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Abstract 

Background  High-throughput sequencing measurements of the vaginal microbiome have yielded intriguing poten-
tial relationships between the vaginal microbiome and preterm birth (PTB; live birth prior to 37 weeks of gestation). 
However, results across studies have been inconsistent.

Results  Here, we perform an integrated analysis of previously published datasets from 12 cohorts of pregnant 
women whose vaginal microbiomes were measured by 16S rRNA gene sequencing. Of 2039 women included in our 
analysis, 586 went on to deliver prematurely. Substantial variation between these datasets existed in their defini-
tion of preterm birth, characteristics of the study populations, and sequencing methodology. Nevertheless, a small 
group of taxa comprised a vast majority of the measured microbiome in all cohorts. We trained machine learning 
(ML) models to predict PTB from the composition of the vaginal microbiome, finding low to modest predictive 
accuracy (0.28–0.79). Predictive accuracy was typically lower when ML models trained in one dataset predicted PTB 
in another dataset. Earlier preterm birth (< 32 weeks, < 34 weeks) was more predictable from the vaginal microbiome 
than late preterm birth (34–37 weeks), both within and across datasets. Integrated differential abundance analysis 
revealed a highly significant negative association between L. crispatus and PTB that was consistent across almost all 
studies. The presence of the majority (18 out of 25) of genera was associated with a higher risk of PTB, with L. iners, 
Prevotella, and Gardnerella showing particularly consistent and significant associations. Some example discrepancies 
between studies could be attributed to specific methodological differences but not most study-to-study variations 
in the relationship between the vaginal microbiome and preterm birth.

Conclusions  We believe future studies of the vaginal microbiome and PTB will benefit from a focus on earlier pre-
term births and improved reporting of specific patient metadata shown to influence the vaginal microbiome and/
or birth outcomes.
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Background
Preterm birth (PTB), defined as live birth prior to 37 
complete weeks of gestation, is the primary cause of 
neonatal morbidity and mortality worldwide with an 
average PTB prevalence of around 11% [1, 2]. However, 
our current understanding of PTB is limited with no 
clear causative factor for the majority of PTBs [3]. One 
of the known risk factors of PTB is bacterial-related 
inflammation in gestational tissue [4, 5], including bac-
terial vaginosis (BV)―a polymicrobial alteration of 
the vaginal microbiome characterized by depletion of 
Lactobacillus species and overgrowth of typically strict 
anaerobes [6].

In the past decade, the development of high-through-
put sequencing technologies has reformed the study of 
the human microbiome. High throughput sequencing of 
PCR-amplified marker genes (e.g., 16S rRNA gene) and 
shotgun metagenomic sequencing of total sample DNA 
are now widely used to measure the composition and 
functional potential of whole microbial communities. 
To date, at least 15 studies have used high-throughput 
sequencing to investigate the link between the vaginal 
microbiome and PTB, or preterm premature rupture 
of membranes (PPROM), which precedes between 30 
and 40% of all PTB cases. All these studies employed a 
similar study design: (a) cohorts of pregnant women 
were recruited prospectively, (b) vaginal swabs were col-
lected during the pregnancies, (c) birth outcomes (e.g., 
PTB) were recorded, (d) 16S rRNA gene sequencing was 
performed on a subset of women selected to meet pre-
specified inclusion criteria and a target PTB to term birth 
(TB) ratio. However, these studies reported varied and 
sometimes inconsistent associations between the vagi-
nal microbiome and PTB. For example, Romero et al. [7] 
found that vaginal microbial composition was not differ-
ent in PTBs and TBs in a cohort of 90 pregnant women 
(88% African American; PTBs < 34 weeks). Digiulio et al. 
[8] reported that lower Lactobacillus and higher Gard-
nerella abundances in the vaginal microbiome were asso-
ciated with a higher risk of PTB (55%+ White; PTBs < 37 
weeks). Callahan et  al. [9] replicated these findings in a 
study cohort drawn from the same population as Digiulio 
et  al. [8], but not in a different cohort with a prior his-
tory of PTB (82% African American; PTBs < 37 weeks). 
Kindinger et al. [10] found a lack of Lactobacillus crispa-
tus and Lactobacillus iners dominance were risk factors 
for PTB in a cohort of UK women (65% White; PTBs < 
34 weeks). Fettweis et al. [11] reported lower L. crispatus 
abundance was a risk factor for PTB in a predominantly 
Black cohort of women (75% African American; PTBs < 
37 weeks). These studies employed a variety of different 
sequencing methodologies, including targeting different 
regions of the 16S rRNA gene, and varied in how they 

included and reported spontaneous versus indicated pre-
term births.

The substantial heterogeneities between previous 
studies almost certainly contribute to the variation in 
reported associations between the vaginal microbiome 
and PTB. Relevant heterogeneities between studies exist 
across at least three axes: (1) study populations differed 
in important characteristics such as maternal race, BMI, 
and age; (2) the definition of PTB differed between stud-
ies, some of which considered only spontaneous PTBs or 
earlier PTBs (e.g., births at < 34 weeks of gestation) while 
others considered all PTBs; (3) different microbiome 
profiling methodologies were employed in each study 
including different DNA extraction methods and 16S 
rRNA gene primers. Based on previous work, it would 
be surprising if these heterogeneities did not introduce 
at least some variation in reported results. In terms of 
study population characteristics, Black women have a 
higher risk of PTB and BV compared to White women 
[12], and advanced maternal age is considered a risk fac-
tor for PTB [13]. In terms of study definitions of PTB, 
spontaneous PTB is usually related to preterm rupture 
of membranes (PPROM) or cervical dilation while indi-
cated PTB is related to induced or cesarean section labor 
due to obstetrical complications [14]. Similarly, early PTB 
(< 32), moderate PTB ( ≥ 32, < 34), and late PTB ( ≥ 34, < 
37) might be related to different causative factors, with an 
infectious etiology more commonly associated with early 
PTB [15]. In terms of study microbiome profiling meth-
odologies, different DNA extraction methods can bias 
the detection of some microbial taxa over others [16], 
and it is known that standard primers for the V4 hyper-
variable region of the 16S rRNA gene have a higher sensi-
tivity to the important Gardnerella genus compared with 
common V1-V3 primers [17, 18]. Finally, many of these 
studies have small sample sizes―12 cohorts included 
less than 50 women that experienced PTB, and 7 cohorts 
had an overall sample size of less than 100. Even in the 
absence of any other heterogeneities, a lack of power will 
result in inconsistencies in which results reach statistical 
significance across studies.

In a meta-analysis, the results from multiple stud-
ies regarding a common biological question are syn-
thesized to achieve greater power and generalizability 
of the conclusions. For example, two meta-analyses of 
the gut microbiome and colorectal cancer (CRC) per-
formed integrated analyses of multiple metagenomic 
CRC datasets to reveal consistent associations between 
the gut microbiome and CRC and to better understand 
the reproducibility of such associations across stud-
ies [19, 20]. Meta-analysis can help identify factors that 
cause inconsistencies between studies, aggregate sig-
nals across studies to improve power, and point the way 
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towards improvements in future study design and analy-
sis. Haque et al. [21] pooled 4 vaginal microbiome data-
sets to understand the temporal differences between the 
vaginal microbiome communities and found the diver-
sity measures are significantly different between vaginal 
microbiomes sampled from women with term and pre-
term outcomes. However, they did not look into the role 
of specific genera or species. Kosti et al. [22] aggregated 
5 longitudinal vaginal microbiome datasets with batch 
correction and reported several microbial genera as asso-
ciated with PTB. However, they did not explore the het-
erogeneity cross-study and did not perform predictive 
analyses. Gudnadottir et  al. [23] performed a network-
based meta-analysis of 17 longitudinal vaginal microbi-
ome datasets using community state types (CSTs). Their 
results supported the predictivity of preterm birth using 
the vaginal microbiome but did not build any prediction 
models and CSTs reduce the description of the vaginal 
microbiome to the identity of its most abundant member.

In this study, we performed a meta-analysis of 12 pro-
spective case-control PTB datasets obtained by using 16S 
rRNA gene sequencing to measure the vaginal microbi-
ome during pregnancy. All together, these 12 datasets 
included 2039 pregnant women, 586 of whom went on 
to deliver preterm. After re-processing the raw sequenc-
ing data using a consistent bioinformatics pipeline, we 
used a machine learning approach to investigate the pre-
dictability of PTB from the composition of the vaginal 
microbiome in each study [24, 25]. We evaluated cross-
dataset reproducibility of PTB predictions from the vagi-
nal microbiome and investigated PTB and study-specific 
factors that affected prediction accuracy. We explored 
the association between specific microbial taxa and PTB 
within and across studies. Finally, we synthesized these 
results into specific recommendations and cautions 
applicable to future study of the vaginal microbiome in 
PTB, and perhaps to the study of microbiomes in health 
and disease more broadly.

Methods
Data collection and availability
We used Google Scholar and PubMed to search the lit-
erature for studies published between 2014 and 2020 
that used high-throughput 16S rRNA gene sequencing to 
characterize the vaginal microbiome during pregnancy in 
term and preterm births. We identified 15 such studies, 
all of which used some variation of a nested case-control 
study design drawn from larger cohorts of women who 
were prospectively enrolled and sampled during preg-
nancy. For inclusion in our meta-analysis, we required 
the raw sequencing to be available (either in a public 
archive or by request from the authors) and that the fol-
lowing metadata were also available: anonymized subject 

ID and gestational age at delivery. In total, this resulted 
in 12 datasets from independent cohorts of women that 
were included in this meta-analysis (Table  1). Datasets 
do not directly correspond to studies, since some studies 
contained multiple datasets from independent cohorts 
of women. Raw sequence data and metadata were down-
loaded from the NCBI Sequence Read Archive where 
possible, obtained from the supplementary materials of 
original papers, or requested from the authors. See Addi-
tional file 1: Table S1 for per-dataset details.

Bioinformatics
DADA2 [44] was used to process the raw sequence data 
and infer the amplicon sequence variants (ASVs). The 
details of the DADA2 pipeline for each study can be 
found in Additional file 1: Table S2 and the Github reposi-
tory associated with this manuscript (https://​github.​com/​
hczda​vid/​metaM​anusc​ript). To obtain comparable ASVs 
among datasets, we divided the datasets into two groups 
based on the region of the 16S gene that was sequenced 
(V1-V2 and V4) with five datasets in the V1-V2 group 
and seven datasets in the V4 group. Then, we truncated 
the original ASVs separately for each group to a com-
mon V1-V2 or V4 region in three steps: (1) align the 
original ASVs to the SILVA 132 reference database [45] 
using the mothur software [46], (2) identify the overlap-
ping sequencing region common to all ASVs in the group 
using an alignment visualization tool (MSAviewer), and 
(3) truncate the original ASVs and remove alignment 
gaps using the extractalign and degapseq commands. 
Furthermore, we assigned the taxonomy levels to each 
truncated ASV using DADA2 with SILVA 132 reference 
database [45]. Lactobacillus species were assigned manu-
ally using BLAST against sequences from cultured Lacto-
bacillus strains (Additional file 2: List S1).

Data processing
Samples with total reads less than 100 were excluded 
from the analysis. The 25 core genera/species were 
obtained by the following steps: (1) For the V1-V2 and 
V4 groups of datasets, identify the per-group set of “com-
mon” ASVs (ASVs present in all datasets) and “top” ASVs 
(proportion larger than 0.1% in any dataset); (2) assign 
genus-level (species-level for Lactobacillus) taxonomy to 
all top or common ASVs from either group, yielding 34 
unique genera/species; and (3) filter down to core genera/
species using the following criteria: (i) average relative 
abundance > 0.1% in at least 5 datasets and (ii) prevalence 
> 10% in at least 5 datasets (Additional file 3: Fig. S1).

Data transformation
Due to the arbitrary sequencing read depth of each 
sample, we first converted count data obtained from 

https://github.com/hczdavid/metaManuscript
https://github.com/hczdavid/metaManuscript
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the DADA2 pipeline to proportional abundance data 
by dividing by  the read depth of each sample. As the 
proportional abundance data does not account for the 
compositionality of the microbiome data, we further 
performed the centered log-ratio (CLR) transforma-
tion (with 10−6 pseudo-abundance) and compared the 
performance with proportional data in the ML frame-
work and DA analysis. We found that data with CLR 
transformation have a similar prediction accuracy with 
the proportional abundance data using the ML model. 
The one-side Wilcoxon rank-sum test using CLR-trans-
formed data or proportional data sometimes give an 
opposite direction of effect. For genera with low preva-
lence and low abundance, if CLR-transformed data is 
used to do analysis, their effects on preterm birth are 
mostly determined by the geometric mean of all genera, 
instead of their own abundance. However, if propor-
tional data are used, their effects are only determined 
by their own abundance. In addition, we also included 
additive log-ratio (ALR), natural logarithm (log), and 
rank transformation methods in the ML framework 
comparison.

Machine learning
A machine learning framework using random for-
est classifiers was employed for intra-dataset, cross-
dataset, and leave-one-dataset-out (LODO) analysis. 
Intra-dataset analysis was performed on a single data-
set using 5-fold cross-validation. Cross-dataset analy-
sis was performed based on a pair of two datasets: one 
dataset as a training set and the other as a testing set. 
LODO analysis was performed by combining all data-
sets as a training set except one hold-out dataset as a 
testing set (see Fig.  2A). Given the predicted and true 
results, the area under the receiver operating charac-
teristic curve (AUC) is calculated using the ‘pROC’ R 
package. The AUC from intra-analysis was averaged 
among 20 repetitions. We performed ten repetitions 
of intra-dataset, cross-dataset, and LODO analysis in 
the preterm birth subgroup analysis and calculated the 
average AUC. The random forest classifier was imple-
mented using the ‘randomForest’ R package. We set the 
hyperparameter nTree = 1000 and tuned mtry using 
the ‘caret’ R package.

Table 1  Characteristics of the 16S rRNA gene sequencing and study cohorts for each dataset included in this meta-analysis

∗Dataset Brown2018 was combined from [26] and [27]
∗∗Maternal BMI, age, and gestational age at sampling were summarized as mean (range)
∗∗∗Maternal race was categorized as Asian/Black/White/other
∗∗∗∗Raw data from Blostein2020 and Tabatabaei2019 are available upon request

Dataset Sequencing 
region

No. of subjects 
(preterm 
birth)

Sampling 
strategy

Maternal 
BMI**

Maternal 
age**

Maternal 
race***

Gestational 
age at 
sampling **

Reference

Brown2018 (Br)* V1-V2 193 (157) Longitudinal 25 (18–42) 33 (19–51) 43/50/84/0 22 (6–36) [26–29]

Fettweis2019 
(Fe)

V1-V3 135 (45) Longitudinal - - 0/101/21/13 28 (3–41) [11, 30]

Kindinger2017 
(Ki)

V1-V3 161 (34) Cross-sectional 25 (18–48) 33 (21–42) 27/30/104/0 16 (16–16) [10, 31]

Romero2014 
(Ro)

V1-V3 90 (18) Longitudinal 30 (19–54) 25 (17–43) 1/79/5/5 26 (6–41) [7, 32]

Stafford2017 
(St)

V1-V3 133 (26) Cross-sectional - 29 (16–42) 4/8/110/11 24 (15–35) [33, 34]

Digiulio2015 
(Di)

V3-V5 40 (11) Longitudinal 28 (18–50) 30 (19–41) 7/2/22/9 25 (1–40) [8, 35]

Elovitz2019 (El) V4 539 (107) Longitudinal - - 0/399/115/25 − (16–28) [36, 37]

Blostein2020 
(Bl)

V4 125 (25) Cross-sectional 26 (18–37) 28 (18–44) - 9 ( < 16) [38]****

ST_Calla-
han2017 (SC)

V4 39 (9) Longitudinal 25 (18–51) 33 (25–42) 4/1/22/12 24 (2–41) [9, 39, 40]

Subrama-
niam2016 (Su)

V4 38 (19) Cross-sectional 25 (16–38) 22 (15–35) 0/18/20/0 − (21–25) [41, 42]

Tabatabaei2019 
(Ta)

V4 450 (94) Cross-sectional 24 (13–51) 31 (20–44) 19/31/322/78 − (8–13) [43]****

UAB_Calla-
han2017 (UC)

V4 96 (41) Longitudinal 31 (16–73) 27 (17–38) 1/79/9/7 27 (11–41) [9, 39, 40]
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Feature importance
We used the SHAP value from the random forest clas-
sifier to determine the feature importance. SHAP val-
ues that are large in absolute value indicate that the 
corresponding feature was influential in the machine 
learning prediction for the given sample. Here, posi-
tive SHAP values indicate that the feature value is 
associated with preterm birth whereas negative SHAP 
values indicate that the feature value is associated 
with term birth. We trained random forest models on 
each dataset using the scikit-learn implementation of 
a random forest classifier. For each dataset, we used 
5-fold cross-validation with ten repetitions and calcu-
lated the SHAP values [47] of the validation data using 
the Tree SHAP algorithm [48] as implemented in the 
SHAP package. The features were ranked according to 
the importance of each study by comparing the mean 
absolute SHAP values.

Statistical analysis
A one-sided Wilcoxon rank-sum test was used to 
perform the dataset-specific differential abun-
dance analysis and implemented using the wil-
cox.test function in R. A generalized linear mixed 
model was used to do differential abundance analy-
sis with a random effect for each study. Specifi-
cally, for each genus, we fitted the following model: 
logit(P(Y = PTB)) = Genus + Race + BMI + Age + (1|Study)  . 
Genus = 1 if a genus is present based on an abun-
dance threshold of 0.001 and 0 otherwise. Race, BMI, 
and Age represent the maternal race, BMI, and age, 
respectively. The generalized linear mixed model was 
implemented using the glmer function in the ‘lme4’ R 
package. Due to missing maternal race, BMI, and age 
in some datasets and non-significance of these covari-
ates except self-reported Black race vs. White race 
( p = 0.04 ), we also fitted the model without adjusting 
these covariates.

We further performed a Bayesian analysis by assum-
ing that (1) the log odds of the presence of a genus 
given preterm birth follow a uniform prior distribution 
for each dataset and (2) the odds ratio between PTB 
and TB has the same underlying true distribution for 
each dataset. We use a uniform prior distribution for 
the odds ratio for the first dataset and then calculate 
the posterior distribution. Then, we let the posterior 
distribution of the odds ratio from the first dataset be 
the prior distribution for the second dataset and update 
the posterior distribution. We repeated the process 
until the last dataset to obtain the final posterior distri-
bution of the odds ratio. See Additional file 4: Supple-
mentary Methods section for more details.

Results
Published studies of the vaginal microbiome in term 
and preterm births are highly heterogeneous
We searched the published literature for studies between 
2014 and 2020 that used high-throughput 16S rRNA 
gene sequencing to characterize the vaginal microbi-
ome during pregnancy in term and preterm births. We 
identified 15 such studies, all of which used some vari-
ation of a nested case-control study design drawn from 
larger cohorts of women who were prospectively enrolled 
and sampled during pregnancy. From these 15 stud-
ies, we identified 12 datasets from independent cohorts 
of women that were complete enough (raw sequencing 
data and sufficient metadata) for us to include in this 
meta-analysis (Table  1; Methods). In total, these data-
sets include 6891 vaginal microbiome samples from 2039 
pregnant women, 586 of whom had preterm births. After 
excluding samples with total reads less than 100 (Meth-
ods), we have 2025 women (584 of them had PTB) in our 
datasets.

There was a large amount of heterogeneity in technical, 
clinical, and cohort characteristics among these studies 
of the vaginal microbiome in term and preterm births. 
The number of subjects in the datasets we included in 
our meta-analysis varied from a low of 38 to a high of 
539, and the percentage of subjects who went on to have 
preterm births varied from a low of 20% to a high of 81%, 
respectively. In terms of gestational age at sampling, 
two datasets (Ta and Ki) contained samples only from 
the first trimester (0–13 weeks) or early second trimes-
ter (16 weeks). The Su and El datasets contained sam-
ples only from the second trimester (14–28 weeks). The 
other eight datasets contained samples across trimesters. 
Seven datasets are from longitudinal studies (Table  1), 
with a range from 1 to 41 samples per subject. The V1-V2 
region of the 16S rRNA gene was sequenced in five of 
these datasets and the V4 gene region in the other seven. 
Four datasets had most participants self-report their race 
as Black and six datasets had a majority of participants 
self-report their race as White. Three datasets excluded 
late PTB ( ≥ 34, < 37) or early TB ( ≥ 37, < 39), while all 
other datasets included these two categories. Seven data-
sets only included spontaneous PTB and at least two 
other datasets included both spontaneous and indicated 
PTB. The distributions of gestational age at delivery and 
select population characteristics also varied substantially 
between datasets (Additional file 3: Figs. S2 and S3).

A limited set of core taxa make up a vast majority 
of the vaginal microbiome
We used a consistent bioinformatic protocol based on the 
DADA2 tool and the Silva reference database to generate 
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tables of taxonomically-assigned amplicon sequence 
variants (ASVs) from the raw 16S sequencing data for 
each dataset (Additional file  1: Table  S1; Methods). To 
work at the highest level of resolution possible, datasets 
were partitioned into the V1-V2 or V4 groups based on 
which region of the 16S gene was sequenced. Within 
each group, ASVs were truncated to the “intersection” 
region contained within all sequenced amplicons, allow-
ing an ASV table containing all datasets in the group to 
be constructed. For analyses using all datasets combined, 
taxonomic profiles at the genus level (with special spe-
cies-level discrimination performed within the Lactoba-
cillus genus) were merged into a single table.

A small number of taxa comprised a large major-
ity of the vaginal microbiome in all studies included 
in our meta-analysis. In the V1-V2 group, we found 42 
“common” ASVs that were present in all datasets and 
157 “common” ASVs in the V4 group (Additional file 1: 
Table  S3). These common ASVs constituted a large 
majority of the vaginal microbiome in every dataset 
in both the V1-V2 and V4 groups (71.3–94.8% of total 
reads). Another frequent strategy that is used to select a 
set of cross-dataset taxonomic features is to consider all 
taxa that appear above some abundance threshold in any 
dataset. Here, we defined “top” ASVs as those that had a 
relative abundance larger than 0.1% in any dataset. We 
found 172 top ASVs and 159 top ASVs in the V4 group 
and the V1-V2 group, respectively. This still modest 
number of ASVs constituted an overwhelming majority 
of the vaginal microbiome in every dataset (90.4– 98.0% 
total reads; 349–5479 ASVs). Finally, we also selected a 

set of “core” genera from the all-study table (both V1-V2 
and V4 studies classified at the genus level, with Lacto-
bacillus discriminated at the species level) using a hybrid 
filtering strategy that kept all genera present in at least 
0.1% abundance and 10% prevalence in at least 5 datasets. 
Just 25 “core” genus-level taxa made up 88.4–97.1% of the 
total reads in every dataset (Fig. 1; Additional file 3: Figs. 
S1 and S4). Five genera (or Lactobacillus species) had 
particularly high average relative abundance (> 0.05) and 
prevalence (> 40%): L. iners (0.35, 87%), L. crispatus (0.29, 
78%), L. jensenii (0.06, 57%), L. gasseri (0.057, 46%), and 
Gardnerella (0.054, 56%).

The predictivity of preterm birth from the vaginal 
microbiome is low
We employed a machine learning (ML) approach to 
assess the predictability of preterm birth outcomes from 
the genus-level composition of the vaginal microbiome. 
In order to assess the generalizability of ML predictions, 
we performed three types of ML analyses―intra-
dataset analyses in which the ML model is trained and 
tested within a single dataset, cross-dataset analyses in 
which the ML model is trained on one dataset and tested 
on another, and leave-one-dataset-out (LODO) analy-
ses in which 11 of 12 datasets are pooled together for 
training and testing is performed on the left-out dataset 
(Fig.  2A; Methods). Based on our evaluation of overall 
performance (Methods; Additional file  3: Figs. S5 and 
S6; Additional file 4: Supplementary Methods) and prec-
edent in the microbiome field, we used the random for-
est classifier and either proportions or centered log-ratio 

Fig. 1  The average proportion of all sequencing reads in each dataset derived from the set of common ASVs (found in every dataset), top ASVs 
(proportion larger than 0.1% in any dataset), and core genus-level taxonomic features (abundance > 0.1% and prevalence > 10% for at least 5 
datasets). Note that common and top ASV features were determined within the V1V2 and V4 dataset groups independently, as non-overlapping 
ASVs are not directly comparable (Methods)
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(CLR) transformed abundances as our ML features. We 
used the area under the receiver operating characteristic 
curve (AUC) as our primary measure of ML prediction 
accuracy.

The predictivity of PTB from the vaginal microbiome 
varied substantially across studies. Intra-dataset AUCs 
ranged from 0.32 (no predictivity) to 0.68 (moderate pre-
dictivity) across the datasets we considered (Fig. 2B, val-
ues in the major diagonal). We did not discern an obvious 
pattern amongst the higher or lower-predictivity data-
sets. There was no clear increase in AUC with study size: 
low intra-study AUC (0.52) was obtained in the relatively 
well-powered Ta study (n = 450), while the highest intra-
study AUC was in the relatively low power SC study (n = 
39). The three studies (Br, Ro, and SC) with the highest 
AUCs (0.67–0.68) include cohorts with predominantly 
White and predominantly Black racial backgrounds, 
cohorts from California, Michigan, and the UK, and vari-
ously considered both all-cause and only spontaneous 
preterm births.

The predictivity of PTB by ML models trained on data 
from a different dataset was generally low. In the cross-
dataset analyses―in which the ML model is trained on 
one dataset and then used to predict on a different data-
set―only 22% of training/testing dataset pairs yielded 
AUCs larger than 0.6, and just 3% had AUCs larger than 
0.7. There was some indication that certain datasets were 
easier, or harder, to predict PTB in than others (columns 
of Fig. 2B). AUCs for predictions in the SC dataset were 
greater than 0.6 for ML models trained on most other 

datasets, while the AUCs for predictions in the Ta study 
never exceeded 0.57 for any training dataset. The leave-
one-dataset-out (LODO) analysis yielded slight increases 
in AUC in 10 out of 12 datasets compared to the average 
cross-dataset AUC. While similar in direction to the pre-
vious results in the meta-analysis of the gut microbiome 
in Thomas et al. [19] and Wirbel et al. [20], the magnitude 
of the increase in prediction accuracy obtained by pool-
ing datasets together for ML training was much smaller 
than observed in those studies.

Earlier preterm birth is more predictable than late preterm 
birth
Preterm birth is a syndrome with multiple causes, the 
relative importance of which may vary between differ-
ent populations and between different sub-categories 
of preterm birth. One important subdivision of preterm 
birth is based on gestational age at delivery, with morbid-
ity and mortality increasing sharply with earlier preterm 
births. Here, we used information available from each 
study about gestational age at delivery to define three 
PTB subgroups: (1) early preterm births (< 32 weeks), (2) 
early or moderate preterm births (< 34 weeks), and (3) 
late preterm births ( ≥ 34 and < 37 weeks). Seven datasets 
had sufficient numbers of PTBs in each subgroup (8+) to 
include in our analysis. We employed intra-dataset and 
cross-dataset ML approaches to compare the predictiv-
ity of early, moderate, and late preterm births, with the 
control group set to full-term births ( ≥ 39 weeks). To 
completely remove any potential effect of preterm birth 

Fig. 2  A A schematic of different analytical strategies using machine learning. Each square represents a different dataset, and squares are colored 
by how they are used to train or test the ML model. B The prediction accuracy, as measured by the AUC, for random forest ML models trained 
on the vaginal microbiome profiles (genus-level proportion data) in one dataset (rows) and tested in the same or a different dataset (columns). “Ave.” 
indicates the average AUC of each row (same training dataset) or each column (same testing dataset)
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sample size from the results, within each study we resa-
mpled the number of women in each PTB subgroup to 
the smallest number of women among all subgroups 
(Methods). Unfortunately, due to both a lack of available 
data in some studies and the exclusion of indicated pre-
term births in other studies, we were unable to perform 
a similar analysis comparing indicated and spontaneous 
preterm births.

Earlier preterm births were much easier to predict from 
the composition of the vaginal microbiome than were 
later preterm births. The accuracy for predicting late PTB 
was low to moderate in all intra-dataset and cross-dataset 

ML analyses (all AUC values ≤ 0.65, Fig.  3C). In con-
trast, the accuracy for predicting early PTB was accept-
able to good in most datasets (21 AUC values ≥ 0.65, 7 
AUC values > 0.75, Fig.  3C). Classification accuracy for 
early-to-moderate PTB was intermediate, as expected. In 
most datasets, the intra-dataset and LODO accuracy for 
predicting early PTB were substantially better than late 
PTB (Fig. 3A and B), but the Fe dataset was an exception 
where classifier performance remained poor (AUC < 0.6) 
for all categories of PTB. Similar results were observed 
whether using proportions or CLR-transformed 
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abundances as the features in the analysis (Additional 
file 3: Fig. S7).

More resolved taxonomic features inconsistently affected 
the predictivity of PTB
We compared the prediction accuracy of our random for-
est ML models trained on the proportions of taxonomic 
features at different levels of resolution, from ASV up 
to Phylum (Table 2). In intra-dataset analysis, ASV level 
features had the overall best performance for the V1-V2 
group, and there was an overall trend of decreasing AUC 
with increasingly broad taxonomic features. However, 
this trend was not evident in the V4 group (Table  2). 
In both the V1-V2 and V4 groups of datasets, the AUC 
measured in the cross-dataset and LODO analyses 
showed no clear trend with the breadth of the taxonomic 
features considered. Given the previous observation that 
earlier preterm birth is more predictable, we further 
investigated the prediction accuracy at different levels 
of feature resolution using only early PTB (< 32 weeks) 
and late-term birth ( ≥ 39 weeks). In the V1-V2 group, 
we observed an overall trend of decreasing AUC with 
increasingly broad taxonomic features consistently in 
intra-dataset, cross-dataset, and LODO analyses. How-
ever, we did not see a similar trend in the V4 group of 
datasets (Additional file 1: Table S4).

The importance of microbial taxa to machine learning 
models varies across datasets
We further investigated the ML models by computing the 
importance of genus-level microbial features using SHAP 
(SHapley Additive exPlanations) values [47]. Figure  4 
shows the feature ranking for each study for random 
forest models trained on proportional data. Averaged 
across all datasets, L. crispatus is the taxa that contrib-
utes most to the machine learning predictions, followed 
by Prevotella and L. iners. However, there is substantial 
variation in the importance of most taxa in ML models 
trained on different datasets. Consider, for example, Fine-
goldia. There are three datasets for which Finegoldia is 
among the three most important taxa and two studies for 
which it is among the three least important taxa. Myco-
plasma is ranked as the most important taxa for the Bl 
dataset and the least important taxa for the Ta dataset. 

Further inconsistencies can be seen by examining the 
SHAP summary plot for each dataset (Additional file 3: 
Fig. S8). For most studies for which Prevotella is among 
the most important features, a high relative abundance of 
Prevotella is associated with preterm birth (see the Br, Ki, 
and St datasets). However, a high relative abundance of 
Prevotella is associated with term birth in the Bl dataset.

The varying importance of taxa in different datasets 
contributes to the lower prediction accuracy for PTB in 
the cross-dataset and leave-one-dataset-out (LODO) 
analyses. As an example, Aerococcus was the most impor-
tant feature for the Ro dataset but was unimportant for 
all other datasets. Machine learning models trained on 
the Ro study heavily weight the abundance of Aerococ-
cus in their predictions, even though Aerococcus is a poor 
predictor of preterm birth in other datasets. We trained 
ten random forests on the Ro dataset with and without 
including Aerococcus as a feature and made predictions 
on the other studies (Additional file 3: Fig. S9). For most 
studies, the AUC was higher when excluding Aerococcus 
from Ro, with notable improvements for the Fe, Di, SC, 
and Su studies.

Emerging consensus associations between microbial 
genera and PTB
At an individual dataset level, differential abundance 
(DA) analysis using the one-sided Wilcoxon rank-sum 
test found associations between bacterial genera and 
PTB that largely agreed with the results reported in the 
original papers (Additional file  1: Table  S5; Additional 
file  3: Fig. S10). This re-analysis confirms that for many 
genera, there is too much variation in the effect sizes 
and even direction of their association with PTB to draw 
robust conclusions from individual dataset analyses. This 
is unsurprising given the low power of many of these 
datasets. However, taxa with more consistent directions 
of effect did emerge when considering all the individual 
dataset DA results. In particular, L. crispatus was nega-
tively associated with preterm birth in 10/12 datasets and 
Gardnerella was positively associated with preterm birth 
in 11/12 datasets.

In order to increase power, we performed an all-dataset 
differential prevalence analysis that also accounted for 
maternal age, BMI, and self-reported race. We created 

Table 2  Average AUC values for different taxa level features

Analysis V1-V2 group V4 group

ASV Genus Family Order Class Phylum ASV Genus Family Order Class Phylum

Intra 0.65 0.63 0.60 0.57 0.58 0.55 0.58 0.57 0.59 0.56 0.52 0.54

Cross 0.53 0.54 0.57 0.56 0.56 0.57 0.57 0.56 0.56 0.55 0.53 0.55

LODO 0.56 0.57 0.57 0.58 0.60 0.61 0.60 0.62 0.61 0.60 0.56 0.59
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a prevalence (presence-absence) table at the genus level 
for each study by defining a genus as present in a sam-
ple if its proportion was greater than 0.1%. We fit a gen-
eralized linear mixed model (GLMM) to estimate the 
odds ratio between a genus is present versus absent with 
dataset-specific random effects separately for each genus 
(Fig.  5; Methods; Additional file  3: Fig. S11). The pres-
ence of three Lactobacillus species―L. crispatus, L. 
jensenii, and L. gasseri―were associated with reduced 
risk of PTB, while the presence of L. iners was associ-
ated with increased risk of PTB. Based on unadjusted 
p-values at a 0.05 level, we observed significant associa-
tions of L. iners ( p = 0.043 ) and L. crispatus ( p = 0.007 ). 
The presence of most non-Lactobacillus genera (18 out 
of 21; Fig.  5A; Additional file  1: Table  S6) was associ-
ated with a higher risk of PTB, consistent with a higher-
diversity “bacterial-vaginosis-like” vaginal microbiome 
being associated with PTB. There were significant posi-
tive associations between PTB and the presence of 

Gardnerella ( p = 0.002 ), Shuttleworthia ( p = 0.02 ), 
Prevotella ( p = 0.0002 ), Megasphaera ( p = 0.0007 ), 
Atopobium ( p = 0.0001 ), Sneathia ( p = 0.003 ), Strepto-
coccus ( p = 0.04 ), Dialister ( p = 0.03 ), and Mycoplasma 
( p = 0.008 ). We further investigated these associations in 
PTBs subdivided into early, moderate, and late subgroups 
as previously described (see the “Methods” section). We 
found that the associations between PTB and L. iners, L. 
crispatus, and Prevotella were stronger, i.e., had larger 
effect sizes and were more statistically significant, in ear-
lier PTB than in late PTB (Additional file 3: Fig. S12).

Ignoring dataset‑specific characteristics in microbiome 
analyses can cause false signals
We developed two related Bayesian analyses of the asso-
ciation between genus prevalence and PTB, one in which 
datasets were pooled together as exchangeable equals 
(Pooling) and another in which the baseline rate at 
which a taxon was detected was allowed to vary among 

Fig. 4  The feature importance ranking for genus-level taxonomic features (rows) in random forest ML models trained in different datasets 
(columns) using proportion data. Feature importance was quantified as the absolute SHAP value. Genera are ordered by their mean importance 
rank across all datasets



Page 11 of 16Huang et al. BMC Biology          (2023) 21:199 	

datasets (Set-specific). More specifically, we performed 
two Bayesian analyses in which the log odds of a genus 
to be present given preterm birth and the odds ratio of 
PTB relative to TB follow prior distributions. We calcu-
lated the posterior distribution of the odds ratio between 
PTB and TB using two methods: (1) Pooling, in which all 
datasets were combined as a large dataset, and (2) Set-
specific, in which the posterior distribution of the asso-
ciation between genus prevalence and preterm birth was 
sequentially updated by application to each dataset while 
allowing for a dataset-specific baseline rate at which that 
genus was detected. Consistent with the GLMM results 
reported above, in the set-specific method, 18 genera 
had a maximum a posteriori (MAP; mode of the poste-
rior distribution) value of their odds larger than 0 (i.e., 
a positive association between their presence and PTB) 
and seven genera had MAP smaller than 0 (Additional 
file  3: Fig. S13). Meaningful differences emerged when 
accounting for dataset-specific detection rates in some 

genera. For example, the set-specific method estimated 
a significant and positive association between the pres-
ence of Gardnerella and PTB, while the pooling method 
estimated a significant and negative association (Fig. 5B). 
Further inspection of this result revealed different detec-
tion rates of Gardnerella by most of the V1-V2 and the 
V4 studies. In Additional file  3: Fig. S1B, for example, 
we observed that the prevalence of Gardnerella at three 
V1-V2 studies (Br: 10%, Ki: 7%, St: 25%) is much lower 
than in all V4 studies. This result suggests that account-
ing for dataset-specific detection rates might be impor-
tant when aggregating results across microbiome studies.

Discussion
The identification of robust associations between host-
associated microbiomes and health outcomes remains 
an elusive goal in many areas of microbiome research, 
as highlighted by many examples of specific asso-
ciations that did not reproduce across studies [9, 20, 

Fig. 5  Cross-dataset differential abundance analysis. A Point estimates and 95% confidence intervals of the log odds ratio of a genus being present 
in preterm births relative to term births using a generalized linear mixed model. Presence was defined as a relative abundance greater 
than 0.001. The model included all 12 datasets and no population characteristic covariates. Point estimates less than 0 are shown as blue points 
and greater than 0 as red points. Confidence intervals less than 0 are shown as blue bars and greater than 0 as red bars. B Posterior distribution 
of log odds ratio using pooling and set-specific methods for four selected genera/species
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49]. There are several potential reasons for this. Most 
microbiome studies to date have been underpowered 
when considering the substantial temporal and inter-
individual variability of host-associated microbial 
communities. Rapid progress in the laboratory and 
computational methods used to study microbiomes 
means that any two microbiome studies likely used 
measurement protocols different enough to make their 
results quantitatively incomparable [50–52]. The inter-
action between microbiomes and the host is mediated 
by poorly understood, and hence largely unrecorded, 
environmental and individual factors and myriad other 
challenges that are generic beyond microbiome stud-
ies, such as differences between study populations and 
the criteria used to define cases and controls. With 
these challenges in mind, we used a machine-learning 
and meta-analysis approach to study the relationship 
between the vaginal microbiome and preterm birth 
across 12 independent datasets consisting of taxonomic 
profiles obtained by 16S rRNA gene sequencing of vagi-
nal swabs obtained during gestations that resulted in 
term and preterm births. Overall, this analysis revealed 
substantial heterogeneity in the relationship between 
vaginal microbiome measurements and preterm birth 
outcomes from different studies. Yet, generalizable 
results and lessons also emerged, perhaps most impor-
tantly the higher predictivity of the vaginal microbiome 
for earlier preterm births.

Earlier preterm births (< 32 weeks, < 34 weeks) were 
more predictable from the composition of the vaginal 
microbiome than were late preterm births (34–37 weeks). 
This pattern was observed across most of the seven data-
sets included in our analysis of PTB sub-categories. It was 
observed both in ML models that were trained and tested 
in the same dataset and in ML models that were trained 
in one dataset and tested in another. The two datasets (Ta 
and Fe) in which this pattern was not evident were also 
the two datasets in which PTB was the least predictable 
overall. A strength of this analysis is the strong control of 
between-study differences: comparisons are being made 
between early and late preterm births within a study, 
and the number of preterm births in each category per 
study is held constant. We believe these results support 
the prioritization of earlier preterm birth (< 34 weeks, or 
even earlier) in future studies of the relationship between 
the vaginal microbiome and PTB. Prioritization of ear-
lier preterm births is consistent with their much higher 
morbidity and mortality. It is also supported by the arbi-
trariness of the 37-week cutoff, which can result in weak 
differences between term births (37–40 weeks) and the 
late preterm births (i.e., 34–37 weeks) that predominate 
in study cohorts targeting all preterm births.

Our meta-analysis of these 12 independent vaginal 
microbiome datasets increases the credibility of reported 
associations between L. crispatus and reduced risk of pre-
term birth, reported associations between Gardnerella 
and Prevotella and increased risk of preterm birth, and 
the different roles played by L. iners compared to other 
vaginal Lactobacilli. The most consistent finding across 
individual datasets was the negative association between 
the relative abundance of L. crispatus and preterm birth: 
10 out of 12 datasets showed the same direction of effect. 
In 6 of these, the association had a raw p-value < 0.05. In 
our machine learning models, L. crispatus had the high-
est average importance across all studies for predicting 
PTB. When considering all datasets together, the asso-
ciation between the presence of L. crispatus and reduced 
risk of preterm birth was highly significant ( p = 0.007 ) 
and was stronger for earlier preterm births. The asso-
ciation between L. iners and preterm birth was different 
from the other vaginal Lactobacilli: L. iners was associ-
ated with increased PTB risk in most individual studies, 
across all studies considered together, and more signifi-
cantly so in earlier preterm births. Although the presence 
of several genera was associated with a higher risk of pre-
term birth when considering all studies together, Gard-
nerella was the genus most consistently associated with 
a higher risk of preterm birth at the individual-dataset 
level. Prevotella was the second most important taxa on 
average across our machine learning models. When all 
studies were considered together, it had the second most 
significant association with PTB and even stronger effect 
size and statistical significance in earlier preterm birth.

Two example taxa, Aerococcus and Gardnerella, dem-
onstrate the important ways that differences in taxon-
specific detection rates across studies can alter measured 
associations between the microbiome and preterm birth. 
In the cross-dataset meta-analysis, Aerococcus comprised 
a small to vanishing fraction of the vaginal microbiome 
and the presence of Aerococcus was marginally associ-
ated with higher PTB risk. In contrast, in the Ro dataset, 
Aerococcus was significantly associated with decreased 
PTB risk and was detected at a significantly higher base-
line rate. ML models trained on Ro have Aerococcus as 
the most important genus for predicting PTB, whereas 
Aerococcus has little to no importance in models trained 
on other datasets. The importance of Aerococcus in Ro-
trained models reduces their prediction accuracy in other 
datasets; the cross-dataset accuracy of models trained 
on Ro is higher when the Aerococcus feature is removed 
prior to training. We do not know what is driving this 
significant difference in the detection rate of Aerococ-
cus, it could reflect real differences between the popula-
tions studied in Ro versus other studies, or it could reflect 
methodological differences such as a higher detection 
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efficiency for Aerococcus of the primer mixture used 
in the Ro study. In another example, it has been known 
for some time that common V1 primers used in several 
studies here do not effectively amplify Gardnerella or 
the related Bifidobacterium [7, 17]. Consistent with this, 
we observed much lower proportions of Gardnerella in 
the V1-V2 studies, especially the Br, Ki, and St studies, 
that did not supplement their primer mixtures to detect 
Gardnerella better. Left unaddressed, this interfered with 
the cross-study estimation of the association between 
Gardnerella presence and preterm birth. Naively pool-
ing the samples from all studies together led to the esti-
mation of a negative association between Gardnerella 
and preterm birth. However, when our modeling incor-
porated study-specific differences in detection rates, 
Gardnerella was found to be significantly positively asso-
ciated with preterm birth, in line with most reports in the 
literature.

The complex heterogeneities between different data-
sets significantly impede obtaining robustly generaliz-
able results. The relative paucity of available subject 
metadata did not allow for post hoc control of many 
individual characteristics thought to modulate the vagi-
nal microbiome, PTB risk, or both. Although maternal 
race, age, BMI, and gestational age at delivery were avail-
able from most datasets, several other important meta-
data were only available in some or a few datasets. For 
example, the definition of spontaneous vs. indicated PTB 
was only available for three datasets, while two datasets 
reported mixed spontaneous or indicated PTB. Prior his-
tory of preterm birth, which is a known risk factor for 
PTB, was only recorded for three datasets. Other com-
plications such as pre-eclampsia and gestational diabetes, 
which are associated with a higher risk of PTB, were also 
underreported. Data on feminine hygiene practices such 
as douching was unavailable for several studies and has 
recently been reported to alter the relationship between 
the vaginal microbiome and preterm birth in White 
women [53]. It is therefore important that future studies 
capture and report comprehensive and detailed patient 
metadata that permit deeper analyses of potential con-
founding [54].

When considering all-cause and all-type PTB, we found 
that the predictivity of PTB from the composition of the 
vaginal microbiome was low to modest. This should not 
be surprising. PTB is a syndrome with multiple causes, 
and it is highly unlikely that PTBs arising from different 
causal mechanisms, e.g., indicated PTB due to placenta 
previa versus spontaneous preterm labor due to intrau-
terine infection [55], will associate with similar patterns 
in the vaginal microbiome. Indeed, it is likely that some 
etiologies of preterm birth will have no measurable rela-
tionship with the vaginal microbiome, and their inclusion 

in ML models would restrict the predictive accuracy. 
However, prediction of well-defined subtypes of PTB 
from the vaginal microbiome with the moderate to high 
accuracy needed for clinical relevance may be achievable.

The cross-dataset and leave-one-dataset-out machine 
learning results highlight the importance of careful 
interpretation when evaluating the generalizability of 
machine learning classifiers trained on microbiome data 
and indicate that single-study examples of high AUC 
should be met with caution. Figure 2B presents a classi-
fier trained on the Br dataset that performs moderately 
well when tested on withheld test data from the same 
study (AUC = 0.68). However, it performs much worse 
when tested on data from other studies (average AUC = 
0.52). This same behavior can be seen in previous micro-
biome meta-analyses that explored cross-dataset pre-
dictivity using machine learning [19, 20]. However, such 
analyses can also highlight differences in the underlying 
microbiota-host interactions of different patient cohorts. 
The Br dataset was enriched for PTB cases preceded 
by preterm prelabor rupture of the fetal membranes 
(PPROM), which is often associated with an infectious 
etiology [56]. Thus, despite producing a highly accurate 
within-study classifier, the performance of this classifier 
may not be maintained in other cohorts where popula-
tion characteristics (e.g., PPROM prevalence) differ sub-
stantially. Methodological differences in DNA extraction 
or sequencing may also restrict cross-study classification 
accuracy. Consistent with this, we found that combining 
datasets for training ML models (the LODO analyses) 
did not meaningfully improve cross-dataset prediction 
accuracy versus using a single dataset for training. This 
is different than the meaningful improvements in accu-
racy obtained by pooling studies together reported for 
predicting colorectal cancer from the gut microbiome in 
Thomas et al. [19] and Wirbel et al. [20]. The reasons for 
this difference remain unclear but could arise from the 
higher heterogeneity of vaginal microbiome studies or 
even the PTB phenotype itself.

Conclusions
Our work here has shown some of the challenges of inte-
grating across microbiome studies, even those based on 
a common measurement technology (16S rRNA gene 
sequencing), but it has also shown the value of such work 
in identifying robust patterns that generalize beyond a 
single study. Based on our results, we make three sug-
gestions for future studies of the vaginal microbiome and 
PTB: (1) earlier preterm birth should be prioritized, (2) 
the core genera discussed in this meta-analysis should 
be captured in future studies to reflect the community of 
the vaginal microbiome, and (3) comprehensive subject 
metadata should be recorded and made available to the 
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wider research community, including specifically mater-
nal race, age, BMI, prior history of PTB, the use of inter-
ventions designed to prevent preterm birth, gestational 
age at delivery, gestational age at the time of sample col-
lection, and whether PTB was spontaneous or indicated. 
We are also hopeful that the application and integration 
of non-sequencing measurement technologies to the 
vaginal microbiome [57] will help bridge the gap between 
composition and function [58] and ultimately between 
observation and intervention.
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