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Abstract 

Background  Genomic prediction describes the use of SNP genotypes to predict complex traits and has been 
widely applied in humans and agricultural species. Genotyping-by-sequencing, a method which uses low-coverage 
sequence data paired with genotype imputation, is becoming an increasingly popular SNP genotyping method 
for genomic prediction. The development of Oxford Nanopore Technologies’ (ONT) MinION sequencer has now made 
genotyping-by-sequencing portable and rapid. Here we evaluate the speed and accuracy of genomic predictions 
using low-coverage ONT sequence data in a population of cattle using four imputation approaches. We also investi-
gate the effect of SNP reference panel size on imputation performance.

Results  SNP array genotypes and ONT sequence data for 62 beef heifers were used to calculate genomic estimated 
breeding values (GEBVs) from 641 k SNP for four traits. GEBV accuracy was much higher when genome-wide flanking 
SNP from sequence data were used to help impute the 641 k panel used for genomic predictions. Using the imputa-
tion package QUILT, correlations between ONT and low-density SNP array genomic breeding values were greater 
than 0.91 and up to 0.97 for sequencing coverages as low as 0.1 × using a reference panel of 48 million SNP. Imputa-
tion time was significantly reduced by decreasing the number of flanking sequence SNP used in imputation for all 
methods. When compared to high-density SNP arrays, genotyping accuracy and genomic breeding value correlations 
at 0.5 × coverage were also found to be higher than those imputed from low-density arrays.

Conclusions  Here we demonstrated accurate genomic prediction is possible with ONT sequence data 
from sequencing coverages as low as 0.1 × , and imputation time can be as short as 10 min per sample. We also dem-
onstrate that in this population, genotyping-by-sequencing at 0.1 × coverage can be more accurate than imputation 
from low-density SNP arrays.

Keywords  Genotyping-by-sequencing, Skim-whole genome sequencing, Genotype imputation, Genomic 
prediction, Oxford Nanopore Technologies sequencing

Background
Genomic prediction is a method of using genome-wide 
DNA markers to assess the genetic merit of an individ-
ual and relies on the accurate genotyping of these DNA 
markers. As a result of their low cost [1] and impressive 
accuracy [2], SNP microarrays are currently the favoured 
method for genotyping in many species [3–5]. However, 
advances in next-generation sequencing technology have 
driven the cost of sequencing down significantly, mak-
ing SNP genotyping from low-coverage sequence data, 
otherwise known as genotyping-by-sequencing (GBS), 
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a potentially cost-competitive alternative. As the cost 
of GBS continues to decrease, the additional benefits of 
GBS, such as de novo variant discovery and structural 
variant genotyping, will likely cause a shift in genotyping 
preference. Two main GBS methods are currently used: 
reduced representation sequencing (RR-GBS) [6] and 
skim-GBS [7].

In RR-GBS, restriction enzymes are used to reduce 
genome complexity [6]. This results in higher sequenc-
ing coverages at certain loci for genotyping. However, 
RR-GBS increases the complexity of the lab protocols 
and has the potential to introduce sequencing bias [8]. At 
least 13 different protocols for RR-GBS have been devel-
oped, each of which differs slightly in the number and 
type of enzymes used [9]. The ability to decrease genome 
complexity means RR-GBS has been favoured for crop 
species with highly complex genomes, such as wheat [9, 
10]. Furthermore, by increasing sequence coverage at 
regions for SNP genotyping, more accurate genotypes 
can be called without the need for genotype imputation. 
This means RR-GBS is also favoured for non-model spe-
cies with limited prior genomic information [9]. Poland 
et  al. [11] genotyped wheat varieties for less than USD 
$20 per sample using RR-GBS and predicted the cost of 
GBS will drop below USD $10 per sample.

Skim-GBS refers to calling genotypes from low cov-
erage (< 1 × coverage) whole genome sequence data. 
Genotype imputation is often incorporated into skim-
GBS pipelines to account for missing genotypes. Skim-
GBS requires no additional laboratory steps, however, 
adds more computational complexity to account for the 
reduced likelihood of sampling all alleles at heterozy-
gous loci in non-inbred species. Skim-GBS does not suf-
fer from the same biases as RR-GBS methods however, 
the sequencing depth, marker density and population 
structure can impact imputation error rates significantly 
[12]. Imputation accuracies (r2) from high-density (HD) 
SNP array genotypes to whole genome SNP are regularly 
greater than 0.9 in humans [13] and livestock [14]. Simi-
lar imputation accuracies have been reported for GBS 
genotypes where sequencing coverage is greater than 
2 × [15].

A number of genotype imputation packages have been 
developed and refined for accuracy and decreasing com-
putational complexity. Popular genotyping packages 
include IMPUTE2 [16], Beagle4.1 [17], Beagle5.2 [18], 
Minimac3 [19] and Minimac4 [20]. Of these imputation 
packages, there is little difference in imputation accuracy, 
however, Browning et  al. [18] demonstrated that Bea-
gle5.0 was significantly faster than the other packages for 
large SNP panels.

Recently, a number of imputation packages targeted 
specifically at GBS data have been developed. These 

second-generation imputation packages have been 
developed to handle larger SNP panels and use geno-
type likelihoods or physical linkage information from 
the sequence reads themselves, in order to maximise the 
use of available information for imputation. Examples of 
these packages include QUILT [21] and Genotype Like-
lihoods IMputation and PhaSing Method (GLIMPSE) 
[22]. QUILT is a rapid genotype imputation and phas-
ing package developed specifically for GBS and uses 
sequence alignment files as input. QUILT uses a two-
step Gibbs sampling method to ensure linear increases 
in computational complexity with increasing reference 
size and SNP density. Imputation accuracies greater 
than 0.9 have been achieved using QUILT with Oxford 
Nanopore Technologies (ONT) data at 0.5 × sequenc-
ing coverage while comparatively, GLIMPSE achieved 
an imputation accuracy of 0.68 using the same data 
[21]. GLIMPSE uses genotype likelihoods calculated 
during the prior genotyping step [22]. Unlike other ear-
lier imputation methods which also use genotype like-
lihoods (e.g., Beagle 4.1), GLIMPSE is able to handle 
much larger SNP panels consisting of thousands of hap-
lotypes [22].

To date, short-read sequencing methods, such as Illu-
mina, have been favoured for GBS due to their well-char-
acterised error profile, high throughput and competitive 
cost. These platforms produce highly accurate short (200–
400 bp) DNA reads [23]. Long-read sequencing platforms 
such as Pacific Biosciences and ONT are comparatively 
new technologies and could provide an alternative plat-
form for GBS. These platforms produce long DNA reads 
(2 kbp–2 Mbp) that can map more accurately to refer-
ence genomes; however, they have historically had higher 
individual nucleotide error rates. In the case of ONT, 
the error rate is reportedly between 2.7 and 7% [24, 25], 
although this is improving rapidly due to advances in base 
calling algorithms. ONT sequencing is, however, the only 
sequencing platform to currently offer portable sequenc-
ing through their MinION and PromethION P2 sequenc-
ers. This feature may be a great advantage in the extensive 
livestock industries [26].

Given the current price of ONT sequencing, to com-
pete with SNP array technology, sequencing coverages 
less than 0.5 × for a human-sized genome will be nec-
essary to allow adequate multiplexing. This raises the 
question; can we accurately predict genetic merit from 
less than 0.5 × ONT sequencing coverage? To add addi-
tional complexity, turnaround time must also be con-
sidered when evaluating pipelines, as lengthy posterior 
bioinformatics would undermine the advantage of in situ 
genotyping.

Our objective was to investigate the optimum imputa-
tion strategy for skim-GBS from ONT sequence data for 
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the purpose of in situ genomic prediction. We evaluated 
the performance of Beagle5.2, QUILT and GLIMPSE 
using five different SNP reference panels and five dif-
ferent sequencing coverages. We hypothesised that 
genomic prediction accuracy would be improved if all 
available SNP in sequence sets were used for imputation, 
not only the subset used in the genomic prediction. That 
is, multiple SNP flanking the target SNP should give 
additional information for imputation from sequence 
data.

Results
Genotyping and imputation
ONT sequence data from 62 samples sequenced in Hayes 
et  al. [27] on a MinION was subsampled down to 2 × , 
1 × , 0.5 × , 0.1 × and 0.05 × sequencing coverage (Addi-
tional File 1: Table 1). Samples were from 48 unique ani-
mals (14 of which were sampled twice at two separate 
time points) from two predominantly Bos indicus breeds 
(Brahman and Droughtmaster). The reads were aligned 
to the Bos taurus reference genome ARS-UCDv1.2 [28] 
using Minimap2 [29].

Two different genotyping methods were used to geno-
type the samples at 48,203,338 loci across the genome. 
These SNP were derived from the 1000 Bull Genomes 
project [30], with the SNP from this project filtered to 
those segregating in Brahman, Droughtmaster, Santa 
Gertrudis and crossbred animals (1208 animals from 
1000 Bull genomes run 8), which are the most relevant 
animals to Australia’s northern beef industry. The first 
genotyping method used a minimum allele count (MAC) 
based on sequencing depth as described in Lamb et  al. 
[31]. The second method, hereafter referred to as the 
Q-score method, used base qualities to assign genotype 
likelihoods using the original GATK method [32] and 
also incorporated a methylation masking approach to 
avoid calling genotypes at potential methylation sites. 
This worked by identifying the potential methylation 
positions in the SNP loci and only calling SNP on the 
non-methylated strand.

Three methods were used to impute missing SNP 
from the genotype calls (Fig.  1). Genotype likelihoods 
from the Q-score method were used to impute loci 
using GLIMPSE, while the genotype calls from the 
MAC and Q-score methods were used to impute loci 
using Beagle5.2. The final method used QUILT to gen-
otype and impute the loci in one step from the align-
ment files.

Five different SNP reference panels were used for 
imputation (Table 1). The animals in these reference pan-
els were the 1208 animals described above (Additional 
file 1: Table S2 and Fig. S1). The first SNP panel consisted 
of only the 641,163 SNP that overlapped with the bovine 
HD SNP array (Illumina, Inc., San Diego USA). The sec-
ond SNP panel contained the entire 48,203,338 SNP from 
the 1000 Bull Genomes project that were segregating in 
northern Australian cattle breeds. The three remaining 
SNP panels were a subset of this larger panel and were 
created using minor allele frequency (MAF) filters of 0.1, 
0.2 and 0.3. Minor allele frequency filters were used to 
reduce the size of the SNP panels to increase the speed 
of imputation. All 641,163 SNP from the bovine HD 
SNP array used for calculating genomic breeding values 
(described below) were also retained in the reference 
SNP panels.

Correlations of genomic predictions
The imputed genotypes at the 641,163 SNP loci that cor-
responded to the bovine HD array were used to calcu-
late genomic estimated breeding values (GEBVs) for four 
traits, body weight (BW), hip height (HH), corpus luteum 
score (CL score) and body condition score (BCS). The 
SNP effects used to calculate the GEBVs were derived 
from 28,000 animals with genotypes and phenotypes as 
described in Hayes et al. [33] and Lamb et al. [31]. Cor-
relations between the ONT GEBVs and GEBVs derived 
from the 35 K GGP TropBeef SNP array (Neogen, Lan-
sing, MI) genotypes imputed to the bovine HD array 
using Fimpute [34] and estimated using the same SNP 
effects [33] were calculated.

Table 1  Details of the SNP panels using the different minor allele frequency (MAF) filters

SNP single nucleotide polymorphisms, MAF minor allele frequency

SNP panel name MAF cut-off Number of animals Number of SNP Mean distance 
between markers 
(bp)

Bovine HD SNP NA 1208 641,163 4212

No MAF filter 0 1208 48,203,338 56

MAF > 0.1 0.1 1208 15,000,408 180

MAF > 0.2 0.2 1208 9,544,194 283

MAF > 0.3 0.3 1208 4,575,736 590
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When genotypes for each animal were imputed using 
only SNP from the bovine HD array in the reference SNP 
panel (641,163 SNP), correlations between the ONT 
GEBVs and GEBVs from the 35  k array were between 
0.74 and 0.92 for sequencing coverages less than 1 × , 
using MAC-Beagle5.2 and Q-score-Beagle5.2. However, 
GEBV correlations using QUILT and GLIMPSE with the 
HD size reference panel were greater than 0.9 for all four 
traits at 0.5 × sequencing coverage.

When the 48 million flanking SNPs were used to help 
impute the 641 k SNP genotypes from the sequence data, 
correlations using QUILT and GLIMPSE were much 
higher (greater than 0.82 for 0.05 × and greater than 0.93 
for 2 × sequence coverage), and higher than the other 
two imputation methods, particularly at low coverages 
(Fig.  2 and Additional file  1: Fig. S2–S4). The correla-
tions remained similar using the next two largest SNP 
reference panels (MAF > 0.1 and MAF > 0.2), however, 
decreased using the smallest SNP panel to between 0.77 
and 0.88.

Although all imputation methods performed well at 
sequencing coverages greater than 0.5 × , only QUILT 
and GLIMPSE maintained high GEBV correlations 
at sequencing coverages below 0.5 × . In particular, 
QUILT maintained very high GEBV correlations for 

all sequencing coverages when using the second largest 
imputation reference panel (MAF > 0.1).

No difference between GEBV correlations for the two 
Beagle5.2 imputation methods was observed. Both meth-
ods demonstrated a similar decrease in correlations for 
sequencing coverages below 0.5 × . Even using the larg-
est SNP panel for imputation, the correlations between 
the ONT BW GEBVs and 35  k SNP array BW GEBVs 
at 0.1 × sequencing coverage were 0.81 and 0.83 for the 
two Beagle5.2 methods, compared to 0.94 and 0.95 using 
QUILT and GLIMPSE, respectively.

Genomic prediction bias
The regression coefficient of the 35  k SNP array GEBV 
on ONT GEBV was used to measure prediction bias for 
each imputation strategy. Predictions using QUILT and 
GLIMPSE had much less bias than predictions derived 
from the other two methods (Fig.  3). For sequencing 
coverages greater than 0.5 × , the bias using QUILT and 
GLIMPSE was low across all traits and SNP reference 
panels. Below 0.5 × prediction bias was more variable 
across traits and SNP panel sizes.

For both of the Beagle imputation methods, signifi-
cantly more variation in prediction bias was observed 
across traits and SNP panel size, with both SNP reference 

Fig. 1  Flowchart of the genotyping and imputation methods used to generate genomic estimated breeding values from the Oxford Nanopore 
Technologies sequence data
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panel size and sequencing coverage having a negative 
directional effect on prediction bias (P < 0.05).

Across the four traits, no difference in prediction bias 
was observed except for in BW (P < 0.05). Using all four 
methods BW prediction bias was consistently higher 
than the other three traits. This was particularly evident 
in the MAC-Beagle5.2, Q-score-Beagle5.2 and GLIMPSE 
predictions, as well as at low sequencing coverages.

Imputation compute time
The time taken to impute genotypes for each animal, 
using 8 threads with 400 Gb of memory on the Univer-
sity of Queensland high-performance compute cluster, 
was recorded in order to compare the speed of each 

method (Fig.  4). Both methods using Beagle5.2 were 
faster than QUILT and GLIMPSE. Imputation time 
decreased linearly with the size of the reference SNP 
panel. At coverages greater than 0.1 × , QUILT was the 
slowest imputation method across all SNP panel sizes 
by a large margin. While at 0.1 × and 0.05 × sequenc-
ing coverage the imputation times for QUILT and 
GLIMPSE were similar, except when using the largest 
SNP reference panel.

For GLIMPSE and both Beagle5.2 methods, sequenc-
ing coverage had a relatively small effect on the imputa-
tion time compared to reference panel size. While for 
QUILT both coverage and SNP panel size had a signifi-
cant effect on imputation times (P < 0.05).

Fig. 2  Correlations between body weight (BW) genomic estimated breeding values (GEBV) derived from 35 k SNP array genotypes and BW GEBVs 
derived from Oxford Nanopore Technologies (ONT) data. ONT GEBVs were imputed using four different imputation strategies and across five 
sequencing coverages. Labels at the top of the figure indicate the imputation method used starting from left to right with GLIMPSE [22], minor 
allele count (MAC) genotyping with Beagle5.2 [18], quality score (Q-score) genotyping with Beagle5.2 and QUILT [21]. SNP reference panel size 
is indicated by the minor allele frequency (MAF) filter on the right-hand side in descending order of size from top to bottom. The largest panel had 
48,203,338 SNP and was referred to as the No MAF filter panel, while the smallest panel was referred to as the bovine high density (HD) SNP which 
had only the 641 k SNP used to calculate the GEBVs. Error bars indicate 95% confidence of the Pearson correlation



Page 6 of 18Lamb et al. BMC Biology          (2023) 21:286 

The time taken to generate the sequence pileup and 
genotype loci using the MAC and Q-score methods was 
also recorded for the largest SNP panel. As QUILT effec-
tively performs these tasks during imputation to com-
pare the overall time of each method, these times were 
also included (Fig.  5). Taking into account these addi-
tional steps, the MAC-Beagle5.2 method was signifi-
cantly faster than the alternative methods, particularly 
at higher sequencing coverages. At 2 × sequencing cover-
age, MAC-Beagle5.2 was overall 2.3 times faster than the 
next fastest method, which was Q-score-Beagle5.2. This 
decreased to 1.1 times faster at 0.05 × sequencing cover-
age; however, this was still 1.8 and 2.1 times faster than 
GLIMPSE and QUILT.

Comparison to HD SNP array
There is some imputation inaccuracy even when imput-
ing from 35 k array genotypes up to the bovine HD array 
genotypes used in our prediction equations. So, an inter-
esting question is, how do low-coverage ONT GEBVs 
compare to GEBVs from bovine HD array genotypes, 
and do they perform better than HD genotypes imputed 
from 35 k array genotypes? A subset of 19 animals were 

also genotyped on the Illumina bovine HD SNP array. 
These animals were used to investigate the accuracy of 
genotyping-by-sequencing with ONT data using our two 
best-found imputation methods (QUILT and GLIMPSE), 
as compared to genotyping and imputing from low-den-
sity SNP arrays. Genotyping accuracy was calculated and 
GEBVs for the four traits were also derived. The imputa-
tion accuracy was calculated for QUILT and GLIMPSE 
by comparing the imputed genotypes at the HD SNP 
array loci to the genotypes from the bovine HD SNP 
array. Genotypes imputed using QUILT had the highest 
accuracy across all sequencing coverage and imputation 
reference panels, except at 0.1 × and 0.05 × sequencing 
coverage with the smallest imputation reference panel 
(Fig.  6). The highest imputation accuracy achieved was 
0.98 at 2 × sequencing coverage with the second largest 
imputation reference panel. At 0.5 × sequencing cover-
age, the highest accuracy using QUILT was 0.96, while 
using GLIMPSE, the highest accuracy was 0.8. In con-
trast, the imputation accuracy of the 35 k array compared 
to the HD SNP array was found to be 0.88. Imputation 
reference panel size was found to have less of an effect 
on imputation accuracy for GLIMPSE than QUILT. At 

Fig. 3  Genomic prediction bias, defined as β1 − 1 , where β1 is the regression coefficient of the 35 k SNP array genomic estimated breeding 
values ~ Oxford Nanopore Technologies derived genomic estimated breeding values, for the four different imputation approaches 
across the sequencing coverages for four traits: body weight (BW), body condition score (BCS), corpus luteum score (CL score) and hip height 
(HH). Labels at the top of each figure indicate the imputation method used starting with GLIMPSE [22], minor allele count (MAC) genotyping 
with Beagle5.2 [18], quality score (Q-score) genotyping with Beagle5.2 and QUILT [21]. Prediction bias was also calculated across five different SNP 
reference panel sizes which were created using minor allele frequency (MAF) filters from whole genome sequence SNP. The smallest SNP reference 
panel, the bovine high definition (HD) SNP, had only the 641 k SNP used to calculate the GEBVs
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0.5 × sequencing coverage and greater, the imputation 
accuracy using QUILT was greater than the imputation 
accuracy from the low-density SNP array when imputed 
to the HD SNP array, except using the smallest impu-
tation reference panel. For all sequencing coverages, 
QUILT with the second largest imputation reference 
panel (MAF > 0.1) had the highest imputation accuracy.

Next, correlations between ONT GEBVs (imputed 
using QUILT and GLIMPSE) and the HD SNP array 
GEBVs were calculated. For sequencing coverages as 
low as 0.5 × , the ONT GEBVs had higher correlations 
than the 35  k SNP array GEBVs (Fig.  7 and Additional 
file  1: Fig. S5–S7). For 0.1 × coverage, the QUILT GEBV 
correlations were not different to the 35  k SNP array 
GEBV correlations (P > 0.05). While below 0.1 × sequenc-
ing coverage the QUILT GEBV correlations were worse 
than the 35  k SNP array correlations for some, but not 

all of the traits and reference panel designs. Although 
QUILT performed better than GLIMPSE for the major-
ity of sequencing coverages and larger imputation ref-
erence panel sizes, the GEBV correlations decreased 
significantly when using the smallest imputation refer-
ence panel size at low coverages. For example, the GEBV 
correlations using QUILT with the Bovine HD SNP ref-
erence panel at 0.1 × were between 0.63 and 0.69 for the 
four different traits.

The regression coefficients of the bovine HD SNP 
array GEBVs ~ ONT GEBVs (imputed using QUILT and 
GLIMPSE) were randomly centred around 1, indicat-
ing no systematic prediction bias. Sequencing coverages 
greater than or equal to 0.5 × had little prediction bias 
(Fig. 8), while at sequencing coverages below 0.5 × predic-
tion bias increased randomly in both directions, except 
when using QUILT with the second largest reference 

Fig. 4  Mean time taken to impute the genotypes of each animal from Oxford Nanopore Technologies sequence data using four different 
imputation methods. Genotypes were imputed using five SNP reference panels created using minor allele frequency (MAF) filters
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Fig. 5  Average time taken for genotyping and imputation of all 48 million SNP in the unfiltered SNP panel from sequence alignment file using 
the four different methods and the five sequencing coverages. The imputation method QUILT genotyped and imputed SNP in one iteration 
while the other three methods used base pair position pileups to genotype and then impute missing SNP

Fig. 6  Imputation accuracy for genotypes derived from low-coverage Oxford Nanopore Technologies (ONT) sequence data imputed using 
QUILT and GLIMPSE and compared to bovine HD SNP array genotypes. ONT genotypes were imputed across five different sequencing coverages 
and using five different imputation reference panels. The imputation accuracy of genotypes imputed from the low-density SNP array to the HD 
array density is illustrated by the green dashed line
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panel (MAF > 0.1). For all sequencing coverages, QUILT 
in combination with the second largest reference panel 
had less prediction bias than the 35 k SNP array predic-
tions. At 0.5 × , the regression coefficient of the HD SNP 
array GEBVs ~ QUILT ONT GEBVs was comparable to 
the regression coefficient of HD SNP array GEBVS ~ 35 k 
SNP array GEBVs (BW = 0.91, HH = 0.88, CL score = 1, 

BCS = 0.95). Both SNP panel size and trait also had no 
correlation with prediction bias.

A major benefit of using GEBVs from a producer’s 
perspective is the ability to quantitatively rank animals 
for a particular trait based on their genetic merit. To 
investigate the ability for low-coverage ONT sequence 
data to accurately rank animals, we compared the 

Fig. 7  A Correlations between genomic estimated breeding values (GEBVs) derived from Oxford Nanopore Technologies (ONT) sequence data 
and GEBVs derived from bovine HD SNP array genotypes for body weight (BW). ONT-derived GEBVs were imputed using QUILT and GLIMPSE 
and calculated across five coverages and five SNP panels. The different SNP reference panels were created using minor allele frequency (MAF) filters 
to reduce the size of the panels down from whole genome sequence SNP. The largest panel had 48,203,338 SNP and was referred to as the No MAF 
filter panel, while the smallest panel was referred to as the bovine high definition (HD) SNP panel and featured only the 641 k SNP used to calculate 
the GEBVs. SNP array genotypes were from the Illumina bovine HD SNP array. The correlation for each trait between GEBVs calculated from the 35 k 
GGP SNP array imputed to 700 k and GEBVs calculated from the Illumina bovine HD SNP array are indicated by the dashed line. The colour of each 
bar indicates how well the ONT derived GEBV accuracies compare to the 35 K SNP array accuracies. Error bars indicate 95% confidence interval 
of the Pearson correlation. B Genomic prediction bias for body weight (BW), defined as β2 − 1 , where β2 is the regression coefficient of the bovine 
HD SNP array genomic estimated breeding value (GEBV) ~ Oxford Nanopore Technologies GEBV derived using QUILT and GLIMPSE. The prediction 
bias of the HD SNP array GEBVs ~ 35 k SNP array GEBVs are displayed for each trait by the dotted lines, where the colour of the line corresponds 
to the colour of the trait in the figure legend
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rankings of animals based on ONT GEBVs across cov-
erages to GEBVs calculated from the bovine HD array 
genotypes of 19 animals. Minimal re-ranking of ani-
mals was observed down to a coverage of 0.5 × . Below 
0.5 × , ONT GEBVs regressed towards the mean, creat-
ing more re-ranking of animals and less apparent dif-
ference between the performance of animals (Fig.  8). 
However, animals were still clearly distinguishable into 
quartiles and the majority of re-ranking was between 

animals with extremely similar HD SNP array GEBVs. 
ONT GEBVs derived using QUILT had less re-rank-
ing than ONT GEBVs derived from GLIMPSE for the 
larger imputation reference panels, while for the small-
est imputation reference panel QUILT had significantly 
more re-ranking than GLIMPSE. Overall, the least re-
ranking across sequencing coverages was observed 
when using the second largest imputation reference 
panel (MAF > 0.1) and QUILT for imputation.

Fig. 8  Change in body weight genomic estimated breeding values (GEBV) quartile rankings between the HD SNP array GEBVs and GEBVs 
derived from five different Oxford Nanopore Technologies (ONT) sequencing coverages. ONT GEBVs were derived using either GLIMPSE or QUILT 
for genotype imputation. Three different imputation reference panels were used: The first reference panel included all 48 million SNP; the second 
reference panel used a minor allele frequency (MAF) filter of > 0.2 and had 9.5 million SNP. The third reference panel included only the 700,000 SNP 
in the bovine HD SNP array
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Genotype concordance
The final question we looked to answer was, how repro-
ducible are ONT-derived genotypes across sequencing 
runs? The twelve animals which were sequenced twice 
at two different time points in the study by Hayes et al. 
[27] were used to evaluate the reproducibility of low-cov-
erage ONT genotyping using QUILT and GLIMPSE for 
imputation. The genotype concordance for each animal 
was calculated for all sites on the bovine HD SNP array, 
across the five different sequencing coverages and five 
different imputation SNP reference panels. The mean of 
the twelve animals was then taken as the true genotype 
concordance (Fig.  9). The genotype concordance using 
QUILT was higher than the concordance using GLIMPSE 
for all sequencing coverages and imputation reference 
panel combinations, except when the smallest imputation 
reference panel was used at 0.05 × sequencing coverage. 
The genotype concordance was highest for all sequenc-
ing coverages using the combination of QUILT with the 
second largest imputation reference panel (MAF > 0.1). 

At 2 × sequencing coverage, the genotype concordance 
for this combination was 0.98, this decreased gradually 
to 0.95 at 0.5 × sequencing coverage. The concordance 
decreased more significantly below 0.5 × to 0.84 and 0.77 
at 0.1 × and 0.05 × sequencing coverage, respectively.

Discussion
Near real-time, portable genomic prediction has a num-
ber of applications in agriculture and healthcare. Here, 
we have demonstrated in cattle that when combined with 
an appropriate imputation strategy skim-GBS using port-
able ONT sequencing is a suitable method for genomic 
prediction, with coverages as low as 0.1 × . Using the 
imputation packages QUILT and GLIMPSE, GEBV cor-
relations were higher than or equal to correlations from 
low-density SNP arrays for sequencing coverages as low 
as 0.1 × and, at this coverage, the performance of animals 
relative to each other could accurately be separated into 
quartiles. We have also demonstrated that using large 
SNP reference panels with many more SNP than used in 

Fig. 9  Genotype concordance for genotypes derived from low-coverage Oxford Nanopore Technologies (ONT) sequence data imputed using 
GLIMPSE and QUILT. Twelve animals were sequenced twice at two separate time points and genotypes were calculated separately for each 
of the sequencing runs. Five different sequencing coverages were evaluated for the two different imputation methods as well as five different 
imputation reference panel sizes. The largest imputation reference panel used 48 million SNP, a minor allele frequency (MAF) cutoff of 0.1, 0.2 
and 0.3, was used to subset the 48 million SNP reference panel down. The final imputation reference panel used only the 700 k SNP in the bovine 
HD SNP array
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the genomic prediction equation significantly increases 
the accuracy of genomic prediction from low-coverage 
GBS. Overall, QUILT [21] in combination with large 
imputation reference panels outperformed the alternative 
genotyping and imputation methods across all accuracy 
metrics: imputation accuracy, genotype concordance, 
GEBV correlations and GEBV regression coefficients.

While a number of genotype specific accuracy metrics 
are available to compare imputation strategies, this study 
focused primarily on the accuracy of genomic prediction 
from the imputed genotypes. This approach was chosen 
as the study primarily aimed to investigate the optimum 
imputation strategy for the purpose of in  situ genomic 
prediction. Imputation specific metrics such as geno-
type accuracy and concordance were used as a secondary 
means to evaluate the differences between QUILT and 
GLIMPSE, as they performed similarly based on genomic 
prediction metrics alone. The relative performance of 
the different strategies with regard to GEBV correlation 
and bias, highlighted the robustness of genomic predic-
tion using a GBLUP model to a modest degree of imputa-
tion errors. This is in line with other literature that has 
reported little to no significant decrease in GEBV accura-
cies when imputation errors are introduced by decreas-
ing SNP panel density from 50  k to as low as 3  k [35]. 
Nonetheless, irrespective of the accuracy metric used 
these results demonstrate skim-GBS using ONT data 
can objectively outperform low-density SNP arrays on 
both metrics when an appropriate imputation strategy is 
employed.

Calculating the prediction bias in the ONT predic-
tions revealed a general trend of underpredicting GEBVs 
for CL score, BCS and HH, while over-predicting GEBVs 
for BW. This pattern was seen across all of the methods; 
however, QUILT still had the least prediction bias of the 
four methods across all coverages. A possible explanation 
for the trends in prediction bias observed could be sys-
tematic genotyping errors in SNP loci with a large phe-
notypic effect. For example, a SNP in the genomic region 
encoding PLAG1 on chromosome 14 has previously been 
identified to have a significant effect on heifer fertility in 
Australian Brahman cattle [36], and if a systematic error 
were to occur for this region, predictions would likely be 
biased. Therefore, the presence of systematic errors in the 
QUILT imputed genotypes should be investigated and 
their subsequent proximity to SNP of large phenotypic 
effect determined.

Another possible explanation is that the bias is actu-
ally introduced by the process of imputing 35 k SNP array 
genotypes up to HD SNP array density. This implies that 
the prediction bias observed in body weight, for example, 
is actually caused by the low-density SNP array genotyp-
ing and not by the ONT GBS method. This is supported 

by the fact that when the ONT GEBVs are compared to 
the HD SNP array GEBVs, less prediction bias is observed 
with a more random spread, than when they are com-
pared to the 35 k SNP array GEBVs. Furthermore, when 
comparing the 35  k SNP array GEBVs to the HD SNP 
array GEBVs a reasonable degree of bias was observed 
in body weight and hip height. This would suggest that 
some systematic genotype errors, which predominantly 
affect hip height and body weight GEBVs, are being intro-
duced when imputing from the low-density 35 k array to 
the HD SNP array density. Further research should be 
carried out to verify if this is the case and investigate why 
the errors are being introduced.

QUILT’s ability to more accurately genotype and 
impute SNP from long-read sequence data is likely a 
result of the way in which it assigns haplotypes. Imputa-
tion packages that use VCF genotypes such as Beagle and 
GLIMPSE use SNP panels to construct known ancestral 
haplotypes in order to haplotype phase the genotypes. 
Missing loci are then imputed using the ancestral hap-
lotypes. This approach is suitable for SNP array geno-
types, where the genotypes themselves are independent 
observations. However, when using sequence data this 
approach ignores the fact that a single sequence read can 
span multiple SNP, meaning nearby SNP no longer need 
to be considered independent [21, 37]. QUILT uses the 
co-localization of nearby SNP within sequence reads to 
assign parental gametes and then imputes these two read 
groups (derived from each of the parental gametes) as 
haploids [21]. As SNP reference panel sizes increase this 
assumption becomes even more powerful because, on 
average, a single read spans more SNP. Given the average 
read length of 1792 bp for the ONT sequence data used 
for this study [31], reads on average spanned 30, 9, 6, 3 
and 0.3 SNP for the five SNP reference panels, in order 
of largest to smallest, respectively. This likely meant that 
QUILT was able to more accurately assign SNP allele 
haplotypes, which ultimately increased the accuracy of 
genomic prediction. This implies that nearby SNP should 
not be treated as independent observations in future 
skim-GBS work. That is to say, when dealing with low-
coverage sequence data (in particular long-read sequence 
data) genotyping and imputation approaches that use the 
co-localization of SNP on a sequence read to assign hap-
lotypes should be used. We anticipate the popularity of 
such methods for genotyping and imputation of sequence 
data will increase as the method is further refined.

Although GLIMPSE was overall not as accurate as 
QUILT, it performed well even when used in combina-
tion with the smallest imputation reference panel (the 
HD SNP array) and was significantly more accurate than 
either Beagle method. This is likely a result of GLIMPSE 
using genotype likelihoods rather than hard-coded 
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genotypes, such as the case with Beagle5.2. Genotype 
likelihoods allow for some of the individual read infor-
mation to be maintained through to imputation when 
using GBS, however, are more computationally demand-
ing to calculate and impute. Genotype likelihoods do 
not maintain haplotype of origin information which is 
available when a single read spans multiple SNP. This 
likely explains why GLIMPSE is relatively unaffected by 
decreasing imputation reference panel size. This means 
that in circumstances where very large imputation refer-
ence panels are available, QUILT is the better option as it 
can use the higher SNP density to accurately phase reads. 
When only small imputation reference panels are avail-
able, GLIMPSE may offer some increase in accuracy over 
QUILT. Overall, however, using QUILT with very large 
imputation reference panels was the most accurate for 
genomic prediction.

When comparing the accuracy of the QUILT and 
GLIMPSE imputed GEBVs to GEBVs derived from the 
bovine HD SNP array, there was no difference between 
35 k SNP array GEBVs and ONT sequencing coverages as 
low as 0.1 × for QUILT and 0.5 × for GLIMPSE. This sug-
gests for the purpose of genomic selection, 0.1 × sequenc-
ing coverage with ONT is as informative as low-medium 
density SNP arrays in beef cattle. Interestingly, no trend 
in prediction bias was observed when comparing the 
QUILT ONT GEBVs to the HD SNP array GEBVs. This 
suggests the underlying variation in GEBVs between 
the QUILT ONT and bovine HD SNP array predic-
tions is random, unlike the variation in GEBVs between 
the ONT and 35  k array predictions. This means the 
long ONT sequence reads are potentially better able to 
account for decay in linkage disequilibrium (LD) than 
imputation from 35 k SNP array density up to HD array 
density. For example, at 0.1 × sequence coverage, theo-
retically, almost 5 million SNPs had sequence coverage 
from which to assign haplotypes using the whole genome 
SNP panel with no filter. Assuming random sampling of 
the haplotypes, we get 2.5 million SNPs for each parental 
haplotype, which is significantly more information than 
low-density SNP arrays for populations with greater LD 
decay. Examples of such populations include cattle breeds 
of B. indicus origin, such as Brahman and Droughtmas-
ter, which were used in this study. This finding may sug-
gest that low-coverage ONT genomic prediction may be 
particularly advantageous in mixed breed populations 
with a larger effective population size, such as Australia’s 
northern beef industry.

Previous studies have also found 0.5 × sequencing cov-
erage suitable for skim-GBS for the purpose of genomic 
selection. Using Illumina sequencing data, Zhang et  al. 
[38] reported high GEBV accuracies for coverages equal 
to or greater than 0.5 × in aquaculture species. While in 

the root crop cassava Long et  al. [39] reported imputa-
tion accuracies from 0.5 × sequencing coverage were not 
different to accuracies from 5 × sequencing coverage 
using ONT data. By demonstrating 0.1 × sequencing cov-
erage with ONT data is able to generate accurate GEBVs, 
we have further decreased the minimum sequencing cov-
erage by five-fold, which has significant economic and 
practical implications for skim-GBS with ONT.

While the sequencing coverages for accurate imputa-
tion reported here are not as low as those reported for 
RR-GBS methods, the additional wet-lab procedures 
necessary for RR-GBS methods limit their portability. 
Additionally, given the low complexity of the genomes of 
most economically important livestock species, reduced-
representation GBS methods are likely not necessary. 
For economically important species with highly complex 
genomes, such as wheat and sugar cane, reduced-repre-
sentation GBS may still be the best option [10].

A potential solution to help handle complex genomes 
without the additional laboratory steps could be to use 
ONT’s adaptive sequencing technology [40] as a type of 
reduced-representation GBS method. Adaptive sequenc-
ing is an ONT-specific method to enrich or deplete 
desired genomic regions in real time. By enriching target 
SNP regions using adaptive sequencing, genome com-
plexity could be decreased without the additional wet-lab 
steps of restriction enzyme digests. This method of ONT 
specific RR-GBS could decrease the required sequencing 
coverage for GBS on ONT platforms. This method could 
also be used to target QTL for monogenic traits along-
side skim-GBS. Currently, limitations around computing 
power exist to make this method feasible outside of the 
lab. However, ONT’s partnership with NVIDIA could 
deliver the necessary improvements to make this method 
feasible at scale [41].

In this study, we compared ONT GEBVs to SNP array 
GEBVs using the same number of SNP markers for pre-
dictions. Future work should look to investigate the accu-
racy of ONT GEBVs against true breeding values and 
compare these results to SNP array GEBVs against the 
same true breeding values. Using this comparison, other 
methods to further increase the accuracy of ONT GEBVs 
could be better investigated. Such methods include using 
Bayesian-derived SNP effects to better estimate the dis-
tribution of effects, and incorporating more SNP into the 
prediction, rather than imputing to the whole genome 
sequence and then sub-sampling back to 641,000 SNPs. 
Both these methods have been shown to slightly increase 
prediction accuracies [42, 43] and would add little com-
putational time once the SNP effects are calculated.

Reducing the size of the SNP reference panel had a 
significant effect on the imputation speed for all meth-
ods. Beagle5.2 was significantly faster than QUILT and 
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GLIMPSE, which is a result of the increased computa-
tional complexity of using genotype likelihoods. Brown-
ing et al. [18] reported similar advantages in speed using 
Beagle5.0 over other imputation methods such as Mini-
mac3, Minimac4 and Beagle4.1, particularly for large 
SNP panels. Although not as fast as Beagle5.2, QUILT 
offers a significant advantage in removing the need for 
prior genotyping. This decreases the complexity of file 
handling and depending on the genotyping approach 
used, decreases the overall turnaround time. Further-
more, QUILT was able to accurately impute from lower 
sequencing coverages than Beagle5.2 and GLIMPSE, 
meaning QUILT would further save time during data 
acquisition. Additionally, QUILT also allows pre-pro-
cessed haplotype reference files to be loaded. This can be 
used to further decrease computational time where the 
same SNP reference panel is being used repeatedly. How-
ever, based on the imputation times reported here, data 
acquisition (i.e., sequencing time) will remain the rate-
limiting step for real-time genomic prediction. Therefore, 
efforts to decrease the turnaround time should focus on 
decreasing the required sequencing coverage, not the 
speed of the bioinformatics pipeline.

In general, increasing the size of the reference panel 
increased imputation accuracy when using QUILT. How-
ever, this was not the case when increasing the panel size 
from the second largest panel (MAF > 0.1) to the largest 
reference panel (no MAF filter). Instead, a small decrease 
in imputation accuracy and GEBV correlations was 
observed across all coverages. It is believed this is related 
to the increased likelihood of sequencing errors appear-
ing at rare variant loci, possibly causing non-reference 
SNP to be called at these loci and consequently intro-
ducing errors in the haplotype phasing and imputation. 
Given 33,202,930 rare SNP (MAF < 0.1) were removed 
from the unfiltered reference panel to create the second 
largest reference panel, it could be reasoned that up to 
0.1% or 33,202 of those variants may overlap a sequenc-
ing error at 0.05 × , using a conservative ONT error rate 
of 2%. Therefore, it seems reasonable to assume sequenc-
ing errors may be the cause of the decrease in accuracy.

Despite, increasing the accuracy of genomic predic-
tion and imputation accuracy, the removal of rare vari-
ants from the reference panels represents a limitation 
to the wider application of the imputation strategies 
evaluated here. For example, rare variants are useful for 
GWAS and genetic disease screening of some monogenic 
traits. Therefore, the filtered SNP panels in this study are 
only suitable for genomic prediction of polygenic traits. 
Incorporating rare disease loci, such as Pompes disease 
[44, 45] or horn/poll markers [45, 46] for cattle into the 
SNP panel would allow for screening of these dominant 
traits as well. However, it is unlikely accurate imputation 

of these genotypes will be possible at sequencing cover-
ages below 1 × , due to the inverse correlation between 
imputation accuracy and MAF [39]. Additionally, the 
economic significance of traits such as Pompes disease 
and horn/poll would mean less error would be tolerated 
by producers. For instance, a bull incorrectly genotyped 
as homozygous poll (the desirable genotype) rather than 
heterozygous would mistakenly fetch a premium at a 
sale. Therefore, the ability for low coverage ONT data to 
accurately genotype rare causative variants must be vali-
dated. This is a potential area where targeted enrichment 
through adaptive sequencing or other methods could 
prove useful.

The accuracies achievable with QUILT at 0.1 × sequenc-
ing coverage suggest multiplexing of up to 40 human 
genome size samples on a single MinION (or up to 200 
on a PromethION) flow cell could be possible. This would 
bring the reagent cost of this method down to below USD 
$40 per sample, while providing results in under 24  h 
[47]. With further optimisation of SNP panel design and 
the incorporation of new ONT technologies, the level of 
multiplexing possible will increase further still, making 
near real-time genomic prediction practically and eco-
nomically feasible.

Conclusions
Here we illustrated that genomic prediction can be 
accurately performed from ONT sequence data using 
sequencing coverages as low as 0.1 × with an appropriate 
imputation strategy. The resulting values are as accurate 
— if not more accurate — than low-density SNP array 
genotyping. This study illustrates that the computational 
requirements for in situ genomic prediction are available, 
and the sequencing coverages reported here make ONT 
genotyping economically viable ultimately making on-
farm genotyping a possibility in the near future.

Methods
Ethics
Tail hair samples from 48 heifers spread across three 
properties were collected under the ethics approval num-
ber QAAFI/269/17. These heifers were Brahman and 
Droughtmaster breed animals, which are of predomi-
nantly B. indicus origin. An additional 14 tail hair sam-
ples were collected at a different time point from a subset 
of the original animals making a total of 62 samples.

SNP array genotyping
All animals (n = 41) were genotyped on the 35  k GGP 
TropBeef SNP array (Neogen, Lansing, MI) and the 
genotypes were imputed up to the bovine HD array 
density using Fimpute [34] and a panel of 3140 cattle 
genotyped on the bovine HD SNP array (Illumina, San 
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Diego, CA). A subset of 19 animals belonging to a sin-
gle herd were also genotyped on the bovine HD SNP 
array (Illumina, San Diego, CA).

DNA preparation and sequencing
The DNA preparation and sequencing methods 
described extensively in Lamb et  al. [31] and Hayes 
et al. [27] were used to sequence all 64 samples. Briefly, 
genomic DNA was extracted from the tail hairs using 
the Gentra Pure gene Tissue Kit (Qiagen) and the liga-
tion sequencing kit (SQK-LSK109; ONT, Oxford, 
United Kingdom) was used to prepare the sequencing 
library. Libraries were loaded onto MinION flow cells 
(R9.4.1; ONT, Oxford, UK) and run for up to 96 h with 
at least three nuclease flushes and reloading.

Genotype calling
Guppy (version 4.2.2; ONT, Oxford, UK) was used 
to base-call the raw fast5 files and the subsequent 
fastq files were subsampled down to 2 × , 1 × , 0.5 × , 
0.1 × and 0.05 × for each animal. Each subsampled 
fastq was aligned to the Bos taurus reference genome 
ARS-UCD version 1.2 [28] using Minimap2 (version 
2.20) [29] and the default ONT mapping settings. Sam-
tools (version 1.14) [48] was used to create an mpileup 
and two different genotyping methods were used to 
assign genotypes for downstream imputation. The first 
method used a variable minimum allele count to gen-
otype loci based on read depth as described in Lamb 
et al. [31]. This method grouped loci with similar cov-
erage and called genotypes using a minimum allele 
count for each coverage bin. The second method used 
the original genotype likelihood method implemented 
in GATK [32] to calculate genotype likelihoods (GL) 
for imputation:

where G is the true genotype, M is the sequencing depth, 
e is the probability of an error calculated using the phred 
scaled qscore and bi is the observed base in read i.

This second method also accounted for methyla-
tion errors in ONT sequence data by only genotyping 
potential methylation sites using the non-methylated 
strand. For example, to genotype a cytosine flanked 
by a guanine on the forward strand, only reads on the 
reverse strand were considered.
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Imputation
Two imputation packages, QUILT (version 1.0.1) [21] 
and Beagle (version 4.1 and 5.2) [18] were used to impute 
missing genotypes. A SNP panel of 48,203,338 million 
SNPs and 1,208 animals comprised of breeds found in 
northern Australia was used as the reference. The 48 
million SNPs were a subset of SNPs from the 1000 Bull 
Genomes project [30], known to segregate in the north-
ern Australian beef herd. Three MAF filters (MAF > 0.1, 
MAF > 0.2 and MAF > 0.3) were further used to reduce 
the size of the SNP panel (while retaining the bovine HD 
SNP) and examine the effect of smaller SNP panels on 
the speed and accuracy of imputation. The imputation 
time for each animal and combination of SNP panel size, 
coverage and imputation method was recorded.

SNP‑BLUP method for EBVs
Genomic estimated breeding values (â)  for four traits: 
BW, HH, BCS and CL scores were then calculated using 
641,163 SNP loci with SNP effects from Hayes et al. [49] 
as described in Lamb et al. [31] using:

where the 35  k SNP array genotypes were contained in 
an n by m matrix M, where n was the number of animals 
and m was the number of SNP loci (641,163) and ĝ  was a 
vector of predicted SNP effects with length m.

The estimated phenotypes from the imputed ONT 
genotypes ( ̂b ) were then calculated using the same equa-
tion but replacing the 35 k SNP array genotypes in ĝ  with 
the imputed ONT genotypes. Finally, estimated pheno-
types for the 19 animals with 728 k SNP array genotypes 
( ̂c) were then also calculated by once again replacing the 
genotypes in ĝ  with genotypes from the 728 k SNP array 
corresponding to the same 641 k loci.

The accuracy of the ONT GEBVs was then compared 
using linear models to calculate the correlation between 
the 35 k SNP array GEBVs and ONT GEBVs (â ∼ b̂) . The 
regression of â ∼ b̂ was also used to calculate the predic-
tion bias which was defined here as the regression coef-
ficient of â ∼ b̂ minus 1. The correlation between the 
bovine HD SNP array GEBV and ONT GEBV imputed 
using QUILT was also calculated (̂c ∼ b̂QUILT ) and com-
pared to the correlation between ĉ  and Oa .

Samples with coverage of more than one standard devi-
ation from the mean sequence coverage for each depth 
were dropped from the analysis. For example, at 2 × cov-
erage seven samples had a sequencing depth of less than 
one standard deviation (0.37) from the mean of 1.79 × and 
were therefore dropped from the analysis for this cover-
age. The actual sequencing depth was calculated as bases 
mapped to the reference genome while the original read 
subsampling for each coverage group was done according 

â = Mĝ
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to the raw fastq files. This therefore accounts for the dif-
ference between actual sequencing depth and coverage 
group and provides a more accurate estimate of GEBV 
accuracy for a given coverage calculated in situ.

Genotype concordance and imputation accuracy
The genotype concordance between the 14 duplicate ani-
mals was calculated at the HD SNP array loci using the 
package Bcftools. For each duplicate sample, the vcf files 
were firstly filtered to remove SNP not on the HD SNP 
array and then compared using the bcftools stats func-
tion from Bcftools. Overall genotype concordance was 
recorded for each sample.

The imputation accuracy for the imputed ONT geno-
types and imputed 35 k genotypes was calculated by com-
paring the imputed genotypes to the available HD SNP 
array genotypes at the same loci used for the genomic 
prediction. Imputation accuracy was defined as the total 
number of matching genotypes divided by 641,163 (the 
number of SNP used for genomic prediction).

Abbreviations
BCS	� Body condition score
BW	� Body weight
CL score	� Corpus luteum Score
GBS	� Genotyping-by-sequencing
GEBV	� Genomic estimated breeding values
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HH	� Hip height
LD	� Low density
MAC	� Minimum allele count
MAF	� Minor allele frequency
ONT	� Oxford Nanopore Technologies
QTL	� Quantitative trait loci
RR-GBS	� Reduced representation genotyping-by-sequencing
Skim-GBS	� Skim genotyping-by-sequencing
SNP	� Single nucleotide polymorphism
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(ONT) MinION as part of this study. Figure 2. Correlations between hip 
height (HH) genomic estimated breeding values (GEBV) derived from 
35k SNP array genotypes and HH GEBVs derived from Oxford Nanopore 
Technologies (ONT) data. ONT GEBVs were imputed using four different 
imputation strategies and across five sequencing coverages. SNP refer-
ence panel size is indicated by the minor allele frequency (MAF) filter 
on the right-hand side in descending order of size from top to bottom. 
The largest panel had 48,203,338 SNP and was referred to as the No MAF 
filter panel, while the smallest panel was referred to as the bovine high 
density (HD) SNP which had only the 641k SNP used to calculate the 
GEBVs. Error bars indicate 95% confidence of the Pearson correlation. 
Figure S3. Correlations between corpus luteum score (CL score) genomic 

estimated breeding values (GEBV) derived from 35k SNP array genotypes 
and HH GEBVs derived from Oxford Nanopore Technologies (ONT) data. 
ONT GEBVs were imputed using four different imputation strategies and 
across five sequencing coverages in descending order of size from top to 
bottom. The largest panel had 48,203,338 SNP and was referred to as the 
No MAF filter panel, while the smallest panel was referred to as the bovine 
high density (HD) SNP which had only the 641k SNP used to calculate the 
GEBVs. SNP reference panel size is indicated by the minor allele frequency 
(MAF) filter on the right-hand side. Error bars indicate 95% confidence in 
the Pearson correlation. Figure S4. Correlations between body condition 
score (BCS) genomic estimated breeding values (GEBV) derived from 
35k SNP array genotypes and HH GEBVs derived from Oxford Nanopore 
Technologies (ONT) data. ONT GEBVs were imputed using four different 
imputation strategies and across five sequencing coverages. SNP refer-
ence panel size is indicated by the minor allele frequency (MAF) filter on 
the right-hand side in descending order of size from top to bottom. The 
largest panel had 48,203,338 SNP and was referred to as the No MAF filter 
panel, while the smallest panel was referred to as the bovine high density 
(HD) SNP which had only the 641k SNP used to calculate the GEBVs. Error 
bars indicate 95% confidence in the Pearson correlation. Figure S5. A) 
Correlations between genomic estimated breeding values (GEBVs) derived 
from Oxford Nanopore Technologies (ONT) sequence data and GEBVs 
derived from bovine HD SNP array genotypes for hip height (HH). ONT 
derived GEBVs were imputed using QUILT and GLIMPSE and calculated 
across five coverages and five SNP panels. The different SNP reference 
panels were created using minor allele frequency (MAF) filters to reduce 
the size of the panels down from whole genome sequence SNP. The 
largest panel had 48,203,338 SNP and was referred to as the No MAF filter 
panel, while the smallest panel was referred to as the bovine high defini-
tion (HD) SNP panel and featured only the 641k SNP used to calculate the 
GEBVs. SNP array genotypes were from the Illumina bovine HD SNP array. 
The correlation for each trait between GEBVs calculated from the 35k GGP 
SNP array imputed to 700k and GEBVs calculated from the Illumina bovine 
HD SNP array are indicated by the dashed line. The colour of each bar indi-
cates how well the ONT derived GEBV accuracies compare to the 35K SNP 
array accuracies. Error bars indicate 95% confidence interval of the Pear-
son correlation. B) Genomic prediction bias for body weight (BW), defined 
as> β2 − 1 >, where β2 is the regression coefficient of the bovine HD 
SNP array genomic estimated breeding value (GEBV) ~ Oxford Nanopore 
Technologies GEBV derived using QUILT and GLIMPSE. The prediction bias 
of the HD SNP array GEBVs ~ 35k SNP array GEBVs are displayed for each 
trait by the dotted lines, where the colour of the line corresponds to the 
colour of the trait in the figure legend. Figure S6. A) Correlations between 
genomic estimated breeding values (GEBVs) derived from Oxford Nano-
pore Technologies (ONT) sequence data and GEBVs derived from bovine 
HD SNP array genotypes for corpus luteum score (CL score). ONT derived 
GEBVs were imputed using QUILT and GLIMPSE and calculated across five 
coverages and five SNP panels. The different SNP reference panels were 
created using minor allele frequency (MAF) filters to reduce the size of 
the panels down from whole genome sequence SNP. The largest panel 
had 48,203,338 SNP and was referred to as the No MAF filter panel, while 
the smallest panel was referred to as the bovine high definition (HD) 
SNP panel and featured only the 641k SNP used to calculate the GEBVs. 
SNP array genotypes were from the Illumina bovine HD SNP array. The 
correlation for each trait between GEBVs calculated from the 35k GGP 
SNP array imputed to 700k and GEBVs calculated from the Illumina bovine 
HD SNP array are indicated by the dashed line. The colour of each bar 
indicates how well the ONT derived GEBV accuracies compare to the 35K 
SNP array accuracies. Error bars indicate 95% confidence interval of the 
Pearson correlation. B) Genomic prediction bias for body weight (BW),  
defined as β2 − 1 , where β2 [endif ][endif ] is the regression coefficient 
of the bovine HD SNP array genomic estimated breeding value (GEBV) ~ 
Oxford Nanopore Technologies GEBV derived using QUILT and GLIMPSE. 
The prediction bias of the HD SNP array GEBVs ~ 35k SNP array GEBVs are 
displayed for each trait by the dotted lines, where the colour of the line 
corresponds to the colour of the trait in the figure legend. Figure S7. A) 
Correlations between genomic estimated breeding values (GEBVs) derived 
from Oxford Nanopore Technologies (ONT) sequence data and GEBVs 
derived from bovine HD SNP array genotypes for body condition score 
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(BCS). ONT derived GEBVs were imputed using QUILT and GLIMPSE and 
calculated across five coverages and five SNP panels. The different SNP 
reference panels were created using minor allele frequency (MAF) filters 
to reduce the size of the panels down from whole genome sequence SNP. 
The largest panel had 48,203,338 SNP and was referred to as the No MAF 
filter panel, while the smallest panel was referred to as the bovine high 
definition (HD) SNP panel and featured only the 641k SNP used to calcu-
late the GEBVs. SNP array genotypes were from the Illumina bovine HD 
SNP array. The correlation for each trait between GEBVs calculated from 
the 35k GGP SNP array imputed to 700k and GEBVs calculated from the 
Illumina bovine HD SNP array are indicated by the dashed line. The colour 
of each bar indicates how well the ONT derived GEBV accuracies compare 
to the 35K SNP array accuracies. Error bars indicate 95% confidence inter-
val of the Pearson correlation. B) Genomic prediction bias for body weight 
(BW),  defined as β2 − 1  , where β2 [endif ][endif ] is the regression 
coefficient of the bovine HD SNP array genomic estimated breeding value 
(GEBV) ~ Oxford Nanopore Technologies GEBV derived using QUILT and 
GLIMPSE. The prediction bias of the HD SNP array GEBVs ~ 35k SNP array 
GEBVs are displayed for each trait by the dotted lines, where the colour of 
the line corresponds to the colour of the trait in the figure legend.
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