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Abstract 

Background  Fraction of functional sequence in the human genome remains a key unresolved question in Biology 
and the subject of vigorous debate. While a plethora of studies have connected a significant fraction of human DNA 
to various biochemical processes, the classical definition of function requires evidence of effects on cellular or organ-
ismal fitness that such studies do not provide. Although multiple high-throughput reverse genetics screens have 
been developed to address this issue, they are limited to annotated genomic elements and suffer from non-specific 
effects, arguing for a strong need to develop additional functional genomics approaches.

Results  In this work, we established a high-throughput lentivirus-based insertional mutagenesis strategy as a for-
ward genetics screen tool in aneuploid cells. Application of this approach to human cell lines in multiple phenotypic 
screens suggested the presence of many yet uncharacterized functional elements in the human genome, repre-
sented at least in part by novel exons of known and novel genes. The novel transcripts containing these exons can 
be massively, up to thousands-fold, induced by specific stresses, and at least some can represent bi-cistronic protein-
coding mRNAs.

Conclusions  Altogether, these results argue that many unannotated and non-canonical human transcripts, includ-
ing those that appear as aberrant splice products, have biological relevance under specific biological conditions.

Keywords  Insertional mutagenesis, Functional genomics, RNA dark matter, Non-canonical transcript, Novel exon, 
Alternative splicing, Bi-cistronic mRNA, Transcript targeting technique, Exon prediction, Rapid amplification of cDNA 
ends

Background
Since the original publication of the human genome 
sequence [1], the question of what fraction of it 
is devoted to functional elements has attracted a 

considerable amount of interest and debate. Answering 
this question has been attempted using different empiri-
cal and computational approaches. One such approach 
is based on direct mapping of various elements in the 
human genome using assays that measure different types 
of biochemical events consistent with functionality, such 
as the interaction of a DNA binding protein with a spe-
cific DNA sequence or transcription of a particular DNA 
region. Using this approach, for example, it was discov-
ered that mammalian genomes are pervasively tran-
scribed to generate various classes of the so-called “RNA 
dark matter” transcripts of unknown function both 
inside and outside of the boundaries of protein-coding 
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genes [2–5]. Furthermore, the identification of genomic 
elements using such a strategy has become the stated 
goal of the ENCODE [6, 7] and FANTOM [8] consorti-
ums. In fact, >80% of the human genome sequence could 
be assigned a putative function using this strategy by the 
ENCODE consortium with as much as ¾ of the genome 
sequence used as the template for transcription [9]. How-
ever, detection of a biochemical event cannot per se be 
indicative of biological significance since no effect on 
cellular or organismal fitness can be inferred from such 
assays [10–12].

On the other hand, a different type of methodologies 
used various measures of sequence conservation in evo-
lution to estimate the fraction of sequence that has some 
measurable effect on fitness [13]. Using such approaches, 
only a small fraction (<10%) of the human genome has 
been estimated to be resistant to evolutionary change 
[14]. However, such analyses require estimations of the 
background rates of neutral evolution, which in turn 
require making specific assumptions about genomic 
regions that have no biological relevance [15]. Typi-
cally, such regions are represented by ancient repeats, 
but there is a growing body of evidence that challenge 
this assumption by showing that many ancient repeats 
are functional and, therefore, cannot be used to estimate 
the fraction of evolutionarily constrained sequence [5]. 
Moreover, sequence conservation analyses would likely 
miss motifs that function at levels other than the primary 
sequence (for example, at the level of 2D or 3D RNA 
structure), functional sequences that recently emerged in 
evolution, or other functional elements — in fact, some 
functional long non-coding (lnc) RNAs do not exhibit 
sequence conservation [16–18]. The finding that regu-
latory sequences, such as promoters and lncRNAs, can 
evolve more rapidly that protein-coding sequences due 
to positive selection during adaptive radiation presents 
an additional level of complication to efforts aimed at the 
estimation of the fractions of functional sequences based 
on the evolutionary conservation-based strategies [5, 15, 
16, 19, 20]. Furthermore, sequence conservation does not 
necessarily equal biological function since genetic knock-
outs of evolutionarily conserved sequences do not always 
result in phenotypes [21].

Therefore, other methodologies that can directly 
answer the question about biological functionality of 
many different genomic elements are required. In fact, a 
number of high-throughput reverse genetics assays that 
fulfill this need have been developed. Such assays are 
typically based on targeting multiple known genomic ele-
ments, for example, exons of known protein-coding genes 
[22, 23] or lncRNAs [24, 25], or their regulatory regions 
[26]. Such screens typically use RNAi [23, 27], antisense 
oligos [25], CRISPR/Cas9 family of methods [22, 24, 26, 

28] or CRISPR/Cas13 [29]. Such approaches, while pow-
erful, have two inherent prominent flaws. First, they typi-
cally target elements that have been previously identified, 
and are not well-suited for studying novel unannotated 
elements. Second, such screens are typically based on 
methods that use short targeting RNA (or DNA) mole-
cules — for example, shRNA in RNAi or guide (g) RNA in 
the CRISPR-based suite of gene targeting technologies — 
that have well-known off-target and non-specific effects, 
at least in part due to partial sequence complementarity 
to non-targeted sequences in the complex genome [21]. 
Therefore, there is always an ambiguity as to the assign-
ment of a phenotype to a genomic element detected in 
such screens. Thus, there is a strong need for alternative 
techniques in functional genomics that could overcome 
these limitations, or at the very least, provide independ-
ent validation of the functional elements derived from 
the reverse genetics approaches.

In this respect, functional screens based on the for-
ward genetics insertional mutagenesis strategy do not 
rely on the existing knowledge of functional genomic 
elements and therefore are well suited to study unchar-
acterized genomic regions. Published studies that applied 
this strategy to mammalian cell lines were typically based 
on phenotypical analysis of libraries of cells containing 
exogenous viral genomes integrated into different loca-
tions. The effect of a viral insertion on cellular fitness 
could be determined by measuring dynamics of relative 
abundance of that insertion in cellular population. For 
example, insertions causing cells containing them to be 
depleted during growth would represent insertions with 
a negative effect on cellular fitness and those enriched 
— a positive effect. Precise mapping of cellular integra-
tion events allows for the connection of the integration 
sites to the phenotypes of interests and eventually to 
the genomic elements affected by the insertions. How-
ever, so far, such screens predominantly focused on the 
annotated genes as the sole class of genomic functional 
elements.

In this work, we established a lentiviral insertional 
mutagenesis method and demonstrated that such strat-
egy, previously limited to very few haploid or near-hap-
loid mammalian cell lines [30–33], can work in aneuploid 
human cell lines. Using this approach, we found that 
most (>70%) of insertions that can cause cellular pheno-
types could not be explained by exons of annotated genes 
and their regulatory regions, thus arguing for presence 
of a very large number of unannotated functional ele-
ments in the human genome. We also show that some 
of such novel functional elements correspond to novel 
exons previously predicted only using in silico sequence 
analysis algorithm GENSCAN [34]. We demonstrated, 
using a combination of Rapid Amplification of cDNA 
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Ends (RACE) and long-read Nanopore platform, that 
many of such in silico exons do in fact correspond to 
novel exons of novel genes or non-canonical isoforms 
of known genes. Moreover, while low abundant under 
normal conditions, these novel transcripts can be mas-
sively (up to 3,214-fold) induced by the stress. While the 
inclusion of novel exons can interrupt and truncate the 
canonical open reading frames (ORFs), we show that 
such transcripts can function as bi-cistronic mRNAs. 
Altogether, these results argue for widespread presence 
of yet unannotated exons of novel and known genes and 
for functionality of different types of transcripts, includ-
ing non-canonical RNA species that resemble aberrant 
splice products of annotated genes.

Results
Establishment and validation of insertional mutagenesis 
screens in human aneuploid cell lines
As the first step in performing the lentiviral mutagenesis, 
we developed a biochemical and analytical pipeline to 
detect lentiviral insertions in the genome that we named 
InSET (Insertion-based Screen for functional Elements 
and Transcripts) (Fig. 1, Additional file 1: Fig. S1, Meth-
ods). The biochemical basis of the method was similar 
to the FLEA-PCR [35] method and was further adapted 
for the NGS Illumina platform (Additional file  1: Fig. 
S1a and Methods). Then, we applied the pipeline to map 
insertions in 3 independently generated cell libraries — 
HepG2.LTR, K562.LTR, and K562.LTR2, each of which 
harbors lentivirus insertions of >5 kb in the genome that 
should disrupt the genomic elements (e.g., exons) in the 
insertion sites (Fig. 1 and Methods). In addition, due to 
the presence of enhancer/promoter sequences in the 
vectors required to drive expression of fluorescent pro-
teins to allow for selection of transfected cells, certain 
amount of transactivation effect on nearby genes could 
be expected (see below).

The 3 libraries were used in 4 different phenotypic 
assay systems. The HepG2.LTR and K562.LTR cell lines 
were expanded for 2 days post transfection, after which 
the cells were split and, for each replicate, one aliquot was 
used for genomic DNA isolation and another aliquot was 
allowed to grow with normal frequency of passaging for 
1 month and used for genomic DNA isolation. The K562.
LTR2 cell line was allowed to expand for 3 months after 
the transfection and then subjected to survival experi-
ment in response to two anticancer drug treatments 
essentially as described previously [29]. Briefly, cells were 
treated with 0.5 μM imatinib or 40 μM etoposide for 48 
and 24 h respectively, then resuspended in fresh medium 
for recovery and passaged daily until most cells recovered 
the normal shape or the doubling rate of the untreated 
cells. Five and one rounds of drug treatment and recovery 

were performed for imatinib and etoposide respectively. 
The insertional mutagenesis screens in each phenotypic 
assay system were performed in 3 biological replicates.

As the first step, we evaluated the potential of lenti-
viral insertions to affect cellular fitness since only one 
copy of a functional element would be inactivated by an 
insertion that would cause relatively modest knockdown 
in the aneuploid cancer genome like the one present in 
K562 cells [36]. Indeed, inactivation-based insertional 
mutagenesis has so far been tested only in the very few 
mammalian haploid or near-haploid cell lines like KBM7 
or HAP1 [30–33]. If insertions affect fitness, then cells 
harboring them would be lost, resulting in depletion of 
insertions in essential genes — a phenomena that has 
been observed in retroviral mutagenesis based on a hap-
loid cell line [33]. To investigate whether this is indeed 
the case, we took advantage of the high-throughput 
CRISPR/Cas9 screen by Wang et al. aimed at identifying 
essential genes in K562 cell line [22]. Each gene in that 
study was assigned a CRISPR score (CS) defined by the 
authors as the average log2 fold change in the abundance 
of all single-guide (sg) RNAs targeting a given gene [22]. 
Negative CS score means depletion of cells expressing 
sgRNAs targeting specific gene and would thus signify 
importance of the gene for cellular fitness. Thus, such 
genes should be less likely to contain insertions.

To test this, unique positions of insertions in the 
genome and number of insertions in each such position 
(depth) were determined for each sample and mapped 
to various types of genomic elements (Fig.  1 and Addi-
tional file  1: Fig. S1b). Since an insertion in an exon of 
a gene should destroy the function of that gene, we cal-
culated density of insertions in exons of genes with CS 
< 0 and CS > 0 for every K562 sample based on unique 
positions of insertions (Fig.  2a and Additional file  2: 
Table S1). Indeed, for every sample, we observed a lower 
density of insertions in exons of the genes with CS < 0 
compared to the genes with CS > 0 (Fig. 2a). This trend 
was statistically significant (p value of 1.4E−03, two-sided 
paired Student’s t test). We also observed lower average 
depth of insertions in the exons of genes with CS < 0 
compared to depth in those with CS > 0 with the corre-
sponding p value of 4.5E−03 (two-sided paired Student’s 
t test) (Fig. 2a and Additional file 2: Table S1). The reason 
for using both metrics (density of unique insertions and 
average depth) is that some insertion positions may have 
a very high depth and skew the results and using unique 
insertions would obviate this potential problem. On the 
other hand, the metric based on unique insertions could 
have lower sensitivity. Theoretically, true signal should 
have changes in both metrics.

An additional proof of the bias against the essen-
tial genes came from analysis of expression levels of all 
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Fig. 1  Flow chart diagram illustrating the steps of the project. The diagram depicts (1) biological systems used in this this study, (2) concept 
and validation of InSET method, and (3) discovery and characterization of novel transcripts and genes corresponding to the novel functional 
elements found by InSET method
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essential genes and those with insertions. As shown in 
Fig. 2b and Additional file 2: Table S2, the essential genes 
(CS < 0) with or without insertions had a strong tendency 
to have higher expression levels, as defined by transcripts 

per million (TPM) metrics measured by RNA-seq in 
untreated K562 cells, compared to the CS > 0 genes. 
Moreover, among the CS < 0 genes, the expression lev-
els of genes with insertions were significantly lower than 

Fig. 2  Validation of InSET method. a Density of positions and average depth of insertions in the exons of the CS > 0 and CS < 0 genes. b Average 
TPM of all CS > 0 or CS < 0 genes and of those with insertions in exons in the growth or drug survival challenge assays. c, d Density of positions 
and average depth of insertions in the exons of the SS ≤ 0 and SS > 0 lncRNAs (c) and in the various distance bins upstream or downstream of TSSs 
of the CS > 0 and CS < 0 genes (d). e Density of positions and average depth of insertions in the introns and not within ±10 kb region of TSSs 
of the CS > 0 and CS < 0 genes. f Average TPM of all genes and those with IACFs in exons. For average and median depth of insertions, insertion 
positions with insertion number greater than or equal to 10,000 were removed as outliers to avoid the bias. For density of positions and average 
depth of insertions, error bars indicate the SD based on 5 K562 sample types. For average TPM, error bars indicate SD of 2 biological replicates. Red 
asterisks indicate significant differences under two-sided paired Student’s t test (p value < 0.05). Black asterisk indicates p value = 0.05. Source data 
are provided in Additional file 2: Tables S1-S3
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all genes with CS < 0 (p value < 0.05, two-sided paired 
Student’s t test) (Fig. 2b and Additional file 2: Table S2). 
These observations suggest that cells harboring inser-
tions in higher expressed essential genes have lower sur-
vivability and thus are preferentially lost in the screens.

We then explored whether insertional mutagenesis 
can affect cellular fitness via inactivation of functional 
genomic elements other than exons of protein-coding 
genes. Since the annotated genes tested in the above 
study by Wang et  al. [22] are mostly represented 
by canonical protein-coding mRNAs, we further 
tested effects of insertions in lncRNAs using a simi-
lar approach. The study by Liu et  al. has conducted a 
genome-wide CRISPR/Cas9 screen for functional lncR-
NAs in K562 cell line and generated a screen score 
(SS) for every lncRNA transcript [37]. A lncRNA with 
a higher SS was considered to be more essential [37]. 
Similar to the results in the annotated genes above, the 
density and average depth of insertions in the exons 
of lncRNAs with SS > 0 were significantly lower than 
the corresponding values for the lncRNAs with SS ≤ 
0, with the corresponding p values of 9.0E−04 and 
8.2E−03 (two-sided paired Student’s t test) (Fig. 2c and 
Additional file  2: Table  S3). Altogether, these results 
strongly suggest that detection of insertions is biased 
against more essential genes and lncRNAs, most likely 
because cells containing those insertions do not survive 
even after a very short time (2 days) in culture after len-
tivirus integration. These observations are consistent 
with the previous results obtained with a haploid cell 
line [33] and suggest that inactivation of one copy of a 
genomic element, such as an exon, via lentiviral inser-
tion in an aneuploid cell line can have a measurable 
effect on fitness, and therefore insertional mutagenesis 
can reveal biologically relevant genomic elements in 
such system.

An inherent feature of insertional mutagenesis strate-
gies based on retroviral insertions is that the insertions 
can sometimes activate expression of nearby genes via 
enhancer/promoter sequences present in the viral genomes 
[38, 39]. Upregulation of essential genes due to insertion 
of lentivirus in the vicinity of their transcription start sites 
(TSSs) could theoretically increase cellular fitness. To test 
whether this is indeed the case in our system, we estimated 
density and average depths of insertions in various bins of 
distances upstream or downstream from annotated TSSs 
for the genes with CS < 0 and CS > 0. To calculate the inser-
tions in the regions downstream from TSSs, insertions in 
exons were not counted. The 0-5 kb and 5-10 kb upstream 
and downstream bins were the only 4 bins where most con-
sistent statistically significant difference in both the density 
and average depths of insertions between the two groups 
of genes were observed (Fig.  2d and Additional file  2: 

Table S1). Also, in both distance bins, the density and aver-
age depths were higher in the CS < 0 group of genes (Fig. 2d 
and Additional file 2: Table S1). Therefore, these results are 
consistent with the notion that in addition to disruption of 
a genomic element, the effect of activation of nearby genes 
could also exist. However, this effect appears to be lim-
ited to insertions located within ±10 kb region of nearby 
TSSs. Furthermore, the effect of insertion-caused deple-
tion was stronger than that of the transactivation according 
to the Hedge’s g estimators of the sizes of these two types 
of effects. Specifically, the absolute Hedge’s g value for the 
density of positions in exons of essential vs non-essential 
genes was 2.53 while the average Hedge’s g value for the 4 
distance bins in ±10 kb region around TSSs was 1.37 (Addi-
tional file  2: Table  S1). The corresponding values for the 
average depth of insertions were 2.69 and 2.26 respectively 
(Additional file 2: Table S1).

Conceivably, insertion of a retrovirus insertion into 
an intron of a gene could indirectly affect the function 
of that gene, for example by providing alternative splice 
sites or transcription termination signals. To estimate 
whether this could be a common phenomenon, we fur-
ther calculated the density of insertion positions and 
depth of insertions in introns and not within ±10 kb 
region of TSSs in CS < 0 and CS > 0 genes. As shown in 
Fig. 2e and Additional file 2: Table S1, there was no bias 
against integrations into the introns of essential (CS < 0) 
genes. In fact, a significantly higher density of positions, 
but not depth of insertions, could be observed in CS < 0 
genes. Therefore, in contrast to significant and consistent 
deleterious effect of insertions in exons (Fig. 2a, b), these 
results suggest that integration into introns do not have a 
widespread disrupting effect on the corresponding genes.

Taken together, these results suggest that the most 
common phenotypic effect of a lentiviral insertion, at 
least in our system, is mediated by direct disruption of 
the functional element, such as an exon of a spliced tran-
script, targeted by the insertions. The presence of some 
transactivation effect should also be considered if the 
insertions happen to appear within ±10 kb region of the 
TSSs of nearby genes. In the following part, we will focus 
on the genomic elements harboring insertions as the can-
didates for downstream analyses unless stated otherwise.

InSET reveals that most of sequences affecting cellular 
fitness map outside of annotated genomic elements
To detect insertions that affect functional genomic ele-
ments, we identified insertion sites that affect fitness 
in various phenotypic assay systems used in this study. 
Unique sites enriched or depleted during normal growth 
of the HepG2.LTR and K562.LTR cell lines were obtained 
by comparing depth of insertions of each unique posi-
tion after 1 month with that at 2 days as control (Fig. 1). 
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Unique sites enriched or depleted following the antican-
cer drug survival experiment in the K562.LTR2 cell line 
were obtained by comparing the depth of each unique 
position in cells after the survival challenge to that in cells 
before the challenge (Fig.  1). The genomes of cells after 
growth and drug treatment should be the same as those 
of the control cells since they were based on the same ini-
tial population of transfected cells. Therefore, we do not 
expect that depletion or enrichment of insertions to be 
caused by the copy number variation. As summarized in 
Additional file 2: Table S4, we could detect 3,574,490 sites 
of insertions across the 4 phenotypic assay systems where 
the insertion sites in the same genomic location but 
detected in different systems were counted as independ-
ent insertions, of which 2,845,600 (79.6%) were unique 
insertion sites. Using 25% false discovery rate (FDR) 
threshold, 29,366/3,574,490 (0.8%) individual sites repre-
senting insertions affecting cellular fitness (IACFs) could 
be detected as either depleted or enriched in at least one 
system (Additional file  2: Table  S4). Among the IACFs, 
28,987 (98.7%) were unique. Genes harboring IACFs in 
exons had consistently lower expression levels than all 
genes (Fig. 2f and Additional file 2: Table S2), consistent 
with the results above showing that our system is biased 
against detecting essential genomic elements.

However, the analysis based on single insertion events 
would suffer from lower sensitivity and potentially higher 
false positive rate. Therefore, we used an independent 
analytical approach based on the assumption that true 
functional elements should be detected by multiple inde-
pendent phenotypic insertion events. Such clusters were 
calculated in a two-step process. First, we used SICER 
software [40] with a very stringent 1% FDR threshold to 
identify genome-wide clusters of nearby insertion events 
that were either enriched or depleted in each of the 3 
pairs of biological replicates of each phenotypic assay sys-
tem (Figs. 1 and 3a, Additional file 1: Fig. S1, Methods). 

The input into the SICER program were the positions of 
the raw insertion events in each biological replicate of 
treatment with either 3-month culture or drug challenge 
and in the corresponding control biological replicate. 
Second, clusters shared by at least 2 out of 3 biological 
replicates were defined as clusters affecting cellular fit-
ness (CACFs) (Fig. 1, Additional file 1: Fig. S1, Methods). 
We could detect 36,393 CACFs across the 4 phenotypic 
assay systems. The CACF analysis was based on raw 
insertions and therefore independent of IACF; however, 
most (27,972/29,366 or 95.3%) IACFs were found inside 
CACFs. On the other hand, since analysis based on mul-
tiple insertions would be expected to be more sensitive, 
many (25,918/36,393 or 71.2%) CACFs did not contain 
IACFs (Fig.  3b). CACFs with overlapping coordinates 
or detected in different systems were counted indepen-
dently. However, merging coordinates of the 36,393 
CACFs resulted in 18,531 (50.9%) unique CACFs, sug-
gesting that the functional clusters were much more 
common to different systems than individual IACFs.

To validate the procedure of CACF detection, we per-
formed a two-step simulation analysis as follows. For each 
sample, we generated the same number of insertions with 
random coordinates across the genome and used SICER 
to generate clusters. After 100 simulations, the maximum 
number of simulated clusters varied between 2.2 and 
10.6% of the number of the real clusters for the different 
types of samples (Fig. 3c, Additional file 1: Fig. S2a, Addi-
tional file  2: Table  S5). These results shows that SICER, 
originally designed to identify regions enriched in ChIP-
seq analysis [40], can indeed identify truely enriched or 
depleted clusters of insertions in the lentiviral mutagen-
esis context. Second, when the simulated clusters shared 
by at least two replicates were used to generate simulated 
CACFs, virtually no CACFs were obtained: the aver-
age ratio of simulated CACFs compared to the real ones 
varied between 0 and 7 × 10−6 (Fig. 3d, Additional file 1: 

Fig. 3  Genome-wide distribution of IACFs and CACFs. a Schematic diagram of the analytical pipeline for identification and hierarchical mapping 
of IACFs and CACFs to different genomic elements and regions shown in the pie charts in the panels e and f. Number of insertions in each 
site was compared among the 3 biological replicates of the samples subjected to a phenotypic challenge (time of growth or drug treatment) 
and the corresponding control to identify IACFs using FDR threshold of 25%. In the independent approach, clusters of phenotypic insertions were 
first identified using SICER with a FDR threshold of 1%, and those shared by at least 2 biological replicates were defined as CACFs. For more details, 
see Additional file 1: Fig. S1. b Venn diagram of overlap between IACFs (black) and CACFs (white). The numbers represent non-unique events 
where the count for the same insertion or cluster would be added for each system where it was found. c, d Ratio of real vs simulated SICER clusters 
(c) and CACFs (d) based on 100 simulations for one representative example of the simulation analysis for insertions depleted in one biological 
replicate of the K562 growth survival experiment (see Additional file 1: Fig. S2 for the complete set of simulation analyses). Error bars indicate SD. 
e, f Genome-wide distributions of all IACFs and CACFs across the 4 phenotypic assay systems. Each unique IACF and CACF position was assigned 
to only one genomic element or region as shown in a. g, h Odds ratios of enrichment of the phenotypic (depleted or enriched) and no phenotype 
insertions in different genomic elements. i Distribution of p values of IACFs and CACFs mapping inside or outside of the annotations defined 
as all elements from exons to insulators in panel a. j Conservation scores of the phenotypic vs non-phenotypic insertions based on IACFs (left) 
or insertions located inside or outside of the CACFs (right). Error bars indicate SD based on the 4 phenotypic assay systems. The p values were 
calculated with one-sided paired Student’s t test. Source data are provided in Additional file 2: Tables S4-S10

(See figure on next page.)



Page 8 of 31Xu et al. BMC Biology          (2023) 21:271 

Fig. 3  (See legend on previous page.)
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Fig. S2b, Additional file 2: Table S6). Overall, these results 
clearly show that CACFs were not random.

We then investigated genomic distribution of IACFs 
and CACFs (Fig.  3a and Additional file  2: Tables S4 
and S7). A small fraction of IACFs and CACFs mapped 
to exons of known genes (3.8 and 5.6%, Fig.  3e, f ), and 
comparable numbers of IACFs and CACFs (0.6 and 
1.1% respectively) mapped to exons of annotated lncR-
NAs. Furthermore, additional 1.6 and 1.8% of IACFs 
and CACFs mapped to very long intergenic non-coding 
RNAs (vlincRNAs) [41] (Fig.  3e, f ). We then explored 
contribution of potentially functional elements defined 
by potential regulatory elements detected based on 
DNA-protein interactions. Additional 0.4% and 0.3%, 
4.3% and 3.7%, and 0.5% and 0.8% of IACFs and CACFs 
mapped to promoters, enhancers, or insulators found in 
K562 and HepG2 cells based on ChIP-seq mapping of 
chromatin states [42, 43] and located outside of the above 
mentioned elements (Fig. 3e, f ).

We then calculated odds ratios of enrichment of 
IACFs and CACFs in the annotated functional ele-
ments to further characterize and validate performance 
of the method. Interestingly, the strongest enrichments 
were observed for depleted IACFs and CACFs found in 
exons of protein-coding genes, but only in the pheno-
typic assay systems where cells were challenged with the 
anticancer drugs (Fig. 3g and Additional file 2: Tables S8 
and S9). This is most likely due to the fact that inser-
tions in exons of genes required for growth have already 
been removed from the cellular population as has been 
shown above. However, new survival stress to which 
cells have not yet been exposed, like the one provided 
by the anticancer drug treatments, revealed additional 
genes required for stress resistance. These results also 
illustrate the limitation of the method — insertions in 
the elements required for growth and survival under 
normal conditions would be under-represented in 
insertional mutagenesis screens.

On the other hand, our results strongly argue that 
most of the phenotypic insertions do not exert their 
effect by somehow affecting protein-coding genes. As 
can be seen on the Fig. 3h and Additional file 2: Tables 
S8 and S9, depleted or enriched insertions were not 
significantly more enriched in the immediate vicinity 
of the TSSs of genes or inside the introns. However, 
if the phenotypic insertions identified in our screens 
did in fact function by somehow affecting functions of 
known genes, either by transactivation, or by affecting 
splicing or terminating transcription, then the oppo-
site would be expected. In fact, strikingly, the vast 
majority (96.2 and 94.4%) of IACFs and CACFs were 
located outside of exons of known genes (Fig. 3e, f and 
Additional file 2: Tables S4 and S7). Even considering 

possible transactivating effects, most (81.9% and 
77.3%) of IACFs and CACFs were located outside of 
exons of known genes, or 10 kb up- or downstream 
from their TSSs (Fig. 3e, f and Additional file 2: Tables 
S4 and S7). Moreover, we did not observe increase in 
enrichment of phenotypic insertions in annotated 
exons of lncRNAs (Fig. 3g and Additional file 2: Tables 
S8 and S9), arguing that the annotated spliced lncR-
NAs cannot explain most of the phenotypic inser-
tions observed in this work, with the caveat though 
that many lncRNAs and their exons are not present in 
the current genomic annotations (see “  Discussion”). 
Even accounting for all of the annotated functional 
elements (exons of lncRNAs, regulatory elements, 
and so on), 69.8% and 74.5% of IACFs and CACFs did 
not map to any functional or potentially functional 
genomic region (Fig. 3e, f and Additional file 2: Tables 
S4 and S7). Furthermore, 34.4 and 34.8% of IACFs and 
CACFs were found in the intergenic space and outside 
of any functional or potentially functional genomic 
region (Fig.  3e, f and Additional file  2: Tables S4 and 
S7). Moreover, 16.8 and 18.7% of IACFs and CACFs 
mapped to “gene desert” regions, 50 kb from bound-
aries of known genes (Fig.  3e, f and Additional file  2: 
Tables S4 and S7). To estimate whether IACFs and 
CACFs mapping outside of the known functional or 
potentially functional elements were somehow biased 
to being less significant compared to those mapping to 
these annotations, we compared the p value distribu-
tion of the two groups of IACFs and CACFs, and found 
that the distribution of the p values of IACFs and 
CACFs mapping inside and outside of the annotated 
elements matched well (Fig. 3i). Taken together, these 
results show that the human genome is likely to con-
tain multiple yet uncharacterized elements that have 
physiological significance.

To validate potential biological relevance of the novel 
elements tagged by the phenotypic insertions, we asked 
whether such insertions correspond to more evolutionar-
ily conserved sequences compared to the insertions that 
did not result in phenotypes. In this analysis, insertions 
located in the annotated exons or within 10 kb upstream/
downstream of TSSs of known genes were excluded. 
Interestingly, the evolutionary sequence conservation, 
as defined by the phastCons conservation scores of the 
genomic base pairs immediately adjacent to the inte-
gration sites (Methods), was significantly higher for the 
IACFs than insertions with no phenotypes, and for the 
insertions located inside CACFs than those located 
outside (Fig.  3j and Additional file  2: Table  S10). Over-
all, these results argue that the phenotypic insertions 
detected in this work do indeed mark some unknown 
functional elements in the human genome.
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IACFs or CACFs mapping to unannotated genomic regions 
can disrupt novel exons
IACFs or CACFs mapping outside of genomic regions of 
known functions could potentially affect multiple types 
of functional genomic elements, requiring a plethora of 
different types of assays to uncover their mechanisms of 
action. However, based on the analysis of the insertions 
mapping to exons of essential genes and lncRNAs shown 
above, it is reasonable to assume that IACFs or CACFs 
could exert their effects by disrupting exons of novel 
transcripts. Therefore, to prove that IACFs or CACFs that 
mapped to unannotated genomic space could potentially 
affect novel bona fide genomic elements, we focused on 
such IACFs or CACFs that mapped to exons predicted 
using in silico sequence analysis program GENSCAN 
[34] (Additional file 2: Tables S8 and S9). It is important 
to stress however that GENSCAN program was designed 
based on the general transcriptional, splicing and transla-
tional signals of protein-coding genes [34]; therefore, the 
corresponding predictions are biased towards sequences 
with protein-coding potential.

Strikingly, the phenotypic insertions, both depleted 
and enriched, were consistently enriched in exons found 
solely by GENSCAN program and not present in the 
databases of annotated human genes such as UCSC 
Genes [44] or GENCODE [45, 46] — the GENSCAN-
specific exons (Fig. 4a and Additional file 2: Tables S8 and 
S9). Importantly, the enrichment was higher than that 
of the insertions with no phenotypes in any phenotypic 
assay system tested (Fig. 4a and Additional file 2: Tables 
S8 and S9). Interestingly, however, the increase in the 
enrichment of phenotypic insertions was limited to GEN-
SCAN-specific exons, found in introns of known genes, 
as opposed to those found in the intergenic space (Fig. 4a 

and Additional file 2: Tables S8 and S9). Also, there was 
no increase in the enrichment of phenotypic insertions 
in the intronic regions outside of the GENSCAN-specific 
exons (Fig.  4b). This strongly suggests that phenotypes 
caused by insertions into intronic GENSCAN-specific 
exons were caused by direct insertions in these exons and 
not by indirect disruption of the host gene.

The results presented above strongly argue that GENSCAN-
specific exons, especially those of annotated genes, represent 
novel functional elements. Since such exons were identified 
solely based on in silico sequence analysis and were not pre-
sent in the current human gene annotations, we first focused 
on identification of transcripts corresponding to GENSAN-
specific exons harboring phenotypic insertions found in any of 
the 4 phenotypic assay systems. Overall, 4.5% (1,320/29,366) 
of IACFs and 4.5% (1,651/36,393) of CACFs mapped to exons 
predicted only by GENSCAN. In the drug survival experi-
ment, 151 and 445 such GENSCAN exons harbored IACFs 
and CACFs respectively, among which 137 harbored both 
IACFs and CACFs (Fig.  4c). For this analysis, we have cho-
sen 131 GENSCAN exons harboring IACFs and/or CACFs 
(114 exons contained both (Fig. 4d)) that will be referred to as 
InSET exons or InSETes. The 131 InSETes consist of 40 intra-
genic exons defined as being inside the known genes and on 
the same strand as the genes, and 91 intergenic exons defined 
as being outside or antisense to known genes (Additional 
file 2: Table S11).

We initially tested the overall abundance of all GENSCAN-
specific exons in the human genome and the 131 InSETes by 
RNA-seq analysis using high-throughput short-read Illumina 
platform. We found that while GENSCAN-specific exons 
could be detected, their average abundance (TPM = 1.31) 
was significantly lower than that of protein-coding transcripts 
(TPM =  2.31, p = 0.041, two-sided paired Student’s t test, 

(See figure on next page.)
Fig. 4  Characterization of InSETT and InSETG structures by Nanopore sequencing. a Odds ratios of enrichment of the phenotypic (depleted 
or enriched) and non-phenotypic insertions in the intronic and intergenic GENSCAN-specific exons. b Odds ratios of enrichment of IACFs, insertions 
in CACFs and non-phenotypic insertions in the intronic GENSCAN-specific exons or in intronic regions outside of the GENSCAN-specific exons. 
Error bars indicate SD based on the 4 systems (K562 growth, HepG2 growth, imatinib survival challenge, and etoposide survival challenge). 
Asterisks indicate significant differences per two-sided paired Student’s t test (p value < 0.05). c, d Overlaps of InSETes detected by the IACF 
and CACF analysis in the K562 drug survival assays genome-wide (c) and among the 131 exons selected for the RACE assays (d). e Average TPM 
of all protein-coding transcripts and those with insertions in their exons, and of all GENSCAN-specific exons and those with insertions. Error bars 
indicate SD based on 2 biological replicates. Asterisks indicate significant differences under two-sided paired Student’s t test (p value < 0.05). f 
Sensitivity of detection of novel functional transcripts with PacBio, Illumina, or with the RACE enrichment followed by Nanopore sequencing. 
Note: the relatively short Illumina reads overlapping InSETes could be derived from transcripts different from those detected by RACE/Nanopore. g 
Summary of the types of novel transcripts detected by the RACE combined with Nanopore sequencing for the 131 InSETes. Transcript classification 
was done based on RACE, unless only RT-PCR results were available. h CAGE signal in the real and simulated InSET TSS clusters. For each InSET 
TSS cluster (left) or intergenic InSET TSS cluster (right), the number of tissue or primary cell samples with overlapping CAGE tags (upper) 
and the normalized abundance of the CAGE signal (lower) were calculated. In the boxplots, center red lines indicate median; box limits indicate 
upper and lower quartiles; whiskers extend from the box limits no more than 1.5× interquartile range. In the violin plots, all violins were scaled 
to have the same maximum width; three horizontal white lines indicate upper, median, and lower quartiles of the density estimate respectively. All 
data including TSS clusters with 0 CAGE tags were plotted. To plot on the log scale, 0.1 was added to all values. The p values were calculated using 
Wilcoxon rank-sum test. Source data are provided in Additional file 2: Tables S8, S9, and S11-14
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Fig. 4e), potentially explaining why they remain largely unan-
notated. Furthermore, similar to the exons of known genes, 
GENSCAN-specific exons with insertions had even lower 
abundance than those without: the corresponding average 
TPM of 0.79 vs 1.31 (p = 0.028, two-sided paired Student’s 
t test, Fig. 4e), suggesting that the insertions of in silico pre-
dicted exons important for cell survival were also subjected 
to loss. Nonetheless, the RNA-seq analysis suggested that 
the exons predicted only in silico can in fact represent bona 

fide exons. In fact, 51 or 38.9% of the 131 InSETes could be 
detected with the coverage of over 0.5 based on Illumina deep 
RNA-seq (Fig. 4f). However, the relatively short reads were 
not sufficient to define the isoforms of the corresponding 
transcripts; therefore, we performed long-read NGS analysis 
using the PacBio platform. However, after analysis of 656,065 
circular consensus sequencing (CCS) reads obtained in this 
experiment (average read length 3038 nt), we could identify 
1 CCS read corresponding to only 1 out of 131 such exons 

Fig. 4  (See legend on previous page.)
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(0.8%) (Fig.  4f). Therefore, long-read RNA-seq analysis of 
a complex RNA population lacked the sensitivity to detect 
transcripts containing such exons.

Thus, as the next step, we tried two targeted enrich-
ment strategies in combination with the long-read NGS 
Nanopore sequencing to identify such transcripts using 
the same wild-type non-transfected K562 RNA sample 
as in the PacBio RNA-seq analysis. First, for the 40 intra-
genic InSETes, we directly tested connection between 
the predicted exons and neighboring annotated exons 
using RT-PCR and found connection for 20/40 InSETes. 
Second, for all 131 intragenic and intergenic InSETes, we 
used 5′ and 3′ RACE to determine full-length transcript 
structure. Previous application of targeted transcript 
enrichment using 5′/3′ RACE in conjunction with tiling 
arrays has demonstrated a highly sensitive nature of this 
approach for discovery of novel transcripts and genes 
[47–49]. The combination of RACE with the long-read 
NGS platform combined the sensitivity of targeted tran-
script enrichment with the ability to directly obtain the 
full-length sequences of the RACE products, and thus 
allowed to reconstruct the underlying transcripts. This 
approach revealed presence of transcripts for 90/131 
InSETes as evidenced by at least one (5′ or 3′) RACE 
reaction (Fig. 4f, g).

Overall, using both strategies we could detect presence 
of transcripts for 90/131 (68.7%) InSETes with 34/40 and 
56/91 representing exons inside and outside of the gene 
boundaries respectively (Fig. 4f, g). Two of the 40 intra-
genic exons were found in the more updated versions 
of the UCSC Genes and GENCODE databases (Fig. 4g). 
The sequences of exons obtained from our RACE analysis 
matched those of the more recently annotated exons thus 
providing additional validation for the RACE approach as 
exemplified in Additional file 1: Fig. S3.

Interestingly, 22/34 (64.7%) and 25/56 (44.6%) of 
respectively detected intra- and intergenic InSETes cor-
responded to spliced transcripts (Fig.  4g). To further 
explore the structures of the corresponding transcripts, 
we focused on 48 InSETes (24 intragenic and 24 inter-
genic) where we could get positive RACE and/or RT-PCR 
products in both 5′ and 3′directions, thus providing more 
complete annotation of structures of the corresponding 

transcripts (Fig.  4g and Additional file  2: Tables S12 
and S13). Of those, 19/24 (79.2%) intragenic and 15/24 
(62.5%) intergenic exons corresponded to spliced tran-
scripts (Fig. 4g). As shown below, some of the latter rep-
resent apparent novel isoforms of known genes while 
some represent novel genes. Below, we will refer to them 
as respectively InSETTs and InSETGs.

As shown in Fig. 4g, of the 19 intragenic exons corre-
sponding to spliced transcripts, 3 (15.8%) corresponded 
to events where the entire intron containing an InSETe 
was retained as illustrated for the exon found in an intron 
of TPCN2 gene (Additional file 1: Fig. S4). On the other 
hand, 3 (15.8%) of such exons corresponded to novel 
internal cassette exons of known genes as illustrated 
on Fig.  5 and Additional file  1: Fig. S5 for the MAML2 
and ESYT2 genes and Additional file  1: Fig. S6a for the 
DNAH8 gene. Three out of 19 (15.8%) intragenic exons 
corresponded to alternative initiation or termination 
events as exemplified by the InSETes in the IQSEC1 and 
EHD1 genes (Additional file 1: Fig. S7a, b). Two out of 19 
(10.5%) corresponded to exons with alternative splice site 
usage as exemplified by InSETes in C1RL and SLC24A1 
genes (Additional file 1: Fig. S7c, d). Finally, 6/19 (31.6%) 
of intragenic exons corresponded to novel transcripts on 
the same strand as the annotated genes, but apparently 
not being isoforms of these genes as exemplified by the 
InSETT-5 cluster of transcripts sharing the same InSETe 
in the intron of COL18A1 and PVT1 genes (Additional 
file 1: Fig. S7e, f ).

Of the 15 intergenic InSETes corresponding to the 
spliced transcripts, only one represented a novel 
3′extension of a known protein-coding gene (Fig.  4g 
and Additional file  1: Fig. S8). Thus, 14 out of the 15 
InSETes apparently represented novel human genes 
found in this study. Five out of the 15 (33.3%) were 
located exclusively in the intergenic space as illustrated 
by the genes InSETG-1 and InSETG-10 (Fig. 6a, b). On 
the other hand, 6/15 (40%) and 3/15 (20%) InSETes 
overlapped known genes either on the opposite (anti-
sense) or same (sense) strands and thus also corre-
sponded to novel genes (Fig.  4g). Antisense InSETG-5 
was located in an intron of NTSR1 gene (Fig. 6c). Sense 
InSETG-2 overlapped 3′ UTR of ERC1 gene on the 

Fig. 5  Examples of structures of novel intragenic transcripts. Nanopore sequencing results of products of 5′/3′ RACE or RT-PCR for InSETe-24 
and InSETe-110 inside correspondingly MAML2 (a) and ESYT2 (b) genes. The bottom portions represent zoom-in views of the boxed regions above. 
For ESYT2, only representative transcripts are shown: for full depiction of 5′/3′ RACE results see Additional file 1: Fig. S5. Known genes annotations 
are in blue and based on the GENCODE Genes track from the UCSC Genome Browser. The InSETes are in yellow and marked by the red arrows. 
Structures of novel transcript InSETT-2 or the InSETT-8 cluster of novel transcripts (sharing InSETe-110) found in correspondingly MAML2 and ESYT2 
loci by 5′/3′ RACE (red) and RT-PCR (black) are shown. IACFs and CACFs are in brown and represent unique insertions and merged clusters 
from only the drug survival system. Black arrows indicate the RACE or RT-PCR primers

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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same strand, but represented an apparently independ-
ent transcript unit (Fig.  6d). All in all, these results 
show that majority of the InSETes — either inside or 
outside known gene boundaries — represent novel 
transcripts or genes, and majority (34/48, 70.8%) of 
these transcripts are spliced (Fig. 4g).

In many examples above, RACE analysis also 
revealed additional novel exons connected to the 
original InSETe and not found in annotations as 
exemplified by ESYT2 locus (Fig.  5b and Additional 
file 1: Fig. S5) and InSETGs shown in Fig. 6. Interest-
ingly, in the case of ESYT2 locus, two such exons also 
contained a CACF (Additional file  1: Fig. S5) and 
were not predicted by GENSCAN, suggesting that 
IACFs and CACFs found in this analysis that do not 
overlap known or predicted exons can still affect yet 
un-discovered transcripts.

To directly prove the expression of novel transcripts 
identified in this work in normal human tissues or cells 
and also test the validity of the 5′ RACE approach in 
identification of true TSSs, we took advantage of the 
Cap Analysis of Gene Expression (CAGE) dataset gen-
erated by the FANTOM 5 Consortium from 188 nor-
mal human tissue and 512 primary cell samples [8]. 
For this analysis we used the 5′ ends of 23 InSETGs, 
25 InSETTs and transcripts of 30 InSETes for which 5′ 
RACE results were available. Since CAGE tags specifi-
cally mark positions of 5′ ends of transcripts, we tested 
the presence of CAGE tags in the immediate vicin-
ity (±10 bp and on the same strand) of the 5′ ends of 
the novel transcripts identified using 5′ RACE. Prior 
to the analysis, we removed the 5′ ends of the novel 
transcripts that were in the immediate vicinity (±10 
bp and on the same strand) of the annotated TSSs of 
protein-coding mRNAs to ensure that the results are 
not confounded by the signal from TSSs shared by 
known and novel transcripts. Overall, we could detect 
expression of 87.0% (20/23) InSETGs, 100% (25/25) 
InSETTs and transcripts of 80.0% (24/30) InSETes 
using this approach in at least one sample (Additional 
file 2: Table S14). However, many novel transcripts were 
detected in multiple samples, for example, of the 78 
novel transcripts tested, 51 (65.4%) were detected in 5 
or more samples.

To test whether the overlap with the CAGE tags 
occurred by random chance, we performed a simulation 
analysis for which we extended the novel TSSs by ±10 
bp on the same strand and then merged them into 639 
TSS clusters. We then generated 12,780 simulated TSS 
clusters that had the same fractions mapping to various 
genomic regions — exons, introns, antisense intragenic 
and intergenic — as the real TSS clusters (Additional 
file 2: Table S15). We also analyzed the intergenic fraction 
of the simulated TSS clusters independently. In the real 
data, 78.6 and 72.8% of all TSS clusters and intergenic 
TSS clusters respectively had overlapping CAGE tags in 
any of the human tissue or primary cell samples, while 
corresponding ratio in the simulated data is 63.7 and 
41.6% (Additional file 2: Table S16), both of which were 
significantly lower than the ratio in the real data (p < 1 × 
105, chi-square test).

For each real and simulated TSS cluster, we further 
calculated the number of tissue or primary cell samples 
with overlapping CAGE tags, as well as the sum of nor-
malized CAGE abundance in these samples. The real data 
had significantly higher CAGE signal than in the simu-
lated data, with regard to either the number of samples 
with the overlapping CAGE tags or the normalized abun-
dance of the CAGE signal (Fig. 4h and Additional file 2: 
Table S17). This was true for both all and only intergenic 
TSS clusters (Fig.  4h and Additional file  2: Table  S17). 
Interestingly, the difference between the real and simu-
lated data in the intergenic TSS clusters was more obvi-
ous than in all TSS clusters (Fig.  4h and Additional 
file 2: Table S17), reflecting a higher background CAGE 
signal in annotated genes. Thus, the CAGE signal from 
the intergenic regions could better reflect the expression 
of novel transcripts. However, it is worth mentioning 
that even in the intragenic region, significant difference 
between real and simulated data was observed, suggest-
ing the novel transcripts from the intragenic regions are 
also expressed. Taken together, these results support the 
existence of novel transcripts in normal cells.

Novel transcripts harboring IACFs or CACFs identified 
in the drug survival screens are induced by the drugs
Transcripts with bona fide function in response to anti-
cancer drug treatments would be expected to be induced 

(See figure on next page.)
Fig. 6  Examples of structures of novel intergenic transcripts. Nanopore sequencing results of 5′ and 3′ RACE for intergenic exons InSETe-5 (a), 
InSETe-106 (b), InSETe-62 (c), and InSETe-29 (d). Known gene annotations are in blue and based on the GENCODE Genes track from the UCSC 
Genome Browser. The InSETes are in yellow and marked by the red arrows. Transcript structures obtained from 5′/3′ RACE are shown in red. IACFs 
and CACFs are in brown and represent unique insertions and merged clusters from only the drug survival system. Black arrows indicate the RACE 
primers
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Fig. 6  (See legend on previous page.)
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by these treatments. To investigate whether this is indeed 
the case, we tested response of spliced transcripts corre-
sponding to 20 InSETes (9 intragenic and 10 intergenic) 
to either imatinib or etoposide using RT-qPCR (Fig.  7 
and Additional file  2: Tables S18 and S19). In the case 
of the novel transcripts corresponding to the 3 internal 
cassette exons, relative changes of these transcripts were 
compared with those for the annotated isoforms as illus-
trated on Fig. 7a for MAML2 and ESYT2 genes and Addi-
tional file 1: Fig. S6a for DNAH8. Interestingly, we found 
that etoposide or imatinib treatments could induce spe-
cific inclusion of the novel exons as shown on Fig. 7a. For 
example, transcripts containing novel exons of MAML2 
genes increased 4.5- and 4.3-fold in response to etopo-
side and imatinib respectively while the annotated tran-
scripts were downregulated by 35.0 and 1.7-fold (Fig. 7a). 
Thus, the fraction of the novel MAML2 transcripts 
increased by 157.5 and 7.3-fold relative to the annotated 
ones in response to etoposide or imatinib. The transcripts 
containing novel exons of ESYT2 genes increased 1.6-fold 
in response to etoposide while the annotated transcripts 
were downregulated by 2.6-fold (Fig. 7a). Thus, the frac-
tion of the novel ESYT2 transcripts increase by 4.2-fold 
relative to the annotated ones in response to etoposide. 
On the other hand, although the transcript correspond-
ing to the novel exon in the DNAH8 locus was also 
upregulated by etoposide, the upregulation of the anno-
tated transcript in response to the treatment was much 
higher (Additional file 1: Fig. S6b). Thus, transcripts cor-
responding to all 3 novel internal cassette exons were 
upregulated, with 2 out of 3 exons in MAML2 and ESYT2 
loci being specifically incorporated into novel transcripts 
in response to the drug treatment. Furthermore, 4 other 
tested alternative isoforms of known transcripts were 
induced by either etoposide or imatinib (Additional file 1: 
Fig. S7a-d). Among the 2 novel transcripts on the same 

strand as genes, only 1 was induced by the drugs (Addi-
tional file 1: Fig. S7e, f ). Thus, 8/9 or 88.9% of the novel 
transcripts corresponding to the intragenic InSETes were 
upregulated by at least one of the drugs.

On the other hand, etoposide and imatinib had far more 
drastic upregulation effects on the transcripts correspond-
ing to the novel genes (InSETGs) containing the intergenic 
InSETes (Fig. 7b). Of the 9 InSETGs tested, 8 and 3 were 
induced by etoposide and imatinib respectively with the 
corresponding fold changes of expression being in the 
ranges of 3.7–3213.7 and 1.5–4.1 respectively (Fig. 7b). The 
median fold induction for the two drugs were 36.8 (etopo-
side) and 1.6 (imatinib). Strikingly, transcripts correspond-
ing to 2 novel genes were induced over 1000-fold while 
RNAs derive from 10 novel genes were induced over 2-fold 
by the etoposide treatments. Thus, even though under 
normal growth conditions, transcripts from 5/9 (55.6%) of 
the genes would not be detectable even by real-time PCR, 
these transcripts become readily detectable under stress 
caused by the anticancer drug treatments.

Overall, compared with the annotated transcripts, the 
novel transcripts and genes harboring IACFs or CACFs 
had much lower basal expression level before the treat-
ments with drugs (Fig. 7c). However, they showed signifi-
cant induction in response to drugs while the annotated 
transcripts did not (Fig.  7c–e). This resulted in the 
expression levels of the novel transcripts approaching 
those of the annotated transcripts (Fig. 7e). These results 
suggest that the low abundant novel transcripts harbor-
ing IACFs or CACFs represent a hidden layer of response 
to cellular stress, as illustrated in Fig. 7f.

Transcripts harboring novel exons can be translated 
as bi‑cistronic messages
As mentioned above, of the 19 intragenic InSETes for 
which both 5′ and 3′ RACE data were available, 13 

Fig. 7  Expression analysis of novel transcripts and genes. a The log2 expression fold changes of MAML2 and ESYT2 novel and canonical transcripts 
following etoposide or imatinib treatment compared to the DMSO-treated control (left and middle). (Right) Red and blue arrows indicate 
the RT-qPCR primers designed for novel and canonical transcript respectively. b The log2 expression fold change of InSETGs under etoposide 
or imatinib treatment. c Comparison of the log2 relative expression levels of canonical transcripts, InSETTs and InSETGs following the treatments 
with etoposide or DMSO control. d The log2 expression fold changes of canonical transcripts, InSETTs and InSETGs under etoposide treatment 
compared to the DMSO-treated control. e The distribution of log2 relative expression level of canonical transcripts, InSETTs and InSETGs 
before and after etoposide treatment. f Illustration of the hypothetical model proposed in this study to explain expression level and functionality 
of transcripts containing novel functional exons. Under normal growth condition, the expression level of novel transcripts is below the detection 
limit explaining why they remain unannotated. With stress, their expression level increases significantly, presumably to improve cell fitness 
and survivability. Thus, these transcripts represent a hidden layer of elements required for cellular fitness in response to stress. For a, b, error bars 
indicate the SE of a total of 6 technical replicates corresponding to 2 biological replicates. Asterisks indicate significant differences under two-sided 
paired Student’s t test (p value < 0.05). Panels c–e are based on RT-qPCR experiments (a total of 6 technical replicates corresponding to 2 biological 
replicates, each dot represents a technical replicate) of all novel transcripts and genes and known genes profiled in this study. For InSETTs, 
only the ones with connection to known genes were included. In the boxplots, center lines indicate median; box limits indicate upper and lower 
quartiles; whiskers extend from the box limits no more than 1.5× interquartile range. Two-sided Welch’s t test was performed with the p values 
shown in the figures. Source data are provided in Additional file 2: Tables S18 and S19

(See figure on next page.)
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corresponded to multiple novel isoforms of the cor-
responding genes (Figs.  4 and 5, Additional file  1: Figs. 
S3-S6). Interestingly, most of these transcripts con-
tained either truncated or disrupted versions of the 
canonical, annotated ORFs. For example, as described 
above, MAML2 and ESYT2 loci contained novel cassette 
InSETes specifically included in mature transcripts in 
response to stress. Inclusion of both of these exons cre-
ated in-frame stop codons in both mRNAs, thus truncat-
ing the corresponding ORFs and introducing stop codons 
before exon-exon junctions (Additional file  1: Figs.S9 
and S10), making the corresponding non-canonical tran-
scripts candidates for nonsense-mediated decay (NMD) 
[50]. In fact, multiple similar non-canonical transcripts 
have been annotated as NMD candidates in genomic 
databases [46], while the corresponding novel exons akin 
to InSETes that lead to generation of such transcripts are 
generally considered pseudoexons, and both such tran-
scripts and exons are usually discarded as non-functional 
entities generated by aberrant splicing [51].

On the other hand, evidence of effect on cellular fit-
ness in both of these InSETes as well as the stress-
induced inclusion of the exons into mature transcripts 
prompted us to consider a possibility that such tran-
scripts might indeed have some functions. Sequence 
analysis suggested one possible mechanism that could 
account for this — production of 2 separate proteins 
from each of these transcripts. Specifically, inclusion of 
the 855 bp novel cassette MAML2 exon disrupted main 
ORF resulting in a transcript with two major ORFs: 
a shorter ORF1 starting with the original ATG of the 
canonical MAML2 transcript and a longer ORF2 start-
ing from a distal ATG codon at position 2825 encod-
ing respectively proteins of 175 and 929 aa (Figs. 5a and 
Additional file 1: Fig. S9). On the other hand, the novel 

cassette exon of ESYT2 corresponded to multiple (as 
many as 160) transcript isoforms (Fig. 5b and Additional 
file 1: Fig. S5), partly caused by variation in the splicing 
patterns of the novel exon itself. Coding potential based 
on different versions of the novel exons also revealed 
similar disrupted ORFs as in the case of MAML2. An 
example of one such case containing the 180 bp novel 
exon (arrow, Fig.  5b) is shown in the Additional file  1: 
Fig. S10. Just like in the case of MAML2, the insertion of 
the new exon created a shorter ORF1 starting with the 
canonical ATG and a longer ORF2 starting with distal 
ATG at position 916 encoding respectively proteins of 
284 and 677 aa (Additional file 1: Fig. S10).

While mammalian genomes do encode polycistronic 
RNA, they are still quite rare and represented by only 
13 known examples [52]. And, even though, widespread 
translation of short upstream ORFs found in mamma-
lian transcripts has been shown recently, such ORFs 
encode short peptides [53] (see “Discussion”) — much 
shorter than the predicted products of the ORF1 and 
ORF2 of MAML2 and ESYT2. Still, to test the pos-
sibility that these transcripts could be translated, we 
first estimated the relative levels of both the novel and 
annotated transcripts of the same gene in cytosol and 
nucleus in the presence of etoposide. In these experi-
ments, we used a non-coding vlincRNA exclusively 
localized to nucleus as a control. The cytosol/nucleus 
ratio of the novel isoforms of MAML2 and ESYT2 were 
similar to those of the corresponding canonical tran-
scripts and 14.1- and 12.7-fold higher than the nuclear-
localized vlincRNA (Fig.  8a and Additional file  2: 
Table  S20). These data suggested that the novel non-
canonical isoforms are exported to cytosol at the levels 
similar to the canonical isoforms and as such, have the 
potential to be translated into proteins.

(See figure on next page.)
Fig. 8  In vivo and in silico characterization of the protein-coding potential of InSETTs and InSETGs. a The log2 cytosol/nucleus ratio of the novel 
and annotated transcripts of MAML2 and ESYT2 in the presence of etoposide. Error bars indicate the SE based on a total of 6 technical 
corresponding to 2 biological replicates. All data are shown relative to the log2 cytosol/nucleus ratio of a nuclear-localized vlincRNA which is set 
to zero. b, c Schematic diagram of in silico predicted major ORFs in the InSETTs formed by the inclusion of the novel cassette InSETes in the MAML2 
and ESYT2 loci chosen for these experiments (see Additional file 1: Fig. S9 and S10 for more details), and positions of the in-frame fusions of the GFP 
and mCherry proteins in those ORFs. Blue arrows indicate predicted ORF1 and ORF2, orange boxes indicate the novel exons. Green and magenta 
triangles indicate the position where GFP and mCherry proteins were inserted. d, e Fluorescence microscopy images and flow cytometry 
analysis of 293FT cells transfected with vectors harboring the GFP/mCherry fusions for the MAML2 or ESYT2 novel transcript. Scale bar, 100 mm. 
293FT cells without transfection and those transfected with vectors expressing either only GFP or mCherry serve as the negative and positive 
controls respectively for gating. Only one representative biological replicate is shown — for the results from the other 2 biological replicates see 
Additional file 1: Fig. S11c. f Flow cytometry analysis of 293FT cells transfected with vectors harboring the GFP/mCherry fusions for the MAML2 
or ESYT2 novel transcript with and without the CMV promoter. Only one representative biological replicate is shown — for the results from all 3 
biological replicates see Additional file 1: Fig. S12. g Quantitation of the results of 3 biological replicates of experiments shown in the panel f, error 
bars represent SD. Asterisks show significant differences per two-sided paired Student’s t test (p value < 0.05). h Signals from the Ribo-seq assays 
for the two biological replicates of K562 cells treated with etoposide for 36 h and one replicate of pooled etoposide- and imatinib-treated cells (see 
“ Methods” for more details) are shown. The top portion represents zoom-in view of the ORF1 and ORF2 for the novel transcript in the ESYT2 locus 
(InSETT-8) that was used for the GFP/mCherry fusions. i Percentage of GENSCAN-specific exons found in introns of annotated genes containing 
Ribo-seq signal in both biological replicates of the etoposide-treated cells. Source data are provided in Additional file 2: Table S20
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To directly test whether these transcripts could repre-
sent bi-cistronic mRNAs, we created in-frame fusions of 
ORF1 and ORF2 in both MAML2 and ESYT2 with GFP 
and mCherry respectively, as shown in the Fig. 8b, c and 
Additional file 1: Fig. S11a, b. Expression of both ORF1 
and ORF2 in the same cells was assayed using fluores-
cence microscopy and flow cytometry in 3 independent 
biological replicates (Fig. 8d, e and Additional file 1: Fig. 
S11c). Interestingly, majority of the cells expressing either 
GFP or mCherry expressed both proteins: in the biologi-
cal replicate shown on the Fig.  8e, 24.19 and 14.19% of 
cells transfected with MAML2 or ESYT2 fusion con-
structs expressed both proteins. The population of the 
cells expressing only GFP (9.19 and 6.56% for MAML2 
and ESYT2 respectively) was larger than that of the cells 
expressing only mCherry (0.9 and 0.65% for MAML2 
and ESYT2 respectively), consistent with more efficient 
translation of the first ORFs (Fig. 8e). These results were 
consistent among all 3 biological replicates (Fig.  8d, e 
and Additional file  1: Fig. S11c). To confirm that both 
ORFs were in fact translated from the same message, 
and exclude a possibility of cryptic promoters present 
in the sequences upstream of the first ATG codons of 
the 2nd ORFs, we modified the plasmids expressing the 
novel non-canonical MAML2 and ESYT2 transcripts by 
removing the upstream CMV promoter sequence used to 
drive their expression. The deletion dramatically reduced 
translation of both 1st and 2nd ORFs, as shown by the 
significant reduction of GFP and mCherry positive cells 
for both MAML2 and ESYT2 (Fig.  8f, g and Additional 
file  1: Fig. S12). These results confirm that both ORFs 
of both genes are primarily translated from the same 
mRNAs.

To further validate the bi-cistronic nature of these 
novel transcripts, ribosome profiling (Ribo-seq) experi-
ments were performed with cells treated with etopo-
side or imatinib as described in the “ Methods” section. 
Briefly, the 3 Ribo-seq samples contain two biological 
replicates of K562 cells treated with etoposide for 36 h, 
and one pooled sample with various time of either etopo-
side or imatinib treatment. Since the ORF1 and ORF2 
of MAML2 novel transcript completely overlapped with 
the ORF from the canonical transcript (Additional file 1: 
Fig. S9), it was not possible to specifically assign the 
Ribo-seq signal to either canonical or novel ORFs. On 
the other hand, ORF1 and ORF2 of ESYT2 contained 
unique sequences (Additional file 1: Fig. S10) that could 
be used to differentiate them from the main canonical 
ORF. As shown in Fig. 8h, we could consistently observe 
the expected specific enrichment of the Ribo-seq signal 
in the annotated protein-coding exons of ESYT2 relative 
to the flanking intronic sequence. We could also detect 

enrichment of the Ribo-seq signal precisely at the begin-
ning of the ORF2 of the novel non-canonical transcript in 
all 3 samples, thus providing additional supporting evi-
dence that the ORF2 is indeed translated.

Overall, we observed Ribo-seq signal in 10,273 out of 
71,584 or 14.4% of intragenic exons predicted only by 
GENSCAN and not found in the current annotations in 
both biological replicates of the etoposide-treated K562 
cells (Fig.  8i). The existence of thousands of predicted 
exons that could potentially be used for translation — 
in just one cell line and one stress condition — suggests 
that cellular proteome could be far more complex than 
anticipated. While the Ribo-seq results cannot directly 
answer how many of these exons are parts of bi-cistronic 
messages, the fact that at least 2 out of 24 such exons, for 
which full transcripts structures were elucidated, appear 
to represent bi-cistronic transcripts, suggests that bi-
cistronic translation might be more common in humans 
than hitherto believed.

Discussion
Here, we investigated performance of lentivirus-based 
insertional mutagenesis as an unbiased forward genet-
ics tool, and applied it to investigate the landscape of 
functional elements in the human genome. One of the 
advantages of an unbiased forward genetics screen is 
that it does not depend on functional annotation of 
genomic elements while reverse genetics screens, based 
on for example RNAi or CRISPR/Cas9, require previous 
knowledge of potential functional elements to target. 
Insertional mutagenesis is well-suited for survey of both 
known and novel functional genomic elements. However, 
while being technically straightforward, lentivirus-based 
mutagenesis strategy has a number of potential prob-
lems. First, only single copy of a target element is likely to 
be inactivated in the genome, resulting in a partial knock-
down which could present potential problems in pheno-
typic screens, especially in aneuploid cells typically used 
by the community. So far, this consideration has limited 
application of this strategy to very few haploid cell lines 
[30–33]. Second, there is an absence of validated bioin-
formatics pipelines to identify genomic coordinates of 
insertions that can cause phenotypes. Third, integration 
events disrupting elements critically important for sur-
vival could be lost during the generation of the insertional 
mutagenesis cell library and, therefore, not detected in 
phenotypic screens. Fourth, the most important issue 
that could plague this approach is that phenotypes asso-
ciated with lentiviral insertions could be caused by affect-
ing elements other than those located at the sites of the 
insertions, for example, by transactivating nearby genes 
via strong enhancer or promoter elements present in the 
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lentiviral genome, representing an off-target effect of this 
method. Therefore, even though the site of viral integra-
tion could be unambiguously mapped in a genome, the 
association between a phenotype and a specific genomic 
location may be ambiguous.

To our knowledge, this work represents the first study 
in which most of these concerns were thoroughly inves-
tigated and addressed as follows. First, we showed that 
even in an aneuploid cell line, the lentiviral integrations 
can have phenotypic effects as evidenced by significant 
loss of integrations in the exons of essential protein-
coding genes and lncRNAs found previously in two 
independent CRISPR/Cas9 screens. Furthermore, cross-
confirmation of the results from these screens for both 
mRNAs and lncRNAs is an important corollary of this 
work. Especially in the case of the latter, since biologi-
cal functions of lncRNAs are not yet universally accepted 
[21]. Supporting the results from the previous CRISPR/
Cas9 screen using independent insertional mutagenesis 
approach provides additional validation for the function-
ality of these transcripts.

Second, we have tried two independent analytical 
approach to detect phenotypic insertions based either on 
individual insertion events or on regions of nearby inser-
tions that show similar phenotypic effects. We addition-
ally validated the performance of the latter approach by 
using simulated datasets. Overall, we found significant 
agreement between the two approaches both in terms 
of the positions of phenotypic insertions detected by the 
two methods and in terms of the overall conclusions. 
However, we also found that the region-based analytical 
approach was far more sensitive. Therefore, we propose 
that such approach, either based on SICER or some other 
algorithm, should be used in similar lentiviral screens.

Third, as expected, we have indeed encountered a low 
power of the method in detection of critically essential 
functional elements as evidenced by three observations. 
One, we have found depletion of insertions in genes 
found to be essential in the CRISPR/Cas9 screens even 
after very short (2 days) periods of growth of the librar-
ies. Therefore, cells with insertions in such genes were 
lost even before phenotypic screens, consistent with the 
results from previous retrovirus-mediated insertional 
mutagenesis screens in a haploid cell line [33]. Two, the 
essential genes had higher expression levels in the cor-
responding cell type compared to the non-essential 
ones. However, the genes with insertions in their exons 
had significantly lower expression levels than the genes 
without such insertions. Three, we could not detect con-
sistent enrichment of phenotypic insertions in exons of 
annotated genes in all of the 4 phenotypic assay systems. 
Therefore, this method would most likely identify non-
essential, but still biologically relevant genomic elements.

Fourth, forward genetics screens performed so far 
had a tendency to be focused on the annotated tran-
scripts of known genes [30–33]. Here, we extended the 
scope of the analysis to the unannotated portions of the 
human genome, both intra- and intergenic. Strikingly, we 
found that most phenotypic insertions were not associ-
ated with exons of known genes, with a large fraction of 
them located in the intergenic space. One possible expla-
nation of these results is that such insertions function by 
affecting expression of known genes, either positively by 
transactivating their expression or negatively by interfer-
ing with splicing or transcription. However, in this work, 
we provide 3 lines of arguments that suggest that this 
is not the case, or at least that these effects do not con-
tribute significantly to the overall conclusions. One, our 
analysis of insertion distribution around essential genes 
suggests that transactivation, at least in our lentiviral sys-
tem, happens at relatively small distances, ±10 kb, around 
TSSs of known genes. Two, we have not detected obvious 
negative phenotypic signature from insertions mapping 
to introns of essential genes that would be expected if 
these insertions affected proper processing or transcrip-
tion of these genes. Three, if most of phenotypic inser-
tions act by affecting expression of annotated genes, we 
would have expected to observe enrichment of these 
insertions in introns and/or around TSSs of known genes 
compared to insertions that have no phenotypes. How-
ever, this trend has not been observed. Still, the potential 
indirect effects of viral insertions should be carefully con-
sidered and characterized in the future similar insertional 
mutagenesis screens.

Taken together, our results argue that the phenotypic 
insertions located outside of exons or ±10-kb windows 
around TSSs of known genes affect multiple, yet unan-
notated functional elements in the human genome. This 
conclusion was further supported by the sequence con-
servation analysis: if phenotypic insertions were tagging 
unannotated functional elements, the sequences at the 
sites of those insertions would be expected to be signif-
icantly more conserved than those at the sites of inser-
tions with no phenotypes, and this was indeed observed. 
While it is quite likely that the method identified mul-
tiple types of functional elements, our findings suggest 
that at least some of these elements are represented by 
novel exons. Indeed, we could observe consistent enrich-
ment of phenotypic insertions in unannotated exons 
predicted only by GENSCAN and located inside known 
genes. Disruption of these novel exons is consistent with 
the clear phenotypic signature of insertions in exons of 
essential genes, either of protein-coding genes or lncR-
NAs, that we could detect in this work, and is also con-
sistent with the expected disruptive effect of insertion of 
the lentiviral genome in these genomic elements. As we 
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have shown using RACE analysis, many of such predicted 
exons do represent bona fide exons of the corresponding 
genes or exons of transcripts sharing the same genomic 
region with the genes. In addition, in some assays, phe-
notypic insertions are also enriched in the unannotated 
GENSCAN-predicted exons located in the intergenic 
space that as we have also shown can correspond to novel 
genes encoding spliced transcripts. These results are con-
sistent with the observation that over 90% of all hits from 
genome-wide association studies (GWAS) map outside 
of exons and about half map outside of genes [54, 55]. In 
fact, intergenic regions in general, including those con-
taining GWAS hits, have been shown to express many 
unannotated transcripts including lncRNAs [56–58], and 
it has been hypothesized that disease- or trait-associated 
sequence variants uncovered in GWAS studies might 
function by affecting novel transcripts and genes [59–61].

Overall, these results point — consistent with the per-
vasive presence of the “RNA dark matter” in the human 
genome [2–4] — to the existence of a potentially large 
pool of functional exons corresponding to transcripts 
and genes that are yet to be annotated. For example, the 
GENSCAN program can correctly predict 86.2% of base 
pairs that constitute protein-coding portions of anno-
tated exons in the current GENCODE database. How-
ever, these sequences correspond to only 28.2% of all base 
pairs predicted by GENSCAN to represent human exons. 
Therefore, the majority of exonic sequence predicted by 
GENSCAN program, corresponding to 345,175 exons 
not found in the GENCODE genome annotation data-
base, are considered to be false positives. On the other 
hand, our results suggest many of these GENSCAN-
specific exons do exist and could be functional. Based 
on the results presented in this work, we estimate that 
of those, at least ~15K GENSCAN-specific exons might 
represent novel functional genes encoding spliced tran-
scripts (278,590 total intergenic GENSCAN-specific 
exons × 9.5% (397/4,165) intergenic exons harboring 
either IACFs or CACFs × 58.3% (14/24, Fig. 4g) spliced 
transcripts) and ~1.4K represent novel functional inter-
nal cassette exons of protein-coding genes (71,584 total 
intragenic GENSCAN-specific exons × 9.7% (295/3035) 
intragenic exons harboring either IACF or CACFs × 
20.8% (5/24, Fig. 4g) internal exons). This estimate does 
not include intergenic exons that represent unspliced 
transcripts as well as exons representing novel initia-
tion and termination exons of known genes, and exons 
of novel transcripts on the same strand as known genes 
as exemplified in this work (Fig. 4g). Furthermore, since 
only two cell types were used in this study and the pheno-
types were screened in cultured cells, many elements that 
are conditionally functional in different cell types, condi-
tions, and developmental stages might be missed. This is 

especially true for lncRNAs that are known to be highly 
cell-type specific [41, 62, 63]. Furthermore, not all novel 
exons can be predicted by GENSCAN. Therefore, the 
true number of novel biologically relevant exons could be 
much higher. These conclusions suggest that future for-
ward and/or reverse genetics screens should also target 
in silico predicted exons to determine what fraction of 
them is essential, and screens under different biological 
conditions and contexts will be informative.

In this respect, it is worth mentioning that lncRNA 
transcripts and genes are widespread [64] and con-
tribute to the majority of mammalian non-ribosomal 
nuclear transcriptome by mass [65], and many of these 
transcripts and genes remain to be discovered and 
annotated [17, 64]. Furthermore, many of the ones that 
have been discovered have not yet been annotated in 
GENCODE [66–69]. For example, the class of enhancer 
RNAs (eRNAs), which are transcribed from enhancer 
sequences, is emerging as an important component of 
non-coding transcriptome and these transcripts may 
participate in regulation of enhancer activity [70]. How-
ever, as recently shown, tens of thousands of eRNAs are 
not annotated in GENCODE [71]. Therefore, the lncRNA 
annotations used here represent only a minor portion of 
all lncRNAs. Therefore, the IACFs and CACFs outside of 
the annotated elements could very likely affect unanno-
tated lncRNAs, including eRNAs.

One of the main conclusions from this work is that 
it is likely that many noncanonical transcripts derived 
from annotated protein-coding loci that were previously 
discarded as aberrant splicing products can in fact be 
translated as bi-cistronic messages and are biologically 
relevant. These results are consistent with a number of 
recent reports that have shown that mammalian pro-
teome is much more complex than previously anticipated 
[53, 72]. First, mass spectrometry analysis has shown that 
multiple novel proteins and peptides could be produced 
from non-coding genomic space [72]. Second, Ribo-seq 
assays revealed widespread protein-coding capacity of 
transcripts previously considered as non-coding, and 
moreover, presence of complex arrangements of ORFs in 
protein-coding mRNAs [53]. For example, these experi-
ments have shown common presence of bi-cistronic 
mRNAs containing short upstream, and also, in fewer 
cases, downstream ORFs in addition to the major ORFs 
[53]. In fact, recently, the same group has shown using 
CRISRP/Cas9 screen that upstream (u)ORFs are trans-
lated together with the canonical ORFs and encode 
functional peptides [73]. However, most of the uORF 
reported previously encode short peptides or micro-
proteins of <100 aa [74]. As mentioned above, polycis-
tronic translation is still considered to be very rare in 
eukaryotes with only 13 polycistronic mRNAs found in 
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mammalian genomes [52]. Overall, these results sug-
gest that additional studies into discovery and functional 
annotation of novel isoforms of annotated human genes 
are well-warranted. Also, they suggest it might be worth 
to reconsider some of the general principles of annota-
tion of transcripts in the human genome, since such bi-
cistronic transcripts would be typically categorized as 
non-functional substrates of NMD [46], and the exons 
whose inclusion interrupts ORFs, similar to multiple 
InSETes identified here, are currently often considered 
as non-functional pseudoexons [51]. It is important 
to emphasize that while in this work we found unusual 
alternative novel transcripts and bi-cistronic translation 
events, they cannot be simply attributed to the cancerous 
nature of the cells used in this study. In fact, complex pat-
terns of multiple types of novel and non-canonical tran-
scripts have been shown to be widely present in normal 
mammalian cells and tissues [49, 58, 64, 75, 76] (reviewed 
in [77]). Furthermore, several previous reports support 
the existence of non-canonical translation events, includ-
ing bi-cistronic or polycistronic transcripts, in normal 
cells [53, 73, 74]. The relevance of the novel transcripts 
detected in this study in normal cells is further supported 
by the detection of expression of most of them in normal 
human tissues and primary cells.

Interestingly, specific inclusion of the novel exons that 
generates these isoforms happens in response to treat-
ments with anticancer drugs etoposide (MAML2 and 
ESYT2) or imatinib (MAML2). Alternative splicing has 
been shown to play an important part in anticancer 
drug resistance, leading to the emergence of new thera-
peutic strategies that combine treatments with splicing 
modulators and therapeutic agents [78, 79]. However, 
the number of known alternative splicing events caused 
by anticancer drugs is still limited [79]. Considering that 
thousands of un-discovered functional cassette and other 
types of exons exist and that the majority of novel intra-
genic exons tested here are preferentially included into 
the mature transcripts in response to drugs, the func-
tional alternative splicing caused by anticancer drug 
treatments can actually be quite prevalent. Combined 
with the bi-cistronic feature of the drug-induced novel 
non-canonical isoforms, this calls for further exploration 
of alternative splicing and new proteome generated by it 
as an important new dimension in cancer therapy.

However, as shown above, the depth of long-read 
sequencing techniques is still not sufficient to compre-
hensively discover low abundant transcripts containing 
novel exons. For example, only 1 out of 131 InSETes was 
detected by PacBio RNA-seq compared to 90 detected 
using the RACE enrichment approach. Similar conclu-
sions were also reached by other groups that employed 
targeted transcript enrichment techniques followed by 

NGS [64, 80]. However, the low abundance of such exons 
in a bulk RNA sequencing does not necessarily mean that 
these transcripts are non-functional since, as shown by 
single-cell transcriptome profiling studies, transcripts 
with low abundance in bulk samples could have much 
higher expression levels in individual cells [81, 82], even 
in the case of supposedly homogenous cultured K562 
cell line [82]. To overcome the abundance issue, RACE 
or other targeted transcript enrichment techniques could 
be applied to identify transcripts containing novel exons 
of interest, for example predicted by GENSCAN or any 
other program and shown to be functional in a forward- 
or reverse genetics screen, as illustrated in this work for 
InSETes.

Conclusions
All in all, our results suggest that the functional land-
scape of the human genome still remains to a large extent 
unexplored with multiple physiologically relevant exons, 
transcripts, and genes remain to be discovered and 
characterized. In particular, we show that thousands of 
human exons predicted purely in silico could likely corre-
spond to bona fide exons of spliced and functional tran-
scripts. In this respect, we believe that one of the most 
important outcomes of this work is the realization that in 
silico exon- or gene-prediction tools are still very much 
relevant for genome annotation efforts. The development 
of such approaches, while very popular in the 1990s, has 
become much less popular in the age of RNA-seq. How-
ever, our results based on the GENSCAN exons show 
that such in silico prediction tools, potentially in com-
bination with a more powerful modern deep-leaning 
methods, could represent powerful approaches to iden-
tify novel exons and should be pursued alongside the 
wet lab approaches in the genome annotation efforts for 
both protein-coding and non-coding transcripts. The 
combination of many exons of annotated lncRNAs with 
the powerful artificial intelligence (AI) solutions avail-
able today make this a very tenable endeavor even for 
non-coding exons. As such, a combination of insertional 
mutagenesis or other high-throughput reverse genet-
ics approach, exon predictions, and RACE can be a very 
powerful approach for genome annotation.

Furthermore, our results raise a possibility that mul-
tiple non-canonical transcripts that so far have been 
discarded could in fact have function, for example, as bi-
cistronic mRNAs. Altogether, this study strongly suggests 
that future efforts to systematically annotate transcripts 
containing in silico exons using RACE or other targeted 
transcript enrichment techniques and reverse genetics 
approaches that target such exons are well-warranted 
in order to fully understand the complexities of both 
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protein-coding and non-coding transcripts harbored by 
the genome.

Methods
Biological resources
Human liver hepatocellular carcinoma cell line HepG2 
and human chronic myeloid leukemia cell line K562 were 
obtained from Cell Bank of Chinese Academy of Sciences 
and maintained in RPMI 1640 medium (Gibco) supple-
mented with 10% fetal bovine serum (ExCell Bio, Uru-
guay) and 1% penicillin-streptomycin (Gibco) at 37℃ in 
5% CO2.

Insertional mutagenesis
To generate insertional mutagenesis cell libraries HepG2.
LTR and K562.LTR used in the screens for essential 
genomic elements in cell growth and survival, HepG2 
and K562 cells were transfected with lentiviral particles 
generated using the lentivirus vector pLV-hef1a-mNeon-
green-P2A-Puro-WPRE-CMV-MCS-3Xflag in a 293FT 
packaging cell line with an MOI of 20. Three independ-
ent transfections were performed for each cell line. Forty 
eight hours after transfection, the 3 replicates were com-
bined to perform flow cytometry (BD FACSAria III, BD 
Biosciences, USA) sorting with mNeongreen as the selec-
tion marker to obtain more than 6 × 106 cells with lenti-
virus insertions per cell line. The cells were then divided 
into 6 equal parts. Three samples from each cell line were 
subjected to DNA isolation with TIANamp Genomic 
DNA Kit (Tiangen) and served as the controls. The other 
3 samples were further cultured for 1 month and over 1 × 
106 cells were harvested and used for DNA isolation.

To generate insertional mutagenesis cell library K562.
LTR2 for the anticancer drug survival challenge screen, 
K562 cells were consecutively transfected at 15–20 
MOI with lentiviral particles generated with plasmids 
pLV-TRE-NLS-hcas9-NLS-T2A-EGFP and pLV-CMV-
mcherry-P2A-rtTA in a 293FT packaging cell line. K562 
cells transfected with the first vector were selected by 
flow cytometry (BD FACSAria III, BD Biosciences, 
US) using GFP as the selection marker, expanded and 
transfected with the second vector and selected by flow 
cytometry using mCherry. These cells were then further 
expanded for 3 months. The generation of insertional 
mutagenesis cell libraries HepG2.LTR, K562. LTR, and 
K562.LTR2 was outsourced to SyngenTech Corporation 
(Beijing).

Two million K562.LTR2 cells were seeded into each well 
of a 6-well plate with 2 ml medium containing either 0.5 
μM imatinib (AbMole BioScience, US) or 40 μM etopo-
side (AbMole BioScience, US). Cells were treated for 48 
and 24 h with imatinib and etoposide respectively, then 
washed twice with 1 ml RPMI 1640 to remove the drugs 

and resuspended in 2 ml fresh medium for recovery. 
During the recovery, cells were passaged daily with the 
maximum density of 1 × 106 cells/ml, and 45 μl of cells 
was collected and mixed with 45 μl of medium and 10 μl 
of 0.4% trypan blue staining solution (Solarbio) to evalu-
ate the fraction of the live cells. The next round of drug 
treatment was performed when most cells recovered the 
normal shape or the doubling rate of the untreated cells. 
According to the recovery kinetics of imatinib and etopo-
side, 5 and 1 rounds of drug treatment and recovery were 
performed for each drug respectively. Three independent 
biological replicates were performed for each treatment. 
DNA was harvested in cells before and at the end of the 
treatment using TIANamp Genomic DNA kit (Tiangen).

Detection of lentivirus insertion sites
Lentivirus insertion sites in the genome were detected 
as described in Additional file 1: Fig. S1a. Briefly, 1 μg of 
genomic DNA was used as the template for a linear PCR 
in a 50 μl reaction system containing 1× Taq Buffer, 2.5 
U Taq DNA polymerase (Tiangen), 4 μl of 2.5 mM dNTP 
mix (Takara), and 0.3 μM biotinylated primer 3-LTR_
prime (5′-biotin-GCT​CAA​CTG​GTA​CTA​GCT​TGT​AGC​
ACC​ATC​C-3′), which anneals to the 3′ LTR region of 
the lentivirus vector. Fifty cycles of linear PCR were per-
formed with 2.5 U Taq DNA polymerase (Tiangen) added 
at the beginning and immediately after 25 cycles of the 
reaction. PCR conditions were as follows: 94℃ for 5 min; 
50 cycles of 94℃ for 30 s, 55℃ for 30 s and 72℃ for 30 
s; 72℃ for 5 min. After the linear amplification, the PCR 
products were mixed with 10 μl of BeaverBeads™ Strepta-
vidin (Beaver) and incubated for 2 h at room temperature 
with shaking (400 rpm) in a metal bath. Beads were then 
collected with a magnetic stand and washed with 300 
μl Binding/Wash buffer (10 mM Tris-HCl (pH 7.5), 1 
M NaCl, 1 mM EDTA, 0.1% Tween-20) for 6 times, and 
with 65°C H2O for twice. For the second strand synthe-
sis, beads were resuspended in a 24 μl reaction volume 
containing 1× Klenow Fragment Buffer (NEB), 2 μl of 
2.5 mM dNTP mix (Takara), 6.25 μM P5_N6 primer (5′-
CTA​CAC​GAC​GCT​CTT​CCG​ATCTNNNNNN-3′) and 
pre-incubated at 15℃ for 20 min. Then, 2 U of Klenow 
polymerase (NEB) were added and the mixtures were 
incubated at the following conditions: slow ramp at 0.5℃ 
per minute from 15 to 25℃ followed by 30 min incuba-
tion; then slow ramp at 0.5℃ per minute to 37℃ followed 
by 1 h incubation. Beads were captured with a magnetic 
stand and washed gently with 300 μl of 4℃ water. To con-
struct the library for NGS, nested PCR was performed. 
First, beads were resuspended in a 25 μl PCR reaction 
volume containing 1× Taq Buffer, 1.25 U Taq DNA pol-
ymerase (Tiangen), 2 μl of 2.5 mM dNTP mix (Takara), 
0.5 μM of primer P5 (5′-CTA​CAC​GAC​GCT​CTT​CCG​
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ATCT-3′), and 0.5 μM of primer 3-LTR_Nest (5′-CCT​
GGT​GTG​TAG​TTC​TGC​CAA​TCA​G-3′). PCR conditions 
were as follows: 94℃ for 3 min; 20 cycles of 94℃ for 30 s, 
55℃ for 30 s and 72℃ for 30 s; 72℃ for 7 min. Second, 5 
μl of the PCR products from the previous step were used 
for the next round of PCR in 50 μl volume containing 1× 
Taq Buffer, 2.5 U Taq DNA polymerase (Tiangen), 4 μl of 
2.5mM dNTP mix (Takara), 0.4 μM of primer Illumina_
P5 (5′-AAT​GAT​ACG​GCG​ACC​ACC​GAGAtctACA​CTC​
TTT​CCC​TAC​ACG​ACG​CTC​TTC​CGA​TCT-3′) and 0.4 
μM of primer Illumina_P7-3LTR (5′- CAA​GCA​GAA​
GAC​GGC​ATA​CGA​GAT​CGT​GAT​GTG​ACT​GGA​GTT​
CAG​ACG​TGT​GCT​CTT​CCG​ATC​TGC​CTT​GTG​TGT​
GGT​AGA​TCC​ACAG-3′). PCR conditions were as fol-
lows: 94℃ for 3 min; 15 cycles of 94℃ for 30 s, 55℃ for 
30 s and 72℃ for 30 s; 72℃ for 7 min. PCR products were 
purified with 1.2× volumes of VAHTS DNA Clean Beads 
(Vazyme) to a final volume of 21 μl. The concentration 
of PCR products was measured by Qubit 3.0 fluorom-
eter using Equalbit dsDNA HS Assay Kit (Vazyme). To 
achieve a better coverage, five libraries were prepared in 
parallel from 1 mg of genomic DNA and pooled together. 
NGS was performed on Illumina platforms HiSeq X Ten 
or NovaSeq 6000 using paired-end 150 bp (PE150) strat-
egy and outsourced to Novogene Corporation (Beijing) 
on 30-GB (giga-base) scale for each replicate of HepG2.
LTR and K562.LTR libraries and 33-GB scale for each 
replicate of K562.LTR2 libraries.

Only paired-end raw reads with the read 2 starting with 
LTR tag “GCC​TTG​TGT​GTG​GTA​GAT​CCA​CAG​ATC​
AAG​GAT​ATC​TTG​TCT​TCG​TTG​GGA​GTG​AAT​TAG​
CCC​TTC​CA” and each base of each read having Phred 
quality score > 20 were selected. Such reads were aligned 
to the GRCh37/hg19 using BWA-MEM (v0.7.12) with 
default settings. Only read-pairs where both read 1 and 
2 uniquely mapped to the genome with appropriate con-
figuration and spacing were kept. The insertion position 
was defined as the first base upstream of the LTR tag in 
the read 2.

RNA‑seq analysis
We used previously published RNA-seq data from nor-
mally grown K562 cells generated by our group [83, 84]. 
In that study, RNA was isolated from K562 cells and 
RNA-seq was performed on Illumina platform (HiSeq 
X Ten) by Novogene Corporation (Beijing) using rRNA-
depletion protocol and PE150 strategy on 10-GB scale. 
Two biological replicates were performed. To calculate 
the TPM of genes, the raw reads were trimmed with 
fastq_quality_trimmer of the FASTX-Toolkit (v0.0.13) 
software to obtain paired-end reads with a Phred qual-
ity score ≥ 20 for each base. The TPM was calculated 
based on the UCSC Genes track from the GRCh37/

hg19 assembly of the UCSC Genome Browser [44] by 
the RSEM (v1.2.28) software with parameters “--bowtie2 
--paired-end --strand-specific --no-bam-output.” The 
statistical significance difference between TPM of CS > 0 
and CS < 0 genes were calculated using two-sided paired 
Student’s t test.

Identification and analysis of IACFs and CACFs
The IACFs and CACFs were identified as illustrated 
in Additional file  1: Fig. S1b. The read counts in each 
unique insertion site were normalized to the total num-
ber of uniquely aligned reads in each sample. For the 
identification of IACFs, the normalized read counts were 
converted to log10 values. The log10 values of insertion 
sites with zero reads were set as −5. Two-sided paired 
Student’s t test was performed on the log10 values. The 
p values were adjusted for multiple comparisons with 
the Benjamini-Hochberg method in R environment and 
IACFs were selected with an FDR threshold of 25%. In 
the statistical analysis, a 3 by 3 comparison was per-
formed between the 3 biological replicates of control 
and treated samples to obtain significantly enriched or 
depleted positions. To obtain CACFs, the significantly 
enriched or depleted insertion clusters between con-
trol and treated samples were identified using SICER 
[40] (v1.1) with a FDR threshold of 1%, and the cluster 
regions shared by at least two biological replicates were 
denoted as CACFs. In HepG2.LTR and K562.LTR cell 
lines, 1-month-cultured samples were compared with 
control samples collected at 48 h after transfection; 
in K562.LTR2 cell line, imatinib or etoposide-treated 
samples were compared with control samples prior to 
the drug challenge.

The overlaps between insertion sites or clusters and 
the different genomic elements were calculated using 
the “intersect” function of the BEDTools suite (v2) [85]. 
For the analyses shown in the Figs. 3 and 4, the annota-
tions, unless indicated otherwise, were downloaded from 
the following tracks and databases of the GRCh37/hg19 
assembly of the UCSC Genome Browser [86]. The known 
genes were represented by the “UCSC Genes” database 
[44]. For each gene, only the longest annotated transcript 
(based on the total length of the exon) was chosen for the 
subsequent analysis. Annotations of promoters, enhanc-
ers, and insulators for HepG2 and K562 cells lines were 
obtained from the “Chromatin State Segmentation by 
HMM from ENCODE/Broad” track [42, 43]. Annotations 
of lncRNAs were obtained from the “GENCODE Genes” 
track [45, 46]. Coordinates of vlincRNAs were based on 
St Laurent et  al. [41]. Annotations of GENSCAN [34] 
exons were obtained from the “Genscan Gene Predic-
tions” track.
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Treatment of K562 cells with anticancer drugs
Detection of full-length transcript isoforms corre-
sponding to novel GENSCAN exons or connections 
between them and neighboring annotated exons using 
5′ and 3′ RACE, detection of exon-exon connections 
using RT-PCR, or RNA-seq using PacBio long-read 
sequencing was performed on the same RNA pool of 
drug-treated K562 cells prepared as follows. K562 cells 
(5 × 105 cells/ml) were grown in RPMI 1640 (Thermo 
Fisher Scientific, US) supplemented with 10% fetal 
bovine serum (ExCell Bio, Uruguay) in a 6-well plate 
for 16 h and treated with either 80 μM etoposide or 1 
μM imatinib for 0, 6, 24, or 36 h. After the treatment, 
RNA was isolated with TRNzol Universal (Tiangen) 
and E.Z.N.A. Total RNA Kit I (Omega). The polyA+ 
fraction was isolated from each total RNA by Library 
Preparation VAHTS™ mRNA Capture Beads (Vazyme). 
An equal amount of polyA+ RNA from each sample 
was mixed and used for cDNA synthesis for RACE, 
PacBio RNA-seq, or RT-PCR. To detect the relative lev-
els of canonical and novel non-canonical MAML2 and 
ESYT2 transcripts in cytosol and nucleus, K562 cells 
were treated with 80 μM etoposide for 24 h prior to 
subcellular fractionation.

Sequence conservation analysis
The phastCons scores were obtained from the Verte-
brate Multiz Alignment & Conservation (100 species) 
track from the GRCh37/hg19 assembly of the UCSC 
Genome Browser [87, 88]. The conservation scores 
of insertion sites were extracted using the “intersect” 
function of the BEDTools suite [85] (v2).

Identification of connections between intragenic InSETes 
and neighboring annotated exons using RT‑PCR
One hundred nanogram of the pooled PolyA+ RNA 
(described above) was used for cDNA synthesis with 
PrimeScriptTM II 1st Strand cDNA Synthesis Kit 
(Takara) with pools of gene-specific primers. For RT-
PCR, two to three rounds of nested PCR were per-
formed. The second or third round of amplification was 
conducted with 2 μl products from the previous round 
of PCR. RT-PCR products were subjected to agarose 
gel analysis with the relative concentrations quanti-
fied by the Tanon 3500R Gel Imaging System (Tanon). 
For downstream Nanopore Technologies sequenc-
ing analysis, equal amounts of RT-PCR products from 
each reaction were pooled and purified with 2× vol-
umes of VAHTS DNA Clean Beads (Vazyme). The list 
of RT-PCR primers can be found in Additional file  2: 
Table S21.

Identification of full‑length transcripts representing novel 
GENSCAN exons using 5′ and 3′ RACE
For the 5′-RACE, first-strand cDNA synthesis was per-
formed using the PrimeScript™ II 1st Strand cDNA 
Synthesis kit (Takara) following the manufacturer’s 
instructions with some modifications. Briefly, 85 ng of 
pooled polyA+ RNA from above was used as the tem-
plate. Up to ten exon-specific primers (GS) were pooled 
in each reaction to a final concentration of 0.5 μM for 
each primer. The reactions were incubated at 50℃ for 60 
min, followed by enzyme inactivation at 70℃ for 15 min. 
The products were purified with 1.5× volumes of VAHTS 
DNA Clean Beads (Vazyme) to a final volume of 15 μl. 
For polyC tailing with terminal transferase (TdT) (NEB), 
the purified first-strand cDNA was mixed with 2 μl of 
10× TdT buffer and 2 μl of 2.5 mM CoCl2, and denatured 
at 95℃ for 5 min followed by rapid snap-cooling on ice. 
The reaction was then mixed with 5 U TdT (NEB) and 
2 μl of 10 mM dCTP (Takara) in a total volume of 22 μl 
and incubated at 37℃ for 30 min, followed by enzyme 
inactivation at 70℃ for 10 min. The tailing reactions 
were purified with 1.5× volume of VAHTS DNA Clean 
Beads (Vazyme) to a final volume of 15 μl. The 5′-RACE 
PCR was performed with all of the purified products of 
the tailing reaction in a 25 μl reaction system contain-
ing 1× PrimeSTAR GXL Buffer, 1.25 U PrimeSTAR GXL 
DNA polymerase (Takara), 2 μl of 2.5 mM dNTP mixture 
(Takara), 0.4 μM N10G10HN primer (5′-AGT​TGC​GGA​
TGG​GGG​GGG​GGHN-3′), and 10 pooled exon-specific 
nested primers (GSN) with a final concentration of 0.4 
μM for each primer. The 5′-RACE PCR conditions were 
as follows: 30 cycles of 98℃ for 10 s, 55℃ for 30 s and 
68℃ for 5 min; 68℃ for 7 min.

For the 3′-RACE, first-strand cDNA synthesis was 
performed using the PrimeScript™ II 1st Strand cDNA 
Synthesis kit (Takara) with 350 ng of the pooled polyA+ 
RNA and N20T12VN primer (5′-GCA​ATC​ATC​GAG​
TTG​CGG​ATT​TTT​TTT​TTT​TTVN-3′) at final concen-
tration of 0.5 μM. The reactions were slowly ramped at 
2℃ per minute from 37 to 50℃ and further incubated at 
50℃ for 60 min. The enzyme was inactivated at 70℃ for 
15 min. Two rounds of nested 3′-RACE PCR were then 
carried out. The first round of amplification with 2.8 μl 
of unpurified products of the cDNA synthesis reaction 
as the template was conducted in a 25 μl reaction system 
containing 1× PrimeSTAR GXL Buffer, 1.25 U Prime-
STAR GXL DNA polymerase (Takara), 2 μl of 2.5 mM 
dNTP mixture (Takara), 0.4 μM N20T12VN primer, and 
10 pooled exon-specific primers (rcGSN) with a final 
concentration of 0.4 μM for each primer. The reactions 
conditions were as follows: 15 cycles of 98℃ for 10 s, 
55℃ for 30 s, and 68℃ for 5 min; 68℃ for 10 min. The 
second round of amplification was done with 1 μl of first 
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round PCR products as the template in a 25 μl reaction 
system containing 1× PrimeSTAR GXL Buffer, 1.56 U 
PrimeSTAR GXL DNA polymerase (Takara), 2 μl of 2.5 
mM dNTP mixture (Takara), 0.4 μM N20T12VN primer, 
and 10 pooled exon-specific nested primers (rcGS) with a 
final concentration of 0.4 μM for each primer. The ampli-
fication conditions were the same as for the first round 
of PCR except for 30 cycles of reactions were performed. 
The sequence of 3′-RACE primers rcGSN and rcGS are 
reverse compliment to that of the 5′-RACE primers GSN 
and GS respectively. The list of 5′-RACE and 3′-RACE 
primers can be found in Additional file 2: Table S22.

The 5′-RACE and 3′-RACE products were subjected 
to agarose gel analysis with the relative concentrations 
measured by the Tanon 3500R Gel Imaging System 
(Tanon). Equal amounts of 5′-RACE or 3′-RACE prod-
ucts from each pooled reaction were mixed and purified 
with 2× volumes of VAHTS DNA Clean Beads (Vazyme) 
respectively. The concentrations were measured by Qubit 
3.0 fluorometer using Equalbit dsDNA HS Assay Kit 
(Vazyme).

Nanopore sequencing
Products of RT-PCR, 5′-RACE, and 3′-RACE were 
sequenced using Oxford Nanopore Technologies plat-
form by Baocheng Corporation (Hangzhou). Sequencing 
library was prepared by Ligation Sequencing Kit (SQK-
LSK109) (Oxford Nanopore Technologies Inc., Oxford, 
UK) by Baocheng Corporation (Hangzhou). The library 
was sequenced on a FLO-MIN106 R9.4.1 flow cell on 
GridION MK1 (Oxford Nanopore Technologies Inc., 
Oxford, UK). Five GB of raw data were obtained after 18 
h of sequencing. The sequenced reads were base-called 
in real time using MinKNOW (v20.10.6) and integrated 
with Guppy (v4.2.3).

For the analysis, reads were aligned to the GRCh37/
hg19 using Minimap2 (v2.17-r941) in spliced align-
ment mode with the command “minimap2 -ax splice 
--secondary=no”, and the option “--secondary=no” was 
used to suppress secondary alignments. Supplementary 
and low-quality alignments were filtered out using SAM-
Tools (v1.10) with the command “samtools view -F0x900 
-q 60”.

PacBio long‑read sequencing
PacBio long-read sequencing was outsourced to Novo-
gene Corporation (Beijing). Briefly, to prepare for the 
sequencing library, polyA+ RNA fractions were isolated 
from wild-type K562 cells not transfected with lentivi-
ruses and treated separately by imatinib or etoposide 
for varying amounts of times and then mixed prior to 
the PacBio library construction as described above and 
reverse-transcribe to cDNA with SMARTer PCR cDNA 

Synthesis Kit (Clontech Laboratories). The cDNA was 
PCR amplified and size selected with the BluePippin 
Size-Selection System (Sage Science). The sequencing 
library was prepared with SMARTbell Express Template 
Prep Kit 2.0 (Pacific Biosciences). The sequencing was 
performed with Sequel II Sequencing Kit 2.0 on PacBio 
Sequel platform on 30-GB scale by Novogene Corpora-
tion (Beijing).

Overlap analysis of InSET TSSs with CAGE tags
The TSSs of novel transcript were extracted from the 
5′ RACE data for InSETes for which the 5′ RACE infor-
mation was available. The coordinates of TSSs were 
extended by ±10 bp and either analyzed directly (Addi-
tional file  2: Table  S14) or merged to obtain TSS clus-
ters for simulation analysis (Fig. 4h and Additional file 2: 
Tables S15-17). For the downstream analyses, InSET 
TSSs overlapping annotated mRNA TSSs in ±10 bp win-
dow as well as TSS clusters overlapping annotated mRNA 
TSSs were filtered out. The remaining TSS clusters were 
mapped to exons, introns, antisense intragenic regions, 
and intergenic regions with a hierarchical strategy to 
determine the composition of the TSSs (Additional file 2: 
Table S15). For the simulation analysis, the “shuffle” func-
tion of the BEDTools suite (v2) [85] was used to get the 
simulated TSS clusters based on the distribution of TSS 
clusters on the abovementioned four regions in the real 
data. The overlap analyses between the individual TSSs 
or TSS clusters with CAGE tags in human tissues or pri-
mary cells were performed using the “intersect” function 
of the BEDTools suite (v2) [85].

For each real and simulated TSS cluster, the number of 
tissue or primary cell samples with overlapping CAGE 
tags, and the sum of normalized CAGE abundance in all 
of these samples were determined. The overlaps between 
TSSs or TSS clusters and CAGE tags were always per-
formed in a strand-specific fashion. The normalized 
CAGE abundance was calculated as:

where C represents the CAGE depth on each CAGE TSS, 
and T denotes the total number of CAGE tags in each 
sample. The statistical significance between CAGE signal 
of individual TSS clusters in the real and simulated data 
shown in Fig.  4h was calculated using Wilcoxon rank-
sum test.

RT‑qPCR
For the expression analysis of novel transcripts in 
response to anticancer drugs, K562 cells were treated 
with an anticancer drug or DMSO as the control for 36 
h prior to RNA isolation. For the subcellular localization 

Normalized CAGE abundance =
C × 10

7

T
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analysis of the transcripts, RNA was isolated from the 
cytoplasmic or nuclear fractions of the K562 cells, and 
cDNA was synthesized using PrimeScript™ II 1st Strand 
cDNA Synthesis Kit (Takara). RT-qPCR was performed 
with PowerUp SYBR Green Master Mix (Life Technolo-
gies) on a Mx3005P cycler (Agilent Technologies) using 
two biological replicates each done with three technical 
repeats. The Ct value of an RT-qPCR replicate with no Ct 
value was set to 40 since 40 cycles of amplifications were 
performed. If one technical replicate was significantly 
different (>2 Ct) from the other two, it was excluded from 
the analysis. Two-sided paired Student’s t test with a 6 
by 6 comparison was performed on the log2 values. The 
Hedge’s g effect size was calculated as:

where n1 and n2,  X1 and X2 , SD1 and SD2 are respec-
tively the sample sizes, means, and standard deviations 
of the two groups. All Hedge’s g effect sizes in this study 
were calculated based on this formula. The list of RT-
qPCR primers can be found in Additional file  2: Tables 
S23 and S24.

Analysis of the protein‑coding potential of new isoforms 
of known genes in vivo
ORF1 and ORF2 found by in silico translation of MAML2 
and ESYT2 transcripts harboring the novel exons are 
shown in Additional file  1: Figs. S9 and S10. Sequences 
encoding EGFP and mCherry were inserted in-frame 
after the predicted ORF1 and ORF2 respectively (Fig. 8b, 
c and Additional file 1: Fig. S11a, b) and cloned into an 
expression vector driven by the CMV promoter. The 
resulting fusion constructs would express ORF1-EGFP 
and ORF2-mCherry from the same mRNA for either 
ESYT2 or MAML2 transcript containing the novel exon. 
The MAML2 and ESYT2 vectors containing CMV pro-
moter were constructed by SyngenTech Corporation 
(Beijing) and GENEWIZ Corporation (Suzhou) respec-
tively. The MAML2 and ESYT2 vectors without the 
CMV promoters were constructed by GENEWIZ Cor-
poration (Suzhou). The fusion constructs were deliv-
ered into 293FT cells using Lipofectamine 3000 reagent 
(ThermoFisher Scientific, US). 293FT cells were also 
separately transfected with vectors overexpressing either 
EGFP or mCherry only (without any additional protein 
sequence) as the positive controls and 293FT cells with-
out transfection served as the negative control. Cells 

Hedge′s g = Cohen′s d ∗ 1−
3

4(n1 + n2)− 9

Cohen′s d =
X2 − X1

√
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1
+(n2−1)SD2

2

n1+n2−2

were observed under fluorescence microscope (EVOS f1, 
Advanced Microscopy Group, US) at 48 h after transfec-
tion. Flow cytometry analyses (CytoFLEX S, Beckman 
Coulter, US for vectors containing the CMV promoters; 
CytoFlexSystemB3-R1-V0, Beckman Coulter, US for vec-
tors without the CMV promoters) were performed at 48 
h after the transfection to detect the expression of the 
protein products of ORF1 and ORF2 as indicated by the 
EGFP and mCherry fluorescence respectively. The data 
was analyzed with CytExpert software (v2.0.0.153 and 
v2.4.0.28 for vectors with and without CMV promoters 
respectively) (Beckman Counter, US). Three independent 
biological replicates were carried out. The flow cytome-
try analyses were performed by SyngenTech Corporation 
(Beijing).

Ribosome profiling
K562 cells were treated with either 80 μM etoposide or 1 
μM imatinib for 0, 6, 24, or 36, then centrifuged at 500g 
for 5 min at 4℃, and resuspended in 1 ml fresh RPMI 
1640 medium containing 0.1 mg/ml cycloheximide and 
incubated at 37℃ in 5% CO2 for 1 min. Cells were then 
centrifuged at 500g for 5 min at 4℃, and resuspended in 
1 ml pre-cold PBS containing 0.1 mg/ml cycloheximide, 
and centrifuged at the same condition. After removal of 
the supernatants, cell pellets were frozen immediately by 
liquid nitrogen for >1 min. Two biological replicates of 
36 h etoposide-treated samples were used for Ribo-seq at 
GENE DENOVO Corporation (Guangzhou) at 100-mil-
lion-read scale. Equal amounts of 0 h drug-treated cells 
and 6, 24, or 36 h etoposide or imatinib-treated cells were 
pooled and subjected to Ribo-seq at Novogene Corpora-
tion (Beijing) at 30-million-read scale.
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