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Abstract 

Background As an extension of electron tomography (ET), serial section electron tomography (serial section ET) 
aims to align the tomographic images of multiple thick tissue sections together, to break through the volume limita-
tion of the single section and preserve the sub-nanoscale voxel size. It could be applied to reconstruct the intact 
synapse, which expands about one micrometer and contains nanoscale vesicles. However, there are several draw-
backs of the existing serial section ET methods. First, locating and imaging regions of interest (ROIs) in serial sections 
during the shooting process is time-consuming. Second, the alignment of ET volumes is difficult due to the missing 
information caused by section cutting and imaging. Here we report a workflow to simplify the acquisition of ROIs 
in serial sections, automatically align the volume of serial section ET, and semi-automatically reconstruct the target 
synaptic structure.

Results We propose an intelligent workflow to reconstruct the intact synapse with sub-nanometer voxel size. Our 
workflow includes rapid localization of ROIs in serial sections, automatic alignment, restoration, assembly of serial ET 
volumes, and semi-automatic target structure segmentation. For the localization and acquisition of ROIs in serial sec-
tions, we use affine transformations to calculate their approximate position based on their relative location in orderly 
placed sections. For the alignment of consecutive ET volumes with significantly distinct appearances, we use multi-
scale image feature matching and the elastic with belief propagation (BP-Elastic) algorithm to align them from coarse 
to fine. For the restoration of the missing information in ET, we first estimate the number of lost images based 
on the pixel changes of adjacent volumes after alignment. Then, we present a missing information generation net-
work that is appropriate for small-sample of ET volume using pre-training interpolation network and distillation learn-
ing. And we use it to generate the missing information to achieve the whole volume reconstruction. For the recon-
struction of synaptic ultrastructures, we use a 3D neural network to obtain them quickly. In summary, our workflow 
can quickly locate and acquire ROIs in serial sections, automatically align, restore, assemble serial sections, and obtain 
the complete segmentation result of the target structure with minimal manual manipulation. Multiple intact syn-
apses in wild-type rat were reconstructed at a voxel size of 0.664 nm/voxel to demonstrate the effectiveness of our 
workflow.
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Conclusions Our workflow contributes to obtaining intact synaptic structures at the sub-nanometer scale 
through serial section ET, which contains rapid ROI locating, automatic alignment, volume reconstruction, and semi-
automatic synapse reconstruction. We have open-sourced the relevant code in our workflow, so it is easy to apply 
it to other labs and obtain complete 3D ultrastructures which size is similar to intact synapses with sub-nanometer 
voxel size.

Keywords Serial section electron tomography, 3D EM, Semi-auto locating, Auto-alignment, Missing-information 
restoration, Semi-auto segmentation, Workflow, Synapse

Background
Cubic micron scaled subcellular structures and their 
dynamics play crucial roles in cellular functions. With 
the sub-nanometer voxel size, researchers can visualize 
and reconstruct the intricate 3D architecture of cells and 
organelles, which can help them understand the underly-
ing mechanisms of cellular functions. Richard D. Shoop 
et al. [1] reconstructed the spine mat on chicken ciliary 
neurons and found spine morphology is used to con-
trol the chemical consequences of synaptic signaling. 
Gunar Fabig et al. [2] and Ina Lantzsch et al. [3] recon-
structed the microtubule in the spindle. They respec-
tively defined novel features that segregate both lagging 
and paired chromosomes for optimal sperm production 
and revealed the most prominent drivers of spindle rear-
rangements are changes in nucleation and catastrophe 
rate. The complex network of neurons in the brain is 
responsible for various cognitive processes. Sub-nanom-
eter voxel size volumetric reconstructions can help neu-
roscientists map out the complex synaptic connections 
between neurons, providing insights into the neural cir-
cuitry that underlies brain function and disease. Jing Liu 
et  al. [4] reconstructed synapses and mitochondria and 
explore the structural plasticity of synapses and mito-
chondria in the auditory cortex of mice subjected to 
fear conditioning. Yun-Tao Liu et  al. [5] reconstructed 
hippocampal synapses and identified type-A GABA 
receptors in inhibitory synapses. Besides, the structural 
properties of materials play an essential role in determin-
ing their properties and applications. By reconstruct-
ing the cubic micron scaled volumes of materials with 
sub-nanometer voxel size, researchers can gain a deeper 
understanding of the material’s structure, which can help 
them design and develop new materials with improved 
properties and applications. To sum up, it is of utmost 
importance to reconstruct subcellular structures at the 
cubic micron scale with sub-nanometer voxel size.

Currently, the primary technique used for revealing 
the ultrastructure of cellular or subcellular is 3D electron 
microscopy (EM) [6, 7]. 3D EM methodologies include 

serial section electron microscopy (SSEM) [8], serial 
block face scanning electron microscopy (SBEM) [9], 
focused ion beam scanning electron microscope (FIB-
SEM) [10], electron tomography (ET) [11], and serial sec-
tion electron tomography (serial section ET) [12]. SSEM 
is to cut the biological tissue into serial ultra-thin sec-
tions for microscopic imaging. However, the ultra-thin 
sections are easily wrinkled and torn during section cut-
ting and collecting. And the resolution of SSEM in the 
Z-direction is also poorer than that of the imaging plane 
[13], resulting in the inability to reconstruct ultrastruc-
tures such as vesicles in synapses. Both SBEM and FIB-
SEM image the surface of the tissue block, which is then 
removed to reveal the layer beneath [14]. But they use dif-
ferent tools to remove the surface, SBEM uses a diamond 
knife, and FIB-SEM uses a focused ion beam. Because the 
surface of the tissue block is imaged, SBEM and FIB-SEM 
avoid wrinkles and tears. However, their resolution in the 
Z-direction is still limited by minimum cutting thickness, 
which is far from the sub-nanometer level. ET images 
the target from multiple angles by transmission electron 
microscope (TEM) to obtain a complete reconstruction 
volume. Based on the tomography imaging methods, 
ET could achieve the isotropic reconstruction of tar-
get structures at the sub-nanometer scale. However, the 
reconstructed volume of ET is limited by the penetrating 
ability of transmitted electrons, so it cannot reconstruct 
complete subcellular structure, such as intact synapses. 
Serial section ET inherits the sub-nanometer voxel size of 
ET and could achieve large reconstructed volume simi-
lar to SSEM in theory. And because of the thick section, 
serial section ET is not easy to wrinkle and tear, which 
is much better than SSEM. Above all, Serial section ET 
seems the best option for reconstructing complete sub-
cellular structure at the sub-nanometer scale, such as 
intact synapses.

Based on serial section ET technology, multiple sub-
nanometer-scale structures have been reconstructed, 
such as the spine mat on chicken ciliary neurons [1], 
the small nodes of Ranvier from mice peripheral nerves 
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[15], and the microtubule in the spindle [2, 3]. However, 
their process relies heavily on human operation, includ-
ing ROI localization in serial sections, alignment of serial 
sections, and reconstruction of target structures, which 
makes their reconstruction process time-consuming and 
labor-intensive. Besides, these reconstructed structures 
are too simple, which are rod-shaped or pie-shaped. So, 
they do not place high demands on the accuracy and 
computing time of alignment and segmentation, and 
manual operations are affordable and can achieve the 
required results. But their approach is unsuitable for 
complex subcellular structures, like intact synapses with 
intertwined structures and tiny vesicles inside.

In order to reconstruct intact synapses, it is necessary 
to establish an intelligent workflow for sub-nanoscale 
3D reconstruction from serial section ET. The workflow 
mainly needs to tackle the following challenges. The first 
is the locating ROIs in serial sections. Because ROIs are 
very small compared to the whole section, and there are 
always many similar structures in biological samples, it 
is hard to distinguish the right location in the serial sec-
tions. As far as we know, there are no reliable means to 
assist ROI location. Second, it is not easy to align adja-
cent section volumes due to various missing information 
during cutting, imaging and electron tomography. While 
IMOD [16], Ir-tools [17], TrakEM2 [18, 19], Amira [20], 
etc., can assist the alignment of sequence volumes, the 
missing information between the adjacent surfaces of the 
volumes always makes these methods failed. Third, even 
if the volumes are aligned, the reconstructed results are 
incomplete due to the missing information. Compressed 
sensing [21] could be used to recover the missing infor-
mation of a single ET volume, but it cannot guarantee 
the continuity between adjacent volumes. Finally, many 
works [22–26] have been proposed to segment the target 
structure in EM volume, the trade-off between automa-
tion and high-accuracy is still a compromise issue.

In response to the above challenges, we developed an 
intelligent workflow for sub-nanoscale 3D reconstruc-
tion of the intact synapse from serial section ET. First, 
affine transformations were employed to determine the 
ROI locations among serial sections based on the rela-
tive location of ROIs in sections, which can save time in 
distinguishing the right location of ROIs. Second, multi-
resolution images obtained during the workflow were 
used to perform multi-scale, coarse-to-fine alignment. 
Third, the interpolation method based on deep learning 
generated the missing information between the adjacent 
surfaces of the volumes to achieve volume reconstruc-
tion. Finally, a 3D neural network combined with manual 

proofreading was applied to segment the membrane and 
vesicle in synapse with quality and quantity guaranteed.

Our workflow is designed to reconstruct intact syn-
apses at the sub-nanometer scale, but it can also be 
used to reconstruct other subcellular structures. And 
our workflow is easy to be applied in other laboratories. 
Compared to the current mainstream serial section ET 
workflow, our workflow is faster, more efficient and more 
accurate.

Results
Here, we first elaborate on every detail of our workflow 
to demonstrate the feasibility of our workflow. Then, in 
order to demonstrate the effectiveness of our workflow, 
we present an intact synapse from the prefrontal cor-
tex of a wild-type rat brain with sub-nanometer voxel 
size, reconstructed by the workflow. The reconstructed 
volume is 1.3× 1.425× 0.978  µm3 at a voxel size of 
0.664  nm/pixel. Finally, we performed a statistical anal-
ysis of the position and the morphology of the recon-
structed vesicles in the synapse.

Workflow
Our entire workflow is shown in Figs. 1 and  2 provides 
the general experimental setup. Our workflow could be 
divided into four parts: localization of ROI in serial-sec-
tion, alignment of serial-section, reconstruction of vol-
ume, and reconstruction of ultrastructures. We describe 
each part in detail below.

Localization of ROI in serial‑section
As one of the primary means of observing sub-nano-
structures, TEM has high resolution with limited field 
of view (FOV), making it extremely challenging to locate 
the target structure among different sections. We employ 
affine transformations to determine the ROI locations 
among serial sections based on the relative location of 
ROIs in sections.

In order to obtain complete reconstruction results and 
facilitate the locating of subsequent ROIs, it is neces-
sary to ensure that the serial sections are flat and orderly. 
Therefore, we suggest that the tissue blocks should have 
a certain hardness and be sliced with a better method 
to reduce the cutting damage (see the “Sample prepara-
tion”  section (found under the “Methods” section) for 
details of our treatment of samples). Then, we placed the 
sections next to each other on a formvar-coated slotted 
grid to prevent wrinkles and facilitate observation (as 
shown in Fig. 2A, B).
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For locating and imaging ROIs in serial sections rap-
idly, it is reasonable to assume that the relative loca-
tion of ROIs were fixed in serial sections. In TEM, 
we first locate the adequate candidate positions with 
the interested structure in one section. Then, we take 
low-magnification (the magnification is 5000, 5K) and 
high-magnification (the magnification is 20000, 20K) 
images at the candidate positions, respectively, which 
are used to record the approximate position and the 
accurate position of the interested structure. Next, 
for a selected candidate position, its validity is further 
checked in the adjacent section with the help of the 
low magnification image, and the high magnification 
image is acquired to record the position in the section 
(as shown in Fig. 2B). If the selected position is valid, 
we can use the relative position relationship between 
the ROIs and the affine transformation to automati-
cally locate ROIs in other sections at low magnifica-
tion (as shown in Fig.  2C) (for details, please refer to 
the “ROI rough location” section). And we fine-tune 
the stage of TEM to record the precise position of 
ROIs under high magnification (as shown in Fig. 2D). 
When selected positions in all sections were checked, 
we locate ROIs of one interested structure. The other 
candidate positions with the interested structure could 
be obtained with the similar process repeatedly.

Alignment of serial‑section
Electron tomography (ET) is one of the primary means to 
observe 3D biological structures at sub-nanometer level. 
However, due to the inevitable “missing wedge” [27] in 
electron tomography and tissue lost during cutting [28, 
29] and imaging process [30, 31], the adjacent surfaces of 
ET volumes are different and obscure. These bring great 
difficulties to align these ET volumes. To solve these 
problems, we use the multi-resolution images obtained 
during the imaging process to align the serial ET vol-
umes from coarse to fine. The whole alignment process is 
shown in Fig. 3.

Coarse alignment
It is not applicable to align consecutive ET volumes 
directly for two reasons. First, the inevitable “missing 
wedge” in ET can cause image obscure at the top and 
bottom of the volume. Section cutting and irradiation 
during imaging process also make the reconstructed 
volume thinner compared to the original volume. These 
factors are the main sources for the missing information 
between adjacent volumes. Second, the correspondences 
between adjacent ET volumes are hard to find because of 
the limited FOV of volumes. So, we utilize multi-resolu-
tion images to perform multi-scale coarse alignment of 
serial ET volumes.

Fig. 1 Detail of the workflow. (I) Localization of ROI in serial-section. To locate the ROIs in the serial sections, ordered serial sections are obtained, 
then affine transformation is used to perform coarse-to-fine ROI localization according to the position relationship between them. (II) Alignment 
of serial-section. Multi-resolution coarse alignment and BP-Elastic fine alignment of serial sections are performed using the designed algorithm 
to obtain aligned volumes. (III) Reconstruction of volume. To obtain the intact reconstructed volume, using the designed methods to estimate 
and generate the missing information of all sections. (IV) Reconstruction of ultrastructures. A 3D neural network combined with manual 
proofreading was applied to segment synapse ultrastructures. SerialEM, IMOD, and Amira are used for image acquisition, ET reconstruction, 
and image rendering
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We exploit the rich content of low-magnification (5k) 
TEM images to guide the alignment. And the TEM 
images at the same magnification (20k) of ET volume are 
used as an intermediate bridge between low-magnifica-
tion image and ET volume, for the images reconstructed 
by ET have a great contrast difference with the image 
directly captured by TEM. Thereby, our workflow real-
izes automatic coarse alignment of serial ET volumes 

with sufficient correspondence in every step. The coarse 
alignment process is shown in Figs. 2E and 3 (for details, 
please refer to the “Coarse alignment” section).

Fine alignment
We use the BP-Elastic algorithm to fine-align the 
serial ET volumes. Due to the nonlinear deformation 
of the sample during the slicing and imaging process, 

Fig. 2 Experimental setup of our workflow. A Orderly serial section acquisition. Slice the tissue block with an ultrasonic oscillating diamond 
knife and collect sections orderly on a formvar-coated slotted grid. B Locating ROIs in first two sections. Locating the ROI in the first two sections 
manually, and take 5K (magnification is 5000) and 20K (magnification is 20000) images of ROI as the reference for other sections. C Rough locating 
of ROI in other sections. Use affine transformation and the position relationship between ROIs to locate the ROI at low magnification (5K). D 
Precise locating of ROI in other sections. Manually determine the precise location (20K) of ROI based on coarse locating. E Coarse alignment 
in multi-resolution images. Make full use of the multi-resolution images obtained during the workflow, and use the feature point-based 
approach to align the ET volumes coarsely. F BP-Elastic fine alignment. Use BP-Elastic to fine align the high-magnification images, then apply 
the calculated deformation fields to the deformed ET volumes from E. G Missing information estimation. Estimate the number of lost images 
between the adjacent surfaces of the volumes. H Missing information generation. Use a frame interpolation approach based on deep-learning 
network to generate the missing information. I Target structure segmentation. Use a 3D neural network combined with manual proofreading 
to segment the target structure
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which cannot be solved in coarse alignment, the elas-
tic method [32] is used to perform fine alignment. The 
traditional elastic method relies heavily on the accuracy 
of block matching. But the surface of the volume recon-
structed by ET is obscure, and the high magnifica-
tion makes the image have many texture-less areas. In 
addition, the biological samples may also have repeti-
tion structures. All of these make it easy to cause mis-
matches. In response to the above problems, we use the 
high-magnification TEM images of each section to cal-
culate the deformation fields in elastic, which are used 
to deform ET volumes. Belief propagation (BP) algo-
rithm [33] is used to correct the mismatch in the block 
matching process of Elastic. The fine alignment process 
is shown in Figs. 2F and 3. For the detail of calculation 
process, see the  “Fine alignment” section found under 
the “Methods” section.  The comparison of adjacent 
images before and after alignment is shown in Addi-
tional file 2: Fig. S1.

Reconstruction of volume
Due to the missing information during slicing, imag-
ing, and electron tomography, there are still disconti-
nuities in the Z-direction of the reconstructed volume 
after fine alignment. To solve this problem, we estimate 
and generate the missing information between the adja-
cent surfaces of the aligned ET volumes, as shown in 
Fig. 2G, H.

For simplicity, in our workflow, all missing informa-
tion is considered as a whole and could be estimated 
and generated for once. And we assume that the miss-
ing image content is uniform along the Z direction. 
Then, we can estimate and generate the missing infor-
mation of the reconstructed volume in the Z direction 
by the pixel difference between adjacent volumes and 
adjacent slices.

We first estimate the number of lost images between 
adjacent volumes. The calculation of this number is 
sophisticated, which is affected by the pixel changes 
between adjacent volumes and the difference between 
section thickness in cutting and the thickness of ET 
volume. All of the volumes are considered simultane-
ously to make a system of equations (see the  “Miss-
ing information estimation” section  (found under the 
“Methods” section) for details).

We then generate the missing information between 
the adjacent surfaces of the aligned ET volumes. A pre-
trained network [34] and distillation learning [35, 36] 
are used to generate the missing information. The pre-
trained network has powerful feature extraction and 
image generation capabilities which are desirable for 
image interpolation task. Distillation learning can be 
used to compress the network for small-sample learn-
ing. See the  “Missing information generation” section 
(found under the “Methods” section)  for details of the 
network structure, loss function, and training strategy. 
And see Additional file 3: Fig. S2 for the comparison of 
volume reconstruction before and after the generation 
of missing information.

Reconstruction of ultrastructures
For the sub-nanoscale reconstruction of ultrastructures 
in the whole volume, we use a 3D segmentation neural 
network combined with manual proofreading. Differ-
ent processing strategies are used for different size of 
ultrastructures. For presynaptic and postsynaptic mem-
branes, we first use the network to calculate their affinity 
map and then use the affinity map to obtain the contour 
of each structure. Then, we modify the contour of target 
structures manually and use the watershed algorithm to 
obtain the final segmentation results. For synaptic vesi-
cles, we use the 3D network to obtain the segmentation 

Fig. 3 Serial ET volumes alignment diagram. Serial ET volume alignment is mainly divided into two steps. First coarse alignment. It is based 
on feature matching and affine transformation, and uses multi-resolution images to achieve rough alignment of target structures. Second fine 
alignment. After the coarse alignment of the volumes, based on the clear texture structure of the high-magnification image, use block matching, 
BP-Elastic, and thin plate spline to obtain the fine-tuning deformation fields. Then, apply them to serial volumes to correct the alignment of target 
structures between adjacent volumes
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results directly. Manual modification is also adapted to 
polish the result. The detail of segmentation methods is 
shown in the “Target structure segmentation” section.

Intact synapse reconstruction
Most synapses are roughly 1  µm3 [37] in size, mak-
ing it impossible for conventional ET to cover the 
volume entirely. Meanwhile, the diameter of synaptic 
vesicles is 30 to 40 nm [38], which cannot be recon-
structed by SSEM, SBEM and FIB-SEM to reveal 
their details completely. Therefore, the reconstruc-
tion of intact synapses is suitable to show the superi-
ority of our workflow.

Our sample is from the prefrontal cortex of a six-
month wild-type rat brain. We stained and embedded 
the sample and then cut it into 12 consecutive sections 
with an ultra-sonic oscillating diamond knife. These 
sections with 100-nm thickness are collected on a 
formvar-coated slotted grid (see the  “Sample prepara-
tion”  section (found under the “Methods” section)  for 
details). Then, we use JEM-F200 transmission electron 
microscopy to collect data. The field of view we col-
lected with a magnification of 5K is 10.83 × 10.83 µm3, 
and the field of view with a magnification of 20K is 2.57 
× 2.57  µm3. The voxel size of each sections is close to 
45 × 45 × 0.1 µm3. Five intact synapses among 10 con-
secutive sections are reconstructed with our workflow 
finally. One of the reconstructed synapses is shown in 
Fig.  4. The volume is 1.3× 1.425× 0.978 µm3 in size 
with the voxel size of 0.664 nm/voxel. In Fig. 4, we can 
clearly see the presynaptic membrane, the postsynaptic 
membrane, vesicles, and other tiny structures. 

Discussion
Serial section ET is the best option for reconstructing 
complete subcellular structures at the sub-nanometer 
scale. Here, we propose a workflow for sub-nanoscale 
3D reconstruction of the intact synapse from serial-sec-
tion ET. Every step in our workflow is carefully designed 
and tested, which combines rapid localization of ROIs 
in serial sections, automatic alignment, restoration, 
assembly of serial ET volumes, and semi-automatic tar-
get structure segmentation. It can significantly improve 
reconstruction efficiency of serial section ET. And our 
workflow is open-source and can be easily applied in 
other laboratories.

Manual localization of ROIs in serial-section is time 
consuming, which needs to search for ROIs in a large 
area back and forth in TEM. We employ the affine trans-
formations and the relative position of ROIs in orderly 
placed sections to determine the rough location of ROI. 
As a result, our workflow dramatically improves the speed 
of localization of ROIs in serial-section by narrowing the 
search area in TEM. Here, the position of collected section 
on the formvar-coated slotted grid is required to be along a 
line, which can be achieved easily by expert.

In alignment of serial-section, we take full advantage 
of the multi-resolution images acquired during the imag-
ing process to align ET volumes from coarse to fine. To 
tackle texture-less areas and repetition structures in ET 
volumes, the BP-Elastic algorithm is used to improve 
alignment accuracy of these positions by utilizing the 
alignment information of the neighborhood. Thus, the 
alignment of ET volumes is processed automatically 
with high accuracy. The parameters of elastic algorithm 

Fig. 4 A reconstruction result of a intact synapse. A is the image volume which contains the synapse, B and C are the segmentation results 
of all structures with different view directions, D is the segmented presynaptic membrane, E is the segmented postsynaptic membrane, F 
is the segmented vesicle, and G are other small structures in the synapse
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should be adjusted carefully, which may cause failure of 
alignment sometimes.

After alignment of ET volumes, we estimate and gen-
erate the missing information between adjacent volumes, 
which is one of the main contributions of our workflow 
and is not involved in previous serial section ET meth-
ods. The pixel changes between adjacent volumes and the 
difference between section thickness in cutting and the 
thickness of ET volume are used to estimate the num-
ber of images lost for each volume. A pretrained network 
and distillation learning are used to generate the missing 
information. Therefore, we can get a more continuous 
volume along Z-direction.

A 3D segmentation neural network combined with man-
ual proofreading is used to segment the synaptic mem-
branes and vesicles. Because synaptic membranes are next 
to other membranes closely, minimal missing informa-
tion may segment them into a whole. Distinguishing dif-
ferent membranes and obtaining their complete contour 
are the primary missions of synaptic membrane segmen-
tation. We first use the network to calculate affinity maps 
of different membranes, then modify the map and get the 
contour of target structures, and finally obtain the seg-
mentation results. Within the presynaptic membrane, syn-
aptic vesicles are distinctly different from other structures, 
but because they are small, they are prone to wrong and 
omission during segmentation. We need to verify the seg-
mentation results of the network.

Based on our workflow, we reconstructed five intact syn-
apses with the voxel size of 0.664 nm/voxel. And we ana-
lyzed the relationship between the size of synaptic vesicles 
and the distance between the vesicles and the presynaptic 
membrane. The presentation and analysis of high voxel size 
and detailed structure are significant for neuroscience.

Conclusions
We propose an intelligent workflow for sub-nanoscale 
3D reconstruction of intact synapses via serial section ET, 
which includes semi-automatic ROI localization in serial 
sections, coarse-to-fine serial ET volume alignment, deep 
learning-based volume reconstruction, and ultrastructure 
segmentation. Compared with conventional serial section 
ET reconstruction methods, our workflow is more auto-
matic and could recover the missing information between 
adjacent ET volumes. We obtain intact synapses with the 
proposed workflow and analyze the distance relationship 
between synaptic vesicles and the active zone. We have 
open sourced the code of our workflow, which can be 
implemented easily in other labs. The workflow can be used 
to obtain complete 3D ultrastructures which size is similar 
to intact synapses with sub-nanometer voxel size.

Methods
Sample preparation
The rat was anesthetized with isoflurane and then perfused 
with 2 % paraformaldehyde (PFA) and 1.25% glutaraldehyde 
(GA) solution via heart. After that, the whole brain sample 
was removed from the skull and stored in 4 % PFA and 2.5% 
GA solution at 4 ◦ C for 12 h. Next, the prefrontal cortex 
of the brain (1  mm3 in size) was post-fixed in phosphate 
buffer (0.1 M, pH7.4) containing 2 %  osmium tetroxide 
(OsO4 ) at room temperature for 90 min. For an additional 
90 min, swap the staining buffer with 2.5% ferrocyanide 
(Sigma) phosphate buffer (0.1 M, pH 7.4), at room temper-
ature. After being rinsed with 0.1 M phosphate buffer three 
times, the tissues were treated with filtered thiocarbohy-
drazide (TCH, Sigma) at 40 ◦ C for 45 min. The tissues were 
then fixed with 2 % unbuffered 2 % OsO4 solution for 90 min 
and then incubated with 1 % uranyl acetate (Merck) aque-
ous solution overnight at 4 ◦ C. Following a 120-min incu-
bation with a lead aspartate solution (0.033 g lead nitrate 
(Sigma) in 5 ml of 0.03 M aspartic acid (Sigma), pH 5.0) at 
50 ◦ C, the tissues were dehydrated using a graded ethanol 
series (50, 70, 80, 90, 100% , 10 min each) and pure acetone. 
At last, the tissues were embedded by epon-812 resin (SPI). 
Serial sections (100 nm) were cut with ultra-sonic oscillat-
ing diamond knife (DiATOME).

Imaging equipment and software
We used a JEM-F200 transmission electron microscope 
and Gatan OneView camera as imaging equipment. Dur-
ing the imaging process, the acceleration voltage is 200 kv. 
After manually adjusting the focus, brightness, contrast, and 
astigmatism for each volume, we first recorded the image of 
the target structure at 5K and then recorded the image of the 
target structure at 20K. Then, SerialEM was used to acquire 
Tilt Series images of the target structure between − 60◦ and 
+ 60◦ at 2 ◦ intervals, and IMOD was used to obtain electron 
tomography images of the target structure.

ROI rough location
For the ROI coarse location in ordered serial sections, we 
first locate the adequate candidate positions of the interested 
structure in one section; then, we check the candidate struc-
ture in the adjacent section. If the structure is indeed what we 
want, we can use the relative positional relationship between 
ROIs and the affine transformation matrix to locate the posi-
tions of the ROIs in other sections roughly. The position of 
the ROI on one section can be written as follows:

(1)Locn =
xn
yn
1
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The specific formula used to locate the positions of the 
ROIs in other sections roughly is as follows:

where Locexactn  is the position of the ROI precisely deter-
mined (after rough positioning) in section n, Locroughn+1

 is 
the position roughly located in the adjacent section n+ 1 , 
A1 , A2 , and A3 are the corresponding transformation 
matrix.

These affine matrixes are calculated by exact positions 
of ROIs in previous sections. The specific ROI rough 
location calculation process is shown in the Additional 
file 4: Fig. S3.

Coarse alignment
For the coarse alignment of serial sections, we utilize 
multi-resolution and multi-type images obtained during 
the localization and imaging process. We first scale these 
images to the same physical pixel-size according to their 
zoom factor. Then, we extract SIFT feature points [39] of 
these images and use RANSAC [40] to calculate affine 
transformation matrix between images to be aligned. The 
process of coarse alignment can be seen in Fig. 3.

Fine alignment
For the fine alignment of serial sections, we use elastic 
model [32] to align the average images of adjacent ET 
volumes. Because there are texture-less areas and repeti-
tion structures in the ET average image (as shown in the 
Additional file  5: Fig. S4), which may easily cause mis-
matches, we use the BP model [33] to overcome this dif-
ficulty. The specific formula of BP model is as follows:

(2)Loc
rough
n+1

=







A1 × Locexactn n = 2

A2 × Locexactn n = 3

An × Locexactn n ≥ 4

(3)A1 =





1 0 tx
0 1 ty
0 0 1





(4)A2 =





s × cos(�) − s × sin(�) tx
s × sin(�) s × cos(�) ty

0 0 1





(5)An =





a b c
d e f
0 0 1





where pi = (p(x)i, p(y)i) and pj = (p(x)j , p(y)j) are the 
centroid coordinates of the i − th and j − th block match-
ing results, respectively, di = (d(x)i, d(y)i) is the preset 
distance between pi and pj , C is the truncation thresh-
old used to eliminate the interference of false matching, 
and V represents the set of all matching points. BP model 
is calculated using an iterative solution similar to gradi-
ent descent. The ideal final state for the model is that, for 
each vertex, the sum of information from all vertices con-
nected to it is minimized.

Then, according to the positions of optimized match-
ing points, we use the thin plate spline (TPS) algorithm 
[41] to generate deformation fields. Finally, we apply the 
deformation fields to the corresponding ET volumes to 
achieve fine alignment.

Missing information estimation
The main reasons for the missing information are the cut-
ting loss caused by the diamond knife, the missing wedge 
caused by the insufficient rotation angle, and the shrinkage 
of sections caused by irradiation. Cutting loss is a direct 
damage to the surface of the volume. Missing wedges can 
blur the two ends of the reconstructed volume, thereby 
affecting the thickness of the final reconstructed volume. 
We used the “low dose” mode for imaging and the back 
projection algorithm in IMOD for electronic tomography 
reconstruction, with the Z factors to correct the shrinkage. 
However, according to the description in [31], the shrink-
age of the sample in the electron microscope can also cause 
problems similar to “missing wedges,” thereby affecting the 
thickness of the final reconstructed volume.

The impact of these factors on missing information is 
complex. To simplify, we consider these factors together 
and assume that their impact on image content is uniform 
in the Z direction. Based on this uniform assumption, 
we can estimate and generate the loss information of the 
reconstructed volume in the Z direction by the pixel differ-
ence between adjacent volumes and adjacent slices.

The estimation of image number accounted for missing 
information is mainly divided into three steps. In the first step, 
the number of lost slices in a single volume is estimated based 
on the difference between section thickness in cutting and the 
thickness of ET volume. The specific formula is as follows:

(6)minp





�

i,j∈V

min
�

�

�pj − pi − di
�

�

2

2
,C

�
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where Lcuti  and LETi  represent the thickness in cutting and 
the thickness of ET volume, respectively, RET represents 
the voxel size of the ET reconstructed volume, and Ltopi  
and Lboti  represent the number of lost slices in the top and 
bottom of the ith volumes, respectively, as shown in the 
Additional file 6: Fig. S5.

In the second step, to make a simple estimation of the 
number of lost slices between volumes, we exploit the 
characteristics of the ET reconstructed image, which is 
that the change of the pixels in sequence images is very 
slow and can be regarded as piecewise constant. Mean-
while, in order to speed up the calculation, we scaled the 
image to make its size around 256× 256  and then used 
the following formula to estimate the number of lost 
slices between volumes:

where GF
(10,3)

 and GF
(25,13)

 represent Gaussian filters with con-

volution kernel of 10× 10 , variance of 3, and convolution 
kernel of 25× 25 , variance of 13. Since the absolute dif-
ference of the mean images of adjacent volumes 
�Lmean

i+1
− Lmean

i � may have outliers caused by stain arti-
fact in the images, we use GF

(10,3)
 to remove the outliers and 

make Di represent the gray value changes in adjacent vol-
umes. si and si+1 are the numbers of images required for 
each pixel change in the z-direction of volume i and vol-
ume i + 1 . They are obtained by calculating the number 
of images needed to change one gray value along z-direc-
tion for every pixel in the volume. We use smoothing fil-
ter GF

(25,13)
 to make the correlation of pixel changes smooth 

in the image.
Finally, based on the calculation results of the previous 

two steps, the lost slices number of top and bottom of each 
volume can be calculated using the following formulas.

(7)L
top
i + Lboti =

Lcuti − LETi
RET

(8)

Lboti + L
top
i+1

= max(Di ×mean( GF
(25,13)

(si)+ GF
(25,13)

(si+1)))

Di = GF
(10,3)

(�Lmean
i+1 − Lmean

i �)

(9)

min
L
top
i ,Lboti

(

n
∑

i=1

(

(

L
top
i − Lboti

)2
)

+

n−1
∑

i=1

(

(

L
top
i+1

− Lboti

)2
)

)

s.t.

L
top
i + Lboti = cintrai

Lboti + L
top
i+1

= cinteri

where Ltopi + Lboti = cintrai  and Lboti + L
top
i+1

= cinteri  are the 
constraints on the loss of images intra and inter volumes 
respectively, which are constants.

Missing information generation
Based on the estimation of the missing image number, we 
generate these images through a deep-learning network. 
The structure of the network is shown in the Additional 
file  7: Fig. S6. Since there are not enough training data, 
the existing networks are prone to overfitting. In order to 
overcome this problem and lighten the network structure, 
we use distillation learning [35, 36] to train our network 
(student network). And because the missing information 
generation for inter-volume is similar to video interpola-
tion, we select the widely used video interpolation network 
Super-slomo [34] as the teacher network to guide our net-
work. The loss function of distillation learning is as follows:

where Ii represents the real ET image, Îi represents the 
ET image generated by the student network (small net-
work), Ns

flow , Nt
flow represent the output of the optical 

flow part in the student network and the teacher network 
respectively, Ns

arb , N
t
arb represent the output of the inter-

polation part in the student network and the teacher net-
work, respectively, T = 2 is the temperature in distillation 
learning, and α = 0.2 is the weight assigned to different 
parts that need to be learned in the distillation learning 
process.

According to the principle of distillation learning, we first 
use adobe240fps [42], which is used to train the original 
Super-slomo, to distill the teacher net to obtain a student 
network with similar feature extraction and fitting ability to 
the original network. During this process, we used Adam 
optimizer [43] to train the network for 200 epochs. The 
learning rate is initialized to 0.0001 and reduced by a fac-
tor of 10 at 100 and 150 epochs, respectively. Then, in order 
to make our student network more suitable for ET data, we 
selected adjacent ET volume 1 (135 images) and ET vol-
ume 2 (106 images) in Fig. 4A from top to bottom to fine-
tune the parameters of the network. We choose the middle 
image of each volume as the fixed image, and the images 
between the middle images of the two volumes as the data-
set to fine-tune the student net, as shown in the Additional 
file  8: Fig. S7. During the fine-tune training process, the 

(10)

L = (1− α)Lsrec + αT 2Ldis

Lsrec = �Îi − Ii�2

Ldis = 0.5× �Ns
flow/T − Nt

flow/T�1

+ 0.5× �Ns
arb/T − Nt

arb/T�1
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time t corresponding to each image is defined using the 
serial number of the image as follows.

where i represents the serial number of the image in 
the fine-tune data, lET

1
 and lET

2
 represent the number of 

images in Volume1 and Volume2 respectively, and M is 
the total number of images to be generated. We fine-tune 
the student network for 50 epochs using the Adam opti-
mizer with a learning rate of 0.000001.

After fine-tuning, based on the estimated number of lost 
images, we can use the student network to generate the miss-
ing information so as to obtain a whole reconstructed volume.

Target structure segmentation
Based on the method in [44] and [45], we use U-Net archi-
tecture which is implemented in the PyTorch Connectom-
ics library [25] to compose our segmentation network [44]. 
Since the U-Net [46, 47] structure is widely used for dif-
ferent biological structure segmentation, we use the same 
network to segment the presynaptic and postsynaptic 
membranes and vesicles. The loss functions of the network 
are weightedBCE and Dice. The learning rate adjustment 
strategy of the network is WarmupCosineLR [48].

Because the synaptic membrane and the synaptic vesicle are 
very different in size, we use different strategies to segment 
them. For presynaptic and postsynaptic membranes, we first 
use the network to calculate their affinity map and then weigh 
the affinity map and binarize the result to obtain the contour 
of each structure in the image. Next, we manually modify the 
contour of target structures and use the watershed algorithm 
[49] to obtain the segmentation results of different structures. 
Finally, we select the target structure from these segmentation 
results and manually correct them. For synaptic vesicles, we 
use the segmentation result of the presynaptic membrane as 

(11)t =
i

lET
1

/2+M + lET
2

/2− 1

the ROI to overcome the imbalanced data caused by the small 
proportion of vesicles in the whole image. The entire segmen-
tation process is shown in the Additional file 9: Text S2. We 
first use the network to segment vesicles automatically, then 
manually modify them to get the final results.

Appendix
Analysis of reconstruction results
We first analyze the distance between vesicles and the 
active zone in synapse, as shown in Fig.  5A. The figure 
shows the histogram of the distance between synap-
tic vesicles and the active zone. From the figure, we can 
see that the distance between synaptic vesicles and the 
active zone basically conforms to a normal distribution, 
which is consistent with the statistical results in [50]. And 
the average distance between synaptic vesicles and the 
active zone is 158.20 nm. Then, we analyze the correla-
tion between the volume of synaptic vesicles and the dis-
tance from synaptic vesicles to the active zone, as shown 
in Fig.  5B. We grouped the distance between synaptic 
vesicles and the active zone into different ranges and cal-
culated the average volume of vesicles within the range. 
From the statistical results in the figure, it can be seen 
that there is no apparent correlation between the synap-
tic vesicle volume and the distance from the vesicle to the 
active zone. The average volume of all synaptic vesicles is 
1.68× 104 nm3 , and the corresponding average diameter 
is 31.75 nm, which is consistent with the statistical results 
in [51]. Next, we statistics the center-to-center closest 
distance between synaptic vesicles, as shown in Fig. 5C. 
The mean value of the center-to-center closest distance 
between synaptic vesicles is 24.24 nm.

More synapse reconstruction results are shown in the 
Additional file  10: Fig. S8. The evaluation of the gener-
ated missing information is shown in the Additional 

Fig. 5 Analysis of reconstructed vesicles. A shows the histogram of the distance between synaptic vesicles and the active zone. B analyzes 
the correlation between the volume of vesicles and the distance between vesicles and the active zone. C shows the boxplot of the center-to-center 
closest distance between synaptic vesicles
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file  11: Text S3. The comparison of reconstruction 
results using different methods is shown in the Addi-
tional file  12: Text S4. And the calculated numbers of 
lost images in different synaptic volumes are shown in 
the Additional file 13: Text S5. For more displays of the 
reconstructed intact synapses, please see Additional 
file 14: Movie S1, S2, S3, S4, S5.
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Additional file 1: Text S1. Explanation of metrics used to evaluate image 
alignment quality.

Additional file 2: Figure S1. Comparison before and after the alignment 
of adjacent images between adjacent volumes. A is the last image of the 
first volume in the adjacent volume. B is the first image of the second 
volume in the adjacent volume. C is the image where A and B are directly 
superimposed. D is the image where A and B are superimposed after 
alignment. Ghosting in the red box is much obvious in C. E shows the 
Peak Signal-to-Noise Ratio (PSNR) values before and after the alignment 
of adjacent images between ten adjacent volumes. The dashed line is the 
average PSNR, and the points marked with stars are the PSNR of C and D. 
The scale bar is 200 nm.

Additional file 3: Figure S2. Volume reconstruction results before and 
after missing information generation. a to f are the volume reconstruction 
results with copy images. A to F are the volume reconstruction results 
with generating missing information. a1 to f1 are the volume reconstruc-
tion results without generating missing information. a, a1 and A are 3D 
views of the entire reconstruction volume. b, b1 and B are XY views at the 
middle of the reconstruction volume. c, c1 and C are XZ views at the mid-
dle of the reconstruction volume. d, d1 and D are YZ views at the middle 
of the reconstruction volume. e, e1 and E, f, f1 and F are enlarged views 
of the red boxes in c, c1 and C, d, d1 and D, respectively. The comparison 
between the enlarged images shows that after the generation of missing 
information, the reconstructed volume is more continuous in the Z direc-
tion. G shows the PSNR values before and after the missing information 
generation of adjacent images between ten adjacent volumes. The 
dashed line is the average PSNR. The scale bar is 200 nm.

Additional file 4: Figure S3. Specific ROI rough location calculation 
process. It includes the affine transformation matrix and Locroughn+1

 calcula-
tion process in different stages. Two positions in the same rectangle form 
a pair.

Additional file 5: Figure S4. Texture-less areas and repetition structures 
in the ET average image of biological samples.

Additional file 6: Figure S5. Schematic diagram of the loss of thickness 
in adjacent volumes.

Additional file 7: Figure S6. Missing information generation network. 
It includes two parts: Teacher Net and Student Net. Each part includes 
a Flow computation module and an Arbitrary-time flow interpolation 
module.

Additional file 8: Figure S7. Schematic diagram of training and generat-
ing data. Ifixed

1
 and Ifixed

2
 are images in the middle of Volume1 and Volume2, 

respectively. Ifine−tune
i

 is the fine-tune data, i is the serial number of the 
image in fine-tune data set. lET

1
 , lET

2
 and M are the number of images in 

Volume1, Volume2 and to be generated.

Additional file 9: Text S2. Segmentation strategies of synaptic mem-
brane and synaptic vesicle.

Additional file 10: Figure S8. More synapse reconstruction results with 
various sizes and shapes. Voxel size is 0.664nm/pixel.

Additional file 11: Text S3. Evaluation of the generated missing informa-
tion. The public datasets from [52] and [53] obtained by FIB-SEM and 
SBF-SEM were used to evaluate the generated missing information. And 
the method based on image partial phase autocorrelation from [54] was 
used to quantify the resolution “within” and “across” slices.

Additional file 12: Text S4. Comparison of reconstruction results using 
different methods. The least squares method in TrakEM2 (TrakEM2-ls), 
Wang et al. proposed method [55] in TrakEM2 (TrakEM2-wang), elastic 
[56] in TrakEM2 (TrakEM2-elastic), ASAP [52] which used deep learning 
methods for image alignment, IMOD, and Irtool are used to compare with 
our workflow.
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volumes.

Additional file 14: Movie S1, S2, S3, S4, S5. Videos of reconstructed 
intact synapses from serial sections via electron tomography.
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