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Abstract 

Intrinsically disordered proteins and regions (IDPs/IDRs) are functionally important proteins and regions that exist 
as highly dynamic conformations under natural physiological conditions. IDPs/IDRs exhibit a broad range of molecular 
functions, and their functions involve binding interactions with partners and remaining native structural flexibility. The 
rapid increase in the number of proteins in sequence databases and the diversity of disordered functions challenge 
existing computational methods for predicting protein intrinsic disorder and disordered functions. A disordered 
region interacts with different partners to perform multiple functions, and these disordered functions exhibit differ-
ent dependencies and correlations. In this study, we introduce DisoFLAG, a computational method that leverages 
a graph-based interaction protein language model (GiPLM) for jointly predicting disorder and its multiple potential 
functions. GiPLM integrates protein semantic information based on pre-trained protein language models into graph-
based interaction units to enhance the correlation of the semantic representation of multiple disordered functions. 
The DisoFLAG predictor takes amino acid sequences as the only inputs and provides predictions of intrinsic disor-
der and six disordered functions for proteins, including protein-binding, DNA-binding, RNA-binding, ion-binding, 
lipid-binding, and flexible linker. We evaluated the predictive performance of DisoFLAG following the Critical Assess-
ment of protein Intrinsic Disorder (CAID) experiments, and the results demonstrated that DisoFLAG offers accurate 
and comprehensive predictions of disordered functions, extending the current coverage of computationally pre-
dicted disordered function categories. The standalone package and web server of DisoFLAG have been established 
to provide accurate prediction tools for intrinsic disorders and their associated functions.

Keywords Protein intrinsic disorder, Disordered function prediction, Protein language model, Graph-based 
interaction protein language model

Background
Proteins are essential macromolecules in living organ-
isms, and the majority of proteins fold into specific and 
ordered three-dimensional conformations to perform 
their functions. Intrinsically disordered proteins and 
regions (IDPs/IDRs) are a special class of proteins or 
regions that exist without stable fold structures under 
native physiologic conditions. Despite lacking well-
defined tertiary structures, IDPs/IDRs play essential 
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roles in a wide range of biological processes, such as cell 
signaling [1], DNA regulation [2], and post-translational 
modification [3]. IDP/IDRs are also associated with many 
human diseases [4], including neurodegenerative disease 
[5, 6], diabetes [7], cancer [1, 8], and cardiovascular dis-
ease [9, 10]. The flexibility of IDRs in their structures ena-
bles them to bind many molecular ligands, thus making 
them effective drug targets [11]. Therefore, identifying 
disordered regions in proteins and understanding their 
functional roles will contribute to rational drug design 
and improve the efficiency of new drug development [12, 
13].

Experimental characterization of IDPs/IDRs in the 
wet lab is expensive and labor-intensive. With the mas-
sive growth in the number of protein sequences avail-
able in databases [14], computationally predicting IDP/
IDRs directly from sequences is considered a feasible 
approach. Numerous computational methods by lever-
aging different sequence features and computing tech-
niques have been developed for identifying IDRs in 
proteins, such as SPOT-disorder [15], DISOPRED3 [16], 
SPINE-D [17], AUCpreD [18], IDP-Seq2seq [19], SPOT-
Disorder2 [20], and fIDPnn. Their predictive qualities 
were comprehensively evaluated by a community-driven 
Critical Assessment of protein Intrinsic Disorder (CAID) 
[21]. The first edition of CAID (CAID1) [21] evaluated 
a total of 32 disorder predictors, and the second round 
of CAID (CAID2) [22, 23] was recently completed and 
involved the evaluations of a total of 46 different compu-
tational methods.

IDP/IDRs perform multiple critical functions in living 
organisms [24]. These functions can be broadly classified 
into two categories: the binding functions that arise from 
interacting with partners and the non-binding functions 
that originate from their native structural flexibility [24, 
25]. Many computational predictive methods have been 
developed focusing on binding regions in IDRs, including 
methods for identifying protein-binding sites [26–31], 
DNA-binding sites [26, 29, 30], RNA-binding sites [26, 
29, 30], and lipid-binding sites [32]. There are several 
predictors [33–35] available for identifying the molecu-
lar recognition features (MoRFs) within IDRs, which are 
disordered regions that bind to target protein domains in 
a process known as disorder-to-order transition. Linker 
serves as the primary function of the non-binding cate-
gory, playing a critical role in linking multiple structured 
domains and permitting domain movements between 
catalytic sites [36, 37]. Methods [38–40] for identifying 
disordered flexible linkers (DFLs) from protein sequences 
have been developed. Besides, a single IDR in proteins is 
able to bind with different ligands to perform multiple 
functions, and several prediction tools such as DisoRD-
Pbind [29] and DeepDISOBind [30] have been designed 

to provide predictions for multiple types of disordered 
binding regions, including IDRs involved in protein 
binding, DNA binding, and RNA binding. fIDPnn [26] 
is an available method for predicting both the binding 
and non-binding functions of IDRs. Due to the previous 
efforts in disorder functional prediction, the CAID1 has 
included the assessment of disordered binding regions 
[21], and the recent CAID2 has extended the evalua-
tion to the prediction of disordered linkers [22, 23]. As 
the results indicated by CAID, there still exists substan-
tial room for improvement in the current predictors. 
(1) Insufficient coverage of functional predictions: IDRs 
perform multiple functions, and predictors covering 
more functional categories are required. (2) The multiple 
functions of intrinsically disordered proteins/regions are 
dependent and interrelated; the current methods do not 
take into account the functional correlations, leading to 
low predictive accuracy.

The biological sequences and natural languages share 
three hierarchical levels of similarities. (1) Genetic 
similarity: the language ability in biological organisms, 
including humans, is involved in specific genes [41]. 
Both the origin of language and the evolution of biologi-
cal species stem from genetic inheritance and variation. 
(2) Evolutionary similarity: biological organisms and 
natural languages share similar mechanisms of evolution. 
Natural language is an exclusive characteristic of human 
beings, and both the development of language and the 
evolution of species are directed by natural selection [42]. 
(3) Formal similarity: biological sequences exhibit simi-
lar arrangement rules and combination patterns to those 
observed in natural languages [43], for example, the fre-
quency of occurrence of words in language and domains 
in proteome following the same form of Zipf ’s law [44]. 
These similarities fundamentally ensure the efficacy of 
applying natural language processing (NLP) techniques 
in the analysis of biological sequences [45–47]. The pro-
tein language model (PLM) stands out as one of the most 
representative approaches [48–50]. Its capability to cap-
ture semantic information of protein sequence, structure, 
and function [51] has demonstrated significant potential 
in a series of studies, including protein design [52–54] 
and protein function prediction [55]. In this study, we 
investigated how to incorporate the protein semantic 
knowledge to facilitate computational predictions of dis-
ordered regions and their functions.

Here, we describe a computational method for jointly 
predicting disorder and multiple disordered functions, 
termed DisoFLAG. The DisoFLAG employs a graph-
based interaction protein language model (GiPLM) to 
provide six functional predictions for the intrinsic dis-
order, including protein-binding, DNA-binding, RNA-
binding, ion-binding, lipid-binding, and flexible linker 
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(see Fig. 1a). The GiPLM integrates the protein seman-
tic information obtained from pre-trained protein lan-
guage model into graph-based interaction units. The 
graph-based interaction unit models the multiple dis-
ordered functions as a graph to learn the semantic cor-
relation features among different disordered functions. 
Then, the propensity scores for disorder and six func-
tions were calculated based on the semantic correlation 
features aggregated by the graph convolutional network 
(GCN) layer (see Fig. 1b). Following the CAID, we per-
formed evaluations of DisoFLAG on the CAID2 dataset 

Fig. 1 Schematic overview of DisoFLAG. a DisoFLAG provides predictions of six functions for intrinsically disordered regions in proteins. Joint 
prediction of the six functional regions results in a lower information entropy compared to individual prediction. The reduction in information 
entropy is known as information gain (IG), which reflects the correlation between different functions. High IG, strong correlation. b The graph-based 
interaction protein language model (GiPLM) architecture employed in DisoFLAG. The bi-directional gated recurrent unit (Bi-GRU) layer is used 
to capture the protein contextual semantic information based on the residue embeddings extracted from the pre-trained protein language 
model. The subsequent attention-based gated recurrent unit (GRU) layer is used to model the global correlation among sequences and produces 
a hidden representation for each residue. The feature mapping layers are used to generate six different function embedding vectors  (Xi) for each 
residue. Subsequently, for each residue, the graph-based interaction unit models six functions and their correlations as a functional graph, 
utilizing function embedding vectors  (Xi) as node representations and pre-calculated IG matrix as the weighted adjacency matrix for graph edges. 
Finally, the propensity scores for disorder and six disordered functions were calculated based on the semantic correlation features aggregated 
on the functional graph by the graph convolutional network (GCN) layer

and two independent test datasets built from the latest 
DisProt database. The evaluation results demonstrated 
that DisoFLAG achieves relatively higher performance 
in predicting disorder and disordered functions. We 
provide a standalone package and a convenient web 
server for DisoFLAG.

Methods
Benchmark dataset of disorder functions
The DisProt [56–58] database provided the functional 
annotations of intrinsically disordered protein/region 
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(IDP/IDR) following the Intrinsically Disordered Proteins 
Ontology (IDPO) and the Gene Ontology (GO) schemas. 
We investigated all the ontology terms in DisProt and 
obtained functional annotation term collections for pro-
tein-, DNA-, RNA-, ion-, and lipid-binding and flexible 
linker (Additional file  1: Table  S1). Following previous 
studies [21, 29, 59], we annotated each functional class 
by collecting all the sub-terms. We extracted all the func-
tionally annotated proteins from the DisProt9.3 data-
base. To obtain high-quality data, we removed sequences 
whose functional regions lacked annotations for disor-
dered structure. We also excluded the DP00072 sequence 
that was too long (> 30,000 residues) to be processed by 
the protein language model. Subsequently, a total of 925 
sequences were obtained and used for splitting the train-
ing, validation, and independent test datasets. Following 
the same protocols as previous studies [26, 32], we clus-
tered the 925 sequences using the CD-HIT algorithm 
[60] with 25% sequence similarity. Then, we randomly 
divided the clusters into five subsets, where three sub-
sets (including 589 sequences) were used as the training 
dataset, and one subset (including 148 sequences) was 
used as the validation dataset. The remaining subset with 
188 sequences was used as the independent test dataset, 
namely DP93. To further evaluate the performance of the 
proposed predictor, we collected an additional independ-
ent test dataset (DP94) containing 98 sequences using 
the same protocol as aforementioned. The sequences of 
DP94 are collected from the newly updated proteins in 
versions 9.3 to 9.4 of the DisProt database. The statisti-
cal information of these datasets is shown in Additional 
file 1: Table S2.

Graph‑based interaction protein language model
Motivated by the language models (LMs) in natural lan-
guage processing (NLP) [61, 62], the protein language 
models (PLMs) pre-trained with large numbers of amino 
acid sequences are able to discover the basic principles 
contained in the sequences [63]. Studies [55, 64, 65] have 
demonstrated that applying protein semantic informa-
tion extracted from PLMs can facilitate the performance 
improvement of various prediction tasks. In DisoFLAG, 
we employed a graph-based interaction protein language 
model (GiPLM) to provide six functional predictions for 
intrinsically disordered regions (see Fig. 1b). The GiPLM 
integrates protein semantic information extracted from 
the ProtT5 [64] protein language model into graph-
based interaction units to enhance the semantic cor-
relation of multiple disordered functions. Specifically, a 
bidirectional gated recurrent neural network (Bi-GRU) 
[66] layer is employed to capture the protein contextual 
semantic encodings P based on the embeddings extracted 
from the ProtT5:

where ri is the PLM embedding vector for the ith resi-
due, and L represents the length of the input sequence. 
Subsequently, the gate recurrent unit (GRU) layer with an 
attention mechanism [19, 67] was utilized to capture the 
global correlations among sequences and output the hid-
den representation hi for each residue:

where pj ∈ P indicates the semantic encodings of the 
jth residue, Wa is the trainable weights of the atten-
tion mechanism, sij the attention score between the ith 
and the jth residues, αij represents the attention weight 
between the ith and the jth residues, and ci indicates the 
attention-based contextual representations. Then, the 
feature mapping layers were used to generate the func-
tional semantic representations (X) for each residue. 
Specifically, six fully connected layers were employed for 
mapping the hidden global correlation representation hi 
as functional semantic representations:

where X(n)
i  is the nth functional semantic representation 

for the ith residue and W(n) and b(n) are weights and bias 
variables, respectively; ReLU is the nonlinear activation 
function.

A single disordered region can bind to different ligands 
to perform multiple functions, and the multiple functions 
of IDRs are dependent and interrelated. In this study, 
we used the Shannon information entropy (IE) [68] and 
information gain (IG) [69] to describe the correlations 
among different functions:

where HX∪Y  and HXY  represent the information required 
for individual prediction and joint prediction of X and Y 
functions, respectively [68]:

(1)P = BiGRU(r1, r2, · · · , rL]

(2)hi = GRU(hi−1, ci)

(3)ci =
l

j=1
αijpj

(4)αij =
exp(sij)

∑l
j=1exp(sij)

(5)sij = hTi−1Wapj

(6)X
(n)
i = ReLU

(
hiW

(n) + b(n)
)

(7)IGXY = HX∪Y −HXY (0 ≤ IG < 1)

(8)HX∪Y = −
∑

i∈X∪Y
p(i)log2p(i)
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A higher IG value indicates more reductions of IE 
in the joint prediction of two functions and a stronger 
correlation between the two functions. We pre-cal-
culated the IG values on the training dataset and 
obtained the IG matrix of six disordered functions, 
which is visualized in Additional file 1: Fig. S1.

Then, each graph-based interaction unit in GiPLM 
models six disordered functions and their correlations 
as a functional graph G = (V, E), where V and E rep-
resent nodes and edges, respectively. The functional 
graph is fully connected (see Fig. 1b). Each node rep-
resents a function and is represented by functional 
semantic representation X(i) . Edges represent the cor-
relations between functions and are represented by the 
adjacency matrix. In GiPLM, we employed a trainable 
weighted adjacency matrix to represent the degree of 
correlation between different functions and used the 
IG matrix pre-calculated on the training dataset by 
formula (7) as the initialization value:

Then, the graph convolutional network (GCN) layer 
was used to propagate and aggregate the semantic cor-
relation features for each node on the functional graph 
[70]:

where Y(n)
i  is the aggregated semantic feature of the nth 

functional node, A is the trainable weighted adjacency 
matrix of the edges, Xi = [X1

i ,X
2
i , · · · ,X

6
i ] is the concat-

enation of the six functional semantic representations, 
W(n)′ is the convolution kernel, and ReLU is the nonlin-
ear activation function. The semantic feature of the disor-
der YIDR

i  was obtained by performing global max pooling 
over the functional graph (F represents the dimension of 
node features) [71]:

Finally, the propensity scores for disorder and six 
disordered functions were calculated based on the 
functional node features Y(1)∼(6)

i  and disordered fea-
tures YIDR

i  by seven fully connected layers with the Sig-
moid activation functions [32, 59].

Model training and evaluation
To train the GiPLM model of DisoFLAG to predict disor-
der and disordered functions for proteins, we employed 
the binary cross-entropy loss function to calculate the 

(9)HXY = −
∑

i∈X

∑
j∈Y

p
(
ij
)
log2p

(
ij
)

(10)Aij = IGij

(11)Y
(n)
i = ReLU(

∑
j∈Ni

AijW
(n)′Xi + b(n)′)

(12)YIDR
i = maxk∈F ([Y

(1)
i , · · ·Y

(n)
i · · · ,Y

(6)
i ])

loss value of each prediction, and their combination was 
used as the final loss L(θ ) [72]:

where yi (1 or 0) and ŷi represent the trues and predicted 
propensity score of the ith function, respectively. All the 
model variables and hyper-parameters were optimized 
according to the minimum loss function values on the 
validation dataset. A detailed description of all the train-
able parameters and hyper-parameters of DisoFLAG was 
given in Additional file 1: Table S3.

The DisoFLAG outputs the real-valued propensity 
score results for disorder and disordered functions. We 
evaluated the predictive performances of DisoFLAG and 
other comparative methods with threshold-independ-
ent metrics [73–77]: AUC (area under the true-positive 
rates and false-positive rates curve across all thresh-
olds), AUPR (area under the precisions and recalls curve 
across all thresholds), APS (average precision score 
along the precision-recall curve), and Fmax (the maxi-
mum harmonic mean between precision and recall rate 
across all thresholds). In addition, given a threshold, the 
binary results can be converted from the real-valued 
results (residue is predicted to be disordered/functional 
if its propensity score is higher than the threshold; oth-
erwise, it is predicted as ordered/non-functional). We 
used the Matthews correlation coefficient (MCC) and 
balanced accuracy (BACC) to evaluate the binary predic-
tion results. The definitions of the evaluation metrics are 
given in Additional file 1: Table S4.

Results and discussion
Protein semantic information facilitates the prediction 
of intrinsic disorder and disordered function
Protein feature representation is an essential step in Dis-
oFLAG. We evaluated the performance of DisoFLAG 
using different protein representations, including protein 
language model-based (PLM) features (ProtT5 and Prot-
BERT), the position-specific scoring matrix (PSSM), and 
amino acid one-hot encodings (One-hot). Models taking 
different feature inputs were trained and optimized fol-
lowing the same protocol as described in the “Methods” 
section. The evaluation results on the DP93 independent 
test dataset and corresponding ranking results are shown 
in Fig.  2a and Additional file  1: Table  S5, respectively. 
From these results, we can see that the model using PLM-
based features outperformed PSSM and One-hot, and 
the model using ProtT5 consistently achieved the high-
est performance in predicting disorder and disordered 
functions. To further investigate the model performance 

(13)

L(θ) = −
1

n+ 1

∑n+1

i=1
[yilog

(
ŷi
)
+ (1− yi)log(1− ŷi)]
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improvement by the PLM-based features, we calculated 
the AUC values of DisoFLAG on the sequences with 
different multiple sequence alignment (MSA) [78, 79] 
depths (see Fig. 2b–e). Specifically, for each sequence in 
the DP93 dataset, we employed the HHblits [80] tools to 

conduct homology searches against the UniProt database 
and grouped the sequences according to the number of 
rows in the MSA search results. The results on disor-
der (Fig.  2b) and disordered functions (Fig.  2c–e) dem-
onstrated that the performance of the model using the 

Fig. 2 Performance of DisoFLAG in predicting disorder and disordered functions using different feature representations. a AUC value 
comparisons of DisoFLAG using different features, including protein language model-based features (ProtT5 and ProtBERT) and classic protein 
feature representations by position-specific scoring matrix (PSSM) and amino acid one-hot encodings (One-hot). The performance of DisoFLAG 
in predicting disorder (b) and disordered functions (c–e) for sequences with different multiple sequence alignment (MSA) depths
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protein language model encodings improved the most 
as the number of sequence homologous alignments (i.e., 
MSA depth) increased. When the MSA depth is relatively 
small, the PSSM encoding method has better results than 
the protein language model coding method. The possible 
reasons for these results were attributed to the following: 
(1) The PLM as a data-driven deep learning method can 
accurately capture sequence features only when there is 
a sufficient number of homologous sequences available. 
(2) In contrast, PSSM encoding based on a probabilistic 
statistical model is more effective in capturing sequence 
features under a lower MSA depth condition. (3) The 
features captured by PSSM encoding and PLM are differ-
ent. PSSM is designed to encode sequence conservation 
information, while PLM learns the contextual semantic 
information of protein sequences. Therefore, the con-
servation information is more accurate than the seman-
tic information in predicting disordered functions when 
there are fewer homologous sequences.

Graph‑based interaction unit enhances the semantic 
correlations of multiple disordered functions
The graph-based interaction unit (GiU) in DisoFLAG 
was employed to establish the correlations among mul-
tiple disordered functions. To investigate the critical role 
of GiU in DisoFLAG, we compared the performance of 
DisoFLAG using GiU with a simple sequence layer (Seq) 
(see Table 1). From this table, we found that DisoFLAG 
using GiU consistently outperformed the Seq, indicating 
that the semantic correlation features captured by GiU 
significantly boosted the predictive performance of Diso-
FLAG. In addition, the correlation among different dis-
ordered functions leads to one disordered residue being 
able to perform two or more different functions, which is 

referred to as the multifunctional (MF) residue. We com-
pared DisoFLAG with other methods for predicting MF 
residues on the DP93 test dataset. A multifunctional resi-
due is considered correctly predicted only if all its func-
tions are accurately predicted. The Fmax evaluation results 
of different methods are shown in Fig. 3a, from which we 
found that there are six types of MF residues in the DP93 
dataset. DisoFLAG is the only predictor that can predict 
all types of MF residues. Additionally, compared to other 
predictors, DisoFLAG considered correlations among 
different functions and achieved the highest Fmax values, 
which again indicated the importance of functional cor-
relations captured by GiU for the accurate prediction of 
disordered functions.

Furthermore, we used layer-wise relevance propaga-
tion (LRP) [81, 82] to investigate the contributions of 
functional correlations to the prediction results. The LRP 
score was calculated as follows:

where R(l)
j  and R(l+1)

k  are the relevance scores of the cur-
rent and previous layers, respectively. α and β are the 
constraint parameters of the αβ rule in LRP; wjk , bk , 
and hj represent the weights, bias, and hidden vector, 
respectively. We performed the LRP on the graph-based 
interaction units to obtain the importance of functional 
correlations. For each function, the importance scores 
of functional correlations to the propensity score were 
calculated by summing the relevance scores of all true-
positive propensity predictions on the DP93 test dataset, 
which were described in Eq. (14). Figure 3b shows the IG 
values calculated on the DP93 dataset, which reflected 

(14)

R
(l)
j = (α

w+
jkhj∑

jw
+
jkhj + b+k

− β
w−
jkhj∑

jw
−
jkhj + b−k

)R
(l+1)
k

Table 1 Performance comparisons of DisoFLAG using graph-based interaction unit (GiU) and sequence layer (Seq) for predicting 
different disordered functions on the DP93 independent test dataset

a DisoFLAG using the sequence decoder unit (Seq) is achieved by removing the graph-based interaction units and GCN layer from the GiPLM architecture

Module AUC AUPR Fmax MCC BACC 

Protein binding GiU 0.839 0.768 0.434 0.370 0.768

Seqa 0.827 0.752 0.411 0.339 0.752

DNA binding GiU 0.896 0.821 0.152 0.181 0.821

Seqa 0.836 0.775 0.077 0.111 0.775

RNA binding GiU 0.908 0.850 0.207 0.222 0.850

Seqa 0.838 0.764 0.160 0.164 0.764

Ion binding GiU 0.700 0.695 0.028 0.069 0.695

Seqa 0.637 0.654 0.029 0.058 0.654

Lipid binding GiU 0.861 0.771 0.304 0.328 0.771

Seqa 0.830 0.757 0.135 0.161 0.757

Flexible linker GiU 0.897 0.833 0.403 0.389 0.833

Seqa 0.769 0.709 0.118 0.134 0.709
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the correlation among different functions. These corre-
lations consistently made a positive contribution to the 
prediction of six disordered functions (see Fig. 3c).

Comparison of DisoFLAG to other methods 
in the prediction of disordered functions
We evaluated the performance of DisoFLAG for pre-
dicting disordered functions and compared it with 
methods specifically designed for disordered func-
tions and performed well on CAID2. These methods 
include DisoRDPbind [29] and DeepDISOBind [30] 

for predicting protein-, DNA-, and RNA-binding dis-
ordered regions (IDRs); fIDPnn [26] method for pre-
dicting protein-, DNA-, and RNA-binding IDRs and 
disordered linkers; ANCHOR-2 [27] for predicting 
protein-binding IDRs; MoRFchibi (Light and Web) 
[34] and SPOT-MoRF [33] are methods for identify-
ing molecular recognition features (MoRFs), which are 
protein-binding IDRs that undergo a disorder-to-order 
conformational transition; DisoLipPred [32] is the only 
available method for predicting lipid-binding IDRs; 
and TransDFL [39] and DFLpred [38] are methods for 

Fig. 3 Functional correlations contribute to the prediction of disordered functions. a Performance comparison of different predictors 
on multifunctional residues, “/” represents the predictor failed to process this subset of residues. The information gain (IG) values calculated 
on the DP93 test dataset (b), and their contributions (c) to the prediction of different functions calculated by layer-wise relevance propagation (LRP)
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identification of disordered linkers. DisoFLAG is cur-
rently the only predictor providing predictions of 
ion-binding IDRs and covering the broadest range of 
disordered functional categories. The evaluation results 
on the DP93 test dataset suggested that the perfor-
mance of DisoFLAG in predicting disordered protein-
binding, DNA-binding, RNA-binding, lipid-binding, 
and linkers is better than the current tools quantified 
by AUC, MCC, and BACC metrics (Table 2). Moreover, 
DisoFLAG offered statistically significant improvement 
in AUC compared to other methods (see Additional 
file  1: Table  S6). To further investigate the stability of 
the prediction performance of different methods, we 
performed the performance comparison on the DP94 
test dataset, whose proteins were collected from the 
latest version 9.4 DisProt database. The results show 
that the performance quantified by the AUC metric of 
DisoFLAG is still significantly better than current tools 
in predicting disordered protein-binding, DNA-bind-
ing, and linkers; however, its performance decreased in 
predicting RNA-binding and lipid-bindings (see Addi-
tional file  1: Tables S7 and S8). We also reported the 
performance metrics at the protein level, as described 
in Additional file 1: Tables S9 and S10.

We compared DisoFLAG with a broad range of pre-
dictors that participated in the Critical Assessment of 
protein Intrinsic Disorder (CAID2) challenge. Specifi-
cally, we assessed the performance of DisoFLAG on two 
CAID2 test datasets: disorder-binding and disorder-
linker [22, 23]. The disorder-binding dataset contains 78 
proteins annotated with interaction interfaces in disor-
dered regions, and the disorder-linker dataset contains 40 
proteins with disordered flexible linkers. We comprehen-
sively aligned the sequences in CAID2 with all the bench-
mark datasets used in this study and found that CAID2 
sequences were completely unseen with the training and 
validation of DisoFLAG. This is fully consistent with the 
assessment process of CAID2. Therefore, it is appropri-
ate to directly compare the results of DisoFLAG with 
those reported in CAID2. We assessed the performance 
of DisoFLAG for predicting protein-binding, DNA-bind-
ing, RNA-binding, ion-binding, and lipid-binding on the 
disorder-binding dataset and predicting linkers on the 
disorder-linker dataset. The evaluation results and com-
parison with the 10 top-ranking methods reported in 
CAID2 [22, 23] are shown in Fig. 4. In Fig. 4a, b, we can 
see that the DisoFLAG’s protein-binding predictor gen-
erates the highest quality predictions with AUC = 0.879 

Table 2 Performance comparisons of DisoFLAG and other predictors on the DP93 independent test dataset

a The evaluation results of the comparative methods were calculated based on the results obtained by running their respective web  serversb and standalone 
 packagesc. Predictors in each prediction are sorted by their AUC value

Prediction Methoda AUC AUPR Fmax MCC BACC 

Protein binding DisoFLAG 0.839 0.340 0.434 0.370 0.768

fIDPnnb 0.817 0.277 0.427 0.357 0.758

DeepDISOBindb 0.808 0.384 0.438 0.361 0.727

DisoRDPbindb 0.780 0.243 0.395 0.335 0.752

ANCHOR-2c 0.741 0.222 0.359 0.277 0.705

MoRFchibi-Lightb 0.729 0.269 0.311 0.210 0.664

SPOT-MoRFc 0.721 0.223 0.296 0.207 0.658

MoRFchibi-Webb 0.688 0.243 0.280 0.173 0.629

DNA binding DisoFLAG 0.896 0.053 0.152 0.181 0.821

fIDPnnb 0.812 0.069 0.160 0.161 0.805

DisoRDPbindb 0.703 0.035 0.125 0.124 0.663

DeepDISOBindb 0.696 0.010 0.025 0.060 0.689

RNA binding DisoFLAG 0.908 0.127 0.207 0.222 0.850

DeepDISOBindb 0.823 0.163 0.338 0.327 0.765

fIDPnnb 0.816 0.061 0.126 0.190 0.797

DisoRDPbindb 0.526 0.019 0.044 0.027 0.541

Ion binding DisoFLAG 0.700 0.013 0.028 0.069 0.695

Lipid binding DisoFLAG 0.861 0.251 0.304 0.328 0.771

DisoLipPredb 0.644 0.029 0.070 0.065 0.615

Flexible linker DisoFLAG 0.897 0.273 0.403 0.389 0.833

TransDFLc 0.781 0.221 0.206 0.166 0.730

fIDPnnb 0.712 0.046 0.093 0.102 0.666

DFLpredb 0.635 0.046 0.095 0.081 0.615
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and APS = 0.563 on the disorder-binding dataset. The 
DisoFLAG’s linker predictor achieves AUC = 0.8 and 
APS = 0.197 for the prediction of disordered linkers on 
the disorder-linker dataset (see Fig. 4c, d). The complete 
metrics are listed in Additional file 1: Tables S11 and S12.

Comparison of DisoFLAG to other methods 
in the prediction of intrinsic disorder
We assessed the performance of DisoFLAG in predict-
ing the intrinsic disorder of proteins on two disordered 
test datasets provided in CAID2: DisProt-NOX and 
DisProt-PDB. The DisProt-NOX dataset is composed of 
IDRs from the DisProt database, excluding X-ray miss-
ing residues. In contrast, the DisProt-PDB dataset is 
more conservative by strictly limiting negative samples 
to structured residues observed in the PDB database. 
For more detailed information about the datasets, please 
refer to the CAID2 [22, 23]. We performed a thorough 
sequence comparison of two CAID2 datasets against the 
benchmark dataset used in this study to ensure that all 
sequences were independent and unseen by the training 
and validation of DisoFLAG. Subsequently, we compared 
the performance of DisoFLAG with the top 10 ranked 

methods reported in CAID2 (see Fig.  5). From these 
results, we observed that DisoFLAG achieved a second 
rank with an AUC of 0.836 and a fourth rank with an 
APS of 0.560 on the Disorder-NOX dataset. DisoFLAG 
showed lower performance on the Disorder-PDB dataset, 
but it achieved comparable performance to the CAID2 
top 10 results in terms of AUC and APS metrics. The 
complete metrics are in Additional file 1: Tables S13 and 
S14.

Case study
We investigated the prediction results of DisoFLAG for 
one protein from the independent test data: the human 
immunodeficiency virus infectivity factor (HIV-1 Vif, 
DisProt: DP00875). Vif is a crucial accessory protein in 
HIV replication, and its role is to disrupt the antiviral 
activity of the human host defense factor APOBEC-3G 
(A3G) [83]. The functional implementation of Vif involves 
interactions with A3G, protein chaperones, ubiquitina-
tion machinery factors, and so on [84, 85]. Thus, eluci-
dating the functional mechanism of Vif is of significant 
importance for discovering novel drugs to block its activ-
ity [85–87]. Nuclear magnetic resonance (NMR) revealed 

Fig. 4 Performance comparisons of DisoFLAG and the 10 top-ranking methods in CAID2 for disordered binding and linker prediction. The receiver 
operating characteristic (ROC) curves on the disorder-binding and disorder-linker predictions are shown in a and c, respectively; methods are sorted 
by the area under the ROC cover (AUC). The precision-recall (PR) curves on the disorder-binding and disorder-linker predictions are shown in b 
and d, respectively; methods are sorted by the average precision score (APS); and points correspond to the Fmax values. “C” represents the coverage 
of prediction results
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that the C-terminal domain (141–192) of Vif is unstruc-
tured under physiological conditions. Figure 6a shows a 
protein complex structure (PDB ID: 8E40) [88] composed 
of Vif from the PDB database [89]. Experimental evidence 
suggests that the disordered region of Vif is involved in 
binding with proteins and lipids [90]. The propensity 
scores for the Vif protein produced by DisoFLAG are 
visualized in Fig.  6b. To investigate the contribution of 
functional correlations to the DisoFLAG’s predictions, 
we mapped the highest protein-binding propensity score 
located at the T170 residue onto the functional graph 
in DisoFLAG. The mapping process achieved by LRP is 
shown in Fig. 6c, from which we observed that protein-
binding, RNA-binding, and lipid-binding nodes made 
a positive contribution to the prediction, and the edge 
between the protein-binding node and lipid-binding 
node contributed the most. We further compared the 
binary results of protein-binding and lipid-binding pre-
dicted by DisoFLAG and other methods for the Vif pro-
tein. From the comparison results shown in Fig. 6d, e, it 
can be seen that DisoFLAG is the only method that can 
simultaneously identify the complete disordered pro-
tein-binding and lipid-binding regions of the Vif protein 

and has the lowest number of false-positive predictions. 
These results highlighted again the semantic correlations 
captured through the graph-based interaction protein 
language model (GiPLM) enabling DisoFLAG to provide 
accurate and comprehensive predictions of multiple dis-
ordered functions.

Conclusions
Inspired by the similarities between biological sequences 
and natural language across three hierarchical levels, 
we designed the DisoFLAG predictor based on a graph-
based interaction protein language model. DisoFLAG 
provides predictions of intrinsic disorder and its six types 
of functions, including protein-binding, DNA-binding, 
RNA-binding, ion-binding, lipid-binding, and flexible 
linkers. The performance assessments performed on two 
independent test datasets and CIAD2 benchmark test 
datasets indicated that DisoFLAG offers accurate and 
comprehensive predictions of disordered functions, 
extending the current coverage of computationally 
predicted disordered function categories. Our experi-
mental analysis of the prediction results of DisoFLAG 
demonstrated that the use of protein semantic knowledge 

Fig. 5 Performance comparisons of DisoFLAG and the 10 top-ranking methods in CAID2 for disorder prediction. The receiver operating 
characteristic (ROC) curves on the Disorder-NOX (210 proteins) and Disorder-PDB (348 proteins) datasets are shown in a and c, respectively, 
and methods are sorted by the area under ROC cover (AUC). The precision-recall (PR) curves on the Disorder-NOX and Disorder-PDB datasets are 
shown in b and d, respectively; methods are sorted by the average precision score (APS); and points correspond to the Fmax values. “C” represents 
the coverage of prediction results
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extracted from the pre-trained protein language model 
facilitated the accurate predictions of multiple disordered 
functions. The graph-based interaction unit used in Diso-
FLAG enhanced the semantic relevance of multiple dis-
ordered functions leading to a significant improvement 
in the identification of multifunctional disordered resi-
dues. We provide the standalone package and a convenient 
web server for DisoFLAG, which will be helpful tools to 
researchers in related fields.

Abbreviations
IDP/IDR  Intrinsically disordered protein and region
GiPLM  Graph-based interaction protein language model
CAID  Critical Assessment of protein Intrinsic Disorder
MoRF  Molecular recognition feature
DFL  Disordered flexible linker
NLP  Natural language processing
LM  Language model
PLM  Protein language model
GCN  Graph convolutional network
IG  Information gain
GRU   Gated recurrent unit
Bi-GRU   Bi-directional gated recurrent unit
IDPO  Intrinsically Disordered Proteins Ontology
GO  Gene Ontology
ROC  Receiver operating characteristic curve
AUC   Area under the ROC curve
PR  Precision-recall curve
AUPR  Area under the PR curve
APS  Average precision score
MCC  Matthews correlation coefficient
BACC   Balanced accuracy

PSSM  Position-specific scoring matrix
MSA  Multiple sequence alignment
GiU  Graph-based interaction unit
LRP  Layer-wise relevance propagation
HIV-1 Vif  Human immunodeficiency virus infectivity factor
A3G  APOBEC-3G protein
CBF-beta  Core-binding factor subunit beta protein
NMR  Nuclear magnetic resonance

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12915- 023- 01803-y.

Additional file 1: Fig. S1. Visualization of the IG matrix. Table S1. The 
ontology term and its sub-terms for each disordered functional class. 
Table S2. The statistical information of the datasets. Table S3. The num-
ber of trainable variables and hyper-parameters of DisoFLAG. Table S4. 
The definition of evaluation metrics. Table S5. The performance ranking 
of DisoFLAG using different features. Table S6. The statistical significance 
of differences (p-value) in predictive performance by different methods on 
the DP93 test dataset. Table S7. Performance comparisons of DisoFLAG 
and other predictors on the DP94 independent test dataset. Table S8. The 
statistical significance of differences (p-value) in predictive performance 
by different methods on the DP94 test dataset. Table S9. Per-protein 
performance of different disordered function predictors on the DP93 test 
dataset. Table S10. Per-protein performance of different disordered func-
tion predictors on the DP94 test dataset. Table S11. Performance metrics 
for Disorder-Binding prediction on the CAID2 test dataset. Table S12. Per-
formance metrics for Disorder-Linker prediction on the CAID2 test dataset. 
Table S13. Performance metrics for disorder prediction on the CAID2 
Disorder-NOX and Disorder-PDB test datasets. Table S14. Per-protein 
performance of different disorder predictors on the CAID2 Disorder-NOX 
and Disorder-PDB test datasets.

Additional file 2. The data values for the figures.

Fig. 6 Prediction results of DisoFLAG for Vif protein. a Protein complex structure (PDB ID: 8E40) of Vif (colored in red), A3G (colored in blue), 
CBF-beta (colored in yellow), and fork RNA (colored in orange). b The propensity score results predicted by DisoFLAG for the Vif protein. c LRP 
of residue T170’s protein-binding propensity score on the functional graph, where the contribution scores of nodes were calculated by summing 
the relevance scores of node features, and the contribution score of the edge was equal to the sum of contributions of two nodes it links. The 
binary results of protein binding (d) and lipid binding (e) predicted by DisoFLAG and other methods for the Vif protein. The binary results were 
converted from the propensity scores of different methods using a threshold that achieves the maximum F1 score

https://doi.org/10.1186/s12915-023-01803-y
https://doi.org/10.1186/s12915-023-01803-y


Page 13 of 15Pang and Liu  BMC Biology            (2024) 22:3  

Acknowledgements
We are very much indebted to the three anonymous reviewers, whose 
constructive comments are very helpful for strengthening the presentation of 
this paper.

Authors’ contributions
YP: methodology, software, validation, formal analysis, data curation, writing of 
original draft, and writing review and editing. BL: conceptualization, resources, 
writing review and editing, supervision, project administration, and funding 
acquisition. All authors read and approve the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China 
(No. 62325202, 62271049, U22A2039, and 62250028).

Availability of data and materials
All data generated or analyzed during this study are included in this published 
article, its supplementary information files, and publicly available repositories. 
All the benchmark datasets used in this study and prediction results of the 
methods involved in the evaluation conducted of this study are available in 
the Zenodo repository (https:// doi. org/https:// doi. org/ 10. 5281/ zenodo. 10361 
856). The source code and its descriptions of DisoFLAG are reproducible in the 
GitHub repository (https:// github. com/ YiheP ang/ DisoF LAG), which is archived 
on Zenodo at https:// doi. org/https:// doi. org/ 10. 5281/ zenodo. 10360 345. The 
data values for the figures are provided in the Additional file 2. The web server 
of DisoFLAG can be accessed from http:// bliul ab. net/ DisoF LAG/.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 25 June 2023   Accepted: 15 December 2023

References
 1. Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK. Intrinsic 

disorder in cell-signaling and cancer-associated proteins. J Mol Biol. 
2002;323(3):573–84.

 2. Wright PE, Dyson HJ. Intrinsically disordered proteins in cellular signalling 
and regulation. Nat Rev Mol Cell Biol. 2015;16(1):18–29.

 3. Zhou J, Zhao S, Dunker AK. Intrinsically disordered proteins link alterna-
tive splicing and post-translational modifications to complex cell signal-
ing and regulation. J Mol Biol. 2018;430(16):2342–59.

 4. Uversky VN, Oldfield CJ, Dunker AK. Intrinsically disordered proteins 
in human diseases: introducing the D2 concept. Annu Rev Biophys. 
2008;37:215–46.

 5. Eftekharzadeh B, Daigle JG, Kapinos LE, Coyne A, Schiantarelli J, Car-
lomagno Y, Cook C, Miller SJ, Dujardin S, Amaral AS, et al. Tau protein 
disrupts nucleocytoplasmic transport in Alzheimer’s disease. Neuron. 
2018;99(5):925-940 e927.

 6. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: 
lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol. 
2007;8(2):101–12.

 7. Jaikaran ET, Higham CE, Serpell LC, Zurdo J, Gross M, Clark A, Fraser 
PE. Identification of a novel human islet amyloid polypeptide beta-
sheet domain and factors influencing fibrillogenesis. J Mol Biol. 
2001;308(3):515–25.

 8. Tang W, Wan S, Yang Z, Teschendorff AE, Zou Q. Tumor origin detection 
with tissue-specific miRNA and DNA methylation markers. Bioinformatics. 
2018;34(3):398–406.

 9. Cheng Y, LeGall T, Oldfield CJ, Dunker AK, Uversky VN. Abundance of 
intrinsic disorder in protein associated with cardiovascular disease. 
Biochemistry. 2006;45(35):10448–60.

 10. Cao C, Wang J, Kwok D, Cui F, Zhang Z, Zhao D, Li MJ, Zou Q. webT-
WAS: a resource for disease candidate susceptibility genes identi-
fied by transcriptome-wide association study. Nucleic Acids Res. 
2022;50(D1):D1123–30.

 11. Zeng X, Xiang H, Yu L, Wang J, Li K, Nussinov R. Cheng FJNMI: Accurate 
prediction of molecular properties and drug targets using a self-
supervised image representation learning framework. Nat Mach Intell. 
2022;4(11):1004–16.

 12. Cheng Y, LeGall T, Oldfield CJ, Mueller JP, Van YY, Romero P, Cortese 
MS, Uversky VN, Dunker AK. Rational drug design via intrinsically disor-
dered protein. Trends Biotechnol. 2006;24(10):435–42.

 13. Zeng X, Wang F, Luo Y. Kang S-g, Tang J, Lightstone FC, Fang EF, Cornell 
W, Nussinov R, Cheng FJCRM: Deep generative molecular design 
reshapes drug discovery. Cell Rep Med. 2022;4:100794.

 14. UniProt C. UniProt: the universal protein knowledgebase in 2023. 
Nucleic Acids Res. 2023;51(D1):D523–31.

 15. Hanson J, Yang Y, Paliwal K, Zhou Y. Improving protein disorder predic-
tion by deep bidirectional long short-term memory recurrent neural 
networks. Bioinformatics. 2017;33(5):685–92.

 16. Jones DT, Cozzetto D. DISOPRED3: precise disordered region pre-
dictions with annotated protein-binding activity. Bioinformatics. 
2015;31(6):857–63.

 17. Zhang T, Faraggi E, Xue B, Dunker AK, Uversky VN, Zhou Y. SPINE-
D: accurate prediction of short and long disordered regions by 
a single neural-network based method. J Biomol Struct Dyn. 
2012;29(4):799–813.

 18. Wang S, Ma J, Xu J. AUCpreD: proteome-level protein disorder predic-
tion by AUC-maximized deep convolutional neural fields. Bioinformat-
ics. 2016;32(17):i672–9.

 19. Tang YJ, Pang YH, Liu B. IDP-Seq2Seq: identification of intrinsically 
disordered regions based on sequence to sequence learning. Bioinfor-
matics. 2021;36(21):5177–86.

 20. Hanson J, Paliwal KK, Litfin T, Zhou Y. SPOT-Disorder2: improved protein 
intrinsic disorder prediction by Ensembled deep learning. Genom 
Proteom Bioinf. 2019;17(6):645–56.

 21. Necci M, Piovesan D, Predictors C, DisProt C, Tosatto SCE. Critical 
assessment of protein intrinsic disorder prediction. Nat Methods. 
2021;18(5):472–81.

 22. Conte AD, Mehdiabadi M, Bouhraoua A, Miguel Monzon A, Tosatto SCE, 
Piovesan D. Critical assessment of protein intrinsic disorder prediction 
(CAID) - results of round 2. Proteins. 2023;91(12):1925–34.

 23. Del Conte A, Bouhraoua A, Mehdiabadi M, Clementel D, Monzon AM. 
predictors C, Tosatto SCE, Piovesan D: CAID prediction portal: a com-
prehensive service for predicting intrinsic disorder and binding regions 
in proteins. Nucleic Acids Res. 2023;51(W1):W62–9.

 24. Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci. 
2002;27(10):527–33.

 25. van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, 
Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, et al. Clas-
sification of intrinsically disordered regions and proteins. Chem Rev. 
2014;114(13):6589–631.

 26. Hu G, Katuwawala A, Wang K, Wu Z, Ghadermarzi S, Gao J, Kurgan L. 
flDPnn: accurate intrinsic disorder prediction with putative propensities 
of disorder functions. Nat Commun. 2021;12(1):4438.

 27. Dosztanyi Z, Meszaros B, Simon I. ANCHOR: web server for predict-
ing protein binding regions in disordered proteins. Bioinformatics. 
2009;25(20):2745–6.

 28. Meszaros B, Erdos G, Dosztanyi Z. IUPred2A: context-dependent predic-
tion of protein disorder as a function of redox state and protein binding. 
Nucleic Acids Res. 2018;46(W1):W329–37.

 29. Peng Z, Kurgan L. High-throughput prediction of RNA, DNA and protein 
binding regions mediated by intrinsic disorder. Nucleic Acids Res. 
2015;43(18):e121.

 30. Zhang F, Zhao B, Shi W, Li M, Kurgan L. DeepDISOBind: accurate predic-
tion of RNA-, DNA- and protein-binding intrinsically disordered residues 
with deep multi-task learning. Brief Bioinform. 2022;23(1):bbab521.

 31. Meszaros B, Simon I, Dosztanyi Z. Prediction of protein binding regions in 
disordered proteins. PLoS Comput Biol. 2009;5(5):e1000376.

https://doi.org/
https://doi.org/10.5281/zenodo.10361856
https://doi.org/10.5281/zenodo.10361856
https://github.com/YihePang/DisoFLAG
https://doi.org/
https://doi.org/10.5281/zenodo.10360345
http://bliulab.net/DisoFLAG/


Page 14 of 15Pang and Liu  BMC Biology            (2024) 22:3 

 32. Katuwawala A, Zhao B, Kurgan L. DisoLipPred: accurate prediction of dis-
ordered lipid-binding residues in protein sequences with deep recurrent 
networks and transfer learning. Bioinformatics. 2021;38(1):115–24.

 33. Hanson J, Litfin T, Paliwal K, Zhou Y. Identifying molecular recognition 
features in intrinsically disordered regions of proteins by transfer learning. 
Bioinformatics. 2020;36(4):1107–13.

 34. Malhis N, Jacobson M, Gsponer J. MoRFchibi SYSTEM: software tools 
for the identification of MoRFs in protein sequences. Nucleic Acids Res. 
2016;44(W1):W488-493.

 35. Disfani FM, Hsu WL, Mizianty MJ, Oldfield CJ, Xue B, Dunker AK, Uversky 
VN, Kurgan L. MoRFpred, a computational tool for sequence-based 
prediction and characterization of short disorder-to-order transitioning 
binding regions in proteins. Bioinformatics. 2012;28(12):i75-83.

 36. Sorensen CS, Kjaergaard M. Effective concentrations enforced by intrinsi-
cally disordered linkers are governed by polymer physics. Proc Natl Acad 
Sci U S A. 2019;116(46):23124–31.

 37. Anand S, Mohanty D. Inter-domain movements in polyketide synthases: a 
molecular dynamics study. Mol Biosyst. 2012;8(4):1157–71.

 38. Meng F, Kurgan L. DFLpred: high-throughput prediction of disor-
dered flexible linker regions in protein sequences. Bioinformatics. 
2016;32(12):i341–50.

 39. Pang Y, Liu B. TransDFL: identification of disordered flexible linkers in 
proteins by transfer learning. Genom Proteom Bioinf. 2023;21(2):359–69.

 40. Peng Z, Xing Q, Kurgan L. APOD: accurate sequence-based predictor of 
disordered flexible linkers. Bioinformatics. 2020;36(Suppl_2):i754–61.

 41. Enard W, Przeworski M, Fisher SE, Lai CS, Wiebe V, Kitano T, Monaco AP, 
Paabo S. Molecular evolution of FOXP2, a gene involved in speech and 
language. Nature. 2002;418(6900):869–72.

 42. Darwin C: The descent of man, and selection in relation to sex, vol. 1: 
Murray; 1888.

 43. Searls DB. The language of genes. Nature. 2002;420(6912):211–7.
 44. Strait BJ, Dewey TG. The Shannon information entropy of protein 

sequences. Biophys J. 1996;71(1):148–55.
 45. Wang R, Jiang Y, Jin J, Yin C, Yu H, Wang F, Feng J, Su R, Nakai K, Zou Q. 

DeepBIO: an automated and interpretable deep-learning platform for 
high-throughput biological sequence prediction, functional annotation 
and visualization analysis. Nucleic Acids Res. 2023;51(7):3017–29.

 46. Zhang W, Meng Q, Wang J, Guo F. HDIContact: a novel predictor of resi-
due-residue contacts on hetero-dimer interfaces via sequential informa-
tion and transfer learning strategy. Brief Bioinform. 2022;23(4):bbac169.

 47. Meng Q, Guo F, Wang E, Tang J. ComDock: a novel approach for protein-
protein docking with an efficient fusing strategy. Comput biol med. 
2023;167:107660–107660.

 48. Rives A, Meier J, Sercu T, Goyal S, Lin Z, Liu J, Guo D, Ott M, Zitnick CL, Ma 
J, et al. Biological structure and function emerge from scaling unsuper-
vised learning to 250 million protein sequences. Proc Natl Acad Sci U S A. 
2021;118(15):e2016239118.

 49. Li H, Pang Y, Liu B. BioSeq-BLM: a platform for analyzing DNA, RNA, and 
protein sequences based on biological language models. Nucleic Acids 
Res. 2021;49(22):e129.

 50. Jin J, Yu Y, Wang R, Zeng X, Pang C, Jiang Y, Li Z, Dai Y, Su R, Zou Q. iDNA-
ABF: multi-scale deep biological language learning model for the inter-
pretable prediction of DNA methylations. Genome biol. 2022;23(1):1–23.

 51. Bepler T, Berger B. Learning the protein language: evolution, structure, 
and function. Cell Syst. 2021;12(6):654–69.

 52. Ferruz N, Schmidt S, Hocker B. ProtGPT2 is a deep unsupervised language 
model for protein design. Nat Commun. 2022;13(1):4348.

 53. Madani A, Krause B, Greene ER, Subramanian S, Mohr BP, Holton JM, 
Olmos JL Jr, Xiong C, Sun ZZ, Socher R, et al. Large language models 
generate functional protein sequences across diverse families. Nat Bio-
technol. 2023;41(8):1099–106.

 54. Chen L, Yu L, Gao L. Potent antibiotic design via guided search from 
antibacterial activity evaluations. Bioinformatics. 2023;39(2):btad059.

 55. Unsal S, Atas H, Albayrak M, Turhan K, Acar AC, Doğan T. Learning 
functional properties of proteins with language models. Nat Mach Intell. 
2022;4(3):227–45.

 56. Hatos A, Hajdu-Soltesz B, Monzon AM, Palopoli N, Alvarez L, Aykac-Fas B, 
Bassot C, Benitez GI, Bevilacqua M, Chasapi A, et al. DisProt: intrinsic pro-
tein disorder annotation in 2020. Nucleic Acids Res. 2020;48(D1):D269–76.

 57. Piovesan D, Tabaro F, Micetic I, Necci M, Quaglia F, Oldfield CJ, 
Aspromonte MC, Davey NE, Davidovic R, Dosztanyi Z, et al. DisProt 7.0: a 
major update of the database of disordered proteins. Nucleic Acids Res. 
2017;45(D1):D219–27.

 58. Quaglia F, Meszaros B, Salladini E, Hatos A, Pancsa R, Chemes LB, Pajkos M, 
Lazar T, Pena-Diaz S, Santos J, et al. DisProt in 2022: improved quality and 
accessibility of protein intrinsic disorder annotation. Nucleic Acids Res. 
2022;50(D1):D480–7.

 59. Pang Y, Liu B. DMFpred: predicting protein disorder molecular functions based 
on protein cubic language model. PLoS Comput Biol. 2022;18(10):e1010668.

 60. Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering 
and comparing biological sequences. Bioinformatics. 2010;26(5):680–2.

 61. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language models 
are unsupervised multitask learners. OpenAI blog. 2019;1(8):9.

 62. Devlin J, Chang M-W, Lee K, Toutanova K: Bert: pre-training of deep 
bidirectional transformers for language understanding. Proceedings of 
the 2019 Conference of the North American Chapter of the Association 
for Computational Linguistics. 2019: 4171–4186.

 63. Vu MH, Akbar R, Robert PA, Swiatczak B, Sandve GK, Greiff V, Haug DTT. 
Linguistically inspired roadmap for building biologically reliable protein 
language models. Nat Mach Intell. 2023;5(5):485–96.

 64. Elnaggar A, Heinzinger M, Dallago C, Rihawi G, Wang Y, Jones L, Gibbs 
T, Feher T, Angerer C, Steinegger M. ProtTrans: towards cracking the 
language of life’s code through self-supervised deep learning and 
high performance computing. IEEE Trans Pattern Anal Mach Intell. 
2020;44(10):7112–27.

 65. Li H, Liu B. BioSeq-Diabolo: biological sequence similarity analysis using 
Diabolo. PLOS Comput Biol. 2023;19(6):e1011214.

 66. Chung J, Gulcehre C, Cho K, Bengio Y: Empirical evaluation of gated 
recurrent neural networks on sequence modeling. Twenty-eighth Confer-
ence on Neural Information Processing Systems (Workshops). 2014: 1–9.

 67. Sutskever I, Vinyals O, Le QV: Sequence to sequence learning with neural 
networks. Twenty-eighth Conference on Neural Information Processing 
Systems. 2014: 1–9.

 68. Shannon CE. A mathematical theory of communication. Bell syst tech j. 
1948;27(3):379–423.

 69. Quinlan JR. Induction of decision trees. Mach learn. 1986;1:81–106.
 70. Velickovic P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. Graph 

attention networks. Stat. 2017;1050(20):10.48550.
 71. Defferrard M, Bresson X, Vandergheynst P: Convolutional neural networks 

on graphs with fast localized spectral filtering. Advances in Neural Infor-
mation Processing Systems. 2016: 3844–3852.

 72. He T, Hu J, Song Y, Guo J, Yi Z. Multi-task learning for the segmentation of 
organs at risk with label dependence. Med Image Anal. 2020;61:101666.

 73. Wang Y, Zhai Y, Ding Y, Zou Q: SBSM-Pro: support bio-sequence machine 
for proteins. arXiv preprint arXiv:230810275 2023.

 74. Dao FY, Liu ML, Su W, Lv H, Zhang ZY, Lin H, Liu L. AcrPred: a hybrid 
optimization with enumerated machine learning algorithm to predict 
Anti-CRISPR proteins. Int j biol macromol. 2023;228:706–14.

 75. Zou X, Ren L, Cai P, Zhang Y, Ding H, Deng K, Yu X, Lin H, Huang C. 
Accurately identifying hemagglutinin using sequence information and 
machine learning methods. Front med. 2023;10:1281880.

 76. Zhu W, Yuan SS, Li J, Huang CB, Lin H, Liao B. A first computational frame 
for recognizing heparin-binding protein. Diagnostics. 2023;13(14):2465.

 77. Ao C, Ye X, Sakurai T, Zou Q, Yu L. m5U-SVM: identification of RNA 5-meth-
yluridine modification sites based on multi-view features of physico-
chemical features and distributed representation. Bmc Biol. 2023;21(1):93.

 78. Tang FR, Chao JN, Wei YM, Yang FL, Zhai YX, Xu L, Zou Q. HAlign 3: 
fast multiple alignment of ultra-large numbers of similar DNA/RNA 
sequences. Mol Biol Evol. 2022;39(8):msac166.

 79. Zou Q, Hu Q, Guo M, Wang G. HAlign: fast multiple similar DNA/RNA 
sequence alignment based on the centre star strategy. Bioinformatics. 
2015;31(15):2475–81.

 80. Steinegger M, Meier M, Mirdita M, Vohringer H, Haunsberger SJ, Soding J. 
HH-suite3 for fast remote homology detection and deep protein annota-
tion. BMC Bioinformatics. 2019;20(1):473.

 81. Avanti S, Peyton GA, Kundaje: Learning important features through 
propagating activation differences. Proceedings of the 34th International 
Conference on Machine Learning. 2017: 3145–3153.

 82. Schwarzenberg R, Hübner M, Harbecke D, Alt C, Hennig L: Layerwise 
relevance visualization in convolutional text graph classifiers. Proceedings 



Page 15 of 15Pang and Liu  BMC Biology            (2024) 22:3  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

of the Thirteenth Workshop on Graph-Based Methods for Natural Lan-
guage Processing. 2019: 58–62.

 83. Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene 
that inhibits HIV-1 infection and is suppressed by the viral Vif protein. 
Nature. 2002;418(6898):646–50.

 84. Mercenne G, Bernacchi S, Richer D, Bec G, Henriet S, Paillart JC, Marquet 
R. HIV-1 Vif binds to APOBEC3G mRNA and inhibits its translation. Nucleic 
Acids Res. 2010;38(2):633–46.

 85. Bennett RP, Salter JD, Smith HC. A new class of antiretroviral enabling 
innate immunity by protecting APOBEC3 from HIV Vif-dependent degra-
dation. Trends Mol Med. 2018;24(5):507–20.

 86. Rose KM, Marin M, Kozak SL, Kabat D. The viral infectivity factor (Vif ) of 
HIV-1 unveiled. Trends Mol Med. 2004;10(6):291–7.

 87. Yu L, Yang K, He X, Li M, Gao L, Zha Y. Repositioning linifanib as a potent 
anti-necroptosis agent for sepsis. Cell Death Discov. 2023;9(1):57.

 88. Ito F, Alvarez-Cabrera AL, Liu S, Yang H, Shiriaeva A, Zhou ZH, Chen XS. 
Structural basis for HIV-1 antagonism of host APOBEC3G via Cullin E3 
ligase. Sci Adv. 2023;9(1):eade3168.

 89. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chao H, Chen L, Craig PA, Crichlow 
GV, Dalenberg K, Duarte JM, et al. RCSB Protein Data Bank (RCSB.org): 
delivery of experimentally-determined PDB structures alongside one mil-
lion computed structure models of proteins from artificial intelligence/
machine learning. Nucleic Acids Res. 2023;51(D1):D488–508.

 90. Reingewertz TH, Benyamini H, Lebendiker M, Shalev DE, Friedler A. The 
C-terminal domain of the HIV-1 Vif protein is natively unfolded in its 
unbound state. Protein Eng Des Sel. 2009;22(5):281–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	DisoFLAG: accurate prediction of protein intrinsic disorder and its functions using graph-based interaction protein language model
	Abstract 
	Background
	Methods
	Benchmark dataset of disorder functions
	Graph-based interaction protein language model
	Model training and evaluation

	Results and discussion
	Protein semantic information facilitates the prediction of intrinsic disorder and disordered function
	Graph-based interaction unit enhances the semantic correlations of multiple disordered functions
	Comparison of DisoFLAG to other methods in the prediction of disordered functions
	Comparison of DisoFLAG to other methods in the prediction of intrinsic disorder
	Case study

	Conclusions
	Anchor 15
	Acknowledgements
	References


