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Abstract 

Background Energy homeostasis is essential for the adaptation of animals to their environment and some wild animals 
keep low metabolism adaptive to their low‑nutrient dietary supply. Giant panda is such a typical low‑metabolic mammal 
exhibiting species specialization of extremely low daily energy expenditure. It has low levels of basal metabolic rate, thy‑
roid hormone, and physical activities, whereas the cellular bases of its low metabolic adaptation remain rarely explored.

Results In this study, we generate a single‑nucleus transcriptome atlas of 21 organs/tissues from a female giant 
panda. We focused on the central metabolic organ (liver) and dissected cellular metabolic status by cross‑species 
comparison. Adaptive expression mode (i.e., AMPK related) was prominently displayed in the hepatocyte of giant 
panda. In the highest energy‑consuming organ, the heart, we found a possibly optimized utilization of fatty acid. 
Detailed cell subtype annotation of endothelial cells showed the uterine‑specific deficiency of blood vascular sub‑
classes, indicating a potential adaptation for a low reproductive energy expenditure.
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Conclusions Our findings shed light on the possible cellular basis and transcriptomic regulatory clues for the low 
metabolism in giant pandas and helped to understand physiological adaptation response to nutrient stress.

Keywords Single‑nucleus transcriptome atlas, Giant panda, Low metabolism, Energy homeostasis, Adaptation

Background
Optimization of the interplay between energy metabolism 
and biological production (growth and reproduction) is 
characteristic of life and can maximize organisms’ fitness 
(i.e., lifetime reproduction) and adaptation to their envi-
ronment [1]. Energy homeostasis tightly relies on cellular 
metabolic regulation to maintain a balance between food 
intake and energy expenditure, which begins with nutri-
tion sensing [2]. The powerful and sophisticated mecha-
nisms in cells are products of evolution, which help to 
regulate metabolic processes towards cellular energy sta-
tus [3]. Two key sensors, AMP-activated protein kinase 
(AMPK) and target-of-rapamycin (TOR), antagonisti-
cally play a central role in switching on the catabolism in 
nutrient starvation or anabolism in nutrient availability. 
Phosphorylated AMPK can also inhibit cell growth and 
promote autophagy and lysosome biogenesis to recycle 
cytoplasmic components for essential cellular activities 
[4]. However, its counterpart, TOR complexes 1 and 2 
(TORC1 and TORC2), can inhibit the activation of AMPK 
and promote contrary pathways (cellular anabolism and 
cell growth) [3]. The two hubs in the lysosomes/vacuoles 
represent a conserved mechanism to regulate metabolism 
and safeguard the energy balance in eukaryotes [5, 6].

Metabolic allometries are observed at wide scales 
including enzymes, mitochondria, cells, whole organ-
isms, and even ecosystems [7]. It is now regarded as an 
optimization rather than a constraint on an energy-
expenditure budget [1]. The heart is the most energy-
demanding organ in the body for contractile function. 
It has the flexibility to use different substrates for ATP 
generation. Healthy adult cardiomyocytes (CMs) prefer-
entially utilize fatty acids (FAs) as an energy substrate [8–
10]. In adult fasting mammals, fatty acid oxidation (FAO) 
supplies for 60–80% of cardiac energy metabolism with 
the remainder provided by glucose, lactate, and ketone 
metabolism [11]. Lipids for the heart are mainly the cir-
culating esterified FAs bound to lipoproteins (TGRLPs, 
triglyceride-rich lipoproteins) from the liver and slightly 
non-esterified (free) fatty acids (NEFAs) from adipose tis-
sues [12, 13]. CMs also have capacities on lipoprotein for-
mation and secretion to prevent lipotoxicity of TAG and 
FA accumulation [14]. Elevated triacylglycerol synthesis 
and FA β-oxidation were observed to be novel signatures 
of longevity in healthy aging [15].

The circulating system is vital for nutrient delivery 
across the body. The portal vein from the gastrointestinal 

tract to the liver, also known as the gut-liver axis, directly 
provides an anatomic channel for dietary substance 
uptake in the liver [16]. Then, the liver-heart axis plays 
a crucial role in cardiac substrate supply and liver lipid 
homeostasis [17, 18]. Endothelial cells (ECs) line the inner 
layer (tunic intima) of blood vessels, serving as a barrier to 
deliver nutrients and maintain microenvironment home-
ostasis. Cellular heterogeneity of ECs could reflect diverse 
transmembrane transport and metabolic functions serv-
ing for specific tissues across vascular beds (artery, ven-
ule, capillary, etc.) [19]. Lipoprotein lipase (LPL) is a key 
enzyme for the distribution of circulating lipids across 
organs [8]. Glucose transporters were expressed in tissue-
specific ECs (i.e., brain, testis), implying different nutrient 
requirements throughout the whole body [19]. Interro-
gation of EC heterogeneity helps to study the nutritional 
support for distinct local organs/tissues.

The giant panda, Ailuropoda melanoleuca, is a flagship 
species in the global biodiversity conservation and enjoys 
an iconic status in studying the survival and adaption of 
wildlife. It was once highly endangered and aroused a 
heated debate about whether this species is an evolution-
ary cul-de-sac, given that its unique biological and physi-
ological characteristics seemed to put it on the edge of 
extinction vortex [20–22]. Giant panda evolves from the 
family of Ursidae and nowadays it lives on a bamboo-
dominated diet, which contains limited nutrients. What’s 
worse, they still keep a typical carnivorous gastrointesti-
nal tract, leading to a very low digestive efficiency. Nev-
ertheless, amazingly, their daily energy expenditure was 
also exceptionally low (37.7% of the mammalian expecta-
tion), which was partly attributed by few daily activities, 
low body temperature, reduced inner organ sizes, and 
low reproduction rate [23, 24]. The quality and quantity 
of their food are regarded as the ultimate factors of their 
low metabolism [23]. It has been measured that the liver 
was the most reduced organ in giant panda, 62.8% of 
the expected size, followed by kidney (74.5%) and brain 
(87.5%) while the size of its heart increased (104.9%) [23]. 
Energy used for reproduction also seems inadequate that 
giant panda cubs are poorly developed and the ratio of 
cub/mother body weight is about 1/900th, which hits the 
lowest among all Eutherians [22, 24]. All the aforemen-
tioned biological specializations make the giant panda a 
typical and ideal case to explore the cellular basis of natu-
ral optimization of energy utilization under a low basal 
metabolic rate.
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With high-throughput single-cell and single-nucleus 
RNA sequencing (scRNA-seq and snRNA-seq, respec-
tively) technologies, it is accessible to dissect cellular 
heterogeneity and monitor gene expression patterns in 
single cells/nuclei, getting closer to the cellular organi-
zation and regulation for fitness optimization under low 
metabolism in giant panda. Here, we conducted large-
scale single-nucleus sequencing in a giant panda and con-
structed a snRNA-seq atlas of 21 organs/tissues from one 
female donor. We firstly presented the cellular transcrip-
tome profiling of giant panda and made a cross-species 
comparison, indicating that hepatocyte was remarkably 
different in giant panda. By focusing on genes involved in 
AMPK and TOR signaling pathways, we proposed a pos-
sible cellular basis of low metabolism and downstream 
affected processes. Secondly, the cooperation of cardio-
myocytes on fatty acid oxidation for ATP generation was 
discovered in the largest energy-consumed organ (heart). 
Thirdly, the nutrient delivery network in all studied 
organs/tissues was characterized from the perspective 
of ECs. In principle, our data help to answer previously 
unsolved questions of giant pandas at a single-nucleus 
resolution, serving as a powerful foundation and resource 
for future studies on evolution and adaption.

Results
Single‑nucleus transcriptome landscape of 21 organs/
tissues of the giant panda
To characterize the transcriptome landscape of the giant 
panda at a single-cell resolution, we conducted single-
nucleus RNA sequencing of 21 major organs/tissues 
from a female donor (Fig. 1A; Additional file 1: Fig. S1). A 
total of 41.86×109 RNA reads were obtained, with counts 
ranging from 9.73×108 for the spleen to 3.15×109 for the 
left lobe of the liver (Additional file  2: Table  S1). After 
filtering doublets and low-quality nuclei (see the “Meth-
ods” section), we finally retained 185,186 nuclei with an 
average of 977 unique molecular identifiers (UMIs) and 
572 genes per nucleus (Additional file  1: Fig. S2A, B; 
Additional file 2: Table S2). The number of UMI counts 
and genes detected varied slightly across organs/tis-
sues. Nuclei of the pancreas showed the highest median 
counts (1466 UMIs and 871 genes per nucleus), but only 
474 UMIs and 300 genes per nucleus were recovered for 
the esophagus. In detail, we captured nuclei from seven 
systems: cardiovascular system, 44,307 nuclei (aorta, 
692; left ventricle, 31,045; and right ventricle, 12,570); 
respiratory system, 20,606 nuclei (left lung, 8261; right 
lung, 5694; and trachea, 6651); digestive system, 51,112 
nuclei (left liver, 21,429; right liver, 12,419; colon, 6241; 
duodenum, 5032; stomach, 3974; esophagus, 1097; and 
tongue, 920); urinary system, 27,553 nuclei (left kidney, 
7049; right kidney, 8494; and bladder, 12,010); endocrine 

system, 22,526 nuclei (pancreas, 13,089; thyroid, 9437); 
immune system (spleen), 5112 nuclei; and reproduc-
tive system, 13,970 nuclei (ovary, 3564; uterus, 10,406) 
(Fig. 1B).

We next annotated each cluster according to their tran-
scriptome signatures. To guarantee the correctness of cell 
identity annotation, we used unsupervised clustering to 
annotate the nucleus for both each single tissue (Addi-
tional file 1: Fig. S3–5) and 21 tissues as a whole (Fig. 1C, 
D; Additional file 1: Fig. S6). By combing the two anno-
tation results, we finally identified 46 major cell types in 
the 21 tissues (Additional file 2: Tables S3, 4) [19, 25–43], 
with one cell type in tongue as the least and twelve cell 
types in the left kidney as the most (Additional file  2: 
Table  S2). Commonly shared cell types were achieved 
among these tissues, such as endothelial cell (EC), fibro-
blast (FB), macrophage (MP), and smooth muscle cell 
(SMC), which was consistent with previous studies [25, 
44]. Organ-specific cell types were also captured, with 
the top three sources being kidneys (six: proximal tubule 
cell (PTC), distal tubule cell (DTC), loop of Henle (LOH), 
podocyte (POD) and collecting duct intercalated cell 
- type B (CD-IC-B)), intercalated cell transiting to prin-
cipal cell (CD-tran-PC), livers (four: hepatocyte, hepatic 
stellate cell (HSC), Kupffer and cholangiocyte) and pan-
creas (four: acinar cell, duct cell, delta cell and PP cell). 
Lastly, we found some cycling cells in this old panda with 
their representative populations in the lungs (cycling 
alveolar epithelial type 2 (AT2) and cycling MP) and 
stomach (cycling pit mucosa cell (PMC)), implying that at 
least these cells were active and might have proliferative 
potential.

In the global landscape, clustering analysis identified 
42 clusters with the nucleus counts ranging from 230 to 
14,262 per cluster (Additional file 1: Fig. S7A). Global cell 
annotation was highly consistent with the result of the 
single-organ atlas (Additional file  1:  Fig. S7B–D). How-
ever, some cells were mixed with other large cell popula-
tions, which we suspected as clustering errors on a global 
scale. Based on the global clustering and cell identities 
from a single organ atlas, we explored their clustering 
performance across the whole body. In the global atlas, 
all nuclei tended to group together on the basis of cell 
type and organ origin, exhibiting the similarity of their 
expression profiles. For paired organs (such as ventricles, 
lungs, livers, and kidneys), their cells coincided with the 
same cell type as their counterparts, while the same types 
from collaborative and adjacent organs (such as basal cell, 
goblet cell, and ciliated cell of lungs and trachea) just bor-
dered by each other (Fig. 1B; Additional file 1: Fig. S7E). 
Common cell types across different tissues were mixed in 
certain clusters, such as ECs (cluster 27), FBs, and MPs, 
showing their similar expression patterns. There were 
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Fig. 1 Landscape of the snRNA‑seq atlas of giant panda. A Schematic representation of 21 organs/tissues collected from a female donor 
with the main experimental and analysis procedures underneath. B t‑SNE visualization of all nuclei colored by organ/tissue (left) and number 
of nuclei from each organ/tissue passing quality control (right). C t‑SNE visualization of cell types labeled by different colors. D t‑SNE map showing 
the expression of classical marker genes in some tissue‑specific or common cell types. n = 185,186 single nucleus
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also a number of cells clustered based on tissue origins, 
showing the heterogeneity of specific cell types and pos-
sibly different functions serving for these tissues [19].

Cellular response to low‑nutrient diet in giant panda
We next sought to gain better insights into the cellular 
characteristics of the low basal metabolism of the giant 
panda. To this end, we performed cross-species com-
parison with single-cell/nucleus atlases from humans 
(Human Cell Landscape, HCL) [25, 45], crab-eating mon-
keys (Non-Human Primate Cell Atlas, NHPCA) [46, 47], 
and mouse (Mouse Cell Atlas, MCA) [48, 49], reason-
ing that cross-species comparison enables us to uncover 
conserved and divergent features in giant panda. At a 
first glance, integration of sc-RNA/sn-RNA data from 
the four species showed a good correlation in the single-
organ atlas (except liver) (Additional file 1: Fig. S8). Next, 
based on previous cell identities and differential marker 
genes [46], we examined the existence of shared cell types 
and the potential emergence of species-specific cell pop-
ulations. Our cell type annotation results are consistent 
with those from published studies (Additional file 1: Fig. 
S9), suggesting a similar and conserved cellular reper-
toire between giant pandas and other three species.

Firstly, in the most vital metabolic organ, the liver, the 
whole landscape consisted of several hepatocyte popu-
lations, HSC, EC, and immune cells (clustered together 
regardless of species source) (Fig.  2A). Here, UMI and 
gene numbers of the giant panda were higher than 
HCL and MCA but lower than NHPCA (Fig.  2B). Due 
to the same sn-RNA method applied to the monkey 
and the giant panda, the abundance of hepatocyte was 
increased, offering opportunities to investigate potential 
gene expression specialization. Re-clustering of hepato-
cytes exhibited a separation based on species difference 
(Fig. 2C), implying transcriptomic divergence of different 
species. Gene ontology (GO) analysis for differentially 
expressed genes (DEGs) showed conserved functions in 
the monkey and the giant panda (Fig. 2D), such as lipid 
catabolic process, cellular nitrogen compound catabolic 
process, and cholesterol biosynthetic process, which was 
consistent with the physiological functions of the liver 
on dietary digestion. There were several anabolic pro-
cesses significantly presented in the monkey while absent 
in the giant panda, including phospholipid, amino acid, 

bile acid, and glycogen biosynthesis. And the undetected 
bile acid-related term in giant pandas was consistent with 
previous bulk-RNA research [50], due to the low-fat diet. 
Metabolism regulation differences could be reflected 
by distinct enriched GOs related to nutrition response: 
“negative regulation of lipid storage” in giant pandas ver-
sus “energy reserve metabolic process” in monkeys. Such 
different cellular energy statuses could also be further 
implied by relevant metabolic characteristics: glucose 
import was positively regulated and lysosome/vacuole 
activities were active in giant pandas, which was in line 
with the AMPK activation status. For other vital func-
tions of the liver, they both show a connection with the 
circulatory system, hormone response, and development 
of tissues. The putative relationship with reproductive 
structure and embryonic development shed insights on 
cellular regulation for nutrition supply to reproductive 
organs.

As related to the environmental adaptation of giant 
pandas, a detailed comparison was next focused on 
pathways tightly related to nutrient-sensing proteins. 
We mapped the genes encoding AMPK and TOR pro-
teins and found that AMPK α1 and α2 were upregu-
lated in the giant panda whereas subunits of TOR were 
upregulated in the monkey, together with its catalyzer 
(SLC38A9), a lysosomal transmembrane protein sens-
ing amino acid arginine and activating mTORC1 [51] 
(Fig.  2E, F). By characterizing the expression of direct 
downstream targets by AMPK, we discovered consistent 
signatures for low metabolism in giant pandas (Fig. 2G). 
Autophagy and mitochondrial homeostasis were notably 
promoted by overexpression of TFEB, CARM1, PPARA 
, PPARD, BECN1, and ATG9A [3, 52]. As the orga-
nelle of autophagy, lysosome also had an active activity 
through higher expression of V-ATPase and its regula-
tor (Fig. 2H). For lipid, protein, and glucose metabolism, 
targeted genes promoting lipolysis, lipid β-oxidation, and 
glycolysis were upregulated while translation, ribosome 
biogenesis, mTOR, glycogen storage, and hexosamine 
synthesis were repressed in giant panda. In addition, 
upstream genes activated AMPK including AXIN2, 
PSENEN, and ATP6AP1 were overexpressed in giant 
panda hepatocytes (Fig. 2I).

Lastly, hepatocytes in the giant panda were significantly 
increased in the toxin metabolic process and amino-acid 

(See figure on next page.)
Fig. 2 Transcriptomic divergence of hepatocyte revealed by cross‑species comparison. A UMAP representation of four species comparison 
among human, monkey, mouse, and giant panda datasets of liver. Cell identity was in the right legend. B Violin plots indicating the numbers of UMI 
and genes detected in liver datasets of human, monkey, mouse, and giant panda. C Re‑clustering of all hepatocyte clusters from (A) and circled 
by species. D GO enrichment analysis for DEGs of hepatocytes from monkey and giant panda. E Expression level of AMPK and TOR subunits in each 
hepatocyte cluster. F UMAP representations with nuclei colored by the expression level of essential genes. G Promoted or repressed metabolic 
signal pathways which were direct downstream targets of activated AMPK. H Expression level of genes involved in lysosome activity. I Potential 
non‑canonical activation of AMPK
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Fig. 2 (See legend on previous page.)
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betaine metabolic process (Fig.  2D), which were abun-
dant in bamboo leaves [53]. Regarding the secondary 
metabolites in bamboo, we also mapped the well-known 
CYP450 family. They were mainly enriched in hepato-
cytes, together with HSC and cholangiocytes (Additional 
file  1: Fig. S10A). The main bitter substance in bamboo 
shoots is L-phenylalanine [54] and can be decomposed 
by phenylalanine-4-hydroxylase (encoded by PAH) in 
liver and kidney [55]. We discovered that PAH was pre-
dominantly expressed in hepatocytes (65.49%), HSC 
(42.24%), cholangiocyte (36.81%), Kupffer (26.22%), 
and EC (20.72%) in livers and the proximal tubule cell 
(19.73%) in kidneys (Additional file  1: Fig. S10B). These 
features collectively provided the first single-cell tran-
scriptome insights into the metabolic rewiring of giant 
panda hepatocytes’ adaptation to their environment.

Cellular cooperation of vCMs in the largest 
energy‑consuming organ
We next investigated the cardiac metabolic adaptations 
in the giant panda, with a focus on the cardiomyocytes. 
A total of 43,615 nuclei from the left and right ventricles 
of the heart were captured, representing five major cell 
types in 11 clusters, including ventricular cardiomyocyte 
(vCM), FB, EC, SMC, and MP (Fig.  3A). Seven clusters 
(c0, c1, c2, c3, c4, c8, and c9) were identified as vCMs 
based on the markers they specifically expressed (TNNI3, 
MYH7, MYL2, and MYL3), and GO terms suggested 
their common functions on muscle contraction, car-
diac muscle tissue development, myofibril assembly and 
heart process (Fig. 3B, C), which were similar to previous 
human cardiac single cell/nucleus atlas [29, 32]. The vCM 
heterogeneity was characterized by remarkable differ-
ences in other putative functions: (1) c0, c1, c4, c8, and c9 
intended to have high ATP-generating capacity by mito-
chondria, considering their major performances on the 
generation of precursor metabolites and energy, aerobic 
respiration, electron transport chain, and tricarboxylic 
acid cycle. Their marker genes also included nuclear-
encoded mitochondrial genes, which were previously 
reported in the small high energetic population (vCM4) 
of humans [29]; (2) c2 and c3 seemed to resemble sen-
sors and regulators with overexpressed genes related 
to cellular response to low-density lipoprotein particle 
stimulus, fatty acid and insulin stimulus, regulation of 

heart rate, transporter activity, fatty acid oxidation and 
glucose metabolic process, additionally, involving in car-
diac muscle hypertrophy. And, c1 was relatively deficient 
in mitochondrial activities compared to c0, c4, c8, and c9 
(Fig. 3C). The remarkably different cellular fractions of c0 
and c1 in left and right counterparts (c0: 38.47% of left 
vCMs while 1.36% of right vCMs; c1: 11.33% of the left 
while 49.50% of right) (Fig. 3B), may explain the cellular 
basis supporting systemic and pulmonary circulation, 
respectively.

GO enrichment also implied that c3 was significantly 
related to cell growth, negative regulation of stem cell 
differentiation, and Wnt signaling pathway and c2 was 
involved in positive regulation of stem cell proliferation. 
And pseusdotime analysis supported the trajectory of 
vCM maturation from c3 to c2 and then to other clusters 
(Fig. 3D). So here we roughly divided all vCMs into two 
subclasses: progenitor-like (c3 and c2) and differentiated 
cells (c0, c1, c4, c8, and c9). We noted the well-known 
transcription factors (TFs), FOXO3 and FOXO1, were 
mainly expressed in progenitor-like vCMs (Fig. 3E). Feed-
back loop of FoxO TFs is of crucial roles in modulating 
cardiomyocyte growth and survival [56]. We observed 
related phosphatidylinositol 3-kinase (PI3K), mTORC1, 
and nuclear factor of activated T cell 1 (NFAT1) were 
also overexpressed in the same subtypes, may be respon-
sible for cardiac muscle remodeling in giant pandas.

Key genes involved in fatty acid intake in cardiomyo-
cytes were studied, which were important for ATP gen-
eration in mitochondria. As expected, fatty acid-binding 
proteins (FABPs) and fatty acid transporters (FATPs) 
were widely expressed across vCMs. However, they 
showed a bias on the transmembrane transport efficiency 
of TGRLP or NEFA. Lipoprotein lipase (LPL), fatty acid 
transposase (CD36), and very low-density lipoprotein 
receptor (VLDLR) were mainly expressed in progenitor-
like vCMs while differentiated ones highly expressed 
plasma membrane-associated fatty acid-binding pro-
tein (FABPpm, GOT2), which had a high affinity with 
NEFA (Fig. 3F, G). Furthermore, they would both be the 
FA-activated places that expressed acyl-CoA synthetase 
(Fig.  3H). However, they had an opposite choice on FA 
transport into mitochondria: progenitor-like vCMs over-
expressed acetyl-CoA carboxylase (ACC, ACACA , and 
ACACB) (inhibit) while differentiated vCMs expressed 

Fig. 3 Cell profiles of ventricles and metabolic differences among vCMs. A UMAP visualization of ventricles and left and right counterparts. B 
Cell fraction of seven vCM clusters in left and right ventricles and GO enrichment analysis examining shared and distinct functions for each vCM 
cluster. C Function differences between clusters 2 and 3 and clusters 0, 1, 4, 8, and 9, with hierarchical clustering dendrogram of gene expression 
above them. D Monocle 2 pseudotime‑ordered trajectory of vCMs. E Expression difference of FoxO TFs and their feedback loop involving in cardiac 
muscle remodeling between two vCM subtypes. F Transcriptomic comparison of genes responsible for lipoprotein uptake and oxidation in two 
vCM subtypes. G Violin plots showed a significant expressional difference of essential genes for the FA metabolic process. H Expression of genes 
encoding acyl‑CoA synthetase. I Examination of genes for re‑esterification of fatty acyl CoA and export

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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its counterparts, malonyl-CoA decarboxylase (MCD, 
MLYCD) (promote). Upregulation of MCD was reported 
to be accompanied with the enhancement of the oxida-
tion of FAs [57]. This may heavily influence the flux of 
ATP synthesis, rendering as different mitochondria ener-
getic status. These features may contribute to the low 
basal metabolic rate and increased size of the giant panda 
heart (see the “Discussion” section). In addition, as to the 
re-esterification of fatty acyl CoA and export, two vCMs 
both expressed genes encoding apolipoprotein (apo) fam-
ily, MTTP, LCAT, and CPT-1, showing a relative capacity 
on TG and acyl CoA clearance (Fig. 3I).

Nutrient delivery network mediated by ECs
In adult tissues, most blood endothelial cells (ECs) are 
at their quiescent state, but metabolically active. Previ-
ous single-cell transcriptome studies have revealed the 
important roles of metabolic adaptation and plasticity 
of ECs in healthy and diseased organs [58–60]. Reason-
ing that the giant panda’s ECs play essential roles in their 
metabolic adaptation, we next explored the metabolic 
heterogeneity in their ECs. Four clusters were identified 
as ECs from the global sn-RNA atlas based on the expres-
sion of canonical EC markers (PECAM1, VWF, CD36, 
PTPRB, FLT1, EMCN, STAB2) (Fig. 4A). Clusters 19, 29 
and 32 were predominantly contained tissue-specific ECs 
(ventricles, uterus, and livers, respectively) while cluster 
27 represented a mix of remainder tissues, which was 
also observed in Tabula Muris [61] and the murine EC 
atlas [19]. Functional analysis of DEGs (Fig. 4B) revealed 
that mixed ECs highly expressed gene sets involving tis-
sue homeostasis, endothelium development, actin fila-
ment-based transport, and vasculogenesis, which may 
represent similar functions of large vessel ECs [19]. Ven-
tricles ECs highly expressed gene sets related to ATP 
metabolic process, oxidative phosphorylation, myofibril 
assembly, and muscle contraction, showing an important 
role in mitochondrial metabolism and vascular trans-
port. Uterus ECs highly expressed gene sets involved in 
wounding healing, blood coagulation, platelet aggrega-
tion, and response to steroid hormone. Livers ECs highly 
expressed genes involved in receptor-mediated endocy-
tosis, the establishment of endothelial barrier, response 
to insulin, positive regulation of the catabolic process, 
and intestinal lipid absorption, in agreement with liver’s 
functions on nutrient substance metabolism and interac-
tion with the gastrointestinal system [16].

Endothelial cells are highly heterogeneous depend-
ing on the vascular bed or physiological conditions. We 
re-clustered all the ECs (summing up to 8548 nuclei) 
and unraveled the variation in cell heterogeneity from 
20 tissues (except duodenum) (Additional file  1: Fig. 
S11A). Referring to established markers in mouse [19], 
we identified 19 EC subtypes consisting of traditional 
phenotypes from different vascular beds (arteries, capil-
laries, veins and lymphatics) (Fig.  4C). Lymphatic ECs 
(LECs) were distinct from blood vascular ECs (BECs), 
which had a more general role of regulated body fluid 
levels [62]. Here, LECs reached the highest proportion in 
the uterus (93.10%), followed by the right lung (15.28%), 
ovary (7.60%), esophagus (7.14%), left lung (3.31%), blad-
der (3.28%), left kidney (2.52%), tongue (2.50%), left ven-
tricle (0.33%), and left liver (0.13%) (Additional file 1: Fig. 
S11B), suggesting a different EC subclass organization 
of uterus. For BECs, two populations representing large 
arteries and arteries were mixed ECs from various tissues 
(Additional file 1: Fig. S11A); it was reasonable when con-
sidering the relatively similar transcriptome profiling of 
arterial ECs [19]. However, large artery ECs of the ovary 
clustered as a distinct population with markers related to 
response to cAMP and regulation of gonad development 
(Fig. 4C, D). We also obtained capillary glomeruli, which 
putatively affected the dendrite development of cells in 
its microenvironments (i.e., PODs). BECs of ventricles 
and livers showed a relative distance from other tissues 
and predominant expression of the top 50 marker genes. 
Their capillary and vein subtypes showed detailed regula-
tory functions for the whole organ, for example, capillary 
and capillary arterial had shared roles in receptor-medi-
ated endocytosis and positive regulation of the catabolic 
process, which may be responsible for immunity and die-
tary digestion of the liver [16].

Previous sc-RNA research comprehensively revealed 
that BECs were tightly related to specialized physi-
ological metabolism in tissue microenvironments, and 
demonstrated that metabolic genes contributed largely 
to the tissue-grouping phenomenon of them [19]. In 
our dataset, heart and liver BECs showed an elevated 
expression for the trafficking of lipids but exhibited vari-
ous transmembrane transport for targeted lipoproteins 
(Fig.  4E). Cardiac capillary subtypes expressed high 
levels of signatures for hydrolysis (LPL) and higher effi-
ciency (VLDLR, GOT2, and CD36) for TGRLP, which 
was the major source of fatty acid to cardiomyocyte from 

(See figure on next page.)
Fig. 4 Global EC transcriptomic atlas. A Violin plots of canonical markers to select EC clusters from the global atlas. B Function diversity for EC 
clusters from different tissues, cluster 19 from ventricles, cluster 29 from the uterus, cluster 32 from livers, and cluster 27 represented mixed tissues. 
C UMAP visualization of EC subtypes from four large clusters in (A). D Heatmap showing the expression of the top 50 DEGs of all EC subtypes 
(subsample: 300) in (C) with representative GO terms and marker genes on each side. E–G Expression level of genes involved in lipoprotein uptake 
(E), FA activation (F), and glucose transport (G)
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Fig. 4 (See legend on previous page.)
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the circulation [63]. Venous and artery-like ECs of livers 
highly expressed low-density lipoprotein receptor (LDLR) 
and apoB/E receptor (APOBR and APOER, also named as 
LRP1), which was for dietary triglyceride (TG)-rich lipo-
proteins. Additionally, they showed a remarkable role 
in fatty acid activation by acyl-CoA synthetase (Fig. 4F). 
Then, capillary glomeruli showed features for lipoprotein 
and glucose transporters (Fig. 4E, G), in line with the glo-
merular filtration in kidneys. We also observed that the 
GLUT1 (SLC2A1) and SGLT1 (SLC5A1), very impor-
tant for glucose transport into the brain and uterus [64, 
65], were both highly expressed in the large artery of the 
ovary, indicating a nutrient-absorbing capacity of the 
gonad, also observed in mouse testis (Slc2a1) [19].

The capacity for resources exchange of guts
Lastly, we examined the expression of genes on canoni-
cal sweet and bitter signaling pathways in the gastroin-
testinal tract. However, few nuclei expressed TAS1R2 
and TAS1R3 while the TAS2R gene family, TAS2R41, 
TAS2R39, TAS2R4, TAS2R1, and TAS2R40 were 
expressed in enterocytes from the colon, endothelial cell 
from the duodenum, SMC from the tongue, etc. in dif-
ferent frequencies and levels. Genes on the downstream 
taste sensing pathway, such as ITPR1, ITPR2, ITPR3, and 
TRPM5, were expressed in some nuclei (Additional file 1: 
Fig. S12A). Considering the sweet taste receptor-inde-
pendent pathway, we screened those genes encoding glu-
cose transporters (GLUTs) and sodium-glucose-linked 
transporters (SGLTs) (Additional file 1: Fig. S12B). They 
were remarkedly expressed in cells from digestive organs. 
In particular, SLC5A4 had the highest expression, mainly 
enriched in all cell types from the duodenum and entero-
cyte from the colon. All these above-mentioned gene 
expression patterns may form a broad cellular basis for 
gut taste-sensing functions.

Discussion
We developed a comprehensive sn-RNA atlas of 21 com-
monly studied organs across seven systems and finally 
presented a global landscape of 185,186 nuclei for the 
giant panda. Our dataset was valuable and powerful for 
understanding giant panda physiology at single nucleus 
resolution, which contributed to the interspecies adap-
tive analysis and represented a landmark study in cellular 
transcriptomic signatures of wildlife.

By conducting a cross-species comparison of several 
tissues, our dataset exhibited the feasibility to integrate 
different species, which was also demonstrated by recent 
researches [46, 66]. This was an important step to illu-
minate the divergence of cellular type and expression 
for distinct physiological and biological traits. Substan-
tial specialization of cellular function in organs may be 

attributed by multifaceted changes, including new cell 
subtypes, the abundance of conserved cell types, varia-
tion in cell heterogeneity, and reorganization of molecu-
lar features [66]. Here we do not pay much attention to 
new subtypes or cellular fractions among different data-
sets, because the former did not necessarily implicate 
species-specificity [66] and the latter was heavily influ-
enced by the dissociation method and capture platform 
[67]. Some cell types with irregular dendrite were hard 
to dissociate out through scRNA-seq technologies while 
showing well outcomes in snRNA-seq (i.e., POD: 2.24% 
in our work and 2.4% in snRNA mouse atlas [68], versus 
~0.18% in scRNA atlas [69]). Our sn-RNA dataset offered 
obvious advantages to investigate these special cells that 
we are interested in, including hepatocyte, POD, and 
vCM, allowing precise dissection of the cellular meta-
bolic signatures. Therefore, we focused on the species-
specific expression within certain cell types serving for 
essential biological life activities, which might represent 
different cell states of homologous cells and be associated 
with different lifestyles.

Low basal metabolic rate was beneficial for organism’s 
survival under nutrient shortage, discovered in some wild 
species, i.e., the folivorous red panda (Ailurus fulgens), 
the frugivorous binturong (Arctictis binturong) and the 
three-toed sloth (Bradypus tridactylus) [70]. Here, as one 
of the most talked-about issues of the giant panda, we 
explored several organs and discovered that the expres-
sion pattern of hepatocytes in the liver might be directly 
connected with food nutritional level. Hepatocytes 
exhibited comparable transcriptomic divergence in crab-
eating monkeys and giant pandas. In giant pandas, catab-
olism was more significant to stimulate ATP production, 
together with other adaptive metabolism exemplified by 
amino-acid betaine and toxin metabolic processes. Low 
metabolism-related processes, particularly autophagy, 
lysosome biogenesis, and lipolysis, were promoted in 
giant pandas, featured by the switch on of AMPK. Addi-
tionally, related transcription factor EB (TFEB) were 
overexpressed, which appeared partially independent of 
mTORC1 [71]. Subsequent increased levels of CARM1, 
coactivated with PPARG , could promote adipocyte differ-
entiation. Nevertheless, our study demonstrated notable 
molecular differences in the liver, plausibly answering the 
species specificity to a moderate extent.

A progenitor-like population of vCMs was identi-
fied in both the left and right ventricles of the giant 
panda, which may be responsible for the increased 
size of the giant panda’s heart. On one hand, this sub-
type specifically expressed FOXO3, FOXO1, and other 
genes related to its feedback pathways, which had roles 
in cardiac cell growth [56]. On the other hand, fatty 
acid transport into their mitochondria was repressed 
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by ACC and the accumulation of lipids may also con-
tribute to vCM growth. It has been proved in mouse 
cardiac model that ~75% of activated FAs was trans-
ported into mitochondria and 15% could be used to 
produce phospholipid and cholesterol ester, which 
were the components of the membrane [72]. Another 
10% was transformed into triglyceride, which served as 
an energy storage material. We suspected an optimiza-
tion of FA utilization in the ventricles of giant pandas 
by dividing it into two separate processes. Transmem-
brane transport and activation were accomplished in 
progenitor-like vCMs while free FA were transported 
into differentiated vCMs for mitochondrial oxida-
tion by high expression of GOT2. This phenomenon 
may decrease the speed of FA consumption to live 
on a low-energy-supply diet and reduce ATP support 
for physical activities. And possibly, unoxidized FAs 
in progenitor-like vCMs could maintain mitochon-
drial respiration in case severe starvation might occur. 
Lastly, their potential for acyl CoA re-esterification and 
TAG transfer may be beneficial for the health and lifes-
pan of giant pandas [15].

Resident tissues exchange nutrients, gas, and wastes 
with blood vessels, especially in capillaries. ECs have 
essential roles in maintaining microenvironmental 
homeostasis and substance transport. Specialized expres-
sion in BEC subtypes from livers and ventricles showed 
interacted fatty acid metabolic processes. Venule and 
capillary venous ECs in livers were important for tri-
glyceride-rich lipoprotein particle remodeling, choles-
terol efflux, sterol transport, and negative regulation of 
hemostasis. Capillary arterial, capillary, and capillary 
venous ECs overexpressed genes (LPL, CD36, VLDLR, 
and GOT2) responsible for TGRLP transport, recruiting 
lipids from blood vessels. The dysfunction of the liver-
heart axis is considered to be involved in metabolic syn-
drome in non-alcoholic fatty liver disease, characterized 
by excessive hepatic accumulation of lipid [17, 18]. Our 
analysis of BECs provided powerful cellular clues for the 
normal liver-heart crosstalk to maintain lipid homeosta-
sis. As for reproductive organs in our dataset, a compa-
rable fraction of large artery ECs were obtained from the 
ovary and they highly expressed glucose transporters for 
nutrient uptake. But the major subclass in the uterus was 
LEC, providing a cellular clue on energy limit. Insuffi-
ciency of BECs may cut off the nutrient supply, leading to 
a low energy expenditure on the uterus in the unpregnant 
stage for giant pandas. But its LECs still had a role in cel-
lular response to vascular endothelial growth factor stim-
ulus, potentially implying the ability of angiogenesis in 
the pregnant season. The changes in cell organization in 
the uterus need further stronger evidence from younger 
or pregnant donors.

Sugar is the primary energy source and gut cells also 
could activate neurons via the gut-brain axis, mediat-
ing the sugar-preference signaling circuit [73]. For the 
giant panda, we demonstrated the high-level expression 
of genes encoding glucose transporters in cells from 
the duodenum and enterocytes from the colon and also 
expressed in gastric mucosa cells from the stomach. We 
supposed that these molecules were effective and helpful 
to sense and uptake sweet substances from the low-glu-
cose bamboo.

Lastly, one possible application of single cell/nucleus 
transcriptomic atlas is to localize the cellular tropism of 
the virus infection based on the expression of viral recep-
tor-encoding genes. In wild populations, viruses with 
high morbidity and mortality rates could take a heavy 
toll on animals [74]. So, we mapped the expression of 79 
genes encoding receptors of 78 viruses [75] and reported 
the cellular susceptibility in giant pandas (Additional 
file  1: Fig. S13-15). With respect to previously reported 
infectious viruses, the left lung seemed to be the most 
potential organ accessible to influenza A virus, parvo-
viruses, and rotavirus, with cell targets being AT1, AT2, 
MP, and their proliferative cells, which viruses could 
directly reach. Rare cell types were also likely to be virus 
targets, such as PODs, overexpressed ITGB1, ITGB5, 
DPP4, and NCAM1, compared to other renal cells.

This work also faces limitations. Firstly, the detected 
genes per nucleus in this giant panda atlas were relatively 
low, therefore we avoided any hypotheses or conclusions 
related to under-detected features. Secondly, this atlas 
was not designed to investigate a single organ in detail, 
so cell types were not comprehensive in each organ. 
Thirdly, we noticed that the proportion of reads mapped 
confidently to intergenic regions was high, accounting 
for 48.02% ± 1.44% of all reads mapped confidently to the 
genome (Additional file  2: Table  S1). Although nuclear 
RNA is especially rich in non-coding sequences, with 
41% consisting of intergenic sequences and 25% intronic 
sequences [76, 77], we cannot exclude the possibility that 
some genic regions were not successfully predicted in the 
reference genome. Fourthly, it is important to declare that 
cellular fraction might be biased for some hard-to-disso-
ciate cell types and tissues using snRNA-seq/scRNA-seq, 
including the kidney, heart, liver, and brain. For cells that 
are large (muscle cell), fragile (neuron, adipocyte), tight 
with adjacent cells (POD, hepatocyte), and multinucle-
ated (muscle, trophoblast), snRNA-seq is more power-
ful than scRNA-seq while scRNA-seq can recover more 
immune cells [67, 68, 78]. Buffers and wash conditions 
are essential to obtain high-quality and purified nuclei 
and cells, which need to be modified for different tissues. 
Fluorescence-activated cell sorting (FACS) is an effective 
method to remove large fibrosis and debris, especially in 
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the heart tissue isolation process [29]. Finally, animal tis-
sues only came from a 31-year-old female donor after an 
hour of natural death. Further work should be conducted 
on more individuals of different ages and genders using 
combined snRNA-seq and scRNA-seq technologies with 
optimized dissociation protocols and additional func-
tional validation.

Conclusions
Our study broadened and deepened the cellular knowl-
edge of fitness optimization in the giant panda by dis-
secting essential metabolic cell types and processes. 
We uncovered the low metabolic signatures in the liver, 
fatty acid oxidation process in the ventricles, and nutri-
ent adsorption and delivery networks by gut and ECs. 
This resource would undoubtedly enhance the under-
standing of the unique characteristics of non-model 
species, providing insights for further studies on eco-
logical adaption and evolution.

Methods
Collection of giant panda tissues
All tissue samples were isolated from a female giant 
panda that died naturally at the China Conservation 
and Research Centre for the Giant Panda. Collected 
organs/tissues included the heart, lung, kidney, liver, 
trachea, bladder, pancreas, thyroid, ovary, uterus, stom-
ach, duodenum, colon, spleen, esophagus, and tongue. 
Samples (10 g) of each organ/tissue were obtained, 
quickly frozen in liquid nitrogen, and stored at −80 °C 
until nuclear extraction.

Preparation of nucleus suspensions
We isolated nuclei according to the protocol described 
by Bakken et  al. [79]. Frozen tissues were placed into 
a homogenization buffer, minced, and homogenized 
using a homogenizer on an ice-cold board to release 
nuclei. Lysates were filtered through a 30 μm cell 
strainer and centrifuged for 5 min at 4 °C. The super-
natant was discarded, and nuclei were resuspended in 
a cell resuspension buffer. Samples were centrifuged 
again, and the nuclei were re-suspended at a concen-
tration of 1000 nuclei/μL for single-nucleus library 
preparation.

Single‑nucleus library preparation and sequencing
Single-nucleus libraries were prepared using the DNB-
elab C Series Single-Cell Library Prep Set (MGI Tech, 

Shenzhen, China, #1000021082) [80]. Single-nucleus 
suspensions, functionalized beads, and lysis buffer were 
encapsulated into the emulsion droplets. A single nucleus 
was lysed, and mRNA transcripts were captured by the 
bead in each droplet. Transcripts were linked to the 
sequencing adaptor, cell barcode, UMI, and oligo-dT. 
Then, the emulsion was broken, beads were collected, 
and reverse transcription was performed to gener-
ate cDNA molecules. Afterwards, cDNA amplification, 
enrichment, and purification were conducted before 
sequencing libraries were constructed. Single-nucleus 
RNA libraries were prepared according to the manu-
facturer’s instructions. Libraries were sequenced on a 
DIPSEQ T1 sequencer (BGI, Shenzhen, China).

Generation of a single‑cell matrix from raw sequencing 
data
Considering that our tissues were processed by snRNA-
seq, we created a “pre-mRNA” reference concluding 
both exons and introns using the mkref function by Cell-
Ranger software. Raw sequencing reads were aligned to 
the Ame_Sichuan reference genome [81, 82] and con-
verted to expression matrix using a modified Cell Ranger 
count pipeline based on the STAR software (version 
2.7.4a) [83].

Doublet removal and quality control
Firstly, doublets were detected and removed for each 
library respectively using DoubletFinder in R (version 
4.0.2) [84]. The threshold was set automatically based 
on the predicted detectable doublet fraction. Then, we 
performed standard quality control based on gene num-
ber and the ratio of mitochondrial genes in each nucleus 
using the Seurat package (version 4.0.2) [85] in R. Nuclei 
with more than 200 detected genes and percent_mito < 
5% were maintained.

Unsupervised clustering and cell type annotation
Seurat package was applied to perform unsuper-
vised clustering. Counts were log-normalized for each 
nucleus, and 2000 highly variable genes were selected 
using the FindVariableGenes function. For batch effect 
correction, we used the FindIntegrationAnchors func-
tion to identify anchors across sequencing libraries 
of the same tissue and integrated them using the Inte-
grateData function. Then, the scaleData function was 
employed to regress RNA counts. Principal component 
analysis was performed on the scaled data, and Elbow-
Plot was used to assess the significance of principal 
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components. The cell clusters were identified using the 
FindClusters function with the resolution set to 0.5 
and visualized using t-Distributed Stochastic Neighbor 
Embedding (t-SNE) and Uniform Manifold Approxi-
mation and Projection (UMAP). Finally, marker genes 
of each cluster were identified using a Wilcoxon rank-
sum test implemented in the FindAllMarkers func-
tion with the parameters: only.pos = T, min.pct = 0.25, 
logfc.threshold = 0.25. Cell clusters were annotated and 
referred to canonical markers of specific cell types from 
an extensive literature search (Supplementary Table  3). 
For the global atlas, we also used the above workflow to 
integrate all tissues and perform clustering and annota-
tion while the resolution was set to 1 in the FindClusters 
process. To compare the annotation results between sin-
gle and global atlas, we calculated the ratio of each cell 
type from a single organ atlas in the global clusters and 
visualized them by heatmap.

Cross‑species comparison
Interspecies analysis was performed among human 
(HCL), mouse (MCA), monkey (NHPCA), and giant 
panda. Our dataset was preprocessed following the same 
steps in a previous study [46], in brief, only orthologous 
genes in the giant panda genome with the other three 
species and expressed in all four datasets were kept and 
gene names of giant panda were transformed as the same 
format with their previous integration work [46]. After 
that, the giant panda atlas was integrated with the already 
prepared atlas of human, mouse, and monkey, using the 
above-integrated pipeline in the “Unsupervised cluster-
ing and cell type annotation” section. For the biological 
questions we were concerned, only four organs (stomach, 
livers, kidneys, and uterus) were used to conduct inter-
species integration. Then, cell clustering and annotation 
were performed and cell identity was assured based on 
the marker genes consistent with that in the previous 
three species comparison. For the prominent divergence 
in the liver atlas, we made a recluster analysis within the 
same cell type to observe conserved and specific tran-
scriptomic features of giant pandas.

Differentially expressed genes (DEGs) analysis
DEGs of each cluster were selected from its marker 
gene list with p_val_adj ≤ 0.05 and avg_logFC ≥ 0.5 
[86]. GO enrichment analysis was performed on the 
DEGs using the package “clusterProfiler” [87, 88] in R 
software. Each significantly enriched category included 
at least two genes, and the hypergeometric test was 
used to estimate significance (p < 0.05). Networks of 
GO terms were visualized by REVIGO to summarize 
redundant terms [89].

Pseudotime trajectory analysis
The Monocle2 package (version 2.24.1) [90] in R was 
applied to construct single-cell trajectories of the tar-
get cell type from a young state to a mature state. The 
DDRTree algorithm was used for dimensionality reduc-
tion and the trajectory was visualized using the plot_
cell_trajectory function colored by “Pseudotime” and 
“seurat_clusters.”

Screening the cellular target of viruses
All receptors of 78 viruses were obtained from a previ-
ous computational analysis [75] and a literature investiga-
tion in the human lung [31]. We showed the fraction and 
average expression level in each cell type for every virus.
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