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Abstract 

Background  Single-cell RNA-sequencing (scRNA-seq) has become a widely used tool for both basic and transla-
tional biomedical research. In scRNA-seq data analysis, cell type annotation is an essential but challenging step. In 
the past few years, several annotation tools have been developed. These methods require either labeled training/ref-
erence datasets, which are not always available, or a list of predefined cell subset markers, which are subject to biases. 
Thus, a user-friendly and precise annotation tool is still critically needed.

Results  We curated a comprehensive cell marker database named scMayoMapDatabase and developed a compan-
ion R package scMayoMap, an easy-to-use single-cell annotation tool, to provide fast and accurate cell type annota-
tion. The effectiveness of scMayoMap was demonstrated in 48 independent scRNA-seq datasets across different 
platforms and tissues. Additionally, the scMayoMapDatabase can be integrated with other tools and further improve 
their performance.

Conclusions  scMayoMap and scMayoMapDatabase will help investigators to define the cell types in their scRNA-seq 
data in a streamlined and user-friendly way.
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Background
Tissues are constructed of diverse cell types that sup-
port highly specific functions in multicellular species. 
The development of single-cell sequencing (scRNA-
seq) technologies has enhanced our capability to 
understand the molecular profiles of these individual 
cells and enabled us to study the heterogeneous cellular 
composition of complex tissues in the context of devel-
opment, aging, health, and disease [1, 2]. In scRNA-seq 
data analysis, cell type annotation is a critical step and 
can be done manually with sufficient knowledge but is 
labor intensive and time-consuming. To achieve auto-
matic cell annotation, computational tools have been 
developed to annotate either cells or cell clusters. Cell-
annotation methods such as SingleCellNet [3], SingleR, 
scmap [4], and Azimuth [5] assign cell identity to indi-
vidual cells based on a pre-annotated scRNA-seq data-
set as a reference or training dataset. However, accurate 
annotated reference data is not always available. Other 
tools, such as SCINA [6] and CellAssign [7], assign cell 
types based on known marker genes but they could be 
prone to the biases of the markers used. Besides, some 
deep learning-based, such as scDHA [8] and scBalance 
[9] are also available, but also require reference data.

In some cases, an annotation tool is accompanied by a 
cell marker database. For example, scCATCH [10] built 
a reference database “CellMatch” combining databases 
CellMarker [11], Mouse Cell Atlas (MCA) [12], Can-
cerSEA [13], and the CD Marker Handbook [14]. SCSA 
[15] integrated databases from CellMarker and Cancer-
SEA. Some of these databases (e.g., MCA) were derived 
from differential expression analysis of scRNA-seq data. 
Other expert-curated databases (e.g., PanglaoDB) were 
manually curated from thousands of published stud-
ies. The annotation accuracy strongly depends on the 
informativeness and comprehensiveness of the marker 
gene database. To date, existing databases do not have 
extensive coverage in tissue types and cell types with 
good specificity. These obstacles can be challenging for 
investigators who are new to the scRNA-seq field or 
have limited background knowledge on the tissue and 
cell types involved.

To achieve a better cell type annotation outcome, we 
integrated and refined the available scRNA-seq anno-
tation databases, originating a new database named 
scMayoMapDatabase. In parallel, we developed a new 
annotation tool, scMayoMap. Together with its own 
database, scMayoMap provides easy, fast, and accurate 
cell type annotation without the need to provide cell type 
markers or pre-annotated single-cell reference datasets. 
We envision scMayoMap will be of considerable utility 
for the scientific community.

Methods
Construction of scMayoMapDatabase
The data used in scMayoMapDatabase (including tissue, 
cell type, and marker genes, Table S1) was retrieved from 
literature and public databases including PanglaoDB [16], 
Azimuth [5], CellMarker [11], CellMatch [10], and MCA 
[12]. Marker genes from undefined tissues and cancer 
cells were not included. Individual tissues and cell types 
of each organ system were manually reviewed by experts 
in each organ system. The name of each tissue and cell 
type from different sources were standardized, and the 
corresponding cell markers were integrated. Both mouse 
and human genes were included in the database. Unof-
ficial gene names were revised based on Mouse Genome 
Informatics [17] and GeneCards [18].

Cluster annotation process
The central algorithm for cell type annotation is based 
on the hypothesis that a good marker gene will be highly 
expressed in the cell type but not in unrelated cells. Based 
on this hypothesis, we designed the following steps to 
annotate cell clusters (Fig. 1).

Identification of potential marker genes for each cluster
Cells were first pre-processed using the standard pipeline 
and clustered using a clustering method, such as Seurat’s 
default shared nearest neighbor (SNN) modularity opti-
mization-based clustering algorithm. Differential expres-
sion analysis is performed to find the marker genes for all 
K clusters. Gene expression in each cluster k(1 ≤ k ≤ K) 
is compared to the combination of all other clusters. This 
process can be easily done by applying the FindAllMark-
ers function in the Seurat package [5].

Cluster annotation with potential marker genes
scMayoMap uses marker genes with percentage of cells 
expressing the marker gene greater than 0.25 and 
adjusted p-value less than  0.05 . For cluster  k , marker 
gene i , we produce a composite expression score Ski  syn-
thesizing both the fold change and the prevalence change 
: Ski =

2
lk
i ×pki

pK
¬k

i

(1 ≤ i ≤ Ik , 1 ≤ k ≤ K ) , where lki  denotes the aver-

age log2 fold change of marker gene i in cluster k com-
pared to other clusters. pki  denotes the percentage of cells 
in cluster k where the gene i is detected, and pK¬k

i  
denotes the percentage of cells in all other clusters where 
the gene i is detected. The logarithm of Ski  is essentially 
the sum of the log fold change and log prevalence change. 
After that, scMayoMap matches the marker genes in 
cluster k to tissue-specific cell markers from scMay-
oMapDatabase and produces a score for each potential 
cell type c(1 ≤ c ≤ C) and clusterk(1 ≤ k ≤ K ) , which is 
determined as follows:
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where dic is a binary indicator indicating the absence ( dic 
= 0) and presence ( dic =1) of the marker gene i in the cell 
type c.

To be more robust, scMayoMap allows assignment of 
multiple cell types to the same cluster if their evidence is 
similar. Specifically, the predicted cell types for cluster k 
are determined by the top n(1 ≤ n ≤ C) of Skc  , where n is 
determined by finding the jump point in the cumulative 
variance of Skc  (see details in Additional File 1).

Visualization of the prediction results
scMayoMap.plot function takes the cell-type prediction 
scores for each cluster as the input and produces a dot 
plot showing the predicted cell types for each cluster.

Experimental datasets
We retrieved 48 scRNA-seq datasets across different 
platforms and tissues from public resources (see details in 
Table S2). These datasets were generated by six different 
platforms, including Smart-seq2, CEL-Seq2, 10 × Chro-
mium, Drop-Seq, Seq-Well, and inDrops protocols [19]. 
Eighteen tissue types were included for the analysis, 
including blood, bladder, brain, adipose tissue, heart, kid-
ney, gastrointestinal tract, muscle, liver, lung, mammary 
gland, bone marrow, pancreas, skin, spleen, thymus, tra-
chea, and tongue [20, 21]. The cell types annotated in the 
source datasets were used as the benchmarks.

Comparison between different annotation tools
Four scRNA-seq-specific annotation tools, including two 
cell annotation methods (scmap [4] and singleR [22]) 

S
k
c =

1

Ik

Ik

i=1
S
k

i
× dic(1 ≤ i ≤ Ik , 1 ≤ k ≤ K , 1 ≤ c ≤ C),

and two cluster annotation tools (scCATCH [10] and 
SCSA [15]) were compared. All methods were run with 
their default settings or based on the provided vignette 
describing the procedures. Briefly, for scmap, we used the 
scmap-cluster projection strategy that map the experi-
mental dataset to “pbmcsca” reference dataset from 
SeuratData package. For SingleR, the HumanPrimaryCel-
lAtlasData was used as the reference, and “label.main” 
was specified as the prediction level. For scCATCH, tis-
sue and species were specified for the analysis. For SCSA, 
the default database, whole.db, was used with input file 
generated by FindMarkers function of Seurat. For ScType, 
the default database, ScTypeDB was applied. SCINA does 
not have its own database, where ScTypeDB was applied 
as the default marker list. To keep method evaluation on 
the same level, we used the proportion of cells that were 
correctly annotated as a metric. For cluster annotation 
methods, the predicted cell type with the maximum pre-
diction score was chosen as the final predicted cell type. 
The annotation accuracy is the percentage of cells with 
correct cell type labels based on the source datasets. Cell 
types in source datasets with ambiguous cell type names, 
such as pp, MHC class II, PSC, co-expression, immune 
other and unclassified, were excluded from evaluation.

Results
Construction of scMayoMapDatabase
scMayoMapDatabase covers 340 cell types from 28 tis-
sues and contains a total of 26,487 cell markers for both 
human and mouse (Fig.  2A and Table  S1). It contains 
data for 12 organ systems including the integumentary 
system (skin), musculoskeletal system (bone, muscle), 
nervous system (brain), cardiovascular system (heart), 
circulatory system (blood), respiratory system (lung), 

Fig. 1  scMayoMap workflow. scMayoMap is at the downstream of a pre-processing, clustering, cluster marker identification. It takes the cluster 
marker gene list as input and returns the cell type prediction results in a plot and the mapped gene list
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Fig. 2  Summary of the scMayoMapDatabase. A The scMayoMapDatabase contains 28 tissues and 340 cell types for human and mouse. The 
number of cell types within each tissue was labeled in parentheses. B Comparison of scMayoMapDatabase to other public databases. The left panel 
shows the cell type information and the right panel shows the tissue information in each database
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digestive system (tooth, esophagus, liver, pancreas, 
stomach, small intestine, large intestine), urinary sys-
tem (bladder, kidney), reproductive system (breast, 
ovary, placenta, uterus, mammary gland, embryo, tes-
tis, prostate), lymphatic system (bone marrow, thymus, 
spleen), endocrine system (adipose tissue), and visual 
system (eyes). The annotation level of the collected cell 
types for most tissues remains at the first level of the 
hierarchy. Cell markers for each cell type range from a 
minimum of 4 up to 300, with a mean of 43.8. The qual-
ity of the existing databases is partly compromised by 
tissues with very few cell types and cell types with very 
few marker genes. These limitations increase the noise 
for cell type annotation. Most collections in scMay-
oMapDatabase passed the quality control with more 
than 6 cell types per tissue and more than 4 marker 
genes per cell type. The Azimuth database has a good 
data quality, but the coverage of tissue types is rela-
tively low (10 tissue types) (Fig. 2B).

scMayoMap excelled in evaluation across multiple tissues 
and platforms
To evaluate the annotation accuracy of scMayoMap on a 
broad range of tissues, we retrieved data from the Tabula 
Muris [23] and literature [20, 24–28], covering 48 dif-
ferent scRNA-seq datasets, 18 different tissues, and 6 
different scRNA-seq platforms (Table  S2). scMayoMap 
annotated cell types from different tissues with high 
accuracy (Fig.  3). Specifically, it correctly annotated all 
clusters in 33 of 48 scRNA-seq datasets. Tabula Muris 
contains two different datasets that either use the drop-
let method or the Smartseq2 method. For droplet-based 
datasets, scMayoMap successfully identified all cell types 
within tissues including bladder, heart, muscle, mam-
mary gland, thymus, and spleen (Fig. 3A). For Smartseq2-
based datasets, more tissues were annotated accurately 
including bladder, brain, fat, limb, liver, pancreas, spleen, 
thymus, and trachea (Fig.  3B). When we compared the 
different pancreas datasets, scMayoMap successfully 

Fig. 3  Performance of scMayoMap on experimental datasets cover different tissues. Barplot shows the annotation accuracy of scMayoMap across A 
12 different tissues on the Tabula Muris Droplet scRNA-seq datasets, B 18 tissue types on the Tabula Muris Smartseq2 scRNA-seq datasets, C 6 
different pancreas scRNA-seq datasets from literature, and D 13 different PBMC scRNA-seq datasets. Accuracy is calculated as percentage of clusters 
correctly annotated by each method
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annotated all datasets with 100% accuracy. scMayoMap 
correctly identified a, b, d, e, and g cells of the islet, as 
well as acinar cells, pancreatic progenitor cells, ductal 
cells, endothelial cells, macrophages, mast cells, stellate 
cells, Schwann cells, B cells, and T cells (Fig. 3C).

A great amount of scRNA-seq data has been generated 
in peripheral blood mononuclear cells (PBMCs) because 
of the high interest and accessibility in both basic and 
clinical research. Next, we performed a second level of 
annotation to identify the subpopulations of immune 
cells in PBMCs, such as CD4 naïve T cells, CD4 memory 
T cells, CD8 naïve T cells, CD8 central memory T cells, 
CD8 effector memory T cells, etc. Within 12 of the 13 
tested PBMC datasets, scMayoMap correctly identified 
all cell types with accurate annotation of subtypes in T 
cells and monocytes. Only one cluster was mis-annotated 
by scMayoMap in the pbmc2_Drop dataset (Fig. 3D). A 
good annotation tool should be compatible with differ-
ent scRNA-seq protocols. These 13 PBMC datasets were 
generated by 7 types of sequencing technologies, includ-
ing two low-throughput plate-based methods (Smart-
seq2 and CEL-Seq2) and five high-throughput methods 
(10 × Chromium, Drop-seq, Seq-Well, and inDrops). 
scMayoMap performed well across all these different 
scRNA-seq platforms, indicating that it is highly accurate 
and applicable to a wide range of tissues using different 
scRNA-seq methods.

The performance of scMayoMap is superior to other 
annotation tools
To compare the performance of scMayoMap with other 
available annotation tools, we firstly compared the per-
formance of scMayoMap to SingleR, SCSA, scCATCH, 
ScType, SCINA, and scmap on the 13 PBMC datasets. As 
a result, scMayoMap successfully identified all cell types 
in most of the datasets with a mean accuracy of 99% 
(range: 83–100%, median: 100%), comparing to 85% for 
SingleR, 69% for ScType, 54% for SCSA, 53% for scmap, 
49% for scCATCH, 38% for SCINA (Fig. 4A).

Further, we assessed the annotation accuracy of 
scMayoMap and SingleR, SCSA, ScType, SCINA, and 
scCATCH on 35 datasets from 18 tissues of Tabula Muris 
datasets and five additional datasets from literature 
(Fig. 4B). The findings indicated that scMayoMap outper-
forms other methods, with a mean accuracy of 90% (50–
100%, median: 100%). In contrast, SCSA showed a mean 
accuracy of 52% (0–99%, median: 52%), SingleR showed a 
mean accuracy of 51% (0–97%, median: 50%), scCATCH 
showed a mean accuracy of 19% (0–95%, median: 2%), 
ScType showed a mean accuracy of 44% (0–100%, 
median: 36%) and SCINA showed a mean accuracy of 
36% (0–97%, median: 18%). When evaluated using the 

F1-score metric, scMayoMap continued to surpass other 
methods in performance (Fig. 4C and D).

Moreover, scMayoMap was used in multiple different 
tissues, including mouse skeletal muscle [29], brain [30], 
and kidney [31], in datasets generated in our lab and pro-
vided perfect cell annotation accuracy. Overall, the accu-
racy of scMayoMapDatabase and scMayoMap is superior 
to the existing databases and tools.

To conduct a more comprehensive evaluation of anno-
tation accuracy across various cell types, we employed 
the PBMC datasets as illustrated in Fig. 4A. Subsequently, 
accuracy measurements were computed for each distinct 
cell type. The outcomes, as depicted in Fig. 5, unmistak-
ably indicate that scMayoMap outperforms other tools 
in terms of annotation quality across the majority of cell 
types.

In terms of processing efficiency, we note that scMay-
oMap performs well (Fig.  6). All calculations are com-
pleted within one minute on a MacBook Pro laptop 
(System Version: macOS 13.5.1, Kernel Version: Darwin 
22.6.0, CPU: Apple M2 Pro, Memory: 16 GB).

scMayoMapDatabase can improve the annotation accuracy 
of other tools
We made scMayoMapDatabase easily accessible from 
the package and evaluated its performance as a replace-
ment for the internal database of other annotation tools. 
To test this, we carried out a comparison to discern the 
efficacy of these methods using their default databases 
against the scMayoMapDatabase. SCINA doesn’t have its 
own embedded database. As depicted in Fig.  4, ScType 
outperformed the other methods. Consequently, we 
integrated SCINA with the internal database of ScType. 
Interestingly, this led a substantial improvement in the 
performance of all the all tools; the prediction accuracy 
and F1-score all increased (Fig. 7). These results suggest 
that scMayoMapDatabase contributes significantly to the 
high performance of scMayoMap, and it can be a valuable 
resource for cell type annotation in scRNA-seq analysis.

Discussion
We developed a new scRNA-seq data annotation tool, 
simplifying the cell type annotation process for scRNA-
seq data. By using standard clustering results from 
upstream analysis as input, scMayoMap can swiftly 
annotate the corresponding cell types for each cluster, 
based on its internal cell marker database, scMayoMap-
Database. Through testing experimental datasets with 
varying cell numbers and types, we found that scMay-
oMap can complete annotation in under a minute by 
running a single function line included in the scMay-
oMap package. This enhanced usability of the tool is 
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Fig. 4  Comparison of scMayoMap and other cell annotation tools on 48 real datasets. A Comparison of cell type annotation accuracy in PBMC 
datasets. Thirteen PBMC scRNA-seq datasets generated by seven sequencing technologies were tested, including two low-throughput plate-based 
methods (Smart-seq2 and CEL-Seq2) and five high-throughput methods (10 × Chromium, Drop-seq, Seq-Well, and inDrops). B Comparison 
of cell type annotation accuracy on 35 datasets with different tissues from Tabula Muris and literature. The accuracy of each method is presented 
as the percentage of cells that were correctly annotated by each method. C and D F1-score calculated for data in A and B. Jitters on the plot 
represent datasets. The whisker extends from the hinge to the value that is within 1.5 * interquartile range (IQR) of the hinge, where IQR 
is the inter-quartile range or distance between the first and third quartiles

Fig. 5  Annotation accuracy for different cell types. Results are evaluated on 13 PBMC datasets. For SCINA, scmap, and SingleR, accuracy refers 
to the average proportion of cells accurately labeled across 13 datasets. For the other methods, accuracy indicates the percentage of datasets 
in which cell types were correctly identified
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particularly beneficial for researchers, including those 
in clinical settings.

The reference database plays a critical role in cell type 
annotation tools. While several existing cell marker 
databases have helped advance research using scRNA-
seq, they are not without limitations, such as inade-
quate or inappropriate cell markers and insufficient cell 
types or tissue coverage. Additionally, there are numer-
ous marker genes in these databases that are identified 
only by their nicknames, which lack standardization. 
To overcome these shortfalls, we generated the scMay-
oMapDatabase by integrating marker genes from cur-
rent popular databases and manually curating the 
tissues as well as the cell types. This curated database 
serves as the foundation for accurate cell type predic-
tion, as demonstrated in our results.

By extensive evaluation on experimental datasets 
using different scRNA-seq techniques, we demon-
strated that the performance of scMayoMap surpassed 
other methods, including cluster annotation methods 
and the cell annotation methods. A previous study illus-
trated that current methods using prior knowledge of 
marker genes did not show promising performance on 
PBMC datasets [20]. In this study, we demonstrate that 
scMayoMap can predict PBMC cell types with small 
errors, suggesting that a marker-based approach is still 
a promising approach if applied properly. Additionally, 
by extensive evaluation on experimental datasets of 

different tissues, we demonstrate that scMayoMap is a 
useful tool for cell type annotation with high accuracy.

A typical scRNA-seq data analysis pipeline is sev-
eral key steps, including pre-processing, clustering, 
identifying cluster markers, and annotating cell types. 
We acknowledge that upstream analytical steps,  like 
normalization, clustering, and differential expres-
sion analysis,  can indeed influence the results of cell 
type annotation. scMayoMap specifically focus on the 
annotation step. We acknowledge that scMayoMap 
has certain limitations, such as its inability to identify 
new cell types since its predictions rely on an existing 
marker database. However, it can still provide insights 
for identifying novel cell types by returning the clos-
est cell types and their corresponding marker genes. 
We also caution users to be careful when interpret-
ing the prediction results of a cluster that has multiple 
cell types assigned to it. In order to assist this, we have 
incorporated an output of evaluation score for clus-
ters with multiple cell types assigned. This score can 
be easily accessed using the “scMayoMap.obj$markers” 
command as explained in the package tutorial. Addi-
tionally, users can use their biological knowledge to 
analyze the expression of marker genes retrieved for 
each cluster to gain further insights. Finally, the pre-
cision of scMayoMap is contingent upon the compre-
hensiveness of the marker gene list generated from 
differential expression analysis. As such, it is crucial 
to ensure that the sequencing depth, the count of 

Fig. 6  Comparison of computational time between scMayoMap and its competing methods across all datasets evaluated in this study. For scmap, 
the timing evaluation was only performed on the 13 PBMC datasets, while all other methods covered all 48 datasets
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identified genes, and the cell numbers are not subop-
timal, in order to maintain adequate statistical power 
for identifying marker genes. To ascertain the requi-
site sequencing depth, gene count, and cell numbers 
essential for reliable cell type annotation, we recom-
mend that users perform independent power analyses 
on their specific datasets. This will help in determin-
ing the cell count thresholds that are needed for robust 
cell type annotation.

Conclusions
Overall, scMayoMap, combined with the comprehensive 
scMayoMapDatabase, is a user-friendly and powerful 
tool for annotating cell types in scRNA-seq data analysis, 
with potential applications in scRNA-seq studies.
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