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Abstract 

Background  Understanding how spatial patterns of gene expression emerge from the interaction of individual gene 
networks is a fundamental challenge in biology. Developing a synthetic experimental system with a common theo-
retical framework that captures the emergence of short- and long-range spatial correlations (and anti-correlations) 
from interacting gene networks could serve to uncover generic scaling properties of these ubiquitous phenomena.

Results  Here, we combine synthetic biology, statistical mechanics models, and computational simulations to study 
the spatial behavior of synthetic gene networks (SGNs) in Escherichia coli quasi-2D colonies growing on hard agar 
surfaces. Guided by the combined mechanisms of the contact process lattice simulation and two-dimensional Ising 
model (CPIM), we describe the spatial behavior of bi-stable and chemically coupled SGNs that self-organize into pat-
terns of long-range correlations with power-law scaling or short-range anti-correlations. These patterns, resembling 
ferromagnetic and anti-ferromagnetic configurations of the Ising model near critical points, maintain their scaling 
properties upon changes in growth rate and cell shape.

Conclusions  Our findings shed light on the spatial biology of coupled and bistable gene networks in growing cell 
populations. This emergent spatial behavior could provide insights into the study and engineering of self-organizing 
gene patterns in eukaryotic tissues and bacterial consortia.
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Background
The emergence of spatially correlated structures is a 
phenomenon that pervades biology from molecular to 
ecological scales (e.g., [1–4]). An emblematic case of 
research is the spatial correlations of gene expression in 
eukaryotic tissues and microbial communities, which can 
occur at short-range or at the scale of the whole popu-
lation (e.g., [5–8]). For instance, negative spatial correla-
tions can emerge during eukaryotic cell differentiation 
(e.g., [9]) and metabolic cross-feeding in microbial sys-
tems (e.g., [10–12]), whereas positive gene spatial cor-
relations can be observed during the synchronization 
of growth and resource sharing in bacterial populations 
(e.g., [13–15]). These spatial patterns are shaped from the 
bottom-up through mechanisms that differ widely across 
different organisms. Developing a common experimen-
tal system and theoretical framework that captures the 
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formation of short- and long-range spatial correlations 
(and anti-correlations) from interacting gene networks 
could serve to uncover generic mechanisms and scaling 
properties of these ubiquitous phenomena. The required 
theoretical framework should embody the emergence of 
global correlations from the collective behavior of inter-
acting gene networks in space. The Ising model from sta-
tistical mechanics is suitable for this task since it provides 
a mathematical machinery, amenable to simple numeri-
cal simulations and exact analysis, able to address the 
collective behavior of spatially interacting particles. Orig-
inally formulated to understand the loss of magnetism 
in ferromagnetic materials as the temperature increases, 
this model has been useful to study second order phase 
transitions and critical phenomena [16–18]. Different 
studies have demonstrated the applicability of the Ising 
model to investigate the spatial organization of biologi-
cal processes at molecular, cellular, and ecological scales. 
It has been used to explain the propagation of allosteric 
states in large multi-protein complexes [2, 3] as well as 
the emergence of long-range synchronization in ecologi-
cal systems [1, 19]. At a cellular level, the Ising model has 
been used to study follicle alignment during mammalian 
hair patterning [20], ferromagnetic and anti-ferromag-
netic correlations in lattices of hydrodynamically cou-
pled bacterial vortices [21]. An interesting approach, by 
Weber and Buceta (2016), studies second order phase 
transitions in simulations of bacterial cell ensembles car-
rying coupled toggle switches [22]. Although their theo-
retical ensembles lack spatially explicit structure, their 
numerical simulations suggest that gene regulatory net-
works constructed of toggle switches interconnected 
with quorum sensing signals can exhibit spontaneous 
symmetry breaking. This work suggests a minimal frame-
work applying the Ising Model and critical phenomena 
to understand phase transitions in groups of cells that 
exhibit alternative phenotypes. Extending this approach 
to apply the Ising model to the study of gene spatial cor-
relations in natural cell populations could be challenging 
since these systems are embedded in complex physi-
ological contexts affected by unknown components and 
unforeseen interactions. Alternatively, this phenomenon 
could be studied in synthetic gene networks (SGNs) that 
embody the essential features of the Ising model. The use 
of SGNs as test-beds to challenge biological theory has 
gained popularity since it provides more experimental 
control and analytical power [23–27]. The use of efficient 
DNA fabrication methods, well-characterized compo-
nents, and mathematical modeling has enabled the engi-
neering SGNs of unprecedented scale and predictability 
(e.g., [28]). This approach has enabled the engineering 
of biological patterns, a new frontier of interdisciplinary 
research that employs minimal and reconfigurable SGNs 

[29–34]. The use of controllable SGNs embodying Ising 
model rules could be instrumental for defining a com-
mon theoretical ground for the spatial biology of gene 
networks.

Here, we apply a theoretical framework based on the 
Ising model to study how spatial correlations emerge 
from chemically coupled, bistable SGNs in Escherichia 
coli growing on hard agar as quasi-2D colonies. By anal-
ogy with the two-state interacting particles of the model, 
we construct synthetic toggle switches [23] whose states 
are chemically coupled by quorum sensing signaling [35]. 
These SGNs self-organize in long-range spatial correla-
tions and fractal patterns reminiscent of ferromagnetic 
systems of the Ising model. Inverting the response to the 
coupling signals, on the other hand, creates negative cor-
relations similar to anti-ferromagnetic configurations, 
demonstrating correspondence between SGNs and the 
model.

Results
A two‑dimensional Ising model in growing cell populations
To study how long-range gene correlations arise from 
diffusion-limited chemical coupling between gene net-
works, we employed the Ising model with two-state par-
ticles arranged on a two-dimensional lattice (Fig. 1a). To 
implement it in a growing population of cells, we gen-
erated a lattice model that combines the Contact Pro-
cess [36], representing cell population dynamics, with 
the two-dimensional Ising model using the Metropolis 
algorithm [37]. This model, hereafter named CPIM (for 
“Contact Process Ising Model”), consists of an interacting 
particle system that follows colonization, extinction, and 
differentiation dynamics of particles on a two-dimen-
sional lattice L of N sites (Fig. 1b, Additional file 1, Fig. 
S1, Additional file 2, Supplementary Movie 1) [38]. As in 
the Ising model, cells are fixed in their position and can 
only interact with their nearest four neighbors with inter-
action energy H , which in the absence of external pertur-
bations is determined by the Hamiltonian:

where σ corresponds to the state of differentiated cells 
(magenta or green, +1 or −1 ), 〈ij〉 indicates that the sum 
is only between neighboring pairs of cells (only short-
range interactions are allowed), and J represents the con-
tribution to free energy made by the coupling interaction 
between these pairs of cells. We assumed that J = +1 for 
ferromagnetic systems and J = −1 for anti-ferromagnetic 
systems. This implies that the interaction energy between 
neighboring cells is minimized when they have the same 
state in a ferromagnetic system, or the opposite state in 

(1)H = −J

N

�ij�

σiσj
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an anti-ferromagnetic system (Eq. 1). In the Ising model, 
the probability P (in equilibrium) of a certain spatial con-
figuration of spins x is defined by P(Hx) =

1
Z e

−Hx/kBT 
[39], where kB is the Boltzmann constant, Z is the par-
tition function Z =

∑

e−Hi/kBT (sum over all possible 
configurations), and T is the absolute temperature of the 
system. Together with Eq.  1, these equations show the 
contribution of J and T to the probability distribution 
of spatial configurations: for a given value of J, varying 
T determines the transition between ordered and disor-
dered configurations of the system (Fig. 1a). Since we are 
interested in studying the emergence of gene correlations 
due to coupling between gene networks, in CPIM, T rep-
resents a parameter that regulates coupling in the system: 
a small value of T allows for a strong coupling, while a 
large value represents a weak coupling.

The net magnetization of a population (M), which rep-
resents the order parameter of the system, is determined 
by the degree of alignment of the cells and is given by 
M =

∑

i si . The mean magnetization per site ( |M/N | ) 
calculated for ferromagnetic (and anti-ferromagnetic) 
populations simulated with CPIM (Additional file 1, Fig. 
S2A and S2B) showed good agreement with the behav-
ior observed in the Ising model [40]. Figure  1c shows 
the different cellular state configurations that emerge in 
simulated populations depending on the strength of the 
coupling (the value of T) and the type of interaction (fer-
romagnetic or anti-ferromagnetic). In a ferromagnetic 
population (Fig.  1c top), a strong interaction between 
cells ( T < Tc ) favors the alignment of states, leading 
to the emergence of large homogeneous patches of the 
same state. A further increase in the coupling ( T << Tc ) 
leads to colonies with cells in only one state. On the other 
hand, when the coupling between cells is weak ( T > Tc ), 
cells freely change their states regardless of the state of 
their neighbors, leading to a colony with a noise-like 
appearance. Near a critical value of coupling ( T = Tc ), 
colonies spontaneously self-organize into patterns that 
resemble the long-range correlations and power-law 
decaying fractal objects described by universality class 
exponents of the Ising model at the phase transition. 
At this critical point, the autocorrelation function of 
the simulated populations follows a power-law decay 
given by C(r) = A

exp(−r/B))
rη  (Additional file 1, Fig. S2C), 

with a critical exponent of the autocorrelation func-
tion η = 0.2518 , consistent with the value reported for 
the Ising model at the critical temperature ( η = 0.250 ) 
[40]. This behavior close to the critical transition is par-
ticularly relevant since it links the short-range coupling 
between cellular states to the generation of macroscopic 
long-range correlations.

In anti-ferromagnetic populations, an ordered con-
figuration emerges under strong interactions between 

cells and a disordered configuration is observed when 
the interaction is weak (Fig. 1c bottom). However, oppo-
site states between neighboring cells are favored in the 
ordered configuration, resulting in the emergence of a 
checkerboard-like pattern of cellular states (a red cell 
surrounded by four green cells and vice versa). Near the 
critical value, colonies are composed of patches of check-
erboard-like patterns separated by disordered regions.

These CPIM simulations showed that growing cell 
populations with ferromagnetic and antiferromagnetic 
Ising-like interactions give rise to short and long-range 
correlations around critical points. This suggests that 
SGNs with two states coupled through chemical signals 
that capture ferromagnetic and antiferromagnetic inter-
actions should lead to spatial patterns of positive or nega-
tive correlations, respectively.

Synthetic gene networks with spin‑like behavior
We constructed synthetic gene circuits capturing Ising 
mechanisms, i.e., two states and coupling interactions 
(Fig. 2). We named these systems ferromagnetic or anti-
ferromagnetic depending on whether they promote the 
same or opposite state in their neighbors, respectively 
(Fig.  2a). Each system is composed of three main func-
tions: (i) a state reporter, responsible for the synthesis 
of a red fluorescent protein (mCherry2, hereafter called 
“RFP” for simplicity) or a green fluorescent protein 
(sfGFP, hereafter called “GFP” for simplicity) to report 
the state of SGNs; (ii) a switch module, composed of 
two repressors (LacI and TetR) that repress the expres-
sion of each other, allowing cells to adopt only one of the 
two possible states at a time; and (iii) a coupling module, 
which allows the production of one of the two coupling 
signals for each state (3-oxo-C6-homoserine lactone 
(C6HSL), synthesized by LuxI from Vibrio fischeri, or 
3-oxo-C12-homoserine lactone (C12HSL), synthesized 
by LasI from Pseudomonas aeruginosa). These functions 
are contained in two vectors: the reporter vector and the 
ferromagnetic or anti-ferromagnetic vector (Fig. 2b). The 
expression of genes encoding the repressors, red/green 
fluorescent protein, and C6HSL and C12HSL biosyn-
thetic enzymes are under the control of two inducible/
repressible promoters: the pLuxpTet promoter (induced 
by C6HSL and repressed by TetR) and the pLaspLac pro-
moter (induced by C12HSL and repressed by LacI). To 
gain orthogonality, we used the pLux76 and pLas81 ver-
sions of the pLux and pLas promoters, respectively [35] 
(hereafter named pLux76pTet and pLas81pLac). Thus, 
the states of these SGNs are determined by the coupling 
molecules and their ferromagnetic or anti-ferromagnetic 
configurations. In the ferromagnetic vector, cells syn-
thesize the same coupling molecule they sense, inducing 
the same state in neighboring cells. Conversely, in the 
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anti-ferromagnetic vector, cells synthesize the opposite 
coupling signal they sense, inducing the opposite state 
in neighboring cells. In both systems, the LacI and TetR 
repressors are under the pLux76pTet and pLas81pLac 
promoters, respectively, ensuring that the production of 
one coupling signal is accompanied by the repression of 
the other.

To test the bi-stability condition and coupling prop-
erties of the ferromagnetic and anti-ferromagnetic 
systems, we calculated the red and green fluorescent 
protein synthesis rate [41] in E. coli cells grown in dif-
ferent concentrations of the coupling signals C6HSL and 
C12HSL (Fig.  2c-f ). To model SGNs behavior, we con-
sidered a simplified version in which each dual promoter 
(pLux76pTet and pLas81pLac) has two states: an active 
state that allows the expression of the fluorescent protein 
gene (ON state), and an inactive state with no expression 
of this gene (OFF state) [42]. The probability P of finding 
each promoter in the active state at equilibrium is:

where L is the concentrations of the coupling signal (the 
ligand); �E = Eoff − Eon represents the energy difference 
between inactive and active promoter without ligand 
bound; Kon

d  and Koff
d  are the dissociation constants that 

characterize the binding of ligands to active and inactive 
promoters, respectively; and n is a Hill exponent to rep-
resent cooperative binding [42].

In a population of cells carrying only the reporter vec-
tor, the probability of finding RFP and GFP promoters 
active in absence of the inducers C6HSL and C12HSL 
is close to zero, and it increases as the concentration of 
its inducer increases (Additional file  1, Fig. S3). This 
behavior is reflected in the negative values of �E and 
that Kon

d << K
off
d  (Additional file  4, Table  S1). At very 

low concentrations of inducers, a population of ferro-
magnetic cells is only in the green state (Fig. 2c, d). This 
means that the probability of finding the GFP promoter 
active is 1 ( �E > 0 ), while the probability of finding the 
RFP promoter active is 0 ( �E < 0 ) (Additional file  4, 
Table  S2), suggesting that the system is biased towards 
the production of C12HSL. Accordingly, the pLas pro-
moter has been shown to have a higher basal expression 
than the pLux promoter [35, 43]. Since in this system 
the pLas81pLac promoter directs the expression of LasI, 
its higher basal expression drives cells to produce basal 
amounts of C12HSL, generating a population of cells in 
the same state. This also explains why the external addi-
tion of C12HSL did not induce a major change in the syn-
thesis rates of fluorescent proteins, except at very high 
concentrations of this inducer (Fig.  2d) at which signal 

(2)Pon =

(

1+

[

1+ [L]/K
off
d

1+ [L]/Kon
d

]n

· e−nβ�E

)−1

crosstalk starts to play a relevant role in the activity of the 
promoters [35]. At around 10−8 M of C6HSL, there is a 
drastic decrease in the probability of finding the GFP pro-
moter active, which is accompanied by an increase in the 
probability of finding the RFP promoter active (Fig.  2c; 
compare the values of Kon

d  and Koff
d  for each promoter 

in Table S2). Thus, depending on the concentration of 
C6HSL in the medium, a population of cells carrying the 
ferromagnetic system can be in one of 3 states: all cells 
in the green state (low C6HSL), all cells in the red state 
(high C6HSL), or a mix of red and green cells (around 
10−8 M of C6HSL). These results suggest that a popula-
tion of ferromagnetic cells can change between red and 
green states depending on the concentration of C6HSL in 
the medium.

In a population of cells carrying the anti-ferromagnetic 
system, the probability of finding the GFP and RFP pro-
moters active is different from zero at very low concen-
trations of inducers (Fig. 2e, f ), with values of �E closer 
to 0 (Additional file  4, Table  S3). In this condition, a 
population of anti-ferromagnetic cells is in a mixed state, 
with red and green cells. Microscope analysis of cells in 
the mixed state revealed that there is no “yellow” cells 
(data not shown), indicating that individual cells can only 
be in red or green state at a time. Since LuxI is under the 
control of the pLas81pLac promoter, cells produce a basal 
amount of C6HSL. Contrary to the case of the ferromag-
netic system, this induces the opposite state in other 
cells, inducing them to produce C12HSL and leading 
to a balance in the production of both coupling signals. 
Increasing the concentration of C6HSL in the medium 
induces an increase in the probability of finding the RFP 
promoter active and a decrease in the probability of find-
ing the GFP promoter active (Fig.  2e), while increas-
ing the concentration of C12HSL produces the opposite 
effect (Fig.  2f ). These results show that a population of 
anti-ferromagnetic cells can change from a mixed state 
to a population in a red or green state depending on the 
concentration of the coupling signals in the medium.

These results suggest that both ferromagnetic and 
anti-ferromagnetic systems are able to couple states in 
liquid culture, a required property for the emergence of 
Ising-like pattern when cells are spatially distributed (i.e., 
grown in solid media) (Fig. 1).

Ising‑like patterns in ferromagnetic and anti‑ferromagnetic 
populations
To test whether the SGNs were able to achieve Ising-
like patterns of gene expression such as those observed 
in CPIM simulations, we studied the fluorescent pat-
terns that emerge in colonies of E. coli cells carrying the 
reporter and ferromagnetic or anti-ferromagnetic vec-
tors. In order to discard any bias related to the properties 
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of the reporters, we constructed another version of the 
reporter vector in which the promoters directing the 
expression of the red and green fluorescent proteins 
are swapped (Additional file  1, Fig. S4). To counteract 
the higher basal expression of the promoter induced by 
C12HSL and make red and green states equally likely, 
ferromagnetic, and anti-ferromagnetic, cells were grown 
on solid medium supplemented with different concen-
trations of C6HS (Additional file  1, Fig. S5). Consistent 
with what was observed in the data from liquid cul-
tures shown in Fig.  2c–f, ferromagnetic colonies grown 
on solid agar were found to be only in one state in the 
absence (or at very low concentrations) of C6HSL: green 
for the reporter vector 1 and red for the reporter vector 
2 (Additional file  1, Fig. S5A). However, growing ferro-
magnetic cells on agar plates with 10−8 M of C6HSL led 
to the generation of spatial patterns of red and green cel-
lular state domains across the colonies (Additional file 1, 
Figs. S5A and S6), in accordance with the state transition 
found in liquid well plates (Fig. 2c). A high concentration 
of C6HSL ( 10−7 M) also produced colonies in only one 
state but opposite to that of colonies grown at low con-
centrations of the inducer (Additional file  1, Fig. S5A). 
At this point, global exogenous concentration of C6HSL 
appeared to dominate the system over the cell-cell cou-
pling between networks.

Anti-ferromagnetic colonies showed a spatial pat-
tern of red and green domains in the absence (and at 
very low concentrations) of C6HSL (Additional file  1, 
Fig. S5B). Under this condition, the center of colonies 
was dominated by cells in green (reporter vector 1) or 
red state (reporter vector 2), while the periphery was 
mainly composed of cells in the opposite state. Due to 
the higher basal expression of the pLas81pLac promoter, 
all anti-ferromagnetic cells that give rise to colonies are 
mostly in the same state. Although these cells synthe-
size basal amounts of C6HSL, it is not enough to coun-
teract the effects of the basal expression of the promoter 
in neighboring cells to induce the opposite state, gen-
erating a sector of the colony dominated by cells in one 
state. At some point during the growth of the colony, 
the C6HSL accumulated in the medium allows cells to 
change states regardless of promoter basal expression, 
generating a sector with a mix of red and green domains. 
As cells continue synthesizing C6HSL, it accumulates 
to a concentration that triggers a ring of the opposite 
state in newly born cells in the periphery of the colony. 
As in ferromagnetic colonies, red and green cellular 
state domains emerged across the whole colony at 10−8 
M of C6HSL (Additional file  1, Fig. S5B and Fig. S6). 
Compared to those patterns in ferromagnetic colonies 
at the same C6HSL concentration, the red and green 
domains generated in anti-ferromagnetic colonies are 

much smaller. A further increase in the concentration of 
C6HSL in the medium ( 10−7 M) only produced colonies 
in the red (reporter vector 1) or green (reporter vector 2) 
state (Additional file 1, Fig. S5B).

These results show that ferromagnetic and anti-ferro-
magnetic SGNs allow the self-organization of distinctive 
patterns in E. coli colonies, as partially anticipated by the 
CPIM simulations (Fig.  1c). However, the formation of 
fractal-like jagged patterns, characteristic of rod-shaped 
non-motile E. coli cells, caused these patterns to visually 
differ from those obtained with simulations. These frac-
tal patterns are the result of both mechanisms at play: the 
chemical coupling and the buckling instabilities gener-
ated by the polar cell shape that propagate due to the uni-
axial cell growth and division [44].

In order to analyze the pattern generated by the fer-
romagnetic and anti-ferromagnetic systems without 
the influence of uniaxial cell growth, we used the E. coli 
mutant strain KJB24 that forms spherical cells. This 
strain performs cell division in any direction due to a 
mutation in RodA [45], removing the cell polarity-driven 
buckling instabilities that give rise to jagged patterns 
[44]. As observed in colonies of rod-shaped cells, C6HSL 
increases only the red or green fluorescence of colonies 
of spherical cells carrying only the reporter vector 1 or 
2 (Additional file 1, Fig. S7), respectively. In accordance 
with the findings on colonies of rod-shaped cells, ferro-
magnetic Ising-like patterns emerged in colonies of fer-
romagnetic spherical cells when they were grown in the 
range of 10−8 M of C6HSL, regardless of the reporter 
vector used (Fig.  3). These patterns look qualitatively 
more similar to those observed in CPIM simulated fer-
romagnetic populations than the patterns generated 
by rod-shaped ferromagnetic cells. Anti-ferromagnetic 
colonies of spherical cells showed a characteristic pat-
tern of small domains of red and green states at 10−8 M 
of C6HSL (Fig. 3).

To compare the patterns that emerged in colonies to 
those observed in simulated populations, we calculated 
the Hamming distance (Additional file 1, Fig. S8) between 
colonies of ferromagnetic spherical cells and simulated 
ferromagnetic populations around the critical value of 
T ( Tc = 2.27 ) (Additional file 1, Fig. S8A, magenta dots). 
The Hamming distance between two images of equal 
size is the number of pixel positions at which the values 
of those pixels are different. Therefore, the smaller the 
Hamming distance between two images, the more similar 
those images are. As observed before, a strong coupling 
between cells ( T < Tc ) leads to the generation of popu-
lations with large homogeneous domains, with the same 
probability of finding populations mostly in red or green 
state (Additional file 1, Fig. S8B). This explains the great 
variability observed in the average Hamming distance 
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below the critical value of T (Additional file 1, Fig. S8C). 
Interestingly, the smallest average Hamming distance was 
found with respect to simulated populations close to the 
critical value of T. These results suggest that the patterns 
observed in ferromagnetic colonies of spherical cells are 
similar to simulated populations near the critical transi-
tion, at which spatial correlations increase.

To demonstrate that the patterns observed in colonies 
depend on the coupling signals, we also studied colonies 
in which red and green states were determined by consti-
tutive expression promoters without chemical coupling 
between SGNs. These states were located in plasmids 
that irreversibly segregate to daughter cells after cell divi-
sion [46], enabling cells to acquire one of the two states 
perpetually and creating state domains that only enlarge 
by cell division. Unlike the patterns observed in ferro-
magnetic and anti-ferromagnetic colonies, these colo-
nies exhibited radial domains of segregating sectors such 
as those observed in [44] (Additional file 1, Fig. S9 [46]). 
Next, to test whether the observed patterns depend on 
the internal genetic switch module, we grew ferromag-
netic colonies in the presence of IPTG and aTc to inhibit 
the action of LacI and TetR repressors, respectively. 
These colonies exhibit only one state, corresponding to 
the inactive repressor, whereas inhibiting both repressors 
led cells to adopt the state dictated by the coupling sig-
nals they sense (Additional file 1, Fig. S10). These findings 
suggest that the observed ferromagnetic and antiferro-
magnetic patterns are the result of coupled and bi-stable 
gene networks.

Spatial correlations, cluster size distributions, and critical 
exponents of ferromagnetic and anti‑ferromagnetic 
colonies
To quantitatively compare the patterns generated in 
ferromagnetic and anti-ferromagnetic colonies of rod-
shaped and spherical cells, we calculated the spatial 
autocorrelation function (sACF) [47] (Fig. 4a and b). The 
sACF describes how the correlation between two micro-
scopic variables (e.g., the state of each cell in a colony) 
changes on average as the separation between these vari-
ables changes [48], allowing the calculation of the charac-
teristic size of the cellular state domains that emerge in a 
colony.

In rod-shaped and spherical cells, the correlation func-
tion curve decays much faster for anti-ferromagnetic 
colonies (Fig. 4a, and b), suggesting that the average dis-
tance at which two cellular states correlates is shorter in 
these colonies. Individual colony analysis revealed that 
most of these colonies show negative values on the cor-
relation curve, indicating the existence of short-range 
anti-correlations (insets of Fig. 4a, and b). To obtain the 
characteristic size of the cellular state clusters, we fitted 

the exponential decay equation y = y0 ∗ exp(−x/b)+ C 
to the data obtained from the computation of the sACF. 
In this equation, b corresponds to the length constant, 
which is an estimation of the mean size of cellular state 
clusters that emerge in the colonies. As suggested by 
the patterns observed in the colonies (Fig.  3), the mean 
size of the cellular state domains that emerge in ferro-
magnetic colonies is larger than those observed in anti-
ferromagnetic colonies (Table  1). This difference was 
independent of the reporter vector (R.V.) used. In colo-
nies of rod-shaped cells, the mean size of the clusters in 
ferromagnetic colonies is approximately 8.1 (R.V.1) and 
7.7 (R.V.2) times larger than the mean size in anti-fer-
romagnetic colonies, while in colonies of spherical cells 
is approximately 6.7 (R.V.1) and 6.6 (R.V.2) times larger. 
These results show that the ferromagnetic system leads 
to larger spatial correlations than those generated by the 
anti-ferromagnetic system.

Interestingly, no significant differences were found 
between the length constants of ferromagnetic colonies 
of rod-shaped and spherical cells (P value: 0.0557 for F1 
rod vs F1 sph and 0.4303 for F2 rod vs F2 sph) (Additional 
file 1, Fig. S11; Table 1), despite their different qualitative 
appearance (Fig. 3). This suggests that the spatial correla-
tion that emerges from ferromagnetic SGNs is independ-
ent of cell shape and mechanically driven cell ordering. 
To further study the robustness of these patterns, we 
tested whether cell division rate affects the correlation 
length of Ising-like colonies. CPIM simulations pre-
dicted that, while the size of the populations decreases 
with the value of the birth rate, no significant differences 
were found in the length constants when the birth rate 
decreases from 0.0255 to 0.0180 (Additional file  1, Fig. 
S12). Between these values of birth rate, the size of the 
population is reduced to approximately 0.48 (Additional 
file  1, Fig. S12). To test this model prediction, we ana-
lyzed spatial correlations in colonies of spherical ferro-
magnetic and anti-ferromagnetic cells grown in minimal 
solid medium supplemented with glucose or glycerol as 
the carbon source. It has been observed that the genera-
tion time of E. coli cells increases when grown in a glyc-
erol-supplemented medium compared to cells grown in 
a glucose-supplemented medium [49]. In agreement with 

Table 1  Length constants of ferromagnetic and anti-
ferromagnetic colonies of rod-shaped and spherical E. coli cells

Values correspond to the mean ± the standard deviation (in µ m) of the sACF of 
around 40 colonies for each system

Anti-ferromagnetic Ferromagnetic

R.V.1 R.V.2 R.V.1 R.V.2

Rod-shaped 1.96± 0.54 1.85± 0.38 15.82± 2.86 14.21± 2.83

Spherical 2.23± 0.46 2.12± 0.62 15.05± 5.11 14.06± 3.87
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the CPIM predictions, length constants were no signifi-
cantly affected in ferromagnetic and anti-ferromagnetic 
colonies that had reduced their size by more than half 
(P value cluster size: 0.1453 for Glu vs Gly Ferro, 0.7395 
for Glu vs Gly Anti-ferro; P value colony size: < 0.0001 
for Glu vs Gly Ferro, < 0.0001 for Glu vs Gly Anti-ferro) 
(Fig. 4c). Together, these results suggest that the scaling 
properties of Ising-like, bi-stable, and coupled SGNs are 
independent of the cell shape and division rate.

To further characterize the behavior of the ferromag-
netic system, we analyzed the size distribution of the 
cellular state clusters. As seen in Fig. 4d, the probability 
distribution P(S) of cluster size S for ferromagnetic col-
onies of rod-shaped and spherical cells shows a scale-
invariant distribution of the form P(s) ∼ s−γ . The values 
of γ calculated for the ferromagnetic systems are consist-
ent with the exponent of cluster size distribution near the 
critical percolation threshold, which follows a power-law 

Fig. 1  Ising-like interactions in a growing population of cells. a Numerical simulations of the two-dimensional ferromagnetic (FM IM) 
and anti-ferromagnetic (AFM IM) Ising model on a 250 × 250 lattice at different temperatures T relative to the critical temperature Tc . White 
and black squares represent the spin orientations σ = ±1 . Insets correspond to a magnification of a 30 × 30 square in the center of the images. 
b Basic rules that define CPIM simulations: Contact process lattice reactions of colonization, differentiation and death processes (top); and Ising-like 
cellular state change mechanisms (bottom). Each site of this lattice can be in one of four states S = {∅, ∗,+1,−1} , which represent vacant locations 
( ∅ , white squares), locations occupied by undifferentiated cells ( ∗ , black squares), and locations occupied by differentiated cells in red ( +1 , magenta 
squares) or green ( −1 , green squares) state. c CPIM numerical simulations of growing ferromagnetic and anti-ferromagnetic cell populations 
at different values of the control parameter T relative to the critical value Tc . In the CPIM simulations, T represents a parameter that determines 
the strength of coupling between cells. Insets show a magnification of the square in the center of anti-ferromagnetic colonies showing a detail 
of the checkerboard-like pattern
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decay with an exponent of 2.055 [50] (Rod-shaped: R.V.1 
= 2.17, R.V.2 = 2.14. Spherical: R.V.1 = 1.91, R.V.2 = 
1.76) (Additional file 4, Table S4). This exponent was also 

consistent with the value of γ for simulated populations 
with ferromagnetic interactions at T = Tc ( γ = 1.94 ). 
Interestingly, the simulations also showed that the size 

Fig. 2  Ferromagnetic and anti-ferromagnetic configurations of coupled, bi-stable synthetic gene networks. a Schematic representation 
of ferromagnetic and anti-ferromagnetic interactions between two neighboring cells. The states, defined by the expression of red (mCherry2 
labeled as “RFP” for simplicity) or green (sfGFP, labeled as “GFP” for simplicity) fluorescent proteins, are determined by mutually inhibiting repressors 
R1 and R2. Cell states are coupled, in ferromagnetic and anti-ferromagnetic configurations, with neighboring cells by diffusive signals C6 and C12. 
b Gene network arrangement of ferromagnetic and anti-ferromagnetic systems in C6 and C12 states. Ferromagnetic and anti-ferromagnetic 
systems are composed of a ferromagnetic or anti-ferromagnetic vector and a reporter vector. LasR-C12 and LuxR-C6 complexes were omitted 
for simplicity. c–f Red and green fluorescent protein synthesis rate of E. coli cells carrying ferromagnetic (c, d) and anti-ferromagnetic (e, f) systems, 
grown in liquid medium supplemented with different concentrations of C6HSL (left) and C12HSL (right). Points and error bars correspond 
to the mean of the fluorescent protein synthesis rates normalized by its maximum value reached in each system and the standard deviation of 4 
biological replicates, while lines correspond to the fitting of Eq. 2
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distribution of cellular state clusters is not affected by 
changes in the birth rate (Fig. 4e top) (Additional file 4, 
Table S5). As predicted by CPIM simulations at different 
cell growth rates, similar power law distributions were 
found for ferromagnetic colonies grown in glycerol or 
glucose, with scaling exponent γ equal to 2.19 for glucose 
and 2.31 for glycerol (Fig. 4e bottom) (Additional file 4, 
Table  S4). This suggests that the scaling properties are 
maintained upon changes in cell growth rate within the 
evaluated range.

Discussion
Understanding how gene spatial correlations emerge 
from interacting genetic networks is a fundamental 
problem in biology. Guided by a two-dimensional (2-D) 
Contact Process (CP) model incorporating Ising mecha-
nisms to represent gene expression, we show how Syn-
thetic Gene Networks (SGNs) with two states, which 
are positively or negatively coupled, give rise to a rich 
repertoire of short- and long-range correlations (and 

anticorrelations). These SGNs are capable of self-organ-
izing into long-range correlations with power-law scaling 
properties or checkerboard-like patterns similar to fer-
romagnetic and anti-ferromagnetic configurations of the 
Ising Model (IM) near critical points, respectively. Near 
the critical point, the spatial autocorrelation function of 
simulated “ferromagnetic populations” follows a power-
law decay with an exponent consistent with the value of 
the IM at the critical temperature. On the other hand, 
the scaling exponent γ calculated for both simulated and 
in vivo ferromagnetic colonies were close to the exponent 
of the cluster size distribution near the critical percola-
tion threshold ([50, 51]). At this critical point, the sys-
tem moves from a regime of only localized short-range 
patches to one with clusters that span the entire system.

To further understand the behavior at the critical point 
as to investigate the value of the critical exponents of the 
CPIM model, we performed a finite-size scaling analy-
sis (see Additional file  4, Supplementary Note 2; Addi-
tional file  3, Fig. S13; Additional file  4, Table  S6) ([52, 

Fig. 3  Self-organized patterns of cellular states in ferromagnetic and anti-ferromagnetic colonies. a Representative images of red and green 
fluorescent protein patterns that emerge in colonies of spherical E. coli cells carrying the ferromagnetic or anti-ferromagnetic systems with reporter 
vector 1 or 2. Cells were grown on solid M9-glucose medium supplemented with 10−8 M of C6HSL, a concentration that counteracts the bias 
introduced by the basal expression of the pLas81pLac promoter. Images were taken approximately 18 h after inoculation. Scale bars 100 µ m. Red 
cells are shown in magenta. b Images obtained from populations simulated with CPIM are included for comparison
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53]) for the demographic (birth/colonization or extinc-
tion/death) parameters used to model our experimental 
colonies ( b = 0.03 and d = 0.00001 ). This corresponds 
to a CP of high reproductive number ( R0 = b/d ≫ 1 , 
Additional file 3, Fig. S13A) where most lattice sites are 

occupied by spin states ( −1 or +1 ). Our analysis sug-
gests that the CPIM is not in the same universality class 
as the Ising model (IM), although both the height of the 
peak of magnetic susceptibility per occupied site XN

max 
and the average magnetization per occupied site at the 
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Fig. 4  Spatial correlation in ferromagnetic and anti-ferromagnetic colonies. Spatial autocorrelation function C(r) in colonies of rod-shaped (a) 
and spherical (b) E. coli cells carrying the ferromagnetic (F) and anti-ferromagnetic (AF) systems with reporter vector 1 (F1 and AF1) or 2 (F2 
and AF2). Points and error bars correspond to the mean ± the standard deviation of around 40 colonies for each system, and lines correspond 
to the best fit of the exponential decay equation y = y0 ∗ exp(−x/b)+ C to the data. Insets show the oscillating behavior of the sACF 
around zero of individual anti-ferromagnetic colonies, which is lost when the data is averaged. c Length constant and colony size of ferromagnetic 
and anti-ferromagnetic colonies of spherical E. coli cells grown in M9 solid medium supplemented with glucose (Glu) or glycerol (Gly), showing 
that cell division rate does not affect the spatial correlations. Statistical analysis was performed using an unpaired two-tailed Mann-Whitney 
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r_plfit with the default low-frequency cut-off [69]. Solid lines correspond to the power-law P(s) = Cx−γ found by the algorithm. Insets show 
the probability distribution of all the clusters found in the populations (without cut-off ), with solid lines corresponding to the best fit of the data 
to equation P(s) = A ∗ s−γ found by the least squares method. Dotted lines correspond to a curve with γ = 2.00
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critical point �|M|�Nc  scale with the size of the lattice in 
a similar way the IM scales with system size (exponents 
γ and β ) but differently with respect to the scaling to 
system size of Weber and Buceta’s model (WB; [22]) as 
shown in Table S6 (Additional file 4). Moreover, the criti-
cal temperature in the thermodynamic limit Tc found 
for the CPIM is roughly the same as the one found for 
the 2-D IM [40]. Note however that both the exponents 
and the critical temperature might be different for dif-
ferent CP parameters. As shown in Fig. S14A, if we 
increase the death (or extinction) rate d, the CPIM shifts 
its Tc to lower values. Further theoretical analysis of the 
CPIM could investigate such phenomena elsewhere as it 
is beyond the scope of our work, which is mostly focus-
ing on understanding our experimental colonies. Follow-
up experiments modulating demographic parameters 
could be achieved using microfluidic devices in order to 
test these predictions of the CPIM model. In this study, 
however, we have focused on quasi-2D colonies grow-
ing on an agar surface as an introduction to our SGNs. 
An interesting result of our finite-size scaling analysis is 
the fact that the position of the magnetic susceptibility 
per occupied site peak TN

c  does not scale with the sys-
tem size in the same way that the IM scales (Additional 
file 4, Table S6), exponent ν ). This deviation from the IM 
behavior is consistent with the observation that the tem-
perature at which the magnetic phase transition occurs in 
our model does indeed depend on colonization/extinc-
tion dynamics (i.e., the CP). For increased values of d, 
extra vacancy introduces noise in the IM behavior, and 
thus stronger coupling or lower temperature is needed to 
compensate.

These theoretical results combined with our experi-
mental ones suggest that the “ferromagnetic” genetic sys-
tem can pose colonies near the critical point of a phase 
transition in which far regions in the colony are corre-
lated. These findings are in agreement with the theoreti-
cal work of WB [22], who found that simulations of toggle 
switches with coupled states can exhibit phase transitions 
described by the theory of critical phenomena ([22]) (see 
Additional file  4, Supplementary Note 4). Although our 
results suggest that the behavior of these SGNs could 
belong to a universality class ([40, 54]) related to the one 
of the IM, the lack of a control parameter in the in vivo 
experimental system limits the search for universal criti-
cal exponents in the experimental colonies. In our lattice 
model, the control parameter T (in comparison to the 
value of J) accounts for how strongly coupled sites are in 
terms of responding to the state of their neighbors. Such 
a control parameter could be realized in vivo by the regu-
lation of coupling signal levels outside the cells or their 
transport rate across the cell membrane ([22]). To evalu-
ate how a higher transport of autoinducers can affect our 

results, we also investigated a CPIM where the Ising cou-
pling interactions take place in a Next Nearest Neighbor-
hood (NNN). As predicted by the mean-field theory of 
the IM, if the number of interacting neighbors increases, 
the critical temperature Tc shifts to higher values (Addi-
tional file 3, Fig. S14B).

Another interesting observation is that although the 
CPIM considers flipping rates between spin states which 
only depend on local energy differences, the dynamics 
of the empirical pattern of gene expression of our SGNs 
within the growing colonies varies with both spatial coor-
dinates within the colony as well as its age. When com-
paring colonies at 14, 18, and 22 h post-inoculation (see 
Additional file 4, Supplementary Note 3; and Additional 
file 3, Figs. S15 and S16), we see that as cells within the 
middle of the colony approach stationary phase condi-
tions patterns slow down their dynamics.

Although in our theoretical approach we modeled the 
behavior of gene expression as a function of inducer con-
centration (see Fig.  2c-f; Additional file  1, Fig. S5, and 
Eq.  2), we did not extend this model to the CPIM. The 
reasoning behind this decision is to avoid assumptions 
about the microscopic dynamics of transport, conceiv-
ing a very generic model combining the CP to model our 
demographic condition (a quasi-2D growing colony) with 
the actual IM as a model of a coupled toggle switch. The 
approach of WB [22] offers a heuristic complement to 
study the microscopic model. We trust that our empiri-
cal system will encourage further experimental work in 
microfluidics devices where the transport of coupling 
molecules, as well as demographic parameters, can be 
controlled. In such a controlled environment, where 
cells are kept in log phase, further theoretical work can 
be developed. The most striking result hinting that our 
model captures the essential dynamics of our experi-
ments with SGNs is the fact that it reproduces empirical 
patterns in both, ferromagnetic as well as antiferromag-
netic colonies (see Fig. 3). The main purpose of our mod-
eling efforts is to understand the induction of our genetic 
constructs (Eq. 2) and to interpret our experiments with 
SGNs in growing colonies (CPIM).

The generation of colonies with all SGNs in the same 
state above a critical concentration of the C6HSL cou-
pling signal indicates that these SGNs can also align their 
dynamics to a global exogenous force. This exogenous 
force can be interpreted as an analog to the externally 
applied magnetic field, represented by the second term 
in the Hamiltonian of the Ising model [1, 40, 55]. While 
the interaction energy favors the alignment between 
spins, the field energy favors the alignment of all spins 
with the external field. A high concentration of the cou-
pling signal counterbalances the effect of local coupling 
interactions and favors the alignment of SGN state with 
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this external C6HSL field. The interplay between these 
two mechanisms has also been observed in spatial ecol-
ogy, where fractal long-range correlations in the yield of 
pistachio trees, which emerge due to coupling interac-
tions between trees, become homogeneous under global 
exogenous forces such as weather [1], a phenomenon the 
authors related to the widely known Moran effect [56]. 
The incorporation of a magnetic field effect to CPIM 
would allow to integrate the contribution of endogenous 
coupling interactions and global exogenous forces that 
tend to synchronize the entire population. To further 
explore this avenue of research, future work will also seek 
to implement an in vivo field, whose level and regulation 
will be orthogonal to the mechanisms controlling bista-
bility and coupling in the current designs (i.e. HSLs).

Conclusions
This work shows how two-state switches with differ-
ent coupling mechanisms can lead to spatial patterns of 
rich scaling properties in isogenic bacterial populations. 
Microbes are constantly adjusting their metabolism to 
changing environments, and even clonal populations 
can become spatially structured, giving rise to interact-
ing metabolic subpopulations shaped by cellular uptake 
and release of coupling compounds ([6, 11, 57]). Whether 
local metabolic couplings (e.g., [6, 10, 11, 14, 58–60]) can 
lead to Ising-like patterns in natural multicellular systems 
remains to be explored. This work provides a minimal 
system to address these questions as well as other fun-
damental problems in developmental and microbiology, 
such as phase transition and symmetry breaking ([22]), 
with promising applications for the engineering of pat-
tern formation, synthetic bacterial consortia, and artifi-
cial morphogenesis ([61–68]).

Methods
Computational modeling
The code for the simulation of the Ising model during the 
growth of a bacterial colony was written in the C pro-
gramming language, and it is available in GitHub (https://​
github.​com/​jekey​mer/​Conta​ct-​Proce​ss-​Ising-​Model). 
Additional information on the simulation of the Ising 
model during quasi-2D colony growth can be found in 
Additional file  4, Supplementary Note 1. The graphical 
user interface was created with GTK+ 3 (https://​devel​
oper.​gnome.​org/​gtk3/​stable/).

Plasmids
All the vectors used in this work, listed in Additional 
file  4, Table  S7, were constructed by Golden Gate [70] 
and Gibson Assembly [71]. Level 0 modules used in 
the Golden Gate assembly containing one of the four 
genetic elements that are part of a Transcriptional 

Unit (promoter, Ribosome Binding Site RBS, coding 
sequence, and terminator) were either obtained from 
the CIDAR MoClo kit [72] deposited in Addgene (Kit 
#1000000059) or constructed by Gibson Assembly using 
gBlocks supplied by IDT (idtdna.com). The pLux76pTet 
and pLas81pLac double promoters designed in this work 
were synthesized based on the sequences of pLux76 
and pLas81 promoters used in [35]. The sequence of 
mCherry2 was obtained from [73]. Different Level 1 vec-
tors containing Transcriptional Units were generated by 
Golden Gate combining different Level 0 modules. Four 
of these Level 1 Transcriptional Units were combined 
together by Gibson Assembly to generate the Level 2 
reporter and Ising vectors. PCR fragments used in the 
Gibson Assembly were amplified using Phusion High-
Fidelity DNA Polymerase (NEB) and were visualized on 
a blue LED transilluminator (https://​iorod​eo.​com) using 
SYBR Safe (Thermofisher). The purification of the vec-
tors was performed using the Wizard Plus SV Minipreps 
DNA Purification System (Promega), while the purifica-
tion of the PCR fragments was performed using the Wiz-
ard SV Gel and PCR Clean-Up System (Promega).

Bacterial strains and growth conditions
All experiments were performed using the E. coli TOP10 
(Invitrogen) or KJB24 strains. KJB24 strain contains a 
stop codon mutation in the cell wall protein RodA, which 
results in the generation of spherical cells, and a second 
mutation that allows cells to grow in rich medium [45]. 
To transform cells with ferromagnetic and antiferromag-
netic systems, cells of TOP10 and KJB24 strains were 
made competent by the CCMB80 method (http://​openw​
etware.​org/​wiki/​TOP10_​chemi​cally_​compe​tent_​cells). 
Cells were grown on LB liquid medium (tryptone 10 g, 
yeast extract 5 g, NaCl 5 g, and distilled water to a final 
volume of 1 L) or on M9-glucose liquid medium (1x M9 
salts supplemented with MgSO4∗7H2O 2 mM, CaCl2 0.1 
mM, glucose 0.4% and casamino acids 0.2%, where 1 L 
of 5 × M9 salts contains 64 g of Na2HPO4∗7H2O, 15 g of 
KH2PO4, 2.5 g of NaCl, and 5 g of NH4Cl), where 1.5% 
w/v agar was added to the corresponding liquid medium 
to prepare LB agar or M9-glucose agar medium. When 
necessary, the medium was supplemented with 50 µg/
mL kanamycin, 100 µg/mL carbenicillin, 50 µg/mL spec-
tinomycin, or 10 µg/mL chloramphenicol. In order to 
prepare the stock solutions of acyl-homoserine lactone 
molecules, 3-oxohexanoyl-homoserine lactone (C6HSL, 
Cayman Chemicals) and 3-oxododecanoyl-homoserine 
lactone (C12HSL, Sigma) were dissolved in DMSO to a 
concentration of 0.067 M. Before being used, both acyl-
homoserine lactones were first diluted in ethanol to a 
concentration of 2 mM and then diluted in M9-glucose 
medium to the described concentrations. To obtain 

https://github.com/jekeymer/Contact-Process-Ising-Model
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images of colonies, cells were grown overnight at 37 ◦ C in 
liquid M9-glucose medium and diluted 1:100 in the same 
fresh liquid medium. Cells were then grown to an opti-
cal density at 600 nm of 0.2, diluted 1:1000 and 20 µ L of 
these dilutions were plated onto M9-glucose agar plates 
with the appropriate antibiotic and the described con-
centrations of C6HSL. To compare the effects of growth 
rate in the emergence of patterns, cells were also plated 
onto M9-glycerol agar plates, in which the glucose was 
replaced with 0.2% glycerol.

Plate fluorometry
Cells were grown overnight in a shaking incubator at 37 
◦ C in 4 ml of liquid M9-glucose medium supplemented 
with the appropriate selective antibiotics. The overnight 
cultures were diluted 1:1000 in the same fresh liquid 
medium, and 200 µ l of these dilutions were transferred 
into a well of a 96-well clear-bottom plate and supple-
mented with the described concentration of C6HSL or 
C12HSL. The plates were placed in a Synergy HTX plate 
reader (BioTek) and fluorescence (sfGFP: 485/20 nm 
excitation, 516/20 nm emission; mCherry2: 585/10 exci-
tation, 620/15 nm emission) and optical density (600 nm) 
were measured every 10 min for 24 h. The plates were 
maintained at 37 ◦ C during the experiment and were 
shaken at 200 rpm between readings.

Microscopy and image analysis
A Nikon Ti microscope equipped with 10×, 20×, and 40× 
objectives, and FITC and TRITC Filter Cube Sets were 
used to obtain the images of the colonies. Images were 
acquired using the Nikon NIS-Elements BR software. 
The processing and analysis of the images was performed 
using the Fiji distribution of ImageJ [74]. Single-channel 
images of the colonies were created by merging a z-stack 
using the Extended Depth Field plugging, while multi-
channel images were merged using the Merge command. 
Before the analysis of the images, single-channel images 
were converted into 8-bits, the background was removed 
using the Subtract Background command and the images 
were binarized using the Automatic Threshold plugging. 
To investigate the existence of a characteristic spatial dis-
tribution of the cellular-state domains, we used the Auto-
Correlation Function (ACF) plugging [47] (https://​github.​
com/​vivien-​walter/​autoc​orrel​ation) to calculate the spa-
tial Autocorrelation Function (sACF) of binarized images 
of whole colonies. A value of 1 or −1 of the sACF means a 
perfect correlation or anticorrelation, respectively, while 
a value of 0 means no correlation. To calculate the mean 
size of the cellular state clusters generated in the colo-
nies, we used Gnuplot (http://​www.​gnupl​ot.​info/) to fit 
the data of the sACF to the one phase exponential decay 

equation y = y0 ∗ exp(−x/b)+ C , where b is the length 
constant, which correspond to the average size of the cel-
lular states domains generated in the colonies.

To obtain the probability distribution of cluster sizes, 
we calculate the number and size of the clusters of bina-
rized images of colonies and simulations using the Find 
Connected Regions Plugin of ImageJ (http://​homep​ages.​
inf.​ed.​ac.​uk/​s9808​248/​imagej/​find-​conne​cted-​regio​ns/). 
The values of the power-law exponents γ were estimated 
by finding the best fit for all the data using the least 
squares method and also using the matlab implementa-
tion of the algorithm r_plfit(k,‘hist’) developed by Hanel 
et  al. with default low frequency cut-offs [69]. For the 
colonies, only clusters greater than 1 µ m were considered 
for the analysis.

To determine the similarity between ferromagnetic 
colonies and ferromagnetic populations obtained from 
CPIM simulations, we calculate the Hamming distance 
using a custom Python program that determines the 
number of pixel positions in which the images are differ-
ent. Binarized images of both colonies and simulations 
were scaled to have the same number of pixels, saved as 
a binary array in a text file, and the Python program was 
used to compare each position in the array (which repre-
sents a pixel of the binarized image) of two images. If in 
that position both images have the same pixel value, the 
program adds a 0, but if the values are different, the pro-
gram adds a 1. The total number of pixels in which the 
images are different is then divided by the total number 
of pixels to obtain the Hamming distance. For this analy-
sis, 42 colonies of ferromagnetic cells with reporter vec-
tor 1 and 65 colonies of ferromagnetic cells with reporter 
vector 2 were compared with 10 simulated populations 
for each value of the control parameter between 2 and 
2.54. To find the smallest value of the Hamming distance 
between a colony and a simulated population, the image 
of the simulated population was rotated every 15°, gen-
erating a total of 24 versions for each simulated popu-
lation. Thus, the final value of the Hamming distance 
corresponds to the smallest value obtained from the 
calculation of the distance between the colony and each 
version of the simulated population. One-way ANOVA 
followed by Dunnett’s multiple comparisons test, and 
non-parametric, unpaired two-tailed Mann-Whitney 
test ( α = 5% ) were performed using GraphPad Prism 
for Windows, GraphPad Software, San Diego, CA, USA, 
http://​www.​graph​pad.​com.

All the raw data is available in an open data repository 
in Zenodo (https://​doi.​org/​10.​5281/​zenodo.​81215​16).
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