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COMMENT

Two decades taken at speed: genomics, cell 
biology, ecology, and evolution of protists
Joel B. Dacks1,2,3*†   and Michael L. Ginger4*† 

In dynamic scientific fields, two decades can be an eternity, with technical and conceptual advances leading 
to drastically changed landscapes and paradigms. Noted natural philosopher Ferris Bueller once opined, “Life 
moves pretty fast. If you don’t look around once in a while, you could miss it”, and at the 20-year anniversary 
of BMC Biology, it is worth a “look around” at the field of evolutionary protistology. Things look quite differ-
ently today than they did when BMC Biology was founded.

The state of evolutionary protistology, then 
and now
Evolutionary protistology aims to determine the extent 
of eukaryotic phylogenetic diversity — the vast majority 
of which comprises protists, single-celled (or predomi-
nantly single-celled) eukaryotes — and to understand the 
evolutionary relationships among the major eukaryotic 
lineages. Having an accurate picture of this phylogenetic 
framework then impacts further aims of the field: fram-
ing evolution at deep and shallow time-points, contex-
tualizing modern cell biology, understanding pathogenic 
mechanisms of infectious organisms, and assessing eco-
logical and environmental change in oceans, rivers, lakes, 

and soils. Understanding has changed significantly in all 
these areas during the last two decades.

2003: the world that was
The early 2000s marked the end of a period of substan-
tial upheaval within evolutionary protistology. A con-
sensus had crystallized on the demise of the use of the 
term “Archezoa,” which had been a dominant paradigm 
suggesting that several eukaryotic lineages (including 
diplomonads, microsporidians, and parabasalids) had 
diverged from other eukaryotes prior to the acquisition 
of mitochondria. Instead, the concept of categorizing 
eukaryotic diversity into “super-groups” was on the hori-
zon as it was recognized that all eukaryotes have — or 
had — a mitochondrion.

Coupled to advances in molecular phylogenetics, ini-
tially using hard won individual gene sequences (from 
EST libraries or degenerate PCR) and latterly from 
next-generation sequencing, this new concept of super 
groups sparked the realization that eukaryotic orga-
nelle diversity was far greater than previously imagined. 
Specifically, organelle degeneration and re-purposing 
contribute a larger role than previously anticipated in 
eukaryotic diversity, with organelles once inferred to 
have been absent in certain lineages, in fact being diver-
gent or unrecognizable versions and hiding in plain 
view. This understanding was most prominently applied 
to mitochondria but turned out to be a characteristic 
of other organelles including Golgi bodies, flagella and 
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centrioles, peroxisomes, and complex plastids, particu-
larly as supergroups contain plastid and non-plastid pos-
sessing taxa alike. Moving through the mid-2000s, with 
no clear placement of the root of eukaryotes, evolution-
ary reconstructions moved to consensus building of the 
complement of proteins and features in the Last Eukar-
yotic Common Ancestor, e.g., [1]. Not that there were 
that many eukaryotic genomes to sift through — in 2003, 
the only eukaryotic microbes whose genomes had been 
sequenced were the yeast Saccharomyces cerevisiae and 
the malarial parasite Plasmodium falciparum, followed 
soon after by the diatom Thalasiosira pseudonana, the 
tropical disease parasites Trypanosoma brucei, T. cruzi, 
and L. major and the social amoeba Dictyostelium discoi-
deum. It was just as well that in the broadest sense the 
genome sequences that became available early on cov-
ered nearly all of the then recognized supergroups. Thus 
began an explosive period of genomics, evolutionary pro-
tistology, and cell biology.

Technology drives change
The last 20 years have been marked by an overwhelm-
ing abundance of genome and transcriptome data. Dur-
ing the early part of this era Sanger sequencing remained 
state of the art, but the advent of next-generation 
sequencing, and later long-read sequencing technol-
ogy, opened avenues of inquiry previously unimaginable, 
whether chromosome-level assemblies of an individual 
genome or sampling of 100s of representatives to yield 
population-genomics scale datasets. The development of 
genetic tools for representatives across the tree of eukar-
yotes has allowed for deeply effective interplay between 
informatic and experimental biology, each providing 
iterative hypothesis generation and testing of the other. 
These tools enabled advances in, at least, three areas of 
particular relevance to the scope of BMC Biology.

Marine protist ecology redefined
One of the most exciting developments in the last 20 
years has been a deeper understanding of microbial 
eukaryotic ecology and the environment. Here, next-gen-
eration sequencing was applied to environmental DNA 
collected by ambitious multi-national cruises such as 
the Tara Oceans survey (2009–2013), which sampled the 
sunlit oceans at 100s of stations across the world, gener-
ating terabases of sequence data [2]. Including meta-bar-
coding, metagenomic, and meta-transcriptomic analysis 
to predict metabolism, these efforts mapped the biogeog-
raphy of the major environmental players and provided 
insights into the physiological processes that drive the 
world’s oceans. As an example, diplonemids, then rela-
tively unknown heterotrophic flagellates (mostly noted 
for their bizarre mitochondrial genome structures and 

previously considered to be trivial in an ecological con-
text), were recognized from these global-scale surveys as 
highly abundant and possibly the most diverse group of 
marine planktonic eukaryotes [3]. These protists are pre-
sent throughout the water column in all oceans, yet little 
remains known about their role(s) as key heterotrophic 
players in the largest ecosystem of the biosphere.

Improvements in the informatics of how microbial 
ecology is assessed, along with long-read technology 
for better sampling of meta-genomic and bar-coding, 
are now being leveraged by international collectives to 
produce fine-scale and accurate biogeographic maps of 
oceans, freshwater, and soils [4]. These will be invalu-
able in understanding, and perhaps even predicting or 
mitigating, the effects of climate change. However, refine-
ments in traditional approaches to identifying micro-
bial diversity cannot be dismissed, as recently illustrated 
by the identification and characterization of Provora, 
a new supergroup of predatory, eukaryovorous marine 
and freshwater flagellates. Numerically rare, genetically 
distinct from other eukaryotes, exhibiting novel feeding 
behavior and overlooked in molecular diversity surveys, 
provorans are nonetheless globally distributed. Their 
ecological role, perhaps as “top” microbial predators, 
remains to be explored [5].

Molecular parasitology: the hunt for new 
interventions
For parasite studies, having a genome to hand provides 
insights into everything from genetic architecture and 
regulation to cell biology to evolution, but also identi-
fies targets for chemotherapeutic intervention or allows 
understanding of mode of action for existing medicines. 
This is particularly true for medically important parasites 
that are refractory or challenging to culture to densities 
sufficient for biochemical studies. The malarial parasite 
Plasmodium falciparum provides an intriguing example.

Malaria and related apicomplexan parasites possess an 
essential, non-photosynthetic, and reduced chloroplast. 
This had been reported in the late 1990s, but the func-
tion of a plastid-derived organelle in a non-photosyn-
thetic parasite was perplexing. In the early part of the last 
decade, elegant chemical rescue experiments revealed 
the sole essential function of this plastid in bloodstream 
malarial parasites to be biosynthesis of isoprenoid lipids 
through a pathway distinct from humans [6]. Plastid-null 
parasites generated by Yeh and DeRisi provide a pow-
erful tool for continuing studies into drug and vaccine 
development. Looking forward, population genomics of 
parasites is a reality with its potential to reveal strain-
level or biogeographical differences between parasites. 
There also remains a potential for parasite-specific pro-
teins revealed from genome annotations to be applied in 
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high-throughput screening for drug discovery. From an 
evolutionary perspective, parasitism is fundamentally a 
trophic strategy, one that evolved independently in dif-
ferent lineages from free-living ancestors. As more such 
free-living relatives of parasitic lineages are discovered 
and sequenced, it is becoming increasingly feasible to 
trace the changes in complements of molecular machin-
ery underlying a given traits across the transition to par-
asitism in a given lineage. This can tell us the details of 
how the systems have changed in the individual instances 
of this switch in trophic strategy and perhaps even reveal 
common evolutionary drivers across eukaryotes.

Evolutionary cell biology: an emerging field
Evolutionary protistology initially focused on endos-
ymbiotic organelles such as mitochondria and plastids, 
largely because these were tractable with the microscopic 
and molecular biological tools then available. The past 20 
years has seen the blossoming of evolutionary cell biol-
ogy [7], driven by protist genome sequencing and a vastly 
more detailed understanding of the molecular machin-
ery underpinning the cell biology of all manner of com-
partments and their variations. These include flagella, 
Golgi bodies, endosomes, peroxisomes, and the nucleus, 
together with how they interact.

Comparison across diverse eukaryotes can show if cel-
lular systems identified in one supergroup (often ani-
mals or fungi) are restricted to it, or are present more 
broadly. Multi-disciplinary investigations concerning 
organellar function(s) and evolution are being reported 
(e.g., the recent study of mitochondria and peroxisome-
related organelles in anaerobic amoebae [8]). Genome 
data are central to inferring cellular evolution but also 
unmask new molecular targets for study in additional 
organisms, be they animal, fungal, plant, or protist. Such 
examinations are becoming increasingly feasible due to 
the newly developed battery of genetic and cell biologi-
cal tools in protist model organisms, many of which cell 
biologists working in yeast and mammalian models take 
for granted, and of the application to protists of systems-
level tools such as Hyper-LOPIT proteomics. More tools 
for diverse protists are on the horizon.

Into the next 20 years…
We have offered a sense of recent paradigm shifts in 
genome-led evolutionary protistology. But the com-
munity is clearly still in the discovery era, and it is dif-
ficult to predict what the landscape will look like 20 
years from now. In the short-term, however, there are 
trends with momentum. Deeper sampling of protistan 
lineages across the tree of eukaryotes should allow for 
an ever more nuanced understanding of cellular his-
tory. Yet, genome sequences for organisms from some 

major lineages, such as ancyromonads, hemimastigi-
phorans, and provorans, remain to be obtained. These 
genomes will be critical to fully grasp the large-scale 
relationships among eukaryotes and how that relates 
to the deepest branches of the tree (i.e. the root), with 
all the inherent implications for understanding ancient 
eukaryotic history.

Techniques like single-cell RNA sequencing or sys-
tematic tagging of all proteins encoded in a genome [9] 
are just at the edge of broad-scale deployment. An age 
of truly comparative cell biology is in sight, bringing a 
more representative understanding of how eukaryotic 
cells work. Improved molecular evolutionary methods 
and sampling of diversity will certainly bring new ideas 
and models, leaving us closer to understanding our cel-
lular past. New medicines or vaccines will likely continue 
to be required to treat long-established or newly emerg-
ing diseases caused by parasitic protists. Some protists 
offer generally unrealized potential for real-world appli-
cations in synthetic biology [10]. Moreover, Climate Cri-
sis brings real urgency to investigation of protist ecology, 
diversity, and physiology. Sequencing capacity, computa-
tional power, and database representation have reached 
a stage where genome sequencing of mixed communities 
is no longer an unassailable obstacle. This is key as many 
unsequenced critical organisms must be cultured with 
prey, within microbial communities, or are in possession 
of symbionts. Community-level sequencing and ecol-
ogy experiments such as RNA-stable isotope probing for 
microbial interactions will also be needed to understand 
the dynamics of our changing planet.

In the longer term, if the next 20 years are anything like 
the last, then we confidently expect that surprising and 
paradigm-shifting discoveries will be made. We cannot 
anticipate what many of these might be, but given the 
field’s powerful tools, and even more powerful curiosity, 
it should be an exciting period.
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