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Morphology‑based deep learning 
enables accurate detection of senescence 
in mesenchymal stem cell cultures
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Abstract 

Background  Cell senescence is a sign of aging and plays a significant role in the pathogenesis of age-related disor-
ders. For cell therapy, senescence may compromise the quality and efficacy of cells, posing potential safety risks. Mes-
enchymal stem cells (MSCs) are currently undergoing extensive research for cell therapy, thus necessitating the devel-
opment of effective methods to evaluate senescence. Senescent MSCs exhibit distinctive morphology that can be 
used for detection. However, morphological assessment during MSC production is often subjective and uncertain. 
New tools are required for the reliable evaluation of senescent single cells on a large scale in live imaging of MSCs.

Results  We have developed a successful morphology-based Cascade region-based convolution neural network 
(Cascade R-CNN) system for detecting senescent MSCs, which can automatically locate single cells of different 
sizes and shapes in multicellular images and assess their senescence state. Additionally, we tested the applicability 
of the Cascade R-CNN system for MSC senescence and examined the correlation between morphological changes 
with other senescence indicators.

Conclusions  This deep learning has been applied for the first time to detect senescent MSCs, showing promising 
performance in both chronic and acute MSC senescence. The system can be a labor-saving and cost-effective option 
for screening MSC culture conditions and anti-aging drugs, as well as providing a powerful tool for non-invasive 
and real-time morphological image analysis integrated into cell production.
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Background
Mesenchymal stem cells (MSCs) are one of the funda-
mental therapeutic tools in the fields of regenerative 
medicine and tissue engineering [1]. MSCs are consid-
ered an ideal candidate for replacing lost or damaged 
cells and tissues in  vivo, as they possess the capacity 
for multi-lineage differentiation and self-renewal, along 
with secreting various factors that exhibit pro-angio-
genic, immunomodulatory, and anti-apoptotic func-
tions. Their therapeutic efficacy has been demonstrated 
in numerous clinical trials [2, 3].

As adult stem cells, MSCs exhibit a shorter lifespan 
compared to pluripotent stem cells [4]. Cell senescence, 
which represents the fundamental process of aging, 
occurs throughout the life cycle. In  vivo, cell senes-
cence serves as a mechanism for the organism to inhibit 
the proliferation of damaged cells and thus prevent 
their progression toward oncogenic transformation [5]. 
However, senescent MSCs exhibit persistent growth 
arrest, decreased self-renewal capacity, and an inflam-
matory phenotype, which can lead to tissue regenera-
tion damage and organ degeneration [6]. In  vitro, cell 
senescence can compromise the differentiation and 
immunosuppressive properties of MSCs, impair their 
normal function, increase their susceptibility to genetic 
instability, and alter the microenvironment through 
senescence-associated secretory phenotype (SASP) [7]. 
The senescent MSCs exhibit an augmented cell size and 
a shift in morphology from spindle to an irregular flat 
shape, attributed to the accumulation of undegraded 
macromolecules. In addition, senescent cells exhibit 
cell division fatigue, accumulation of senescence-
associated β-galactosidase (SA-β-gal), nuclear hetero-
chromatin accumulation, and increased expression of 
cyclin-dependent kinase inhibitors (p16 and p21) [8].

In the fields of tissue engineering and cell therapy, the 
large-scale and long-term culture required for MSCs 
can result in replicative senescence and impaired cell 
quality and function through continuous expansion 
in  vitro, which poses potential safety risks [9]. There-
fore, effective assessment of senescence is crucial prior 
to the application of cell therapy. The ideal method 
for detecting MSC senescence should be quantitative, 
rapid, label-free, and non-destructive methodologies. 
Currently, a range of biological and spectroscopic tech-
niques can be employed to assess cell senescence based 
on indicators such as SA-β-gal [10, 11], telomere length 
[12], epigenetic markers [13], gene and protein mark-
ers [14], as well as cell fluorescence intensity [15, 16]. 
However, these methods pose challenges for real-time 
monitoring or may cause irreversible modification or 
even destruction of cells during detection.

Senescent cells display distinct morphology, which 
can serve as a means to assess their senescence sta-
tus. Developing morphology-based techniques for 
evaluating cell quality by exploiting the differences 
in appearance between senescent and non-senescent 
MSCs holds great promise and potential applications. 
Experienced researchers are capable of evaluating the 
cell state based on its morphological characteristics. 
However, uncertainties may arise in mass microscopic 
observations due to researcher factors such as fatigue, 
efficiency, experience level, and subjective elements. 
The emergence of deep learning technology provides 
a new approach for analyzing cellular images [17, 18]. 
The deep learning-based object detection algorithm 
possesses robust localization and classification capabil-
ities for objects in a scene, enabling automatic feature 
extraction of cell images and simultaneous prediction 
of cell position and category within the entire image, 
thereby facilitating automated analysis of cellular 
imagery [19–21]. The region-based convolution neu-
ral network (R-CNN) is a classic representative of an 
object detection network that has been widely applied 
in the field of medical image processing [22]. Following 
the development of R-CNN, subsequent advancements 
in object detection algorithms have included the intro-
duction of Fast R-CNN [23], Faster R-CNN [24], and 
Cascade R-CNN [25]. The Cascade R-CNN serves as 
a versatile framework for the R-CNN series detectors, 
exhibiting the potential to enhance the performance 
of various R-CNN detectors such as Faster R-CNN, 
Mask R-CNN, and deformable region-based fully con-
volutional network (Deformable R-FCN) by 2–4%. 
Moreover, it exhibits promising capabilities in analyz-
ing pathological images [25–27]. Therefore, Cascade 
R-CNN holds promise in developing a reliable real-time 
tool for assessing the MSC status. In this study, we have 
developed a novel Cascade R-CNN system based on cell 
morphology for the detection and precise localization 
of single senescent cells, as well as the evaluation of 
induced pluripotent stem cell-derived MSCs (iMSCs) in 
microscopic image. Furthermore, we assessed the suit-
ability of the Cascade R-CNN system for intervening 
in senescence and examined the correlation between 
morphological changes and other senescence mark-
ers. The combination of Cascade R-CNN based on cell 
morphology and conventional optical microscopy has 
the potential to replace traditional biological and spec-
troscopy techniques in certain applications, offering a 
cost-effective and labor-saving alternative for screening 
MSC culture conditions and anti-aging drugs, thereby 
contributing to the industrialization of MSC.
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Results
Replicative senescence of iMSCs
We cultured human iMSCs in  vitro for an extended 
period, and the cells initially exhibited senescence char-
acteristics at the 6th passage, which became increas-
ingly apparent with continued passaging. The replicative 
senescence induced by external culture occurs gradually 
and at a slow pace. We conducted a comparative analysis 
of cellular morphological characteristics from passage 6 
(P6) to passage 13 (P13), revealing an irregular cell mor-
phology (Fig.  1A), accompanied by a gradual increase 
in both cell area and length (Fig.  1B,C). Subsequently, 
other senescent-related indices were compared between 
P6 (considered as early senescence) and P13 (consid-
ered as late senescence) cells. It was observed that con-
tinuous passaging resulted in decreased cell proliferation 
(Fig. 1D), upregulated expression of cell cycle genes (p16 
and p21; Fig. 1E), downregulated expression of stemness 
genes (NANOG and SOX2; Fig. 1F), increased expression 
of inflammatory cytokine genes (interleukin 6 [IL-6], IL-
1β, IL-10, and tumor necrosis factor-α [TNF-α]; Fig. 1G), 
weakened osteogenic and chondrogenic differentiation 
potential (Fig. 1H), elevated lysosome and mitochondrial 
density levels (Fig. 1I-J), and altered mitochondrial mem-
brane potential (MMP; Fig. 1K). Except for morphology, 
these indicators could reflect the senescent trend across 
different generations; however, the detection process 
caused irreversible damage to cells and yielded incon-
sistent results between successive generations. Notably, 
cell size and morphology were easily observable indica-
tors of cell state, implying that quantification and analy-
sis of senescent-related morphological changes would be 
advantageous for developing powerful and straightfor-
ward methods to detect senescent cells.

A Cascade R‑CNN system detected senescent cells 
with promising performance
Cell morphology serves as a specific indicator for distin-
guishing cell states. Researchers use morphology to iden-
tify the cell state but often produce uncertain detection 
results when faced with mass microscopic observation 
tasks. Developing an automated detection method for 
bright-field microscopic cell images based on senescence-
related cell morphology offers significant advantages and 
promising application prospects. We prepared an input 
dataset consisting of 640 × 640-pixel bright-field images 
at a magnification of × 4. The images were performed 
three times independently for each passage to enhance 
data generalization. Following pretreatment, experienced 
researchers classified and labeled the cells in the images 
based on SA-β-gal staining activity and cell morphology 
(Fig. S1A). The training dataset consisted of 2382 images, 
while the validation and test datasets contained 797 and 

807 images. The training dataset consisted of 56,115 
senescent cells and 27,550 non-senescent cells. The vali-
dation dataset contained 18,945 senescent cells and 9284 
non-senescent cells. Similarly, the test dataset included 
18,847 senescent cells and 9284 non-senescent cells. Sub-
sequently, a Cascade R-CNN network was employed to 
evaluate whether the cells were senescent or non-senes-
cent (Fig.  2A). To improve precision, predictions were 
compared with ground truth, and weights were iteratively 
adjusted automatically to train the Cascade R-CNN.

We assessed the capacity of the network to distinguish 
between non-senescent and senescent cells throughout 
successive passages (P5 to P10) in culture. After train-
ing, the Cascade R-CNN network demonstrated high 
precision in detecting both senescent and non-senescent 
cells. For network evaluation, precision, recall, F1 score, 
PR curve, average precision (AP), mean average precision 
(mAP), and average recall (AR) were utilized with mAP50 
as the test index. Precision represents the positive predic-
tion hit rate while recall indicates prediction sensitivity. 
The F1 score combines both precision and recall. The 
precision-recall (PR) curve reflects the trade-off between 
precision and recall with better performance indicated by 
a large area under the curve. The AP represents the area 
under the PR curve and serves as a measure of the aver-
age precision of the network in detecting a specific object 
category. The mAP, which is calculated as the mean of all 
APs across different categories, is considered to be the 
most crucial metric for evaluating object detection per-
formance. The AR refers to the ratio of correctly detected 
objects to total detected objects in a given test dataset. 
The trained Cascade R-CNN network exhibited robust 
performance, achieving a mAP of 0.81 and an AR of 0.93. 
The AP for senescent cells and non-senescent cells were 
0.799 and 0.814, respectively (Fig. 2B,C). The mAP values 
of objects of small size (object box area under 322 pix-
els), medium size (object box area between 322 and 962 
pixels), and large size (object box area beyond 962 pixels) 
were found to be 0.739, 0.766, and 0.867, respectively 
(Fig.  2D). The AR values of small, medium, and large 
objects were 0.91, 0.93, and 0.93, respectively (Fig.  2E). 
Regarding senescent cells, the precision, recall, and F1 
score achieved were 0.850, 0.923, and 0.885, respectively. 
As for non-senescent cells, the precision, recall, and F1 
score were 0.874, 0.934, and 0.903, respectively (Fig. 2F). 
The capacity of the network to distinguish between non-
senescent and senescent cells was subsequently evalu-
ated at each passage. The representative images were 
randomly selected from each passage (P5 to P10). Nota-
bly, the trained Cascade R-CNN network exhibited vary-
ing performances across passages, demonstrating robust 
performance in passages 5, 8, and 10, with mAP values of 
0.84, 0.84, and 0.8, respectively (Fig. 2G and Fig. S1B-C). 
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Fig. 1  Senescent markers and stemness properties of iMSCs changed with serial culture. A Representative morphology of long-term iMSCs 
from passages 6, 9, 11, and 13 imaged. Scale bar: 500 μm. B Mean cell area and length increased with extended in vitro cell culture. C Mean cell 
areas, corresponding cell length, and fold-changes in comparison to P6. D Proliferation of iMSCs at P6 and P13. The mRNA levels of cell cycle genes 
(E), stemness genes (F), and inflammatory cytokines (G) of iMSCs at P6 and P13. H Osteogenic and chondrogenic differentiation of iMSCs at P6 
and P13. Scale bar: 1000 μm. I The lysosomal density of iMSCs at P6 and P13. Scale bar: 200 μm. J The mitochondrial density of iMSCs at P6 and P13. 
Scale bar: 200 μm. K The MMP of iMSC at P6 and P13. Scale bar: 200 μm. Data were representative of over three independent experiments. n = 3, * 
p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 by Student’s t test
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These findings provided compelling evidence for the suc-
cessful implementation of an object detection system for 
serial culture-induced senescent iMSCs.

To evaluate the superiority of the Cascade R-CNN net-
work, we compared these findings with feature-based 
deep learning approaches, including the single shot 
multibox detector (SSD) [28], CenterNet [29], full con-
volutional one-stage object detection (FCOS) [30], you 
only look once v3 (YOLOv3) [31], PicoDet [32], deform-
able detection transformer (Deformable DETR) [33], and 
Sparse R-CNN [34]. We employed deep learning mod-
els to analyze cell images by extracting features of pic-
ture attributes, resulting in input datasets. However, the 
mAP values obtained from these models were compara-
tively lower than those achieved by the Cascade R-CNN 
network. Therefore, we determined that the Cascade 
R-CNN network was the optimal approach for our study 
(Fig. 2H).

Distinct morphological features were observed in 
senescent cells, and the proportion of senescent cells 
was determined by quantifying both senescent and non-
senescent cells. The correlation between the output of the 
Cascade R-CNN system for senescence proportion and 
various markers associated with cell senescence was eval-
uated using the Pearson correlation coefficient to analyze 
changes in different parameters related to cell senescence. 
Strong positive correlations were observed between 
senescence proportion output and cell cycle genes (p16 
and p21), inflammatory cytokines (IL-6, IL-1β, IL-10, and 
TNF-α), the density of lysosome and mitochondrial, cell 
area, and cell length. Conversely, strong negative correla-
tions were found between senescence proportion output 
and stemness genes (NANOG and SOX2), MMP, and cell 
proliferation (Fig.  2I). These findings suggested that the 
morphology-based method was a reliable approach for 
assessing MSC senescence comparable to other markers.

Cascade R‑CNN system performance 
at doxorubicin‑induced iMSC senescence
Cell senescence is a cellular response triggered by vari-
ous endogenous and exogenous factors, such as DNA 
damage, telomere dysfunction, and oxidative stress 
[35]. To induce acute senescence in iMSCs, we utilized 

doxorubicin, a widely used chemotherapeutic agent 
known for its ability to disrupt double-strand DNA 
breakage and cause extensive DNA damage [36]. In the 
presence of doxorubicin, early senescent iMSCs exhib-
ited significant changes in cell morphology within a short 
period of 1 to 2 days, characterized by increased cell area 
and length (Fig.  3A,B). Furthermore, doxorubicin incu-
bation resulted in decelerated cell migration (Fig.  3C), 
decreased cell proliferation (Fig. 3D), upregulated expres-
sion of senescence-related genes (Fig. 3E), altered expres-
sion of inflammatory cytokines (Fig. 3F), downregulated 
expression of stemness-related genes (Fig. 3G), increased 
mitochondrial density (Fig.  3H), and altered MMP 
(Fig. 3I).

To validate the ability of the Cascade R-CNN net-
work to identify senescent cells within the doxorubicin-
induced senescent dataset, a new dataset was acquired 
and not utilized for network training. The input data-
set comprised 640 × 640 pixels from brightfield images 
at × 4 magnification, with 219 images allocated for train-
ing and 67 images for testing. In the dataset, the train-
ing set consisted of 6110 senescent cells and 1324 
non-senescent cells, while the test set contained 1584 
senescent cells and 368 non-senescent cells. Doxoru-
bicin-induced senescence was independent three times 
to enhance data generalization, and the doxorubicin-
induced senescence was validated by SA-β-gal activity. 
Subsequently, three distinct Cascade R-CNN networks 
were evaluated using datasets of passage-induced senes-
cence, doxorubicin-induced senescence, and mixed pas-
sage- and doxorubicin-induced senescence (Fig.  4A). 
Among the three different trained models, the Cascade 
R-CNN trained on both doxorubicin-induced senes-
cence and mixed passage- and doxorubicin-induced 
senescence datasets exhibited superior performance in 
detecting doxorubicin-induced senescence images, with 
mAP values exceeding 0.81 and AR values surpassing 
0.95 (Fig. 4B). Furthermore, we observed that these three 
distinct Cascade R-CNN networks demonstrated vary-
ing levels of efficacy in identifying small, medium, and 
large objects: for small objects, the average of mAP and 
AR were 0.714 and 0.94; for medium objects, the average 
of mAP and AR were 0.734 and 0.927; for large objects, 

(See figure on next page.)
Fig. 2  Cascade R-CNN training to distinguish non-senescent and senescent cells. A Concept of the Cascade R-CNN system. Microscopic images 
of iMSCs during culture were acquired, and the Cascade R-CNN was trained to detect non-senescent and senescent cells. B The AP, mAP, and AR 
showed the performance of the Cascade R-CNN trained by passage data. C Precision-recall curve of the trained Cascade R-CNN. D The mAP 
of the small, medium, and large objects. E The AR of the small, medium, and large objects. F Several evaluation indexes for non-senescent 
and senescent cell detection. G The performance of the Cascade R-CNN in serial passages. H The performance of deep learning methods. I The 
Pearson correlation coefficient between the senescence proportion output of the Cascade R-CNN and senescence-related indicators. Data were 
representative of three independent experiments, n = 3
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Fig. 2  (See legend on previous page.)
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the average of mAP and AR were 0.821 and 0.913, respec-
tively (Fig.  4C). Compared to non-senescent cells, the 
three Cascade R-CNN networks exhibited exceptional 
performance in senescent cells, with averaged precision, 
recall, and F1 score of 0.896, 0.931, and 0.924 respectively 
(Fig. 4D). These finding provided strong support for the 
effectiveness of the Cascade R-CNN system in detecting 

doxorubicin-induced senescent iMSCs, highlighting its 
superior detection precision for larger object.

After this, we prepared three new datasets for test-
ing, and each condition was independently repeated 
three times. The Cascade R-CNN trained using passage 
data exhibited exceptional performance across all three 
test datasets, with an average mAP of 0.79. Conversely, 

Fig. 3  Changes of senescence-related indicators of iMSCs in doxorubicin-induced acute senescence. A Representative morphology of iMSCs 
in doxorubicin incubation. Scale bar: 500 μm. B Mean cell area and length increased with doxorubicin duration. C Proliferation of iMSCs 
with doxorubicin incubation. D Scratch assay to detect iMSC migration in doxorubicin incubation. Scale bar: 1000 μm, the arrow indicated the width 
of the scratch. The mRNA levels of cell cycle genes (E), inflammatory cytokines (F), and stemness genes (G) of iMSCs with doxorubicin incubation. 
H The mitochondrial density of iMSCs with doxorubicin incubation. Scale bar: 200 μm. I The MMP of iMSCs with doxorubicin incubation. Scale bar: 
200 μm. Data were representative of three independent experiments. n = 3, * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 by Student’s t test
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Fig. 4  Cascade R-CNN system performance at doxorubicin-induced iMSC senescence. A Protocol for the development of the Cascade R-CNN 
in doxorubicin-induced iMSC senescence. B The AP, mAP, and AR showed the performance of the trained Cascade R-CNN trained in doxorubicin 
data. C The mAP and AR for small, medium, and large objects in doxorubicin data. D The precision, recall, and F1 score for non-senescent 
and senescent cells detection in doxorubicin data. E A heatmap showed the mAP of Cascade R-CNN prediction in each test dataset. F Linear 
correlation between the senescence proportion output of Cascade R-CNN trained by doxorubicin data and the doxorubicin duration. G The Pearson 
correlation coefficient between the senescence proportion output of the Cascade R-CNN trained by doxorubicin data and senescence-related 
indicators. Data were representative of three independent experiments, n = 3
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the Cascade R-CNN trained on the doxorubicin dataset 
exhibited superior performance exclusively in doxoru-
bicin test images. The Cascade R-CNN, trained using a 
combination of passage and doxorubicin images, exhib-
ited exceptional performance in both the passage and 
mix test datasets, with an average mAP of 0.75 (Fig. 4E 
and Fig. S2). During senescence, the spindle-shaped mor-
phology of MSCs gradually transitions to an irregular 
shape. The morphological alterations of iMSCs exhibit 
distinct patterns during chronic and acute senescence. In 
chronic senescence, senescent and non-senescent MSCs 
do not represent absolute opposites; instead, a transi-
tional state exists between them. Conversely, in drug-
induced acute senescence, most non-senescent MSCs 
bypass the intermediate transitional state and promptly 
enter the late senescence state. Compared to doxoru-
bicin, the images of the passage dataset contained more 
cell morphological features, which might have contrib-
uted to the poor performance of doxorubicin-trained 
Cascade R-CNN in the passage dataset.

The Pearson correlation coefficient revealed a highly 
linear correlation between senescence proportion out-
put and the doxorubicin duration (Fig.  4F). The corre-
lation between the senescence proportion output and 
other senescent-related parameters in doxorubicin data 
showed the strong positive correlations between senes-
cence proportion output and cell cycle genes (p16 and 
p21), inflammatory cytokines (IL-6, IL-1β, and IL-10), 
mitochondrial density, cell area, cell length, and migra-
tion, and strong negative correlations between senes-
cence proportion output and stemness genes (NANOG 
and SOX2), TNF-α, MMP, and cell proliferation (Fig. 4G). 
These findings suggested that the morphometry-based 
Cascade R-CNN system could reliably identify drug-
induced senescent cells.

Cascade R‑CNN system performance at senolytic‑treated 
iMSC senescence
Senolytics have been proposed as potential therapeu-
tic agents for age-related diseases due to their specific 
effects on senescent cells [37, 38]. In order to validate the 
performance of the Cascade R-CNN system, we inves-
tigated the impact of senolytics such as ABT-263, nico-
tinamide mononucleotide (NMN), and metformin on 
senescent iMSCs. By analyzing the effects of three drugs 
on iMSCs in late senescence, we found that only NMN 
promoted proliferation of senescent iMSCs, while ABT-
263 and metformin did not have this effect (Fig.  5A). 
Both ABT-263 and NMN (but not metformin) reduced 
mRNA expression of p16 and p21 (Fig.  5B). All three 
drugs upregulated SOX2 gene expression with little 
effect on NANOG gene expression (Fig. 5C). The mRNA 
expression of IL-1β, IL-10, and TNF-α was upregulated 

by ABT-263 (Fig. 5D), while NMN and metformin down-
regulated the mRNA expression of IL-10 and TNF-α 
(Fig. 5E,F). All three drugs exhibited a reduction in mito-
chondrial density in late-senescent iMSCs (Fig. 6A), with 
ABT-263 demonstrating greater effectiveness on MMP 
(Fig. 6B).

The Cascade R-CNN system, trained on a dataset 
of passage-induced senescence or mixed passage- and 
doxorubicin-induced senescence, was used to analyze 
images following incubation with ABT-263, NMN, and 
metformin (Fig.  6C). Analysis by the Cascade R-CNN 
system trained on the passage-induced dataset revealed 
that the proportion of senescent cells decreased from 78 
to 59%, 78 to 76%, and 78 to 68% for ABT-263, NMN, and 
metformin respectively. The Cascade R-CNN system, 
trained on a mixed dataset, analyzed images of ABT-
263, NMN, and metformin and observed changes in the 
proportion of senescent cells from 90 to 66%, 90 to 84%, 
and 90 to 85%, respectively (Fig.  6D). Additionally, we 
employed ImageJ software analysis to quantify changes 
in cell length and area after senolytics treatment, reveal-
ing that ABT-263 had a greater effect on cell morphology 
compared to NMN and metformin treatments (Fig. S3). 
These results indicated that the three senolytics had dif-
ferent effects on iMSC morphology, among which ABT-
263 showed the most promising outcomes.

The Pearson correlation coefficient indicated that in the 
ABT-263 incubation group, the senescence proportion 
output was a positive correlation with cell cycle genes 
(p16 and p21), mitochondrial density, MMP, and cell 
proliferation, a negative correlation with inflammatory 
cytokines (IL-1β and IL-10) and SOX2, and weak corre-
lation with TNF-α and NANOG (Fig.  6E). In the NMN, 
the senescence proportion output was a negative cor-
relation with cell cycle genes (p16 and p21), inflamma-
tory cytokines (IL-1β, IL-10, and TNF-α), stemness genes 
(NANOG and SOX2), mitochondrial density, MMP, and 
cell proliferation (Fig.  6F). In the metformin, the senes-
cence proportion output was a positive correlation with 
p21, inflammatory cytokines (IL-10, and TNF-α), and 
mitochondrial density, and weak correlation with p16, IL-
1β, stemness genes (NANOG and SOX2), cell prolifera-
tion, and MMP (Fig. 6G). These results suggested that the 
three senolytics had different effects on indicators associ-
ated with cell senescence.

Discussion
The presence of senescent cells should be avoided dur-
ing the production of cell products due to their poten-
tial impact on cell quality and safety [39, 40]. Therefore, 
monitoring the state of cells is crucial for ensuring 
the production of high-quality and safe cell products. 
Cell morphology can serve as a distinctive marker for 
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identifying different cell types and pathological states 
based on its morphodynamics, which include changes 
in protein structure and expression as well as chromatin 
structure. Researchers use morphology to identify the cell 
state but often produce uncertain detection results when 
faced with mass microscopic observation tasks. There-
fore, the development of automated recognition and 

localization technology for cell images is crucial to facili-
tate the optimal utilization of morphological indicators. 
Oja et  al. utilized the Cell Omics Morphology Explorer 
imaging system (version V4, Thermo Scientific) to quan-
tify morphological alterations of MSCs during prolonged 
culture, including parameters such as width, length, 
perimeter, area, and shape. The study demonstrated that 

Fig. 5  Effects of senolytics on iMSC proliferation and gene expression. A Changes of iMSC proliferation after senolytic incubation (ABT-263, NMN, 
and metformin). The expression of cell cycle genes (B), stemness genes (C), and inflammatory cytokines (D–F) of iMSCs with senolytic incubation 
(ABT-263, NMN, and metformin). Data were representative of three independent experiments, n = 3. * p < 0.05; ** p < 0.01; *** p < 0.001; **** 
p < 0.0001 by Student’s t test
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cell morphology serves as an indicator of cell quality and 
could be employed in developing novel non-invasive 
imaging-based techniques for screening and quantifying 

senescence in cell cultures [41]. Kusumoto et al. utilized 
a morphology-based CNN system to detect senescent 
cells, including human umbilical vein endothelial cells 

Fig. 6  Cascade R-CNN system performance at senolytic-treated iMSC senescence. A The mitochondrial density of early and late senescent iMSCs 
with senolytic incubation. ABT-263, 2.5 μM; NMN, 200 μM; metformin, 100 μM. Scale bar: 200 μm. B The MMP of early and late senescent iMSCs 
with senolytic incubation. ABT-263, 2.5 μM; NMN, 200 μM; metformin, 100 μM. Scale bar: 200 μm. C Protocol for the Cascade R-CNN for detecting 
senolytic-treated late senescent iMSC data. D Output of the Cascade R-CNN to detect senolytic data. The Pearson correlation coefficient 
was calculated between the senescence proportional output of Cascade R-CNN and senescence-related indicators in the ABT-263 (E)/NMN (F)/
metformin (G) incubation group. Data were representative of three independent experiments, n = 3
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(HUVECs) and human diploid fibroblasts (HDFs), in 
phase-contrast microscope images. The senescence pro-
portion output of pre-trained CNN was used to evalu-
ate the quality of endothelial cells [42]. However, the 
Cell Omics Morphology Explorer imaging system has 
exhibited misclassification of overlapping cells as a sin-
gle entity or fragments as intact cells [41]. Kusumoto 
et al. conducted automatic single-cell cropping on phase 
contrast microscope images beforehand and utilized 
the clipped single-cell image data for CNN training and 
detection, resulting in improved classification perfor-
mance [42]. The accuracy of image segmentation often 
has an impact on classification performance. In multicel-
lular images, the cellular features exhibit slight variations, 
boundaries are often indistinct, cells may overlap, and 
broken cells or impurities can cause interference, thereby 
increasing the complexity of image segmentation in tra-
ditional image detection. The deep learning-based object 
detection algorithms enable simultaneous prediction of 
the location and category of cells in an entire image, facil-
itating the detection of multicellular images in complex 
and microscopic scenes. Xu et al. achieved excellent per-
formance in cervical cell smear images using the Faster 
R-CNN model, surpassing CenterNet and YOLOv5 
algorithms in terms of time efficiency, recognition preci-
sion, and adaptability [43]. Moallem et al. used CNN and 
Faster R-CNN to achieve remarkable results in detect-
ing patient-derived cancer cells in blood sample images, 
with Faster R-CNN proving more efficient and suitable 
for deployment [44]. Cascade R-CNN, which is based on 
Faster R-CNN, has been applied to various object detec-
tion tasks [25, 45]. However, it remains unclear whether 
Cascade R-CNN can effectively evaluate cell morphol-
ogy with blurred boundaries in bright-field microscopy 
images. We have developed a method to evaluate the 
senescence-related state of MSCs based on cell morphol-
ogy using Cascade R-CNN and assessed its performance 
in chronic and acute senescence. Our results demon-
strated, for the first time, that this network can be reli-
ably applied to detect MSC senescence in bright-field 
microscopy images. Compared to other commonly used 
object detection networks, Cascade R-CNN demon-
strated superior performance. The senescence proportion 
outputs were then correlated with senescence-related 
parameters, such as cell proliferation, gene expression, 
and mitochondrial function, indicating that the network’s 
ability to assess the MSC senescence trend was compara-
ble to the traditional biological method.

Development techniques for the identification of 
individual senescent cells can offer powerful monitor-
ing capabilities for the application of reagents targeting 
senescent cell removal and the subsequent production 
of high-quality, highly stable therapeutic MSC products. 

Conventional methods relying on senescence biomark-
ers (such as telomere length, p16, mitochondrial damage) 
might cause irreversible cellular damage or modifica-
tion, or exhibit delays during the detection process. The 
β-galactosidase-based assay could effectively identify 
individual senescent cells and serve as a reliable posi-
tive control for other methods. However, this method 
was found to be destructive and prone to false posi-
tives [46]. By integrating cell size measurement technol-
ogy, the accuracy of identification could be significantly 
enhanced [41, 47]. The combination of cell size and spec-
tral measurement [48, 49] offers the advantage of being 
non-destructive and label-free. However, the excitation 
light required for spectral measurement may cause pho-
todamage to cells. Therefore, factors such as cell culture 
conditions and media must be taken into account when 
applying this technique. The detection system established 
in this study had obvious advantages over traditional bio-
logical and spectroscopic techniques when applied to 
single-cell analysis in microscopic images. Specifically, 
the system was characterized by its online detectability, 
rapidity, and reliability in evaluating senescent cell popu-
lations during two-dimensional planar culture without 
compromising subsequent cell production. The detection 
system enables researchers to perform analysis on × 4 
bright-filed MSC images. The MSC images were clipped 
to 640 × 640-pixel and subsequently input into the sys-
tem. The predicted category of each cell within the image 
could be obtained by running the code of the system.

For live cell imaging, we opted for the traditional six-
well culture plate to capture images that more closely 
mimic the in  vitro conditions of MSC. Only distortion-
free areas containing cells were included in our imaging 
data collection. In this study, Cascade R-CNN demon-
strated the ability to predict objects of varying sizes on 
feature maps at multiple scales, resulting in improved 
detection performance and reduced computational cost. 
However, the detection system exhibited a significant 
decrease in precision across cell culture generations, 
potentially due to differences in cell morphology and 
non-object background regions. The transition from 
non-senescence to senescence occurred gradually, and 
the morphology of cells in the intermediate state may 
confound detection. To address these issues, future 
research could incorporate more abundant training data 
and introduce adaptive threshold in transfer learning to 
extract domain-invariant features of MSCs across differ-
ent passages. This would improve network precision and 
provide a more reliable choice for automating non-inva-
sive evaluation of MSC quality.

In this study, we observed significant variations in the 
effects of three senolytics (ABT-263, NMN, and met-
formin) on iMSC senescence. Previous studies have 
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indicated distinct mechanisms of action for three seno-
lytics concerning cell senescence. ABT-26 inhibits B cell 
lymphoma 2 (BCL-2) and BCL-extra-large (BCL-XL), 
thereby inducing apoptosis of senescent cells through 
mitochondria-dependent pathways and mitigating aging 
at an individual level by reducing the presence of senes-
cent cells and cytokines [50]. NMN, as a precursor of 
nicotinamide dinucleotide (NAD+), can safely and effec-
tively increase NAD+ content, thereby alleviating cell 
senescence [51]. Metformin reduces AMP-activated 
protein kinase (AMPK)-independent SASP production 
by directly regulating nuclear factor-κB (NF-κB) binding 
and activation to achieve the anti-aging goal [52]. Seno-
lytics may improve some senescence-related indicators 
without rapidly and effectively reversing cell morphology. 
Therefore, we posit that the morphology-based approach 
can serve as a rapid and cost-effective option for screen-
ing anti-aging drugs, albeit not a definitive choice. None-
theless, this method still offers advantages in detecting 
senescent cells while saving labor and costs.

Conclusions
In this study, we developed a Cascade R-CNN system 
for the detection of senescent MSCs, exhibiting promis-
ing performance in both replicative- and drug-induced 
senescence. This method, when combined with optical 
light microscopy capable of recording, presents a labor-
saving and cost-effective option for screening culture 
conditions and anti-aging drugs for MSCs. Moreover, it 
offers an excellent technique for integrating non-inva-
sive real-time morphological image analysis into cell 
production.

Methods
Cell cultures
The iMSCs utilized in this study were derived from 
induced pluripotent stem cells (iPSCs) (Nuwacell, Cat 
#RC1001, China), following the previously reported 
methodology [53]. To characterize the iMSCs, flow 
cytometry was employed to analyze the presence of 
typical MSC markers. The iMSCs were cultured in 
an incubator at 37  °C and 5% CO2 using MSC basal 
medium (Dakewe, China) supplemented with EliteGro™-
Advanced serum-free supplement (Dakewe, China).

Doxorubicin (APExBIO, USA)  was utilized to induce 
cell senescence in iMSCs. Specifically, iMSCs were cul-
tured in MSC basal medium supplemented with serum-
free supplement and 100  nM doxorubicin for 2  days to 
obtain senescent iMSCs exhibiting altered morphology. 
Control samples consisted of iMSCs cultured in MSC 
basal medium supplemented with a serum-free supple-
ment and PBS for 2 days.

Senolytics (ABT-263, NMN, and metformin; Absin, 
China) were employed to modulate the senescent pheno-
type of iMSC. Specifically, iMSCs (passages 12–14) were 
treated with these three drugs for 2 days each.

Cell proliferation
The cells were seeded onto a culture plate and cell pro-
liferation was detected using the WST-1 cell prolifera-
tion and cytotoxicity assay kit (Beyotime Biotechnology, 
China). After adding 0.1 volume of water-soluble tetrazo-
lium (WST) reagent, the culture medium was incubated 
at 37 ℃ for 2 h and absorbance was measured at a wave-
length of 450  nm using a microplate reader (Bio-Tek, 
USA).

After staining the cells with diamidino-phenyl-indole 
(DAPI, 10  μg/mL, Life Technologies, USA), the culture 
wells were meticulously examined and captured under a 
microscope (Lionheart™ FX automated live cell imager 
with augmented microscopy™, × 4 objective, BioTek, 
USA), followed by precise segmentation and quantifi-
cation of DAPI using advanced image analysis software 
(Gen5 Imager).

Cell differentiation
Osteogenic differentiation
Human iMSCs were cultured until reaching 80–90% 
confluence, following which the MSC basal medium 
was substituted with osteogenic differentiation medium 
(Biological Industries, Israel). The differentiation process 
lasted for 21 days and necessitated a change of medium 
every 2  days. Visualization of the differentiation was 
achieved through Alizarin Red S staining (MSC osteo-
staining kit, Vivacell, China) under a microscope.

Chondrogenic differentiation
The iMSCs were cultured unit reaching 80–90% con-
fluency, following which the MSC basal medium was 
substituted with chondrogenic differentiation medium 
(Biological Industries, Israel). The differentiation process 
lasted for 21 days and necessitated a change of medium 
every 3  days. Visualization of the differentiation was 
achieved through Alcian blue 8GX staining (MSC chon-
dro-staining kit, Vivacell, China) under a microscope.

Cell migration
The serum-free medium culture was initiated when 
iMSCs reached over 90% confluence in the cultured well. 
Following serum starvation, a scratch was created in each 
well by scraping cells with a sterile plastic pipette tip. The 
cells were washed twice to remove cellular debris and 
then treated with 100  nM doxorubicin, while the con-
trol group received PBS. Images were captured using a 
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microscope, and three independent scratch wound-heal-
ing assays were performed.

Quantitative real‑time PCR (qPCR)
Total RNA was extracted using a miRNA kit (Omega 
Scientific, USA). The cDNAs were synthesized with the 
ReverTra Ace qPCR RT master mix with gDNA Remover 
(Toyobo, Japan), and gene expression was quantified 
using the ChamQ SYBR qPCR master mix kit (Vazyme, 
China) on the LightCycler 480 Detection System (Roche, 
Switzerland). Each experiment was performed in tripli-
cate. Data were analyzed using the 2−△△Ct method with 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as 
an internal control. The primer sequences used are listed 
in Table S1.

Immunofluorescence
Prior to fixation in 4% paraformaldehyde at 37  °C for 
15 min, the cells were stained with mito-tracker reagent 
(200 nM, Beyotime Biotechnology, China) for mitochon-
dria and lyso-tracker reagent (50 nM, Beyotime Biotech-
nology, China) for lysosomes. The nucleus was stained 
with DAPI and visualized under fluorescence micros-
copy. Fluorescence intensity was quantified by calculating 
the integrated density using ImageJ software.

JC‑1 assay
The MMP was assessed using the JC-1 mitochondrial 
membrane potential assay kit (Beyotime Biotechnology, 
China). Before incubation with a medium containing 
JC-1 staining solution for 20  min at 37  °C, iMSCs were 
washed with PBS and subsequently analyzed via fluores-
cence microscopy. Quantification of fluorescence inten-
sity was performed using ImageJ software.

Sample preparation for the image analysis
Senescent cells were detected using an SA-β-gal stain-
ing kit (Beyotime Biotechnology, China) and stained with 
an SA-β-gal staining solution. Briefly, cells were washed 
thrice with PBS, fixed in 4% paraformaldehyde for 15 min 
at room temperature, and incubated overnight at 37 ℃. 
The activity of SA-β-gal was observed under a conven-
tional light microscope.

Images were acquired using a Lionheart™ FX auto-
mated live cell imager equipped with augmented micros-
copy™ (× 4 objective, BioTek, USA). Three wells of the 
six-well plate were captured for each analysis, resulting 
in 360 images per run. The imaging was performed in a 
spiral mode starting from the center of each well to mini-
mize optical distortions caused by bulges along the bot-
tom edge. The length and area of each cell in the image 
were quantified using ImageJ software.

The training and test datasets were subjected to senes-
cence induction through serial culture and doxorubicin 
incubation. A total of 7373 images were acquired from 
more than three independent experiments, with each 
image being saved as a 640 × 640-pixel RGB image in 
PNG format.

Server and analysis environment
We used an Nvidia GTX Titan XP server with 4 CPUs: 
6 Graphics Processing Clusters, 36 Texture Processing 
Clusters, 72 Streaming Multiprocessors, 4608 CUDA 
Cores, 576 Tensor Cores, 72 RT Cores, 1350 MHz Base 
Clock (MHz), 1770 MHz Boost Clock (MHz), 7000 MHz 
Memory Clock, 24 GB GDDR6 Total Video Memory. We 
wrote all the scripts on the Linux system using Python. 
LableMe, an open-source image labeling software, was 
used for data labeling [54].

Training by deep learning methods
For training, we employed the Cascade R-CNN net-
work [25], which incorporates a residual neural network 
(ResNet) as the baseline network and integrates fea-
ture pyramid network (FPN), region proposal network 
(RPN), and group normalization (GN) modules. ResNet 
enhances training depth by introducing residual units 
into deep neural networks. The inclusion of the FPN 
module facilitates improved feature extraction, while the 
RPN module significantly accelerates detection box gen-
eration for region proposals. Moreover, the GN module 
normalizes input images to further enhance detection 
accuracy.

Cascade R-CNN used cascade regression as a resam-
pling mechanism to address the overfitting issue during 
training and the intersection over union (IoU) mismatch 
problem during inference, resulting in significant per-
formance gains. The input images were fed into ResNet 
for feature map extraction, which was then used by the 
RPN module to generate region candidate boxes. Sub-
sequently, the RoI (region of interest) coordinates were 
obtained. The corresponding features of the Rol region 
were forwarded to the pooling layer to acquire local fea-
ture maps with fixed height and width information. The 
local feature maps were input into distinct detection 
heads for classification and bounding box regression. 
During the training process, the IoU thresholds of the 
three detection heads were set as 0.5, 0.6, and 0.7, respec-
tively. Subsequently, the local features generated by each 
detection head were forwarded to the pooling layer of the 
subsequent detection head (with increasing IoU values), 
ultimately resulting in outputting both detection boxes 
and classification categories. The cross-entropy error was 
utilized as the loss function, with a learning rate of 0.01 
and an iteration count of 1000. Momentum optimization 
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was applied at a value of 0.9, while L2 regularization was 
set to 0.0001. The criterion for stopping training was 
when the loss function stabilizes and reaches a minimal 
relative value. Each round of training, which corresponds 
to one epoch, involved the processing of all images.

The trained network was capable of producing the 
object category and its corresponding score (i.e., the 
confidence score of identifying non-senescent cells or 
abandoned cells). The performance of the network after 
training was evaluated using precision, recall, F1 score, 
precision-recall (PR) curve, AP, mAP, and AR.

For training using alternative deep learning methods, 
we utilized the same dataset of passages as employed in 
Cascade R-CNN training. The identification of iMSCs 
in images was conducted through SSD [28], CenterNet 
[29], FCOS [30], YOLOv3 [31], PicoDet [32], Deformable 
DETR [33], and Sparse R-CNN [34]. The networks (SSD 
[28], CenterNet [29], FCOS [30], YOLOv3 [31], PicoDet 
[32], Deformable DETR [33], Sparse R-CNN [34]) were 
trained with the optimal parameters reported in previ-
ous studies. These network performances were assessed 
based on AP and mAP metrics and subsequently com-
pared to the performance achieved by Cascade R-CNN. 
The complete code used in this study can be found in 
the public GitHub repository, [https://​github.​com/​Paddl​
ePadd​le/​Paddl​eDete​ction/​tree/​relea​se/2.​6/​confi​gs].

The trained Cascade R-CNN networks were evalu-
ated using newly collected datasets, including three 
independent experiments: passage-induced senescence, 
doxorubicin-induced senescence, and a combination of 
both. Each dataset was obtained from each of the three 
independent experiments. Network evaluation was con-
ducted using precision, recall, F1 score, AP, mAP, and AR 
metrics.

Evaluation of network performance
For network evaluation, precision, recall, F1 score, PR 
curve, AP, mAP, and AR were utilized with mAP50 as the 
test index. The IoU is employed to assess the accuracy 
of the detection box by evaluating the overlap between 
the detection box and the true box by calculating their 
intersection-to-union ratio. The IoU threshold of our 
model was 0.5 to judge the correctness of the detection 
results. The precision denotes the ratio of correctly clas-
sified positive samples to all samples classified as positive, 
thereby primarily reflecting the predictive accuracy of the 
results. The recall represents the proportion of correctly 
classified positive samples out of all true positive catego-
ries, primarily reflecting the rate of missed detections in 
the predicted results. The F1 score considers the com-
bined harmonic mean of precision and recall. The AP 
is calculated by integrating the area under the PR curve 
and serves to measure the performance of the detection 

algorithm across various categories. Ranging from 0 to 1, 
a higher AP value indicates better model performance in 
that category. The mAP, a widely adopted comprehensive 
evaluation metric in object detection tasks, is computed 
as the average of individual APs across all categories and 
serves as a performance measure for models across mul-
tiple categories. AR is the average of the recall of all test 
images within a specific interval, which is used to evalu-
ate algorithm performance at different recall rates and 
serves as the standard for assessing missed detections. 
The mAP50 represents the index settlement of mAP at an 
IoU threshold of 0.5.

* TP: true positive, FP: false positive, FN: false negative.

Correlation analysis
The correlation between the senescence proportion 
output of the Cascade R-CNN system and other senes-
cence-related markers was assessed by calculating the 
Pearson correlation coefficient. Statistical planning and 
graphical analysis were performed using GraphPad Prism 
8.4.3, while visualization of the correlation was achieved 
through heat maps and principal component analysis.

Statistical analysis
The representative experimental data were also reported, 
and all data were presented as means ± standard devia-
tion (S.D.). Each experiment was performed in triplicate 
using triplicate biological samples unless otherwise spec-
ified. The statistical significance of differences between 
the two experimental groups was analyzed using a t-test. 
p < 0.05 was considered statistically significant.
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