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Abstract 

Background Over evolutionary timescales, genomic loci can switch between functional and non-functional states 
through processes such as pseudogenization and de novo gene birth. Particularly, de novo gene birth is a widespread 
process, and many examples continue to be discovered across diverse evolutionary lineages. However, the general 
mechanisms that lead to functionalization are poorly understood, and estimated rates of de novo gene birth remain 
contentious. Here, we address this problem within a model that takes into account mutations and structural variation, 
allowing us to estimate the likelihood of emergence of new functions at non-functional loci.

Results Assuming biologically reasonable mutation rates and mutational effects, we find that functionalization 
of non-genic loci requires the realization of strict conditions. This is in line with the observation that most de novo 
genes are localized to the vicinity of established genes. Our model also provides an explanation for the empirical 
observation that emerging proto-genes are often lost despite showing signs of adaptation.

Conclusions Our work elucidates the properties of non-genic loci that make them fertile for adaptation, and our 
results offer mechanistic insights into the process of de novo gene birth.

Keywords Spontaneous mutation, Structural variation, Mutation rate, Distribution of fitness effects, Adaptation, De 
novo gene birth

Background
An organism’s genome consists of several types of loci 
that are known to perform diverse functions: these 
functional loci include genes, gene regulatory regions, 
and sequences maintaining chromosome structure [1]. 
However, measuring the proportions of the functional 
parts of genomes is a subject that is fraught with disa-
greements, which stem from problems with our concep-
tion of what constitutes a functional genomic locus [2]. 
While evidence of selection at a genomic locus is a strong 

indicator of function, problems arise when one considers 
the emergence of functionality in a previously non-func-
tional locus. The subject of emergence of functionality is 
especially relevant for the study of de novo gene birth, 
whereby novel genes are born from previously non-
genic loci [3]. Specifically, de novo gene birth involves a 
previously non-genic locus gaining the ability to express 
a functional product. Hereafter, our definition of func-
tional product includes both proteins and RNA.

De novo gene birth is a widespread phenomenon: well 
known examples of de novo genes exist across multiple 
evolutionary lineages, such as plants [4], fungi [5], and 
animals [6], including humans [7]. At the same time, 
measuring the rate of de novo gene birth is not straight-
forward [3]: firstly, evolutionary conservation forms a 
basic criterion for a sequence to even be considered a 
“gene,” and candidates for de novo emerged genes nec-
essarily show some level of conservation. Secondly, the 
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only conclusive criteria for proving de novo emergence 
is to identify the non-coding ancestral sequence and 
identify enabler mutations that first allowed expression 
of this sequence [8]. These two criteria are at odds with 
each other, since the likelihood that traces of the homol-
ogous ancestral sequence are lost increases with time 
and, hence, with conservation level. Therefore, strict 
criteria for choosing candidate “genes” and strict crite-
ria to ascertain “de novo emergence” lead to an under-
count [9]. On the other hand, genomic analyses based 
on synteny [10] and phylostratigraphy [11] find indirect 
evidence of de novo gene emergence based on the lack of 
a homologous ancestral coding sequence. These indirect 
counts are most likely to be overcounts, and thus the 
proposed prevalence of de novo gene birth remains con-
tested [12]. In parallel, new methods to detect de novo 
genes based on machine learning techniques are also 
being developed [13].

Our understanding of the range of possible mecha-
nisms of de novo gene birth comes from several well-
known case studies. The proposed mechanisms are 
typically expressed as a series of sub-steps involving gains 
and losses of stable transcription, open reading frames 
[3], and sequences for nuclear export of RNA [14]. 
Case studies have also uncovered how certain genomic 
regions, such as introns [15], and certain tissues like the 
brains and testes of animals [3] favor the emergence of 
de novo genes. These mechanisms serve as very useful 
descriptors of the conditions under which de novo gene 
birth becomes likely. Nevertheless, in order to formulate 
a predictive theory of de novo gene birth, it is necessary 
to connect these complex descriptions with empirically 
measured rates and effects of simple genomic changes 
such as mutations and structural variations. In this work, 
we attempt to bridge this gap: we envisage that contribu-
tions of genomic loci to organismal fitness, which is often 
measured in terms of the organism’s growth rate, can be 
used as a correlate of the functionality of these loci. For 
example, in [16], the physiological activity of putative 
yeast proto-genes was demonstrated when overexpres-
sion of these genes impacted growth rate. In this study, 
we use an evolutionary model to explore how the contri-
bution of a non-functional genomic locus to organismal 
fitness might increase over time due to accumulating 
mutations, and investigate the implications of this pro-
cess for de novo gene birth.

The effects of novel, spontaneous mutations on growth 
rate have been experimentally measured for various 
organisms [17]. The outcomes of these studies are rep-
resented as DFEs (distributions of fitness effect), which 
are distributions of the magnitude of mutational effects 
on growth rate. In our model, we sample biologically rea-
sonable distributions of fitness effect of mutations using 

recently measured DFE parameters for Chlamydomonas 
reinhardtii [18] as reference. Notably, observations 
in  [18] indicate that the DFE of specific regions of the C 
reinhardtii genome, such as exons, introns or intergenic 
sequences, are similar to each other and to the DFE of the 
whole genome. However, in general, the DFE is known 
to vary across different regions of the genome  [19] and 
across different species [20]. Particularly, we expect most 
mutations incident on non-functional genomic loci to 
be neutral. Accordingly, we sample a wide range of DFEs 
in the vicinity of the DFE reported in [18], and a large 
number of the sampled DFEs mostly produce neutral 
mutations.

Over a time scale of millions of years, in addition to 
small mutations (< 50 bp), one can also expect large struc-
tural variations (from 50 bp up to several megabases) 
to impact the evolution of genomic loci [21]. While the 
rate of structural variation is estimated to be hundreds of 
times slower than the rate of small mutations, its effect 
is likely to be much larger [22]. Of particular importance 
to our question is the possibility that the entire genomic 
locus under consideration gets deleted. Therefore, we test 
in our model whether an initially non-functional locus 
can survive in the face of locus deletion for long enough 
to allow for adaptation.

Finally, we consider the particular case of de novo gene 
birth, whereby a previously non-functional locus gains 
the ability to express a functional product (protein/RNA). 
Recent studies report how new genes gain expression [23] 
and functionality [24] over time. Measurements from 
mutational scans of protein-encoding genes indicate 
that the overall fitness contribution of a gene is a com-
bination of the adaptive value of the gene product and 
its expression level [25]. We envisage that equivalently, 
during the process of de novo gene birth, mutational fit-
ness effects can be decomposed into the effect on adap-
tive value and the effect on expression level. In the model, 
we use the DFE, together with empirical measurements 
of mutational effects on expression, to extract a scenario 
of the evolution of the adaptive value of the de novo gene 
product.

We find that the DFE alone is insufficient to determine 
the fate of non-genic loci, and the interplay of mutation 
rate and selection plays a crucial role. We tested the pre-
dictions of our model under two mutation rate regimes: 
in nature, most organisms have a mutation rate in the 
range 10−11-10−8 mutations per base-pair per generation 
(Additional file  1: Table  1 [18, 26–46]―the lower end 
of mutation rates corresponds to the germline of ciliate 
Tetrahymena thermophila [35] and the higher end cor-
responds to the plant Arabidopsis thaliana [44]). This 
range falls under the low mutation rate regime, whereas 
population dynamics in laboratory growth competition 



Page 3 of 18Mani and Tlusty  BMC Biology          (2023) 21:257  

experiments such as in [47], where multiple variants of a 
gene compete against each other for a small number of 
generations, are comparable to the high mutation rate 
regime.

Our model produced contrasting pictures for these 
regimes: In the high mutation rate regime, we find that 
a wide range of biologically reasonable DFEs allow func-
tionalization of non-genic loci. Moreover, this gain of 
functionality occurred despite the antagonistic effects 
of locus deletion, particularly for the C reinhardtii DFE 
parameters. In the special case of de novo gene birth, 
mutational effects on adaptive value had a short-tailed 
distribution, thus implying that the rare, extreme muta-
tions that are characteristic of DFEs are driven solely by 
mutational effects on expression level.

On the other hand, in the more natural low mutation 
rate regime, we find that conditions that allow function-
alization of non-genic loci are much more stringent, 
and populations are very sensitive to the effects of locus 
deletion. Moreover, in the case of de novo gene birth, 
mutational effects on adaptive value had a long-tailed 
distribution; this implies that in the low mutation rate 
regime, the rare, extreme mutations in DFEs are driven 
by both mutational effects on expression level and adap-
tive value.

However, under both the low and high mutation rate 
regimes, we find that mutations in adaptive value, rather 
than expression level are the major drivers for the sus-
tained fitness increase over evolutionary time. Our 
results can be tested experimentally using high through-
put mutational scans on random initial sequences; such 
experiments stand to offer quantitative insights into the 
process of de novo gene birth.

Model of non‑functional locus adaptation
We set up a population genetic framework to model 
well-mixed finite populations of fixed size N, composed 
of asexually reproducing, haploid individuals. Fitness of 
an individual represents growth rate in the exponential 
phase, which is equivalent to the quantities considered in 
experiments that measure DFEs (e.g., [18]). In this work, 
for any individual i, we consider the evolution of the fit-
ness contribution F(i) of a single locus in its genome. We 
are interested in the probability that the locus persists in 
the population and that its fitness contribution increases 
above some large, predetermined threshold. In this study, 
we use a fitness threshold of 0.1, which is much larger 
than the typical effect sizes of incident mutations.

In particular, we examine the special case of de novo 
gene birth, where the functional product of a gene can be 
either protein or RNA. We decompose the fitness con-
tribution into two quantities: functionality, or adaptive 
value of the expression product (A(i)), and its expression 

level (E(i)). Note that this decomposition represents the 
limiting case where the whole fitness contribution of the 
de novo gene is due to the gene product. It is likely that 
for emerging genes, the relative contribution of the gene 
sequence due to its role in gene regulation, or chromo-
some arrangement is comparable to the contribution of 
the expression product, and this relative contribution 
is itself an evolvable feature of the locus. Our definition 
of fitness of the product is not tied to any specific func-
tion, and we assume that F(i) = A(i)× E(i) . We note 
that genes exert their effect on organismal fitness within 
the context of a molecular interaction network and never 
work in isolation [48]. Formally, in our definition, adap-
tive value A represents the maximal contribution to 
organismal fitness made by the expression product, con-
ditional upon the underlying cellular molecule interaction 
network. Hence, A is a simple measure that incorporates 
the effects of all other genes. In the model, this maximal 
fitness contribution is realized at the maximal expression 
level, E = 1 . And �A is the change in the maximal fitness 
contribution of a variant due to a mutation. Notice here 
that while this decomposition is fairly straightforward for 
unicellular organisms, the case of multicellular organisms 
is more complicated: in general, we can expect different 
cell types to express the same gene at different levels. 
Therefore, in multicellular organisms, fitness is a function 
of the expression profile of the gene across all cell types. 
Hence, we limit our discussion of de novo gene birth to 
unicellular organisms.

The locus of interest is non-genic, with initial adap-
tive value A0(i) = 0 , and an initial expression level 
E0(i) = 10−3 for all individuals. The initial expression 
level captures leaky expression of intergenic regions [49], 
which is estimated to be 1000-fold smaller than the level 
of highly expressed genes [50].

A single time-step is the time it takes for one mutation 
to occur in the locus. Now, the size of a single locus is 
very small compared to the whole genome. Hence, it is 
reasonable to assume that the rest of the genome accrues 
many more mutations in the time it takes for a single 
mutation to be incident on our locus of interest. The 
duration of a time-step for different organisms is equiv-
alent to the inverse of the average mutation rate meas-
ured for these organisms: For a locus of ∼100 base pairs, 
a single model time-step can range between 102 − 105 
years for different organisms (Fig. 1B, see also Additional 
file  1: Table  1). That is, a single time-step in the model 
encompasses many generations. Hence, populations at 
different time-steps of the model are non-overlapping; 
the population at time-step t + 1 is composed entirely of 
the offspring of individuals in the time-step t (Fig.  1A). 
Offspring incur mutations at each time-step, which affect 
the locus fitness ( �F(i)).
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In the case of de novo gene birth, �F(i) can be 
decomposed into mutational effects on adaptive value, 
�A(i) , and expression level, �E(i):

Offspring can also incur structural variations, which 
in the model leads to the deletion of the locus in that 
individual. The probability of locus deletion d repre-
sents the rate of structural variation relative to muta-
tion rate.

(1)Ft+1(i) = Ft(i)+�Ft(i)

(2)
and, Ft+1(i) = (At(i)+�At(i)) · (Et(i)+�Et(i))

In this study, we separately investigate two qualitatively 
different scenarios:

• When mutation rate is high, and the number of gen-
erations between two model time-steps is < 2000 , we 
model the probability that an individual leaves an off-
spring in the next time-step as being proportional to 
the fitness F(i) of the locus.

• When mutation rate is low, and the number of gen-
erations between two model time-steps is > 2000 , 
a single variant gets fixed in the population before 
the next mutation arrives. This is in contrast with 
the high mutation rate regime, where each model 

Fig. 1 Time-scale and fitness effects of mutations in the model. A Phylogenetic tree representing the evolution of a non-genic locus. A model time 
step t spans the average time it takes for a mutation to occur in the locus. The grey dot at t = 0 represents the initial non-genic sequence. Grey 
branches represent lineages that die out, and colored branches represent the lineage that gets fixed in the population. Fitness levels of colored 
branches in the fixed lineage are indicated in the color bar. The blue dot at t = n represents the most recent common ancestor of all surviving 
lineages whose fitness contribution is above the threshold. B Estimates of the number of years equivalent to a single time-step of the model 
in the different species listed on the x-axis. The point representing Chlamydomonas reinhardtii is circled in red. See Additional file 1: Table 1 
for calculations. C Distributions of fitness effects (DFE) for different values of model parameters (listed for each distribution). All DFEs shown here 
have the same shape parameter, s = 0.3 , which controls how long-tailed the distributions are. The top left panel represents the DFE with model 
parameters closest to those measured for C reinhardtii in [18]. The bottom left panel represents the DFE with the most deleterious and least 
beneficial mutations. The bottom right panel represents the DFE with the most beneficial and least deleterious mutations sampled in this work
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time-step is initialized with multiple variants 
(Additional file  1: Section  2). Here, we model the 
probability of fixation of an individual i at each 
model time-step as being proportional to its fit-
ness F(i). This increase in fixation probability with 
fitness is consistent with studies that infer evolu-
tionary outcomes in simpler situations with homo-
geneous populations and a single mutant [51] (we 
describe how we update populations with high and 
low mutation-rates in the “Method to update popu-
lation fitness” section).

For simplicity, we do not consider the compounding 
effects of competition with established genes and genetic 
interactions such as linkage and epistasis in the main 
manuscript (see Additional file  1: Section  3 for a dis-
cussion of evolution in the presence of other non-genic 
loci and established genes, and the effect of diminish-
ing returns epistasis). Whenever F(i) ≤ −1 , we consider 
the locus lethal and such individuals cannot produce 
offspring. We update populations for 1000 time-steps, 
equivalent to   0.1–100 million years, depending on the 
organism and size of the locus (Additional file 1: Table 1).

Fitness effects of mutations ( �F(i) ) are drawn from 
the characteristic DFE of the locus (Fig.  1C). Multiple 
studies indicate that long-tails are important features 
of DFEs, which can be captured by the general form of 
long-tailed gamma distributions   [52, 53]. Therefore, we 
choose to follow   [18] and represent DFEs as two-sided 
gamma distributions and characterize them using four 
parameters: (i) average effect of beneficial mutations p, 
(ii) fraction of beneficial mutations f, (iii) average effect of 
deleterious mutations n, and (iv) the shape parameter s, 
where distributions with lower s are more long-tailed. In 
our simulations, we first decide whether a new mutation 
is beneficial or deleterious by using f as the probability 
of beneficial mutations. We then draw mutational effect 
sizes: we use a gamma distribution with parameters p and 
s for beneficial mutations, and a gamma distribution with 
parameters n and s for deleterious mutations (“Method to 
update population fitness”).

Mutations in the model represent the mutation types 
included in [18], which were single-nucleotide mutations 
and short indels (insertions or deletions of average length 
≤ 10 bp) [54]. Note that the quantity reported in experi-
mental studies is the DFE across the whole genome. We 
account for differences in DFEs across species and loca-
tions along the genome by sampling widely across these 
four parameters p, f, n, s. Consistent with the expectation 
that mutations at non-genic loci should be mostly neu-
tral, the parameters we sample include a large number 
of DFEs which produce a majority of neutral mutations 
(Additional file 1: Section 4).

We also use empirical measurements to estimate the 
distribution of mutational effects on expression. Studies 
indicate that mutational effects on expression from estab-
lished promoters follow a heavy-tailed distribution [55]. 
More relevant to our study of de novo gene birth are the 
recent measurements of mutational effects on expression 
from random sequences  [46], which follow a power law 
distribution, Pr(�E) ∼ �E−2.25 . We assume in the model 
that each mutation has two components: a component 
that affects the adaptive value of the product ( �A(i) ) 
and a component that affects expression level ( �E(i) ). At 
each time step, we use the above power law distribution 
to draw �E(i) . We then calculate values of mutational 
effects �A(i) using Eqs. (1) and (2), given distributions 
of mutational effects on fitness and on expression level 
(“Method to update expression level and adaptive value”; 
see also Additional file  1: Section  5 for possible devia-
tions from the power-law �E distribution due to the very 
small initial values E(i)).

In all, we survey 432 parameter sets―108 DFE param-
eters p, f, n, s, and 4 parameter values for d, representing 
the probability of locus deletion―(Fig. 1C). We simulated 
replicate populations by performing 100 independent 
stochastic simulations with the same set of parameters 
for population sizes N = 100, 1000 (“Surveying the space 
of DFE and locus deletion parameters in populations of 
various sizes”). Simulating replicate populations allows us 
to estimate the probability that non-genic loci with prop-
erties comparable to model parameters can adapt and 
become functional.

At the end of each simulation, we trace the ancestry of 
each locus in each individual (“Tracing ancestry to find 
fixed mutations”) in order to track the fitness contribu-
tion of the last common ancestor of the locus: for popu-
lations in the high mutation rate regime, the ancestry of 
all individuals at some time-step t can be traced back to 
a single individual at some previous time-step t − tfix , 
whereas, for populations in the low mutation rate regime, 
all individuals at time-step t are the progeny of the single 
variant that gets fixed in the time-step t − 1 . We count 
the number of replicate populations in which the locus is 
still retained at time-step t = 1000 , and the last common 
ancestor of individuals at t = 1000 is fitter than the pre-
determined fitness threshold of 0.1 (Fig. 1A).

Results
Tuning the number of neutral mutations
Many studies report the abundance of deleterious 
mutations compared to beneficial mutations, but there 
is plenty of evidence to the contrary as well [56]. We 
do not have extensive empirical measurements of the 
DFE of non-genic loci, nevertheless, since these loci are 
not expected to be expressed at high levels, it makes 
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intuitive sense to assume that most non-genic muta-
tions should be nearly neutral. In order to reconcile the 
above factors, we explore a wide range of DFEs around 
the DFE reported for C reinhardtii in [18].

To test the diversity of DFEs we sample in this study, we 
count the number of positive-effect, negative-effect, and 
neutral mutations that the different DFEs produce. Theo-
retically, we expect mutational effects of magnitude 10−3 to 
be neutral for a population of size N = 1000. We use a more 
stringent condition and count mutations with effect size 
< 0.5× 10−3 as effectively neutral (we also demonstrate 
neutrality of these mutations in Additional file 1: Section 4). 
Thus, we count mutations of effect ≥ 0.5× 10−3 as posi-
tive effect mutations, mutations with effect ≤ −0.5× 10−3 
as negative effect mutations, and mutations with effect 
between −0.5× 10−3 and 0.5× 10−3 as neutral mutations.

In particular, we measured how the parameters of 
the model control the fractions of positive, neutral, and 
negative effect mutations (Fig. 2A) and the magnitudes 
of positive and negative effect mutations (Fig.  2B). 
Importantly, we find that the fraction of neutral muta-
tions decreases with the shape parameter (s).

Out of the 108 DFEs sampled, 50% of the different 
DFEs produced more neutral mutations than positive or 
negative effect mutations. In 52% DFEs, negative effect 
mutations were more numerous than positive effect 
mutations, and in 70% DFEs, average effect size of nega-
tive mutations was larger than that of positive mutations. 
Eighteen out of 108 DFEs had more neutral mutations 
than positive or negative mutations and produced larger 
and more numerous negative effect mutations than posi-
tive effect mutations, whereas only 1 DFE had fewer neu-
tral mutations than either positive or negative mutations 
and smaller and fewer negative effect mutations than 
positive effect mutations. Overall, the parameters we 
sample cover a broad range of DFEs; many, but not all, 
of the sampled DFEs match our intuitive beliefs and pro-
duce mainly neutral and deleterious mutations.

Conducive parameters for adaptation
We want to understand which of the 108 DFE parame-
ter sets (p, n,  f,  s) that we test are conducive to adapta-
tion. In order to do this, we simulate the evolution of 
loci for which incident mutations follow a given DFE in 

Fig. 2 Proportions and magnitudes of positive effect and neutral and negative effect mutations. The plots includes data for 1.08× 109 mutations: 
107 mutations independently drawn using each of the 108 parameters sets (p, n, f, s) sampled in this study. In A, B, grey indicates positive effect 
mutations, blue indicates neutral mutations and black indicates negative effect mutations. A Stacked histograms indicating the average proportions 
of mutations drawn using parameter values indicated on the x-axis that have positive, neutral or negative effect. B Mean effect sizes of positive 
(grey) and negative (black) mutations drawn using parameter values indicated on the x-axes. Boxes indicate data points, lines within boxes indicate 
the median, whiskers indicate quartiles, and diamonds indicate outliers
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populations of size N = 1000 . We perform this simu-
lation in 100 replicate populations for each of the 108 
DFEs. These simulations do not include locus deletion 
(i.e., d = 0 ). We also test how mutation rate influences 
the fate of non-genic loci: We perform two separate sets 
of these 10,800 simulations corresponding to population 
dynamics at high and low mutation rates respectively.

In the model, we keep track of the ancestors of all the 
individuals at any given time-step. After a sufficient num-
ber of time-steps, we find that all individuals at some 
time-step t come from a single common ancestor: In the 
low mutation rate regime this common ancestor occurs 
in the immediately previous generation t − 1 , while in the 
high mutation rate regime, the common ancestor can be 
traced back to ∼ 100 time-steps ago. We call this most 
recent common ancestor of all individuals at time-step t 
the “last common ancestor.” Equivalently, we say that the 
variant of the locus present in this “last common ances-
tor“ is fixed in the population at time t. In this analysis, 
we check whether or not the fitness contribution of the 
variant in the last common ancestor of all individuals at 
time-step t = 1000 has crossed the threshold of F = 0.1 . 
We call the fraction of replicate populations in which the 
fitness threshold is crossed the conducivity of the cor-
responding DFE. And we call a given set of DFE param-
eters conducive if its conducivity ≥ 0.5 ; i.e., the fitness of 
the last common ancestor for individuals at time-step 
t = 1000 crosses 0.1 in at least 50 out of 100 replicate 
populations.

High mutation rate: rare beneficial mutations are sufficient 
for adaptation
We find that a majority (80 out of 108) of DFE parameter 
sets are conducive (Fig. 3A grey bars, see Additional file 1: 
Fig. S8 for N = 100 ). Moreover, the bimodality of the 
grey histogram in Fig. 3A indicates that DFE parameters 
tend to either be highly conducive or highly repressive 
to adaptation. As one can anticipate, the conducive DFE 
parameter sets tend to have high values for the magni-
tude (p) and the frequency of beneficial mutations (f) and 
low values for the magnitude of deleterious mutations (n) 
(Fig. 3A, inset―blue bars, see also Additional file 1: Fig. 
S8(A), inset). In particular, for the DFE parameters clos-
est to C reinhardtii, 97% of the N = 1000 replicate popu-
lations ( 52% of N = 100 replicate populations) crossed the 
fitness threshold. Parameters representing non-conducive 
DFEs showed the opposite trends; they tend to have low 
values for the magnitude (p) and the frequency of ben-
eficial mutations (f) and high values for the magnitude 
of deleterious mutations (n) (Additional file  1: Fig. S9). 
Non-conducive DFEs are highly repressive, and for 24 
out of the 28 non-conducive DFEs, none of the N = 1000 
replicate population crossed the fitness threshold.

We also compared the number and magnitudes of posi-
tive and negative effect mutations: 21% of DFEs had more 
numerous and larger positive effect mutations, and 100% 
of these DFEs were conducive. However, 45% of the DFEs 
had more numerous and larger negative effect mutations, 
and 49% of these very stringent DFEs were also condu-
cive. Among the stringent DFEs, conducivity was strongly 
negatively correlated with the number of negative effect 
mutations (Pearson’s correlation coefficient R = −0.60 , 
p-value = 4.5× 10−6).

In a principal components analysis (PCA) of the pro-
portions and magnitudes of positive, negative, and neu-
tral effect mutations, the first three components capture 
a large part (77.5%) of the variance in model-generated 
data (Additional file  1: Section  6.3). DFE conduciv-
ity correlates well with all three principal components 
(PCs). In particular, the first PC is highly correlated with 
the shape parameter (s) (Additional file 1: Table 2). This 
is in line with our observation that a substantial number 
of model loci where positive effect mutations were small 
and rare could adapt and cross the fitness threshold of 
0.1 (Additional file  1: Fig. S6(B)). We find that param-
eters with low values of the shape parameter (s) can 
compensate for low frequencies and small average effect 
size of beneficial mutations (Additional file  1: Figs. 
S11(A), S12). Notably, while the conducivity of DFEs is 
strongly negatively correlated with the proportion of 
negative effect mutations (Pearson’s correlation coeffi-
cient R = −0.68 , p-value = 4.9× 10−16 ), it is positively 
correlated with both the proportion of positive effect 
mutations and neutral mutations (R = 0.35, (p-value = 
1.8× 10−4 ), R = 0.3 (p-value = 1.6× 10−3 ) respectively.

Overall, we find that in the high mutation rate 
regime, even very rare large-effect beneficial mutations 
are sufficient for adaptive evolution. We further test 
our conclusion in an alternative scenario: we use a non-
conducive DFE ( p = 0.001, n = 0.005, f = 0.25, s = 0.1 ), 
augmented by extremely rare (probability = 0.0001), 
large effect positive mutations ( �F = 0.15 ). Consist-
ent with our findings, the evolution of the locus under 
this scenario leads to adaptation (Additional file  1: 
Section 7).

Low mutation rate: adaptation requires frequent and large 
beneficial mutations
In this regime, 43 out of 108 DFE parameter sets are 
conducive (Fig.  3A dull green bars). While the histo-
gram of DFE conducivity is bimodal, there are many 
more parameters with intermediate conducivity. Con-
sistent with the case of high mutation rates, condu-
cive DFE parameter sets tend to have high values for 
the magnitude and the frequency of beneficial muta-
tions (p and f) and low values for the magnitude of 
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deleterious mutations (n) (Fig.  3A, inset-green bars); 
correspondingly, parameters representing non-condu-
cive DFEs tend to have low values for the magnitude 
(p) and the frequency of beneficial mutations (f), and 
high values for the magnitude of deleterious mutations 
(n) (Additional file 1: Fig. S9).

However, in the low mutation rate regime, the require-
ments for gene birth are much more strict, and for the 
DFE parameters closest to C reinhardtii, none of the rep-
licate populations crossed the fitness threshold (Fig. 3B, 
right panel). Overall, 24% of DFEs that had more numer-
ous and larger positive effect mutations were conducive, 

Fig. 3 Probability of crossing fitness threshold via accumulating mutations. A Histogram for DFE conducivity―the fraction of replicate populations 
(of size N = 1000 ) with the same DFE where the locus fitness goes on to cross the 0.1 threshold, at the absence of locus deletion ( d = 0 ). Bars 
indicate the number of DFE parameter sets (p, n, f, s) in a given conducivity bin (grey bars―high mutation rate regime, dull green bars―low 
mutation rate regime). This figure includes 108 DFE parameter sets for each of the low and high mutation rate regimes. Inset: Histograms 
for the fraction of conducive parameter sets with given values of parameters p, n, f, or s (blue bars― high mutation rate regime, and green bars―
low mutation rate). B Trajectories of population averaged fitness in one of the replicate populations with DFE parameters indicated in the legend, 
and no locus deletion, d = 0 , for a population with high (left) and low (right) mutation rates. This DFE is closest to the one reported for C reinhardtii 
in [18]. Black lines show average fitness with shading showing standard deviation. The red point in the left panel indicates the time step at which 
average fitness reached a minimum value. Each panel includes fitness values for N = 1000 individuals over 1000 time-steps. C, D Scatter plots 
showing the effect of locus deletion in 432 parameter sets (4 values of locus deletion rate d for each of 108 DFEs). The x-axis indicates the time 
at which minimum average fitness is achieved, where the average is over all populations with the same DFE parameters, p, n, f, s (with random jitter 
to make point density more apparent). The dotted red line indicates the time of minimum average fitness for DFE parameters close to C reinhardtii. C 
High mutation rate regime: black (blue) points represent parameter sets where ≥ 50% ( < 50% ) of replicate populations cross the fitness threshold. 
All populations where the fitness threshold was crossed retain the locus. D Black (green) points represent parameter sets where ≥ 50% ( < 50% ) 
of replicate populations cross the fitness threshold. Brown points represent parameter sets where the fitness threshold was crossed in ≥ 50% 
of replicate populations, and the locus was subsequently lost in > 95% of the replicate populations
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and only 1.5% of the very stringent DFEs that had more 
numerous and larger negative effect mutation were 
conducive.

Moreover, in the principal components analysis, DFE 
conducivity correlates well with the second and third, but 
not the first PC (Additional file 1: Table 2). In line with 
this, the shape parameter (s), which is highly correlated 
with the first PC, does not compensate for small and low 
frequency beneficial mutations (Additional file 1: Table 2, 
Fig. S11(B)). Consistently, the conducivity of DFEs is 
strongly negatively correlated with the proportion of neg-
ative effect mutations (Pearson’s correlation coefficient 
R = −0.58 , p-value = 4.8× 10−11 ) and positively cor-
related with the proportion of positive effect mutations 
( R = 0.50 , p-value = 3.3× 10−8 ), but shows weak and 
non-significant correlations with the number of neutral 
mutations ( R = 0.1 , p-value = 0.3). Thus, in contrast with 
the high mutation rate regime, rare beneficial mutations 
are not sufficient to drive adaptation in the low mutation 
rate regime.

Population dynamics and fitness trajectories
We next looked at the trajectories of population averaged 
fitness in order to find out whether there are significant 
regularities in the dynamics of adaptation.

High mutation rate: fitness trajectories transition 
from a mutation dominated to a selection dominated phase
We find that the fitness trajectories of populations where 
the fitness threshold is crossed have a typical shape: first, 
the average population fitness decreases to reach a mini-
mum value. Beyond this, the average population fitness 
increases roughly linearly (Fig. 3B, left panel). We intuit 
that these two phases can be explained by the oppos-
ing effects of new incident mutations and of selection: 
in the first phase where the population average fitness 
decreases, fitness is likely dominated by the effects of 
new mutations which are more likely to be deleterious/
neutral (in 52% DFEs, negative effect mutations were 
more numerous than positive effect mutations, and in 
70% DFEs, average effect size of negative mutations was 
larger than that of positive mutations). In the second 
phase, population average fitness increases because the 
effects of selection become apparent after a sufficient 
amount of time has passed and dominate over the effect 
of new, incoming mutations.

These fitness trajectories are reminiscent of the 
dynamics of learning through adaptive strategies in 
gambling problems, where an initial phase of loss of 
capital due to the cost of learning is followed by recov-
ery [57]. Although, at the level of a single organism, the 
fitness effects of new mutations are independent of the 

history of mutations that came before, natural selection 
endows populations with a form of memory [58, 59].

Two numbers indicate the point in the trajectory at 
which selection leads to consistent improvement in 
fitness: minimum average fitness and time at which 
minimum fitness is achieved (Fig.  3B, left panel). As 
expected, populations with lower minimum fitness 
spend longer in the decreasing fitness regime (Pear-
son correlation coefficient between minimum fitness 
and time of minimum fitness = − 0.87, with p-value = 
5.5× 10−34 ; see Supplementary Fig. S9). We interpret 
the time of minimum fitness as representing the amount 
of time it takes for the effect of selection to start domi-
nating over the effect of new incident mutations. In the 
high mutation regime, DFE parameters, especially p 
and f, are significantly correlated with time of minimum 
fitness (Pearson’s R = −0.41 (p-value = 9.3× 10−6 ) and 
−0.52 (p-value = 1.9× 10−8 ), respectively; see Addi-
tional file 1: Table 3)).

Low mutation rate: fitness trajectories always governed 
by incident mutations
In simulations with low mutation rates, a single variant 
gets fixed in the population at each model time-step. 
Therefore, although the absolute values of fitness vary 
across model time-steps, the distribution of relative fit-
ness remains unchanged and are governed by the fitness 
effects of incident mutations. Hence, in the low mutation 
rate regime, “learning” occurs during the many rounds of 
selection in the generations intervening two mutational 
time-steps and is not visible at the time-scale of model 
time-steps. Consistently, even for conducive DFE param-
eters, fitness trajectories do not have a selection domi-
nated phase of persistent fitness increase (Additional 
file 1: Section 9).

Dynamics of adaptation, locus loss, and retention
We next test the effect of large structural variations 
that can delete the entire locus in an individual on the 
chances that the locus can adapt and become fixed in the 
population. Note that we are concerned with the general 
case of gain of functionality by a locus, which may or may 
not be due to expression of a product (protein or RNA). 
In the particular case where the locus expresses a protein 
product, there are many ways to erase functionality, such 
as by disrupting mRNA export from the nucleus, ribo-
some binding site, or truncating gene products through 
non-sense mutations. Here, we only study the effect of 
locus deletion, which affects all loci irrespective of their 
particular mode of function.
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High mutation rate: mutations drive adaptation 
despite the effect of locus deletion
When d > 0 , The effect of locus deletion can be under-
stood in terms of a competition between two sub-pop-
ulations: the sub-population that has lost the locus, and 
therefore lacks any fitness contribution from it, and the 
sub-population that retains it (Additional file  1: Sec-
tion 10). The probability that the sub-population that has 
lost the locus takes over increases with time of minimum 
fitness as calculated for the case where d = 0 : the longer 
the average fitness remains negative, the more probable 
is the loss of the locus from the whole population. There-
fore, fewer replicate populations with DFEs such that 
minimum fitness is reached later go on to cross the fitness 
threshold of 0.1 (Fig.  3C, Additional file  1: Fig. S13(B)). 
As a consequence, the number of conducive parameter 
sets (out of 108 sets overall) reduces from 80 at d = 0 to 
74 at the plausible value of d = 0.005 and to 69 and 50 at 
the inordinately high values of d = 0.01 and 0.05, respec-
tively. Particularly, the DFE closest to C reinhardtii, for 
which minimum fitness and time of minimum fitness 
averaged across all replicate populations are −0.035 and 
55.7 respectively, is still conducive at d = 0.005 (Fig. 3C, 
red dotted line).

Low mutation rate: structural variations lead to locus loss 
despite adaptation
In this regime, a single variant gets fixed at every time 
step, which results in populations being very sensitive 
to locus deletion. The dynamics can still be understood 
in terms of sub-populations, which now compete for 
fixation during the many intervening generations within 
one model time step: At every time step, the locus gets 
deleted in a small fraction of the population, and there is 
a finite probability that an individual from this sub-pop-
ulation takes over and becomes fixed in the population. 
This probability is proportional to the relative fitness of 
the sub-population that has lost the locus (Additional 
file 1: Section 2).

Hence, adaptation in this regime requires consist-
ent fixation in successive time-steps of variants from 
the sub-populations that contain the locus. Addition-
ally, the larger the magnitude of beneficial mutations 
that are fixed in subsequent time-steps, the faster the 
decrease in relative fitness of the sub-population that 
has lost the locus. Consistent with this picture, many 
populations where the fitness of the locus does not 
grow fast enough lose the locus despite having crossed 
the threshold of 0.1 (Fig.  3D, brown points): for the 
plausible value of d = 0.005 , for 29 DFE parameter sets 
> 50% replicate populations cross the fitness threshold 

of 0.1, and for 9 of these 29 parameter sets, the locus is 
subsequently lost from > 95% of the replicate popula-
tions. This result is in agreement with the observations 
in Drosophila, where proto-genes that get fixed in pop-
ulations are very often lost [60] despite showing signs 
of adaptation [61].

For d = 0.005 , all 29 DFE parameters for which the 
locus is retained (Fig.  3D, black points) have more 
numerous positive effect mutations than negative effect 
mutations, and 75% of these have larger positive effect 
mutations than negative effect mutations. For the high 
value of d = 0.01 , 20 DFE parameter sets are condu-
cive to adaptation, and the locus is subsequently lost 
from > 95% of the replicate populations for all of these 
parameter sets. For d = 0.05 , there are no conducive 
DFE parameter sets.

Functionality and expression as drivers of adaptation
In the model, we draw mutational fitness effect ( �F  ) 
and mutational effect on expression level ( �E ) inde-
pendently from their respective distributions. We then 
derive �A using the relation in Eq. (2). Note that the 
distribution of �A we report is a population measure 
which depends on the standing fitness variation. Hence, 
we expect the distinct population dynamics in the high 
and low mutation rate regimes to lead to distinct distri-
butions of �A . The shape of the distribution of �A that 
we derive here is an important indicator and reflects 
how single small mutations affect the functionality of 
newly emerging genes.

We also ask whether fitness increase during de novo 
gene birth is driven more by changes in adaptive value 
or expression level. As a measure of the strength of driv-
ing, we use correlations between the trajectory of popu-
lation averaged fitness and the trajectories of population 
averaged adaptive value and expression level (although 
instantaneous values of fitness, expression level, and adap-
tive value have a simple relationship ( F = A× E ), the 
trajectories of these quantities over evolutionary time 
also include the effect of selection and heritability, and 
their correlations are therefore non-trivial). To illustrate, 
although �F(i) and �E(i) for mutations are drawn from 
independent distributions, the process of selection effec-
tively links fitness and expression level and imposes cor-
relations between their evolutionary trajectories (compare 
Additional file 1: Figs. S19(A) and S20). The correlations 
between the trajectories of fitness, expression level, and 
adaptive value measure the degree to which the direction 
of changes in average fitness levels (increase/decrease) 
reflect the directions of change in average expression lev-
els and adaptive values in the population.
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High mutation rate: functionality drives sustained 
adaptation, while expression drives extreme mutational 
events
In this regime, our decomposition of fitness into expres-
sion level and adaptive value yields an exponential distri-
bution for mutational effects on adaptive value (Fig. 4A, 
Additional file  1: Section  12). The short-tailed nature 
of �A distribution implies that mutations with large 
effects on adaptive value are highly unlikely. Therefore, 
the extreme mutational effects on fitness, which under-
lie the long tails of DFEs, are likely to be due to large 

changes in expression level. We anticipate that our result 
on the �A distribution can be measured experimen-
tally; for instance, one could generate random mutants 
of known proto-genes, and measure the fitness effects of 
these mutations using techniques demonstrated in [16]. 
We also expect that dynamics in the high mutation rate 
regime should be more suited to capture conditions in 
laboratory experiments (as in [47]).

At the same time, correlations between the trajectories 
of fitness, expression level, and adaptive value indicate 
that increase in fitness was driven more by the adaptive 

Fig. 4 Distribution of �A and the drivers of fitness increase. We used the distribution reported in [46] to generate �E in order to obtain trajectories 
of expression level, E, and adaptive value, A, from which we infer values of �A . A, C Histograms of 108 �A values each (pooled across all 1000 
individuals in all 100 replicate populations for 1000 time-steps) with A high mutation rate dynamics and Chlamydomonas DFE parameters 
[p, n, f , s] = [0.001,−0.01, 0.75, 0.3, 0] with an exponential fit (blue). C Low mutation rate dynamics and the most stringent conducive DFE 
parameters [p, n, f , s] = [0.005,−0.005, 0.5, 0.1] , with a fit to a power-law distribution (black). B, D Scatter plots of correlation of population-averaged 
fitness trajectories with trajectories of population-averaged expression level (x-axis) and trajectories of population-averaged adaptive value (y-axis), 
in populations following high (B) and low (D) mutation rate dynamics. The black (blue/green) points represent populations that cross (do not cross) 
the fitness threshold. Overall, each plot contains 108× 100 points representing all replicate populations across all parameter sets for N = 1000 
populations. Red lines demarcate regions where fitness change is driven by changes in expression level (bottom right), driven by changes 
in adaptive value (top left), or by both expression level and adaptive value (top right). As expected, replicates that cross the threshold (black points) 
are absent from the bottom left region, where trajectories of both adaptive value and expression level are negatively correlated with the fitness 
trajectory
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value than by expression level: the distribution of Pear-
son’s correlation coefficients for adaptive value is sharply 
peaked at 1, whereas that of expression level is spread 
broadly (Fig. 4B, Additional file 1: Fig. S19).

Overall, we find that in the high mutation rate regime, 
sustained adaptation during gene birth is driven more by 
the product’s adaptive value rather than its expression 
level, while extreme mutational events, which become 
important in facilitating adaptation when most beneficial 
mutations are small and infrequent (i.e., small f and p), 
are more likely to be due to changes in expression level.

Low mutation rate: expression and adaptive value both drive 
extreme mutational events
In this regime, our decomposition of fitness into expres-
sion level and adaptive value yields a heavy-tailed power-
law distribution for mutational effects on adaptive 
value (i.e., a distribution with a power-law tail: Fig. 4C). 
Therefore, in contrast to the high mutation rate regime, 
extreme mutational effects on fitness are driven by large 
changes in both expression level and adaptive value. 
However, correlations between the trajectories of fitness, 
expression level, and adaptive value indicate that simi-
lar to the high mutation rate regime, increase in fitness 
was driven more by the adaptive value than by expression 
level (Fig. 4D).

Discussion
A majority of studies in genomics and genetics are con-
cerned with the function and evolutionary course of 
known genes and their regulation. Recent discoveries 
have shifted our focus towards the evolution of non-genic 
loci, particularly, experimental studies that demonstrate 
the adaptive potential of random sequences [62–65]. Fur-
thermore, genomics studies that indicate the frequent 
occurrence of de novo gene birth demonstrate a need 
for general, theoretical investigations of the evolution of 
non-genic loci [11]. In this work, we attempt to describe 
the process of functionalization of non-genic genomic 
loci in a simple population genetic model. In terms of the 
Pittsburg model proposed in [2], we investigate the pro-
cess by which a genomic locus with physiological impli-
cations (contribution to organismal fitness) transforms 
into a locus with evolutionary implications. We explore 
the space of biologically reasonable effects of spontane-
ous mutations and identify features of genomic loci that 
are conducive to functionalization. We also demonstrate 
how the outcomes of non-genic evolution depend on 
mutation rate.

Our results present a contrasting picture for organ-
isms with high mutation rates versus those with low 
mutation rates: in organisms with high mutation rates, 
our model predicts that a wide range of parameters that 

govern mutational fitness effects (DFE) are conducive 
to locus functionalization. Conducive DFEs include 
many conservative DFEs, where positive effect muta-
tions are small and few. Adaptation in this regime was 
also robust to the antagonistic effects of structural vari-
ation that leads to locus deletion.

On the other hand, mutation rates for most organ-
isms fall in the range 10−11-10−8 per base-pair per gen-
eration and are thus in the low mutation rate regime. In 
this regime, conditions for locus functionalization were 
much more stringent. Importantly, populations in this 
regime are sensitive to structural variations that cause 
locus deletion, and even adaptive loci are often lost. 
Thus, our model supports the view that gain for func-
tionality by most non-genic sequences should be rare. 
This is in congruence with the observation that most de 
novo genes are born in regions adjacent to established 
genes, where sequences have an increased chance of 
expression though read-through [66] and perhaps also 
a lower probability of deletion due to linkage.

In the special case where non-genic adaptation leads 
to de novo gene emergence, we use a simple relation 
to resolve the fitness contribution of de novo genes 
into its adaptive value and expression level. Using the 
distributions for fitness and expression level, we could 
infer the distribution of adaptive value, which is dif-
ficult to measure directly. We envisage that such a 
method, where information about measurable quanti-
ties can be used to infer constraints on distributions of 
quantities that are difficult to measure, can be extrap-
olated to get a deeper view into the mechanism of de 
novo gene birth: expression level can be further broken 
down into various molecular mechanisms such as the 
accessibility and affinity of the locus to polymerases, 
and the adaptive value can be expressed as a composite 
of the stability, foldability, and interactions of expres-
sion products.

Our results also suggests that the process of adapta-
tion is likely to be different for de novo genes and estab-
lished genes: we find that in the case of de novo gene 
birth, the increase in fitness was driven more by the 
adaptive value than by expression level in both the low 
and the high mutation rate regimes. This effect is likely 
to be a special feature of de novo gene birth, where ini-
tially both adaptive value and expression levels are very 
low, whereas in the case of established genes, evolution 
of expression level is known to play a role in adaptation 
[67–69].

In this study, we present a minimal framework to 
study non-genic adaptation. Below, we discuss some 
important limitations of this framework, and suggest 
directions in which the model can be expanded which 
are particularly relevant to the study of de novo genes:
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• Initial conditions: In our study, the locus of inter-
est initially has no adaptive value and expression 
level corresponding to pervasive, leaky expres-
sion. However, induced expression studies on ran-
dom sequences indicate that inter-genic loci can 
be expected to have non-zero adaptive value [65]. 
Additionally, some non-genic regions where de novo 
genes have been found, such as 3′ ends of established 
genes, have higher expression levels than others [66]. 
These results warrant a wider sampling of initial val-
ues of adaptive values and expression levels.

• RNA versus protein de novo  genes: A de novo gene 
in our model can represent either RNA or protein 
gene, and both protein and RNA products of genes 
can contribute to organismal fitness [70]. However, 
protein and RNA gene emergence are expected to 
be different: (a) sequence requirements for transla-
tion are more stringent than the requirements for 
transcription; a protein product necessarily requires 
a ribosome binding site, start and stop codons, and 
the correct reading frame. This makes the probability 
that a locus first starts expressing a protein lower and 
increases the probability that mutations can destroy 
the product. Therefore, the forms of �E and deletion 
probability d are likely to be different for proteins 
versus RNA. (b) ’Enabler mutations’ that allow a non-
coding region to first start producing a protein prod-
uct can be expected to have a large effect on fitness. 
Thus, improved models should consider protein and 
RNA gene emergence separately. This limitation also 
points to empirical measurements that could aid in 
the formulation of improved theoretical studies: for 
example, for de novo genes whose enabler mutations 
are known (e.g., [9, 71]), fitness effects of these ena-
bler mutations can be experimentally measured.

• Fitness contribution of DNA sequence versus expres-
sion product: Our decomposition of fitness contri-
bution into adaptive value (A(i)), and expression 
level (E(i)) of the gene product represents the lim-
iting case where the whole fitness contribution of 
the de novo gene is due to the gene product. How-
ever, especially for emerging genes, it is likely that 
a non-negligible part of the fitness contribution 
comes from the DNA sequence itself due to its role 
in gene regulation or chromosome organization. 
While current experimental efforts are focused 
on the molecular basis of functionality of de novo 
gene products (such as in [16, 66]), delineating the 
relative contribution to fitness by the gene product 
versus the DNA sequence constitutes an important 
direction for future experiments. It would also be 
important to understand how this relative contri-
bution of expression product versus gene sequence 

evolves during gene birth. In future versions of the 
model, this aspect can be incorporated in the form 
of a variable r ∈ [0, 1] , such that 

where r represents the fraction of the fitness contri-
bution that can be attributed to the gene product. In 
the current model, we explore a space where r = 1.

• Genetic interactions: For simplicity, we consider 
genomic loci as independent, and do not include 
genetic interactions such as linkage and epistasis. 
However, many de novo genes are found in the 
vicinity of well-established genes [8]. Moreover, 
evolutionary trajectories of loci that are genetically 
linked to strongly selected, well-established genes 
can deviate significantly from our model prediction 
and hence warrant a separate treatment [72]. In 
future studies, one could extend the present model 
to investigate the evolutionary trajectories of two 
or more interacting loci, some of which represent 
established genes and have high initial fitness con-
tribution (see Additional file 1: Section 3 for a dis-
cussion of a multi-locus models). Alternatively, our 
model can also be used to represent mutation scan 
experiments, such as in [46] where the genomic 
background is kept constant. In this case, the time-
steps in the model represent rounds of experiments 
involving mutagenesis and artificial selection.

• Multicellular organisms: The same gene can have 
different expression levels in different cell-types of 
multicellular organisms, thus the adaptive value of 
a gene is now a function of its expression profile 
across different cell-types. Therefore, the decom-
position of fitness contribution of a gene into its 
expression level and adaptive value is not straight-
forward for multicellular organisms.

• Other important processes: In this work, we study 
the role of mutations caused by small indels and 
polymorphisms, for which quantitative DFE meas-
urements are available. However, evidence also 
indicates a role for other molecular processes such 
as transposition, in de novo gene birth [60]. Thus, a 
more complete model would include fitness effects 
of transposition; although transposition is a less 
frequent event than indels/ polymorphisms, and we 
do not have extensive quantitative measurements 
of fitness effects.

• DFE sampling: We sample a broad range of DFEs 
around an experimentally measured distribution of 
mutational fitness effects, which makes it likely that  
we cover the space of real DFEs. However, the dis-
tribution of real DFEs across genomic loci and 

Ft+1(i) = Ft (i)+�Ft (i) —-from (1)

and, rt+1(i)× Ft+1(i) = (At (i)+�At (i)) · (Et (i)+�Et (i)) — (2∗)
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different organisms is not well-known, and our 
sampling of DFEs is not expected to be identical to 
the spread of real DFEs.

In addition, the generality of our results is likely to be 
limited due to dearth of relevant data. Most importantly, 
we use experimental measurements of DFE and muta-
tional effects on expression that are taken from different 
organisms: in different organisms, distinct mechanisms 
produce mutations; therefore, the frequencies of differ-
ent mutation types and its effects may vary, although the 
long-tailed nature of DFEs [52, 53] and mutational effects 
on expression [46, 55] have both been observed in inde-
pendent studies, measurements performed in the same 
organism could provide important details, for instance, 
the correlations between the effect of a mutation on 
expression and on fitness. Secondly, the DFE of loci 
remain constant in our model, while mutational fitness 
effects are known to vary over evolutionary time due to 
various causes, such as change of environment or dimin-
ishing returns epistasis [73–75]. An extended model that 
includes a consideration of DFE variability would provide 
valuable insight into the robustness of our results (Addi-
tional file 1: Section 3.3).

We anticipate that our results can be tested and the 
shortcomings of our model can be addressed through 
experiments, especially mutational scans such as those 
in [46]: for example, one could design experiments that 
monitor the fitness effects of mutations on random 
sequences and concomitantly detect expression from 
these random sequences. Alternatively, the evolution 
of adaptive value of expression products can be directly 
examined in experiments where random sequences are 
placed under constitutive, high expression promoters 
(such as in [62, 65]); in this case, the fitness effects of 
mutations directly correspond to the adaptive value of 
the product. These experiments, together with theoreti-
cal approaches like ours, provide us with means to test 
and compare the adaptive potential of non-functional 
genomic sequences and the general mechanisms of de 
novo gene birth across various organisms.

Conclusions
Our study represents the first population model to ana-
lyze the mechanism of de novo gene birth within the 
context of non-genic adaptation. Specifically, we char-
acterize non-genic sequences in terms of their DFE: an 
empirically measurable quantity. We demonstrate how 
the DFE, a property of the genomic locus, and mutation 
rate, an important population dynamical quantity, inter-
play to influence the fixation of emerging genes. In its 
current minimal form, our model is already able to cap-
ture intriguing phenomena, such as the loss of adaptive 

proto-genes [60, 61]. We discuss how our model can be 
expanded to include essential features relevant to de novo 
gene birth, such as the transcriptional piggy-backing of 
emerging genes on nearby established genes [66], as well 
as the importance of untangling the fitness contributions 
of the DNA sequence, RNA product, and the protein 
product of newly emerging genes. Our framework can be 
used to explore a rich space of processes relevant to non-
genic adaptation, and in conjunction with experiments 
such as mutational scans of intergenic sequences, it can 
significantly contribute to the discovery of mechanisms 
of de novo gene birth.

Methods
Surveying the space of DFE and locus deletion parameters 
in populations of various sizes
We look at populations of sizes N = 1000  and scan 
across DFEs with parameters p = [0.001, 0.003, 0.005] , 
f = [0.25, 0.5, 0.75] , n = [0.001, 0.005, 0.01] , and s = [0.1, 0.3, 0.6, 0.9] . We 
look at locus deletion probabilities d = [0, 0.005, 0.01, 0.05] . 
We perform simulations for each parameter set in both 
high- and low-mutation rate regimes.

In addition, we also look at populations of size N = 100 , 
for which we scan across parameters p = [0.001, 0.003, 0.005] , 
f = [0.25, 0.5, 0.75] , n = [0.001, 0.005, 0.01] , s = [0.3, 0.6, 0.9] , 
and d = [0, 0.005, 0.01, 0.05] . For N = 100 populations, we 
test only the high mutation rate regime.

For each parameter set, we simulate 100 replicate 
systems. In all, we look at 118,800 systems: 86,400 
N = 1, 000 systems and 32,400 N = 100 systems. All 
codes used to generate and analyze data are written in 
Python3.6.

Relative fitness of individuals
For a population of size N, fitness of individuals at time-
step t are stored in the real-valued vector Ft of length 
N, where the fitness of any individual i is Ft(i) . We also 
keep track of the individuals that have lost the locus due 
to deletion in the binary vector Lt of length N, such that 
Lt(i) = 1 implies that individual i contains the locus at 
time-step t, and Lt(i) = 0 implies individual i has lost the 
locus. Here, Lt(i) = 0 automatically implies Ft(i) = 0.

In the model, only individuals with fitness > −1 are via-
ble and capable of producing progeny. And individuals in 
the current population that produce progeny are selected 
on the basis of their normalized relative fitness.

Let minfitt be the minimum fitness among viable indi-
viduals in Ft.

We define allfitt = j 1+ Ft(j)−minfitt  , for j such 
that Ft(j) > −1 . The normalized relative fitness of indi-
viduals is then given by the binary vector relfitt of length 
N, where
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Therefore, even if Ft(i) = 0 , relfitt(i) can be non-zero if 
minfitt < 0.

Mutation dynamics
Progeny of the current population incur mutations. The 
mutation effects are drawn from 2-sided gamma distri-
butions governed by the parameters p (average effect of 
beneficial mutations), f (fraction of beneficial mutations), 
n (average effect of deleterious mutations), and s (shape 
parameter). The values of fitness effects of mutations 
incurred by each individual at time-step t is stored in a 
real valued vector mutt of length N, where

Here,  Ŵ(κ , θ) represents a number drawn from the 
gamma distribution with shape parameter κ and scale 
parameter θ , and Ber(f) is the Bernoulli random variable 
which equals 1 with probability f.

Progeny can also lose the locus with probability d. 
Thus, the updated fitness levels of the population is given 
by Ft+1(i) = 0 , if Anct+1(i) did not contain the locus or 
if the individual loses the locus in the current time step. 
Otherwise, Ft+1(i) = Ft(Anct+1(i))+mutt(i).

Method to update population fitness
In the model, the dynamics of selection and muta-
tions interplay and effect how variants of the locus are 
inherited across model time-steps. We keep track of the 
ancestry of each individual across time-steps. We do this 
in order to trace back the last common ancestor. The con-
ducivity of DFE parameters in the model depends upon 
whether or not the fitness contribution of the variant of 
the locus in the last common ancestor of individuals at 
t = 1000 crosses the threshold of 0.1. Let Anct+1 ∈ N

NX1 
be the list of individuals chosen from the current time-
step t to leave progeny. In other words, Anct+1 is the list 
of ancestors of the population at time-step t + 1.

• For populations with high mutation rate 
( < 2000    generations between mutational time-
steps): Pr(Anct+1(j) = i) ∝ relfitt(i),∀i, j ≤ N , that 
is, more than one individual from time-step t leaves 
offspring in time-step t + 1.

• For populations with low mutation rate ( > 2000  gen-
erations between mutational time-steps): a single 

relfitt(i) =
1+Ft(i)−minfitt

allfitt
, ∀i s.t. Ft(i) > −1

and, relfitt(i) = 0, ∀i s.t. Ft(i) ≤ −1

mutt(i) = Ŵ

(

s,
p

s

)

⇐⇒ Ber(f) = 1 ,

and, mutt(i) = Ŵ

(

s,
n

s

)

⇐⇒ Ber(f) = 0 .

variant gets fixed in the population, that is, Anct+1 
contains a single individual. The probability that 
an individual i is fixed in the population during the 
intervening generations between two mutational 
time-steps is proportional to relative fitness relfitt(i) 
(see Additional file 1: Section 2).

Method to update expression level and adaptive value
In the model, we assume F(i) = A(i)× E(i) for any indi-
vidual i. For a population of size N, expression levels of the 
locus at time-step t are stored the real valued vector Et of 
length N, where the expression level of some individual i is 
Et(i) . For an individual that has lost the locus due to dele-
tion, Lt(i) = 0 , which automatically implies Et(i) = 0.

Initially, the expression level of the locus across the popu-
lation is distributed around 0.001 and reflects leaky expres-
sion. At each time step, a mutation is incurred in the locus 
of interest by each individual in the population. The effect 
of each mutation has two independent components: one 
that effects expression level ( �E ) and one that effects adap-
tive value ( �A ). Therefore, at each time step, the expression 
levels and adaptive values across the population change as 
individuals are selected and their progeny incur mutations.

The effect of mutations on expression level incurred 
by each individual at time-step t is stored in real val-
ued vector �Et of length N. The magnitude of �Et(i) 
are drawn from a power law distribution such that 
Pr(|�Et(i)| = x) = x−2.25 for x ≥ 0 . We assume that a 
�Et(i) is negative with probability 0.5.

The updated expression levels of the population are 
therefore given by Et+1(i) = 0 , if Anct+1(i) did not con-
tain the locus or if the individual loses the locus in the 
current time step. If the individual does contain the 
locus, Et+1(i) = Et(Anct+1(i))+�Et(i).

Note that the values of expression level in the model are 
bounded within [0.001, 1] corresponding to leaky expres-
sion and maximal possible expression respectively. In the 
simulation, whenever Et+1(i) < 0.001 or Et+1(i) > 1 , 
we reset it to 0.001 and 1, respectively. Since the initial 
expression levels are very low, Et+1(i) never crossed 1 in 
any simulation. In a run of 1000 time steps, Et+1(i) crosses 
0.001 on average  40 times (Additional file 1: Fig. S7).

We then calculate the corresponding changes 
in the adaptive value of the locus at each time 
step: At(i) = Ft(i)/Et(i) . From this, we can calcu-
late the change in adaptive value due to mutation as 
�At(i) = At+1(i)− At(Anct+1(i)).

Tracing ancestry to find fixed mutations
This method allows us to identify the mutant that gets 
fixed in the population at time-step t = 1000 . In the 
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model, we count and report the number of replicate 
populations in which the fitness contribution of this fixed 
mutant crosses the threshold of 0.1.

For populations with high mutation rate: in order to find 
the fitness value of the mutant that gets fixed in the pop-
ulation at time-step t, we start with the list of ancestors of 
individuals Anct at time-step t. Let Xt = {i, ∀i ∈ Anct} be 
the set of unique ancestor identities. We then recursively 
find Xt−n = {i, ∀i ∈ {Anct−n(j), ∀j ∈ Xt−n+1}} as the set 
of unique ancestor identities for n = 1, 2, 3...t0 , where 
Xt−t0 is the first singleton set encountered.

This set contains the individual which occurred at 
time-step t − t0 − 1 , whose locus variant is inherited 
by every individual at time-step t. The fitness value of 
the mutant fixed in the population at time-step t is then 
Ft−t0−1(i), where i ∈ Xt−t0.

For populations with low mutation rate: the fitness 
value of the mutant that gets fixed in the population at 
time-step t is simply Anct.
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