associated with 
poor prognosis in breast carcinoma [32].

We conducted a similar DEGs analysis comparing 
PACSI-identified cells versus the others. As shown in 
Fig.  4E, 692 transcripts were significantly differentially 
expressed in the identified cells (Additional file 3). Mul-
tiple upregulated genes in identified cells are associ-
ated with the prognosis of breast carcinoma patients 
(Fig.  4F). For example, it has been shown that KRT17 
and KRT5 were significantly upregulated in basal-like 
breast carcinomas, and the overexpression of KRT17 
was associated with poor prognosis of cancer [33–35]. 
In addition, Ding et al. [36] reported that TFAP2A was 
aberrantly upregulated in breast carcinoma tissues and 
was associated with breast cancer progression. Besides, 
it has also been shown that high HspA1B expression was 
associated with poorer overall survival [37]. For genes 
upregulated in PACSI-identified cells, several Reac-
tome pathways related to cancer prognosis were signifi-
cantly enriched, including recognition of DNA damage 
by PCNA-containing replication complex and PCNA-
dependent long patch base excision repair [38–40] 
(Fig. 4G and Additional file 3).

To demonstrate that PACSI can provide novel bio-
logical insights, we computed the ssGSEA scores of the 
prognostic signature derived from upregulated genes 
in the PACSI-identified cells using three external bulk 
gene expression data and then stratified BRCA patients 
into high- and low-risk groups based on the lower 
quartile of PACSI-derived signature scores (Additional 
file  3). The results showed that PACSI-derived prog-
nostic signature was robust across diverse independent 
datasets (Fig. 4H).
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Fig. 3 Evaluation of PACSI on HNSC data. A The UMAP visualization of the HNSC scRNA-seq dataset. B The UMAP visualization of PACSI-identified 
cells. The red dots are PACSI-identified cells associated with HNSC. C The distribution of PACSI-identified cells by cell types. D Rank for regulons 
in PACSI-identified cells associated with HNSC based on RSS. E Differential gene expression analysis. The x-axis shows the difference 
in the percentage of cells expressing the gene between PACSI-identified cells and the others; the y-axis represents the  log2 fold-change. F The 
significantly enriched Hallmark pathways in the PACSI-identified cells compared to other cells using GSEA. G Box plot shows the enrichment 
scores of the HNSC signature in the HNSC and normal samples from the independent validation dataset. A two-sided Wilcoxon rank-sum test 
was performed to estimate the significance level
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Fig. 4 Application of PACSI on BRCA data. A The UMAP visualization of the BRCA scRNA-seq dataset. B The UMAP visualization of PACSI-identified 
cells. The red dots are PACSI-identified cells associated with poor prognosis in BRCA. C The distribution of PACSI-identified cells by cell clusters. D 
Rank for regulons in PACSI-identified cells associated with poor prognosis in BRCA based on RSS. E The differentially expressed genes  (log2 fold 
change > 2, FDR < 0.01) in PACSI-identified cells (labeled 1) and all the other cells (labeled 0). F Violin plots show the expression levels of vital 
genes in PACSI-identified cells (n = 317) and all the other cells (n = 1217). Two-tailed P value was calculated by Wilcoxon rank-sum test. G The top 
five Reactome pathways enrichment of genes that were expressed higher in the PACSI-identified cells. H Kaplan–Meier estimates survival curves 
for the high-risk and low-risk groups according to PACSI-derived signature. The log-rank test was used to calculate P values. The x-axis indicates 
the follow-up time; the y-axis indicates the probability of overall survival (OS), disease-free survival (DFS), and recurrence-free survival (RFS)
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Detection of cells related to immunotherapy response 
in melanoma
Immunotherapy is revolutionizing the treatment of 
cancer by enabling long-term tumor control [41]. To 
explore why some patients respond to immunotherapy 
and others do not, we performed PACSI analysis on a 
bulk mRNA expression profile of melanoma with clinical 
response information and a scRNA-seq matrix of 6,879 
cells from 31 melanoma tumors [42, 43] (Fig. 5A). By per-
forming PACSI, we identified 3519 cells that were asso-
ciated with responder patients (Fig. 5B). As anticipated, 
malignant cells were the predominant cell type, account-
ing for 48.9% of total PACSI-selected cells, followed by 
CD8 T cells and CD4 T cells (Fig. 5C). These cell types 
are well known to be strongly correlated with immuno-
therapy [44, 45]. These results strongly suggested that 
PACSI can accurately identify cell subpopulations associ-
ated with immunotherapy response.

The top three regulators are shown in Fig. 5D, of which 
SOX10 had the highest RSS and was illustrated that could 
regulate ICI gene expression and anti-tumor immunity in 
melanoma [46] (Additional file 4). We also found a total 
of 284 DEGs between PACSI-identified cells and the oth-
ers, among which 153 genes were upregulated and 131 
genes were downregulated (Fig. 5E and Additional file 4). 
Notably, several upregulated genes have been demon-
strated to be related to immunotherapy. For example, the 
expression level of SERPINE2 was positively correlated 
with the level of CD4 T cells infiltration in the tumor, and 
it is well-known that CD4 T cells can enhance antitumor 
activity of cytotoxic T lymphocytes [44, 47] (Additional 
file  1: Supplementary Fig.  3a). Serum S100B levels have 
been reported to monitor response to immunotherapy 
in metastatic melanoma [48] (Additional file  1: Supple-
mentary Fig.  3b). Moreover, the expression of CNN3 is 
associated with the activity of several immune-related 
pathways and the expression of immune checkpoint mol-
ecules [49] (Additional file 1: Supplementary Fig. 3c). In 
addition, functional enrichment analysis revealed that 
the PACSI-identified cells associated with good response 
to immunotherapy had higher activity of immune-related 
pathways, including interferon-gamma (IFN-γ) response 
and interferon-alpha (IFN-α) response (Fig. 5F and Addi-
tional file 4). IFN-γ was found to drive clinical response 
to immune checkpoint blockade therapy in melanoma 
[50], suggesting that these PACSI-identified cells may 
improve the response to immunotherapy by regulating 
the IFN-γ response pathway. PACSI-derived signature 
scores associated with immunotherapy response were 
significantly different in non-responders and responders 
(Fig. 5G and Additional file 4).

Previous studies have found that Immune checkpoint 
inhibitors (ICI) were efficacious targets for anti-cancer 

immunotherapy [51, 52]. To further investigate the com-
plex crosstalk between the PACSI-derived signature asso-
ciated with good immunotherapy response and ICI genes 
(PD-1, PD-L1 and CTLA-4), we performed Pearson’s cor-
relation analysis on the bulk dataset. As shown in Fig. 5H, 
the expression levels of PD-1 and PD-L1 were negatively 
correlated with the signature scores derived from PACSI-
identified cells, suggesting that PACSI-identified cells 
may improve the response of patients to immunotherapy 
by upregulating the expression of ICI genes.

Identification of cell subpopulations associated 
with COVID‑19 disease
Beyond its utility in oncology, PACSI was also shown 
to offer insights into other diseases, such as COVID-19, 
which has been a global public health challenge in the 
past years. In this case study, we used a single-cell expres-
sion dataset of 2613 cells from the blood of a severe 
COVID-19 patient and a bulk gene expression matrix 
consisting of both COVID-19 and control samples to 
identify cells associated with COVID-19 [53] (Fig.  6A). 
Six hundred ninety-six cells were selected by PACSI to 
be related to COVID-19 disease, mainly from clusters 
2 and 5 (Fig.  6B, C). Transcriptional regulatory analysis 
revealed that CEBPB, JUNB, FOS, and SPL1 were the 
most specific regulators for cells identified by PACSI 
(Fig.  6D and Additional file  5). Huang et  al. have found 
that the expression of FOS was upregulated in patients 
and down-regulated in cured patients [54]. Moreover, 
after the virus reaches the blood immune cells, FOS and 
JUNB generated a wide range of antiviral responses by 
activating the expression of downstream effectors of the 
MAPK pathway [54]. In addition, FOS was found to have 
potential as a new target for puerarin in the treatment of 
COVID-19 [55].

Comparing COVID-19-associated cells with other 
cells, 930 genes altered significantly and most were over-
expressed (Additional file  1: Supplementary Fig.  4 and 
Additional file  5), suggesting inductive events operating 
in the COVID-19 disease. We defined the percentage dif-
ference for a gene as the difference in the percentage of 
cells expressing that gene comparing PACIS-identified 
cells versus other cells. Intriguingly, the six genes with 
the largest percentage difference (RPL15, RPL26, RPL27, 
PRLP2, RPS3A, and PRS21) encode several ribosomal 
proteins that are components of the 60S and 40S subunits 
(Fig. 6E). Several studies have shown that nonstructural 
proteins of SARS-CoV-2 bind human ribosomal subunits 
to inhibit nonspecific immunity [56, 57]. Reactome path-
way analysis also confirmed that the upregulated genes 
were significantly enriched in virus-associated pathways 
(e.g., viral mRNA translation) and translation-related 
pathways (e.g., peptide chain elongation, eukaryotic 
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Fig. 5 Application of PACSI on melanoma data. A The UMAP visualization of the melanoma scRNA-seq dataset. B The UMAP visualization 
of PACSI-identified cells. The red dots are PACSI-identified cells associated with immunotherapy response. C The distribution of PACSI-identified cells 
by cell types. D Rank for regulons in PACSI-identified cells associated with immunotherapy response based on RSS. E Differential gene expression 
analysis. The x-axis shows the difference in the percentage of cells expressing the gene between PACSI-identified cells and the others; the y-axis 
represents the  log2 fold-change. F The top ten enriched Hallmark pathways in the PACSI-identified cells compared to other cells using GSEA. G Box 
plot shows the enrichment scores of the immunotherapy response signature in the responder and non-responder samples from the independent 
validation dataset. Two-tailed P value was calculated by Wilcoxon rank-sum test. H Scatterplots of immunotherapy responsive signature scores 
versus PD-1 and PD-L1 gene expression in bulk gene expression data. Pearson coefficient (r) and associated P value are reported
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Fig. 6 Application of PACSI on COVID-19 data. A The UMAP visualization of the COVID-19 scRNA-seq dataset. B The UMAP visualization 
of PACSI-identified cells. The red dots are PACSI-identified cells associated with COVID-19. C The distribution of PACSI-identified cells by cell clusters. 
D Rank for regulons in PACSI-identified cells associated with COVID-19 based on RSS. E The expression of vital genes in the single-cell data. F The 
top five Reactome pathways enrichment of genes that were expressed higher in the PACSI-identified cells. G Box plots show the enrichment scores 
of the COVID-19 signature in the COVID-19 and normal samples from the independent validation dataset. A two-sided Wilcoxon rank-sum test 
was performed to estimate the significance level
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translation elongation, and eukaryotic translation termi-
nation) (Fig. 6F and Additional file 5). Bankar et al. [58] 
have found that mRNA translation pathways were altered 
significantly in response to COVID-19 infection, suggest-
ing translation-related pathways may serve as potential 
targets for COVID-19 therapy.

To demonstrate that whether the PACSI-derived signa-
ture can distinguish samples from the COVID-19 disease 
from the normal tissue, we built a COVID-19 signature 
using the upregulated genes in cells identified by PACSI 
(Additional file 5). The result found that the COVID-19 
signature was significantly different between disease and 
normal samples in the independent COVID-19 dataset 
(Fig. 6G).

Application of PACSI on spatial transcriptomic data
To understand the spatial distribution of cell subpopu-
lations associated with disease phenotypes, we per-
formed PACSI on the Visium spatial gene expression 
data of breast ductal carcinoma and the TCGA-BRCA 
bulk dataset with survival information to identify spot 
subsets that were related to poor survival. The filtered 
spatial expression data contained 2518 spots which 
were separated in 11 clusters (Fig.  7A), and most spots 
that were associated with poor survival were located in 
overlapping anatomical locations with malignant cells 
[59] (Fig.  7B). Subsequently, we identified RAP1GAP, 

TFAP2A, KRT23, etc., as the highly upregulated genes 
(FDR <  0.01 and  log2 fold-change >  1) of PACSI-iden-
tified spots (Additional file  6). Spots not identified by 
PACSI exhibited low expression or no expression of 
these genes (Fig. 7C). These upregulated genes were also 
found to be related to the BRCA progression [60–62]. 
It is worth nothing that TFAP2A was also found in the 
second real case (Fig. 4E), which suggested that TFAP2A 
may play a crucial role in the poor prognosis of patients 
with breast carcinoma. Functional annotation of these 
upregulated genes showed the strong enrichment of 
genes associated with cell-cell junctions and keratiniza-
tion (Additional file  1: Supplementary Fig.  5 and Addi-
tional file 6). Cell-cell junctions played an important role 
in regulating cell proliferation and tumor cell migration 
[63]. Keratinization has been recognized as prognostic 
factors in many types of epithelial tumors [64]. These 
results provided a proof-of-concept for PACSI could 
infer the spatial locations of phenotype-related cells.

Discussion
A major difficulty with single-cell data analysis is to infer 
the latent relationships between cell populations and 
disease phenotypes of interest. In order to overcome 
this challenge, we here proposed the PACSI algorithm, 
which integrates scRNA-seq and bulk expression data 
to identify cell subpopulations associated with disease 

Fig. 7 Application of PACSI on spatial transcriptomic data. A The spatial transcriptomic data was embedded in UMAP space (left) and unbiased 
clustering of spatial transcriptomics spots (right). B Histopathological annotations of human breast cancer sample in which malignant cells are 
highlighted in red circles (top). H&E images for spatial transcriptomic data overlaid with the locations of the spatial transcriptomics spots colored 
according to their annotation (bottom). The red dots are PACSI-identified spots associated with poor survival and the gray dots represent the rest 
of the spots in the spatial transcriptomic data. C Visualization of RAP1GAP, TFAP2A, and KRT23 expression in spots under the tissue
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phenotypes. In PACSI, network-based proximity was 
used to define similarity between cells and the pheno-
type of interest. Our hypothesis is that if a cell module is 
proximal to the disease phenotype of interest, it is more 
possible to be relevant than a distant cell in the network. 
PACSI was applied in simulated datasets with known 
ground-truth, as well as real HNSC, BRCA, melanoma, 
and COVID-19 disease datasets, to identify cells that are 
associated with disease phenotypes (e.g., disease vs. nor-
mal, poor survival vs. good survival and responder vs. 
non-responder). In addition, we also performed PACSI 
on spatial transcriptomics data of breast carcinoma, 
and the identified spots that were related to poor sur-
vival were validated by pathology annotation. The results 
based on these validation datasets showed that PACSI 
was a generally applicable tool in a wide variety of disease 
phenotypes data.

One important hyper-parameter in PACSI is the size 
of cell/sample signatures, which determines the size of 
cell/sample modules in the network when calculating the 
proximity between cells and the phenotype of interest. If 
the size of signatures is too small, gene signatures may 
not reflect the transcriptional characteristics of cells or 
samples. In contrast, if the size of signatures is too large, 
too much noise may be included. We applied PACSI 
under a wide range of the sizes of signatures using a sim-
ulated dataset and found that PACSI performed best in 
simulated data when the gene signature size is 150-gene. 
However, a proper size depends on the size and topologi-
cal structure of data, which may vary from study to study. 
The input network data can either be provided by the 
user or be constructed directly by PACSI. When no PPI 
network data is available, a co-expression network calcu-
lated by PACSI will be used instead of PPI networks.

Due to the high dropout rates of scRNA-seq data, we 
have explored the effect of missing value imputation on 
the performance of PACSI. We applied MAGIC [65] to 
impute the gene expression for the simulated single-cell 
data. We found that imputation had little impact on the 
overall performance of PACSI, which suggested that 
PACSI was robust against dropout noise in single-cell 
RNA-seq data (Additional file  1: Supplementary Fig.  6). 
Since the PACSI algorithm only focuses on the phenotype 
of interest (phenotype-1) and the opposite phenotype 
(phenotype-0) is not covered in the method, we com-
pared the differences in the association between the two 
phenotypes and the cells identified by the PACSI method. 
The results showed that PACSI-identified cells exhibit 
significantly lower correlation P values with phenotype 1 
compared to phenotype 0 in all four single-cell data cases, 
which demonstrates the accuracy and robustness of the 
method (Additional file 1: Supplementary Fig. 7). We also 
measured the total run time and memory requirements 

for each real case, as well as the total time and memory 
consumption of PACSI as the number of cells increased. 
Our findings showed that they were within an accept-
able range (Additional file 1: Supplementary Table 1 and 
Additional file 1: Supplementary Table 2).

The greatest advantage of PACSI is the integration of 
biological and topological information to guide the iden-
tification of phenotype-specific cells. In addition, it is 
very difficult to select the number of clusters for various 
datasets, and PACSI does not require any unsupervised 
clustering. We compared the performance of PACSI with 
two existing algorithms (Scissor and DEGAS) on a simu-
lated dataset and observed that PACSI outperformed the 
compared methods. We also demonstrated that PACSI 
could be applied on HNSC, BRCA, melanoma, COVID-
19, and spatial transcriptomic datasets, which suggested 
that PACSI could be generalized to diverse tasks.

A potential drawback of PACSI is that the directionality 
of action of the identified cells on the phenotype of inter-
est cannot be determined. Whether these phenotype-
related cells identified by PACSI promote or inhibit the 
changes in phenotype of patients is the main target of 
our next study. Furthermore, due to the incompleteness 
of the current networks, the performance of our methods 
can be improved as more information becomes available.

Conclusions
In summary, our results suggest that network-based cell-
phenotype proximity offered an unbiased measure of the 
relationship between the cells and disease phenotypes 
of interest and could be a powerful and effective solu-
tion to identify cell subpopulations associated with dis-
ease phenotype. As scRNA-seq technology matures and 
single-cell datasets grow rapidly, we believe that PACSI 
will assist in unraveling the underlying biological mecha-
nisms behind complex patient diseases and developing 
novel cell-targeted therapeutic strategies.

Methods
PACSI workflow
Input data
PACSI requires a single-cell expression matrix, a bulk 
expression matrix, phenotype labels, and a PPI network as 
input. The two expression matrices should be TPM/FPKM-
normalized with rows corresponding to genes and col-
umns corresponding to cells/samples. PACSI first performs 
sample-wise z-score normalization for the bulk expression 
matrix and then uses Seurat to scale the single-cell data 
and identify high variance genes. The phenotype labels y 
matched with the bulk dataset should be binary groups (1: 
the phenotype of interest; 0: the control phenotype). For 
example, y = [1, 0, 1, 0] indicates the phenotype of the first 
and third samples in the bulk matrix are of interest while 



Page 13 of 19Liu et al. BMC Biology          (2023) 21:159  

the phenotype of the second and fourth samples are the 
control. The network data can either be provided by the 
user or be constructed directly by PACSI. If the PPI net-
work is not available, PACSI will construct co-expression 
networks instead. PACSI defines the similarity co-expres-
sion matrix based on the significance Sij of Pearson’s cor-
relation between the i th gene and the j th gene, then the 
similarity matrix calculated for all pairwise genes in the sin-
gle-cell dataset is transformed into a binary network adja-
cency matrix A using the following function:

Computation of cell signatures and sample signatures
To obtain the gene signature for each bulk sample and 
each cell, the scRNA-seq matrix and bulk gene expression 
matrix are first transformed into two rank-based matrices 
separately. Let m and n denote the total number of cells and 
genes in the single-cell data, respectively. A rank-based sin-
gle-cell expression matrix C = cij n×m

 is first constructed, 
where cij is the rank of the expression value of gene i in cell 
j compared with all other cells in the dataset divided by the 
number of cells. The rank information represents the rela-
tive abundance of genes in a cell relative to all other cells in 
the dataset. The 150 genes with the highest relative abun-
dance for cell j are identified as the cell j signature. The 
gene signature of each sample in the bulk data is calculated 
using the same method. After that, for each gene in the sig-
nature, PACSI maps the gene symbol to UniProt ID using 
the R package clusterProfiler [66]. The UniProt IDs are 
used to map cell/sample signatures to the corresponding 
proteins in the PPI network. This indicates that each cell/
sample signature induces a network module. To calculate 
the path lengths between cell modules and sample modules 
at the next step, the largest connected component of the 
PPI network is extracted using the igraph package [67].

Correlation scores between cells and the phenotype 
of interest
To calculate the proximity of cells for the phenotype of 
interest, PACSI first employs the following distance meas-
ure to compute the path lengths between cell modules and 
sample modules.

where S is the set of proteins in the sample modules 
and C is the set of proteins in the cell modules. d(s, c) 
is the shortest path length between nodes s and c in the 
network. Given P , the sample set of the phenotype of 

(1)Aij =

{

1 if Sij < 0.05

0 otherwise

(2)d(S,C) =
1

�C�

∑

cǫC

minsǫSd(s, c)

interest, we define the distance between the cell module 
and the phenotype of interest as follows:

Significance test
To evaluate the statistical significance of the distance 
between a cell module and the phenotype of interest, the 
first step is to create a background distance distribution 
corresponding to the actual distance by selecting randomly 
a set of proteins matching the size of the original cell mod-
ule in the network. The background distance distribution is 
created by computing the proximity between the random 
cell module and the phenotype of interest, a procedure 
repeated many, e.g., 100 times. Lastly, the empirical P value 
is defined as the number of random distances with lower 
distance scores than the actual distance score divided by 
the overall number of random cell modules. The empirical 
P value lower than 0.05 is considered significant.

Simulated datasets setup
To test the performance of PACSI, the simulated single-
cell data with 5000 cells and 10,000 genes are generated 
using Splatter [16]. These cells are from 10 cell clus-
ters with a group probability of 0.1, and the probability 
of each gene being expressed differently is also 0.1. We 
use the splatSimulate function to simulate scRNA-seq 
count data, utilizing the default parameters of the func-
tion except those specifically mentioned above. The raw 
count data is converted to a TPM matrix using the calcu-
lateTPM function from the scuttle R package. Then, we 
split these 5000 cells into two parts, with cells in cluster 
1 assigned to be associated with the phenotype of inter-
est, while the other cells are assigned as controls. We 
generated simulated bulk expression data for 500 tis-
sue samples, consisting of 250 samples labeled 1 with an 
interesting phenotype, and another 250 samples labeled 
0 representing the control phenotype. The gene expres-
sion values of each bulk tissue sample labeled 1 are gen-
erated by randomly selecting 100 cells with replacement 
from cluster 1 of the simulated single-cell data and aver-
aging the expression values of these 100 cells. Similarly, 
the gene expression values of each bulk sample labeled 
0 are obtained by averaging the expression of 100 cells 
randomly selected with replacement from clusters other 
than cluster1.

Datasets and pre‑processing
HNSC scRNA‑seq data
The HNSC single-cell dataset used in this study was 
downloaded from the Gene Expression Omnibus (GEO: 

(3)d(P,C) =
1

�P�

∑

SǫP

d(S,C)
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accession number: GSE103322) [68, 69]. This scRNA-
seq data contains 5902 single cells from 18 patients with 
oral cavity tumors. We removed cells from lymph nodes 
and cells whose cell type could not be identified and 
focused our analysis on the remaining 4244 cells. All 
4244 cells containing 1427 cancer cells and 2817 non-
cancer cells were used to identify cell subsets that were 
associated with HNSC.

HNSC bulk data
The TCGA-HNSC bulk data and phenotype informa-
tion were downloaded using the GDCRNATools R pack-
age [70]. Read counts per gene were further converted 
into transcript per million (TPM) quantification and 
 log2-transformed  [log2 (TPM+1)]. In TCGA-HNSC, 
there are in total of 522 tumors, 44 normal samples, and 
2 metastatic samples. After removing two metastatic 
samples, the remaining 566 samples were used as the 
input of PACSI.

HNSC validation data
The independent HNSC dataset (accession numbers: 
GSE143083) was downloaded from the GEO database 
[71, 72]. The Ensemble gene ids were mapped to gene 
symbols using clusterProfiler [66]. We removed genes 
that were not detected in 50% of the samples.

BRCA scRNA‑seq data
The single-cell dataset of 1534 cells from six triple-nega-
tive breast cancer tumors was downloaded from the GEO 
(accession number: GSE118389) [27, 73]. The expression 
matrix was then  log2-transformed.

BRCA bulk data
The breast carcinoma bulk fragments per kilobase of 
transcript per million fragments mapped (FPKM) gene 
expression data and survival information were down-
loaded from UCSC Xena [28]. When mapping the 
Ensemble ids to gene symbols, the mean expression 
values of Ensemble ids mapped to the same gene were 
used. We considered patients who survived past 3 years 
(regardless of status) as good survivals and patients that 
deceased in less than 3 years as poor survivals. Living 
patients with a survival time of fewer than 3 years were 
excluded from this study. Finally, we obtained 72 poor 
survival samples and 435 good survival samples.

BRCA validation data
The three external bulk BRCA microarray expression 
data were downloaded from the GEO (accession number: 
GSE1456, accession number: GSE4922, accession num-
ber: GSE25066) [74–76] with GEOquery [77] to test the 
efficacy of the prognostic signature. The GSE1456 dataset 

contains gene expression data collected from 159 tumor 
tissues of breast cancer patients with overall survival 
information [78]. The GSE4922 dataset consists of gene 
expression profiles of 347 primary invasive breast tumors 
with disease-free survival information, analyzed using 
Affymetrix microarrays [79]. GSE25066 is a microarray-
based gene expression dataset comprising 508 breast 
cancer samples, each with recurrence-free survival infor-
mation included [80].

Melanoma scRNA‑seq data
The scRNA-seq data of 7186 cells from 31 melanoma 
tumors was downloaded from GEO (GSE115978) [42, 
81]. In our initial data inspection, 307 cells with no 
defined cell type were removed. We used the remaining 
6879 cells as the input of PACSI.

Melanoma bulk data
Twenty-three melanoma patients with known clini-
cal response information were collected from the GEO 
(accession number: GSE78220) [43, 82]. This dataset 
includes 13 non-responders and 10 responders.

Melanoma validation data
The independent dataset was downloaded from the GEO 
(accession number: GSE91061) [83, 84]. The Entrez IDs 
were mapped to gene symbols using clusterProfiler. We 
removed genes that were not detected in 50% of the 
samples.

COVID‑19 scRNA‑seq data
The single-cell expression data was obtained from the 
GEO (accession number: GSE157344) [53, 85]. In order 
to reduce the size of the dataset to increase the speed of 
PACSI operation, we only kept 2613 cells from a severe 
COVID-19 sample (accession number: GSM4762161) as 
the scRNA-seq input of PACSI.

COVID‑19 bulk data
The COVID-19 bulk gene expression matrix was down-
loaded from GEO (accession number: GSE196822) [86, 
87]. We removed 6 patients with viral–bacterial co-
infections and focused our analysis on the remaining 34 
COVID-19 samples and 9 healthy samples.

COVID‑19 validation data
The independent dataset was downloaded from the GEO 
(accession number: GSE206263) [88, 89] to test whether 
the COVID-19 signature is effective in distinguishing 
COVID-19 patients from normal controls. GSE206263 
includes 42 COVID-19 samples and 7 healthy sam-
ples. Read counts per gene were further converted into 
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transcript per million (TPM) quantification using IOBR 
[90] and then  log2-transformed.

Spatial transcriptomic data
The spatial transcriptomic dataset of breast carcinoma 
was retrieved from the 10x website (https:// www. 10xge 
nomics. com/ resou rces/ datas ets). Read counts per gene 
were first converted into transcripts per million (TPM) 
quantification using the IOBR package. Then, the main 
preprocessing analysis was performed using the Seurat 
package. The dataset was normalized by variance stabi-
lizing transformation using the SCTransform function. 
Spot clusters were generated through dimensionality 
reduction and clustering.

PPI data
We first downloaded 69,567 experimentally verified 
human PPIs data from the MINT database [18] and used 
this data for all real cases in this study. Uniprot IDs were 
used to map genes in cell/sample signatures to the corre-
sponding proteins in the interactome.

Gene regulatory network analysis
Here, we apply SCENIC [91] to explore the gene regula-
tory networks of cell subpopulations identified by PACSI 
through four steps: (1) single-cell datasets are used to 
mine co-expression modules between transcription fac-
tors (TFs) and their potential target genes; (2) to prune 
co-expression modules, TFs and their direct targets 
are inferred by R package RcisTarget [91]. RcisTarget 
can identify transcription factors that are significantly 
enriched in the target genes using a database that con-
tains genome-wide rankings for each motif; (3) the reg-
ulon activity score (RAS) is calculated to quantify the 
activity of regulons in each cell. Each regulon represents 
a TF along with its direct target genes; (4) for each cell 
subpopulation, the key regulons with high RSSs are pre-
dicted by an entropy-based strategy. RSS represents the 
activity of regulons in cell subpopulations.

Differential expression and enrichment analysis
The differentially expressed genes are computed using 
the Wilcoxon rank-sum test as applied in the FindMark-
ers function in Seurat [92]. DEGs are obtained using a 
minimum absolute  log2 fold-change of 2 and a maximum 
Bonferroni adjusted P value of 0.01. After that, the Hall-
mark gene sets (h.all.v7.5.1.symbols.gmt) downloaded 
from the Molecular Signatures Database (MSigDB) are 
used to perform gene set enrichment analyses (GSEA) 
using the clusterProfiler package [66]. The clusterPro-
filer package supports enrichment analysis with GSEA 
and adjusts P values for multiple hypothesis testing. 

Reactome pathway enrichment analyses are performed 
using the hypergeometric test as implemented in Reac-
tomePA [93].

Computation of signature enrichment scores
To demonstrate the characteristic of cells identified by 
PACSI, we compare PACSI-derived signature scores 
between groups of samples with distinct phenotypes in 
the independent dataset. We define the genes signifi-
cantly upregulated in PACSI-identified cells relative to 
other cells as PACSI-derived gene signatures  (log2 fold-
change > 2 and FDR < 0.01). And then, the ssGSEA 
method implemented in GSVA [94] is used to calculate 
the signature enrichment score for each sample. Specifi-
cally, we use the gsva function in the GSVA package, with 
the original Kuiper statistic parameter and default Gauss-
ian kernel parameters. Other parameters are set to their 
default values. The Wilcoxon rank-sum test is performed 
to examine the differences of the PACSI-derived signa-
ture enrichment scores between samples with distinct 
phenotypes.

Survival analysis
To explore the association between the prognostic cells 
identified by PACSI and survival risks, we construct a 
prognostic signature by selecting the upregulated genes 
in cells identified by PACSI. The signature score is gen-
erated for each sample using the ssGSEA method and 
then the lower quartile of signature scores is defined as 
the cutoff value to separate samples into high-risk group 
and low-risk group. We perform the Kaplan-Meier analy-
sis to visualize the survival distributions of two groups 
and use the log-rank test to assess the difference between 
two survival distributions. Specifically, we use the survfit 
function from the survival package to calculate Kaplan–
Meier survival estimate and the ggsurvplot function from 
the survminer package to plot the survival curve.

Statistical analysis
All statistical analyses are conducted in R (version 4.1.1). 
The Wilcoxon rank-sum test is used to identify DEGs. 
For Hallmark pathway enrichment analysis, P values are 
calculated by permutation test. For Reactome pathway 
enrichment analysis, the hypergeometric test is used. We 
use the Wilcoxon rank-sum test to compare the signature 
scores between groups of samples with distinct pheno-
types. The correlations of immune-related genes and sig-
natures identified by PACSI are conducted using Pearson 
correlation by the stats package. The log-rank test is used 
to compare the difference between survival curves. Ben-
jamini-Hochberg FDR method is used to adjust P values 
for multiple tests [95]. If the FDR is lower than 0.01, it is 
reported as statistically significant.

https://www.10xgenomics.com/resources/datasets
https://www.10xgenomics.com/resources/datasets
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