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Abstract 

Background Circular RNAs (circRNAs) can regulate microRNA activity and are related to various diseases, such as can-
cer. Functional research on circRNAs is the focus of scientific research. Accurate identification of circRNAs is important 
for gaining insight into their functions. Although several circRNA prediction models have been developed, their 
prediction accuracy is still unsatisfactory. Therefore, providing a more accurate computational framework to predict 
circRNAs and analyse their looping characteristics is crucial for systematic annotation.

Results We developed a novel framework, CircDC, for classifying circRNAs from other lncRNAs. CircDC uses four dif-
ferent feature encoding schemes and adopts a multilayer convolutional neural network and bidirectional long short-
term memory network to learn high-order feature representation and make circRNA predictions. The results demon-
strate that the proposed CircDC model is more accurate than existing models. In addition, an interpretable analysis 
of the features affecting the model is performed, and the computational framework is applied to the extended 
application of circRNA identification.

Conclusions CircDC is suitable for the prediction of circRNA. The identification of circRNA helps to understand 
and delve into the related biological processes and functions. Feature importance analysis increases model interpreta-
bility and uncovers significant biological properties. The relevant code and data in this article can be accessed for free 
at https:// github. com/ nmt31 5320/ CircDC. git.
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Background
In eukaryotes, pre-mRNAs are backspliced to produce 
noncoding RNAs with covalently bonded circular struc-
tures named circular RNAs (circRNAs) [1]. Unlike lin-
ear RNA, circDNA has a closed circular structure, is not 
affected by exonucleases, and has a more stable expres-
sion [2]. CircRNA, which subverts the central dogma of 
classical gene expression theory, has gradually become 
popular in noncoding RNA research [3]. With the help 
of RNA-seq technology, a large number of algorithms 
for identifying circRNAs have emerged [4–6]. Examples 
include Tophat-fusion [7], Mapsplice [8], and segemehl 
[9]. To date, more than 100,000 kinds of circRNAs have 
been found in many species [10]. CircRNA has cod-
ing function, is an important participant in the devel-
opment of diseases [11, 12], is a steady-state product of 
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mRNA splicing, participates in complex gene expression 
regulation in a new way, and has important noncoding 
functions [13, 14]. CircRNAs contain a large number of 
miRNA binding sites and function as miRNA sponges. 
By inhibiting miRNA, circRNA indirectly regulates the 
expression of mRNA, participates in the occurrence and 
development of many human tumours, and may become 
a new marker [15]. The detection of circRNAs is critical 
to understanding their biogenesis and purpose.

When performing circRNA verification, biotechnol-
ogy such as chips and qRT‒PCR is needed [16]. Using 
biological experimental methods to identify circRNAs 
and discover the relationship between circRNAs and dis-
eases is time-consuming and laborious. It is particularly 
important to develop bioinformatics methods to effi-
ciently identify circRNAs. With the accumulation of cir-
cRNA sequence data and the development and maturity 
of supervised classification algorithms, researchers have 
focused on applying machine learning (ML) to circRNA 
identification to improve the efficiency and accuracy of 
circRNA identification. Pan et  al. extracted sequence 
features, used random forest (RF) to identify circRNAs, 
and built the WebCircRNA server [17]. Pan proposed a 
multikernel learning model named PredcircRNA based 
on multiple functional training to classify circRNA 
and lncRNA [18]. Chen proposed a hierarchical algo-
rithm named H-ELM with feature selection based on 
the extreme learning machine(ELM) algorithm to clas-
sify circRNAs [19]. In our previous work, we proposed 
to use ELM improved by particle swarm optimization 
for circRNA identification [20]. Mohamed Chaabane 
built a deep learning(DL) framework named circDeep 
to improve the classification of circRNAs by learn-
ing feature representations of different modalities [21]. 
PCirc uses an RF to identify plant circRNAs based on 
the composition characteristics of plant circRNA coding 
sequences [22]. Most of the existing circRNA identifica-
tion algorithms directly use manual features when char-
acterizing sequence features and seldom consider the 
factors affecting circRNA loop formation. Therefore, it is 
worthwhile to fully analyse and encode the looping char-
acteristics of circRNAs and use ML [23, 24] to achieve 
more accurate identification.

We developed a new tool, CircDC, for circRNA pre-
diction. First, the reverse complementarity matching 
features (RCMs), conservative score, graph structure 
and sequence composition were constructed according 
to the factors affecting the loop formation of circRNA. 
Important feature selection is then performed using 
the max-relevance-max-distance (MRMD) v2 method 
[25]. A convolutional neural network (CNN) and bi-
directional long short-term memory (BLSTM) network 
are used for deep feature learning and classification. The 

classification accuracy, robustness and scalability of the 
CircDC model are proven through tenfold cross-vali-
dation (TFCV) and independent test set validation, and 
the important features affecting the model are analysed 
through interpretability features. The CircDC frame 
structure is shown in Fig. 1.

Results
Model design and training
The first step includes model design and training. To 
obtain a highly robust DL model, the first key issue 
is hyperparameter optimization. Model training and 
selection is a challenging step in DL. The configuration 
and selection of parameters are crucial for DL mod-
els. Based on TFCV, we used accuracy (ACC) to evalu-
ate each parameter setting. The parameters for tuning 
include batch size, learning rate (LR), number of iteration 
epochs and maximum sequence length. In the training 
phase, to speed up the model training, the Adam gradi-
ent descent method is used to update the LR, with ACC 
as the objective function. When the ACC value reaches 
the maximum, the iteration is stopped, and the opti-
mal parameters are saved. The initial value of the LR is 
0.001. We used several combinations of hyperparameters 
to obtain the optimal combination. To reduce model 
overfitting, we also used a dropout rate for each model. 
The final optimal architecture and hyperparameters are 
shown in Additional file 1. Then we statistically analyze 
the changes in loss and ACC of the training set and vali-
dation set. Analyze the changes in model performance 
and model convergence under different epochs (Fig. 2A). 
It can be seen that as epoch increases, the training ACC 
and validation ACC of CircDC both show an upward 
trend, and the training loss and validation loss show 
a downward trend and gradually become stable. This 
change is in line with the trend of gradual optimization 
of model training, without overfitting. And when epoch 
is 123, the model gradually becomes stable. The training 
results are gradually optimized, and there is no overfit-
ting. It proves that the model training is optimal.

When calculating the features of RCMs, there are two 
important parameters, k and L. Therefore, we optimized 
these two parameters. For the corpus optimization of 
k-mer sequences, we performed k-optimization through 
a grid search algorithm, where the step size was set to 1, 
to generate the corpus of k-mer sequences. The perfor-
mance of the model under different k values was counted 
separately. L ∈ [250,1750], with a step size of 250. The 
result is shown Fig. 2B. For the k value, when k = 3, the 
performance of the model was optimal for all L; for L, as 
L increases, the ACC value also increased. However, the 
ACC values did not change for larger k-mers and longer 
flanking sequences. Therefore, the k-mer vocabulary was 
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Fig. 1 Structure and functionality of the online portal CircDC. A Dataset collection. B Feature encoding. C Deep learning structure. The structure 
of the CircDC, including the input layer, convolutional layers, merger layers, inception module, attention layers, fully connected layers and output 
layer. D Model training. E Feature analysis

Fig. 2 A Model performance analysis under different EPOCH. B k and L parameter optimization. C Performance comparison with state-of-the-art 
methods. D Performance comparison with Blast. E Performance comparison of feature combination strategies
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V =  43 = 256. It was also found that when L > 250 bps, 
the performance of the model gradually increased. This 
reflects that the RCMs that affect the formation of cir-
cRNA hairpins are mainly located after 250 bp, and when 
L > 500 bp, it is beneficial to the recognition of circRNAs.

The proposed CircDC outperforms state‑of‑the‑art 
methods
To verify the predictive ability of the CircDC model 
proposed in this study, we compared it with currently 
existing methods. CirRNAPL [20], WebCircRNA [17], 
PredcircRNA [18], and H-ELM [19] use datasets from the 
circBase database, and circDeep [21] uses datasets from 
the circRNADb database. Therefore, we applied CircDC 
to these two databases with TFCV (the results with the 
circBase dataset are labelled as CircDC1, and those with 
the circRNADb dataset are labelled as CircDC2). The 
results of the comparison methods were obtained from 
the corresponding literature, among which only the sen-
sitivity (SE) and sensitivity (SP) indicator results were 
provided for WebCircRNA. The TFCV results are shown 
in Fig. 2C.

First, the performance of the CircDC1 model is signifi-
cantly higher than that of WebCircRNA in terms of the 
SE and SP indicators. Second, compared with CirRNAPL, 
PredcircRNA, and H-ELM, which use ML algorithms 
and sequence composition features, CircDC1 has obvi-
ous advantages. The differences in the prediction results 
also prove that the feature encoding used in this paper 
has obvious significance in improving the performance 
of the model, and it also proves that the effect of the DL 
model is better than that of the ML algorithm under cer-
tain circumstances. CircDC2 also outperforms circDeep 
using DL algorithms. circDeep uses an asymmetric CNN 
and a BLSTM, and the structures of the two models are 
not much different; the biggest difference is the feature 
encoding scheme. In this paper, we further discuss the 
performance of the model feature encoding input into 
the circDeep network model.

Comparison of the proposed CircDC over conventional 
Blast methods
When faced with an unknown sequence, we usually 
choose to use Blast [26] for sequence alignment and 
identify homologous genes. In this section, the identifi-
cation effects of CircDC and Blast are compared. Blast 
uses default parameters. After applying Blast to a cer-
tain sequence A, the comparison result, including the 
identify, e-value, and query sequence, is obtained, and 
the value of the identify/sequence length is calculated. 
The results are arranged in descending order. The cat-
egory of the sequence corresponding to the largest ratio 

is the category of sequence A. The experimental results 
of TFCV and independent test set validation are shown 
in Fig. 2D.

It can be seen that the predicted ACC of Blast is sig-
nificantly lower than that of CircDC. The ACC of TFCV 
and Blast with the independent test set are 0.439 and 
0.605, respectively, and the ACC of CircDC are 0.9305 
and 0.8314, respectively. Since Blast only compares cer-
tain more or less important keywords in a sequence, it is 
not surprising that its accuracy is slightly lower. CircDC 
classification methods based on sequence data will have 
increasingly wide validity and usability in research.

Exploration of the optimal feature combination for CircDC
To explore the optimal feature combination for CircDC 
and show whether the features constructed in this paper 
can explain the performance, we tested the performance 
of CircDC with different categories of features, single fea-
tures and different feature combinations. The results of 
TFCV are shown in Fig. 2E.

The performance of the constituent feature sequence 
descriptor is higher than that of the other three descrip-
tors. Among them, the ACC value is improved by more 
than 10% compared to that of the worst-performing 
RCMs descriptor, which reflects the enormous impor-
tance of sequence composition features to our task. 
Although the RCMs descriptor has the lowest perfor-
mance, it appears to be effective in improving the per-
formance when combined with other descriptors. As 
expected, that multifeature fusion yields higher perfor-
mance than any single descriptor. This indicates strong 
complementarity among the three descriptors. In addi-
tion, to avoid deviations between different dimensional-
ity reduction methods, we use the MRMD 2.0 algorithm, 
which combines multiple feature selection algorithms 
and improves the selection results based on the ranking 
algorithm. The performance after feature selection is also 
improved compared to the performance with all feature 
fusion, with an ACC value of 0.9305, which is better than 
that with all single features and with other multifeature 
fusions. This indicates that different feature information 
is complementary in the fusion strategy, and optimal fea-
tures can capture more discriminative and high-quality 
features, thus effectively improving the predictive perfor-
mance of the CircDC model.

Exploration of the optimal structure for constructing 
CircDC
To explore the optimal structure for constructing 
CircDC, we compared the performance of the pro-
posed architecture with that of several sequence clas-
sification benchmark frameworks. We compared the 
CNN architecture under one-hot encoding, BLSTM and 
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CNN-BLSTM, the ACNN-LSTM combination (ACNN-
LSTM1) under the encoding scheme in this paper, and 
the depth model (CircDC_d) in this paper under circ-
Deep feature encoding. Among them, the frameworks of 
CNN, BLSTM, CNN-BLSTM, and ACNN-LSTM1 adopt 
the same parameter optimization algorithm as CircDC. 
More detailed parameter settings is in Additional file 1. 
The performance and running time of each framework 
were calculated. Figure 3A and B show the performance 
of TFCV and independent test set validation for all the 
above methods. Figure  3C shows the receiver operating 
characteristic curve (ROC) curve and AUC of TFCV.

First, it can be observed that the results of the CNN are 
higher than those of the BLSTM model, and the results of 
the CNN-BLSTM are significantly improved compared 
with those of the separate CNN and BLSTM, which indi-
cates the importance of convolution in predicting cir-
cRNA tasks. The ACNN-LSTM1 framework achieved an 
ACC of 0.9149, which proves that the feature encoding 
scheme proposed in this paper includes richer feature 
information compared with the results of circDeep. The 
ACC of CircDC_d is 0.9215, which proves the effective-
ness of the DL framework in this paper compared with 

the effectiveness of circDeep. CircDC’s ROC is also more 
stable than that of other structures, and its AUC value is 
also better than that of other comparison frameworks, 
proving its effectiveness. Through the polyline compar-
ison of the running time, it can be found that the time 
of CircDC is also relatively small. The performance and 
operating efficiency of CircDC are demonstrated through 
experiments.

This also motivates further analysis of which features 
our feature encodes are most important to the classifier. 
After feature selection using the MRMD v2 method, fea-
ture score ranking results were output. Then, the top 10 
features were analysed according to the output feature 
scores, and the feature names and feature scores were 
counted. Among them, the RCMs feature is recorded as 
the “rcm” + feature dimension, the conservative score is 
recorded as the “con” + feature dimension, the sequence 
composition feature is recorded as the “seq” + feature 
dimension, and the graph structure feature is recorded 
as the “graph” + feature dimension, as shown in Fig. 3D. 
Among the top 10 features are 4 RCMs features, 3 
sequence composition features, 2 graph structure fea-
tures, and 1 conservative score feature. Consistent with 

Fig. 3 A Performance comparison of TFCV with different structures. B Performance comparison of independent test sets with different structures. C 
ROC curves of different structures. D Top 20 feature analysis. E Violin plot to visualize feature distribution
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the performance observations, RCMs and sequence com-
position features are important for distinguishing circR-
NAs from lncRNAs. There are also 2 graph features in 
the top 10, which means there is a certain effect in terms 
of distinguishing the two.

Then, a violin plot was drawn to visualize the horizon-
tal vector of the feature selection results and observe the 
distribution characteristics of the data points (Fig.  3E). 
According to the scores generated after feature selec-
tion, we selected the top-ranked two-dimensional fea-
tures from the results of each feature expression method 
and drew violin plots to visualize the data distribution of 
positive and negative examples (“0” is positive, and “1” is 
negative). By observing the distribution of data points in 
Fig. 3E, it was found that the distributions of positive and 
negative examples of RCMs, conservative scores, graph 
structures, and composition features are relatively obvi-
ous, while the differences in the distributions of positive 
and negative examples of RCMs features are relatively 
small. This result shows that the feature representation 
method has a strong influence on the distributions of 
positive and negative samples and contributes greatly to 
the final classification results. This poses a new challenge 
on how to use more efficient features to improve the per-
formance of classifiers.

Feature importance analysis and feature contribution 
and dependency analysis
We used Shapley additive exPlanations (SHAP) [27] to 
analyse the feature contributions and dependencies. 
The SHAP value represents the contribution of a feature 
to the model output variation, reflects the influence of 
the feature in each sample, and can also show positive 
and negative effects. First, the absolute SHAP values of 
each feature in circRNA were averaged, and the 20 most 
important features were calculated and described with 
a SHAP summary map, as shown in Fig. 4A. Of the first 
20 dimensions, 6 are RCMs features, 4 are conservative 
score features, 3 are graph structure features and 7 are 
sequence features. RCM features and sequence composi-
tion features accounted for a large proportion of features; 
thus, they play an important role in the recognition of 
circRNA.

Then, to better understand the relationship between 
the eigenvalues and the model output and thus the pat-
tern of the overall sample characteristics, a summary 
graph was constructed. The SHAP values of each feature 
of each sample were counted, and outliers were observed 
if present. Figure 4B shows a summary plot of the top 20 
most important features, and Figs. 4C and D show sum-
mary plots of the RCMs and sequence compositional fea-
tures, respectively. First, on the vertical axis, the features 
are sorted according to the sum of the SHAP values of 

all samples, and the horizontal axis is the SHAP value. 
First, the rcm12 feature is the most important, and the 
larger the rcm12 value is, the better the model predic-
tion output. The output will decrease significantly once 
a certain peak is reached. rcm12 will increase the prob-
ability that the sample is predicted to be circRNA, that is, 
this feature has a positive impact on the prediction of cir-
cRNA. seq9 is also an important feature that affects the 
results. The larger the seq9 value is, the better the perfor-
mance of the model. seq15 and the model performance 
are roughly negatively correlated. Second, similar results 
are observed for the other 9 features, such as seq9, which 
is positively correlated with the predicted value. Seven 
features, such as rcm40 and graph89, show the opposite 
result, that is, high eigenvalues will reduce the perfor-
mance of CircDC, while low eigenvalues will improve 
the performance of CircDC. rcm12 (− 0.26–0.19) and 
seq9 (− 0.14–0.16) have large variation ranges and play 
key roles in the output of CircDC, which also proves that 
the features dominate the behaviour of the model. These 
features are followed by seq15, con1 and the change of 
the eigenvalues of rcm4. rcm20 has less impact on the 
output performance of the model, and its importance is 
lower than that of other features. Because the RCMs and 
sequence composition features account for a relatively 
large proportion of the first 20-dimensional features, we 
further analysed the impact of the RCMs and sequence 
composition features on the model output. The key roles 
of rcm12, rcm4, rcm40, seq9, seq15, and seq18 on the 
features were identified.

Then, to understand how a single feature affects the 
output of the model, we analysed the SHAP values of the 
top 6 features and compared them with the feature values 
of all samples in the dataset. To help reveal these interac-
tions, another feature was automatically selected for col-
ouring, and a dependency graph was drawn (Fig. 4E–J). 
It can be observed that the proposed CircDC is char-
acterized by a turning point when the rcm12 value is 
approximately 100. Larger rcm8 values reduce the influ-
ence of the rcm12 feature when the rcm12 value is 100 
but increase the influence when this value is greater than 
100. Higher rcm8 values will change the SHAP value 
from negative to positive, making rcm12 positively cor-
related with the output of CircDC. The inflection point 
of seq9 is 0.0, 70. The samples with lower eigenvalues of 
seq2 will have an impact on seq9, and the samples with 
higher eigenvalues will have less impact on seq9. The 
graph structure feature graph3 will interact with the 
component feature seq15, which will affect the predic-
tion output of the model. The conservative score con1 
will interact with the composition feature seq2 and affect 
the output of the model. High rcm4 values (200–500) and 
high rcm31 values (100, 120) are helpful for the model to 
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accurately predict circRNA, while low rcm31 sample fea-
ture values have the opposite effect. More feature interac-
tion dependence graphs are provided in Additional file 2.

Expanding the application of our CircDC framework 
in circRNA identification tasks
After building the identification model for circRNA 
and lncRNA, we expanded and applied our framework. 
Retrain the model based on the extended application’s 
data set and extend the application. First, many circR-
NAs are produced by protein-coding genes (PCGs). 
More than half of the human circRNAs in circBase 
were derived from PCGs [28]. We collected PCGs that 
do not overlap with circRNAs and applied this predic-
tion framework to train a model to predict and identify 
differences between PCGs and circRNAs. Second, cir-
cRNAs are expressed in a cell/tissue-specific manner. 

circRNAs are expressed in stem cells and are particu-
larly prominent during embryonic development [29]. 
After we collected the circRNA and determined that 
the sequence was circRNA, we downloaded the data of 
stem cell expression from circBase and used this model 
to determine whether the circRNA was expressed in 
stem cells. And apply the CircDC prediction frame-
work to train the model to predict whether circRNA 
is expressed in stem cells and explain the difference in 
characteristics. Figures 5A–D and 6A–D show the pre-
diction results of circRNA and PCGs and the predic-
tion results of whether circRNA is expressed in stem 
cells, respectively. It can be observed that our CircDC 
framework achieved higher performance than that of 
the evaluated method on most metrics when predict-
ing. Moreover, similar results were obtained in stem 
cell expression prediction.

Fig. 4 Feature contribution and dependency analysis. A The 20 most important features. B Summary plot for SHAP values. For each feature, one 
point corresponds to a single sample. The SHAP value along the x-axis represents the impact that feature had on the model’s output for that specific 
sample. Features in the higher position in the plot indicate the more important it is for the model. C Summary plot for SHAP values for RCMs 
features. D Summary plot for SHAP values for graph structure features. E–J SHAP dependence plots. These plots show the effect that a single feature 
has on the model predictions and the interaction effects across features. Each point corresponds to an individual sample, the value along the x-axis 
corresponds to the feature value, and the colour represents the value of the interacting feature
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Fig. 5 A Performance comparison with state-of-the-art methods. B Top 20 feature analysis. C Violin plot to visualize feature distribution. D 
Summary plot for SHAP values

Fig. 6 A Performance comparison with state-of-the-art methods. B Top 20 feature analysis. C Violin plot to visualize feature distribution. D 
Summary plot for SHAP values
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The CircDC architecture is outstanding in the prediction 
of circRNAs and PCGs
We first downloaded the PCGs data from the GENCODE 
database, and we also collected 20,345 PCGs from GEN-
CODE v19. To ensure clear binary classification for train-
ing, we removed PCGs overlapping circRNAs in circBase, 
resulting in 9,533 PCGs. Then, the dataset was input into 
CircDC to identify circRNAs and PCGs, and the per-
formance was compared with that of the WebCircRNA 
and CirRNAPL models, as shown in Fig.  5A. Using our 
CircDC framework, the ACC is 0.8614, the SE is 0.8381, 
the SP is 0.8165, and the MCC is 0.6774, which are 0.1021 
and 0.0645 higher than the SE and SP of WebCircRNA, 
respectively, and 0.0464, 0.0331, 0.0345 and 0.0284 higher 
than the ACC, SE, SP and MCC of CirRNAPL, respec-
tively. The CircDC framework has good performance in 
terms of circRNA and PCG prediction and classification 
and is an improvement over existing methods.

The results of feature selection were then analysed 
(Fig. 5B). Among the top 10 features, there are 4 sequence 
composition features, 1 conservative score, 1 RCMs fea-
ture, and 4 graph structure features. Sequence compo-
sition features and graph structure features are most 
important for distinguishing circRNAs from PCGs. Then, 
a violin plot was drawn to visualize the horizontal vec-
tor of the feature selection results (Fig. 5C) and observe 
the distribution characteristics of the data points. The 
differences in the distributions of positive and negative 
examples for the RCMs, graph structure, and composi-
tion features and conservative score are relatively obvi-
ous, while the differences in the distributions of positive 
and negative examples for RCMs features are relatively 
small. Finally, an interpretable analysis of the features was 
performed, as shown in Fig. 5D. It can be found that first, 
the seq92 feature is the most important, and the larger 
the value of seq92, the better the model prediction out-
put. This value will decrease significantly once a certain 
peak value is reached, and it will increase the probabil-
ity that the sample is predicted to be circRNA, that is, 
this feature has a positive impact on the prediction of 
circRNA. Second, graph89 graph37, rcm31 and seq18 
are also observed and are positively correlated with the 
predicted value. Seven features, such as graph198 and 
graph42, show the opposite result, that is, high eigenval-
ues will reduce the performance of the model, while low 
eigenvalues will improve the performance of the model.

The CircDC architecture is outstanding in the prediction 
of circRNA and stem cell expression
Based on circBase, we collected 2082 circRNAs only 
expressed in H1hsec and randomly selected the same 
number of circRNAs not expressed in H1hsec from other 
cell lines. Then, the dataset was input into CircDC to 

predict whether circRNA is expressed on stem cells and 
compare the effects with those of the WebCircRNA and 
CirRNAPL models, as shown in Fig. 6A. The ACC using 
our CircDC model is 0.862, the SE is 0.856, the SP is 
0.827, and the MCC is 0.702, which are 0.168 and 0.154 
higher than the SE and SP of WebCircRNA, respectively, 
and 0.08, 0.108, 0.091 and 0.115 higher than the ACC, 
SE, SP, and MCC of CirRNAPL, respectively. The CircDC 
framework has good performance in terms of predict-
ing whether circRNA is expressed in stem cells, and it 
reflects an improvement over existing methods.

The results of feature selection were then ana-
lysed (Fig.  6B). Among the top 10 features, there are 2 
sequence structure features, 1 conservation score feature, 
1 RCM feature, and 6 graph structure features. Graph 
structure features are the most important for distinguish-
ing whether circRNAs are expressed in stem cells. Then, 
a violin plot was drawn to visualize the horizontal vec-
tor of the feature selection results (Fig. 6C) and observe 
the distribution characteristics of the data points. The 
differences in the distributions of positive and negative 
examples of graph structure features are relatively obvi-
ous, while the differences in the other three are relatively 
small. Finally, an interpretable analysis of the features 
was performed, as shown in Fig.  6D. First, the rcm22 
feature is the most important, and the larger the rcm22 
value is, the better the model prediction output. This 
value will decrease significantly once a certain peak value 
is reached. It will increase the probability that the sam-
ple is predicted to be circRNA, that is, this feature has a 
positive impact on the prediction of circRNA. Graph101 
is also an important feature that affects the results. The 
larger the graph101 value is, the better the performance 
of the model. Many features, such as graph89, seq58, and 
graph21, are negatively correlated with the model per-
formance. The larger the feature value is, the worse the 
model performance.

Conclusions
Although a number of computational models have 
emerged for circRNA prediction, their identification 
accuracy still needs to be improved, and the looping 
characteristics of circRNAs are insufficient. This paper 
constructs a new circRNA classifier CircDC. Compared 
with existing methods, our method has the follow-
ing advantages: (i) Introducing a new feature extraction 
RCM, which can provide the possibility of cyclization for 
a given flanking sequence and query sequence. (ii) Using 
CNN and BLSTM for deep feature learning and circRNA 
prediction, the accuracy increased by more than 3%. (iii) 
Through feature importance analysis, we also found that 
RCM is used to distinguish circRNAs and lncRNAs. It 
can help researchers extract useful information from 
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a large amount of biological data to reveal the biologi-
cal processes and mechanisms of organisms. (iv) Extend 
CircDC to differentiate between circRNA and PCG, and 
whether circRNA is expressed in stem cells, and analyze 
the importance of features.

Future work will focus on discovering more useful fea-
tures and combining parallel techniques to improve rec-
ognition efficiency. In addition, there are currently few 
studies on the time complexity and space complexity of 
deep learning frameworks. In the next step, we will also 
analyze the efficiency of building a deep learning frame-
work from more perspectives. At the same time, given 
that the functions of most circRNAs have not been con-
firmed by research, and the functions of disease-related 
circRNAs still need to be continuously improved, future 
research should pay more attention to the biological 
functions of circRNAs.

Methods
Dataset collection
To demonstrate the capability of our CircDC model, 
we used circRNA data from the circBase [30] and cir-
cRNADb [31] databases. The circBase and circRNADb 
databases collect experimentally validated multispecies 
circRNA transcript data. We downloaded all human 
circRNA data and deleted sequences with sequence 
lengths < 200 nt. Next, CD-HIT was used to remove 
redundant data, and the similarity threshold was set 
to 0.8. Then, 14,480 human circRNA sequences were 
obtained from circBase, and 31,939 sequences were 
obtained from the circRNAdDb. By comparing the cir-
cRNA IDs of the circBase and circRNADb, it was found 
that the circRNADb data cover the circBase data. If data 
overlap between the two databases is allowed, 32,571 
sequences can be obtained, including 9848 repeated 
sequences and 26,723 unique sequences. We used GEN-
CODE to collect experimentally validated, human-anno-
tated lncRNA sequences and obtained 19,683 sequences 
as negative samples.

This paper uses TFCV to verify the effectiveness of the 
model. Among them, the number of positive samples is 
32,571. The number of negative samples is 19,683. For the 
positive samples in the independent validation set test, 
we used the 9848 repeated sequences as the test set and 
the 26,723 unique sequences as the training set. Negative 
samples were directly divided into training and test data, 
of which 80% were used for training and 20% were used 
for testing.

Feature representation
RCMs
Inverse complement match-mediated RNA circularization 
is a classical strategy for circRNA overexpression. Inverse 

complement matching of circRNA flanking introns is 
highly correlated with circularization [32]. When RCMs 
occur upstream and downstream of exon 2, a circu-
lar molecule is formed; otherwise, a linear molecule is 
formed. RCMs between introns encircling the circRNA 
may induce larger hairpin structures, thereby facilitat-
ing changes in loops embedded in exons. Therefore, we 
hypothesized that strengthening the hairpin between 
reverse complement sequences might increase the prob-
ability of circularization, and the longest reverse comple-
ment sequence in the flanking sequence was measured to 
represent the absolute number of all reverse complement 
sequences in the flanking sequence. In this paper, RCMs 
were characterized by calculating the strength of hair-
pins in the flanking sequences (fraction H of the reverse 
complements), where the presence or absence of reverse 
complements in the flanking sequences was calculated by 
deriving the H value, which represents the fraction of all 
reverse complements in the flanking sequences.

First, the reverse complementary sequence was intro-
duced. The reverse complementary sequence reverses 
the original sequence first and then complements the 
reverse sequence. The concept of complementarity refers 
to the A-T and C-G pairings. For example, if the origi-
nal sequence is AAT TCC GG, then the reverse sequence 
is GGC CTT AA, and the complement of the reverse 
sequence is CCG GAA TT.

The reverse complement score H of the sequence was 
then calculated. For sequence C, two flanking sequences 
of length L base pairs are selected. Then, a sliding win-
dow method was used to split the flanking sequences into 
k-mers, all subsequences of length k and stride s = 1 were 
extracted, and L1 = L0-k + 1 subsequences with D =  4  k 
possible words of length k in the sequence were obtained. 
For  Wi (i = 1, · · · , 4k ), the reverse complement sequence 
is  WR. Then, the number of occurrences of the reverse 
complement sequence in the left flanking sequence 
N(Wi) and the number of times it appears in the right 
flank sequence N(WR) were counted. The reverse com-
plement score H (k , L0 ) was calculated as Formula (1).

where WR is the reverse complement of Wi. For example, 
WR(ACCGU) = ACGGU.

Conservative score features
Conservation scoring is an evolutionary concept, and 
the sequence of the genome is constantly evolving. Many 
circRNAs have not disappeared in the long evolution 

(1)H(k , L0) =

4k

i=1

Hi

(2)Hi = min(N (wi),N (wR))
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and are conserved in species, indicating that their func-
tions are not accidental [33]. Therefore, we analysed the 
conservation of circRNA by calculating the conservation 
score and performed more accurate feature expression.

For each sequence, we used the PhastCons [34] method 
to collect precalculated conservation scores from the 
UCSC database and score each nucleotide based on its 
degree of conservation. The phyloP conservation score 
for each base and the mean and standard deviation of the 
conservation score length for the entire sequence were 
calculated. First, we averaged the scores for each exon 
sequence in each transcript and then calculated the max-
imum, mean and median of the averaged scores. There-
fore, the frequency numbers of consecutive bases with 
scores greater than the specified threshold were summed, 
and the frequency numbers were then divided by the 
entire length of the sequence to obtain a total of 15 fea-
tures to create the conserved descriptor.

Graph structure features
RNA-binding proteins can participate in the regulation 
of the formation of related circRNAs in epithelial-mes-
enchymal cells by binding to precursor RNA flanking 
introns and by adding protein-binding sites to linear 
RNA flanking introns to facilitate the formation of aggre-
gates [35]. In addition, these proteins can also play an 
important role in various life activities in the form of 
RNA‒protein copolymers by selectively combining with 
circRNA. Therefore, we used the GraphProt method with 
an efficient graph kernel to learn the sequence and struc-
ture binding preferences of RBPs and to calculate the 
graph structure features of sequences.

For each sequence, a set of RNA structural features 
was generated using GraphProt [36]. The basic process is 
described below (shown in Fig. 1B(3)). First, the second-
ary structure was analysed using the stem (S), polyloop 
(M), hairpin (H), internal loop (I), bulge (B), and external 
region in RNAshapes. Then, the circRNA sequence and 
its folded structure were encoded as a graph, using the 
graph form to represent different types of relationships. 
The RNA graph uses nodes to represent nucleotides 
and edges to represent the sequence backbone connec-
tion or the bonding relationship between base pairs. For 
example, in structural base pairs, the nucleotide C inside 
the stem can be labelled CS and CB inside the raised 
loop. Finally, the graph was feature-encoded based on 
the neighbourhood subgraph pairwise distance kernel. 
The graph was decomposed into a set of small overlap-
ping subgraphs. We then used a hash-based technique to 
assign a numerical identifier to each subgraph to approxi-
mate the isomorphism detection problem and construct 

the final explicit feature encoding. Then, we obtained a 
set of over 30,000 graph features. To reduce the dimen-
sionality of graph-structured features, we used an RF to 
rank the importance scores of the graph features, result-
ing in 101 graph features with high importance scores.

Sequence composition features
With the help of the iLearn package [37], we investigated 
the composition characteristics of circRNA sequences, 
where the sequence composition characteristics include 
nucleic acid composition characteristics (including 
k-mer, mismatch, and subsequence), autocorrelation 
characteristics (including DAC, DCC, MAC and GAC) 
and pseudoribonucleic acid composition.

Feature selection
In this paper, the MRMD 2.0 [25, 38] was used for fea-
ture selection. The MRMD 2.0 first calculates the fea-
ture selection results of seven feature sorting algorithms 
(ANOVA, MRMD, MIC, LASSO, MRMR, chi-square, 
recursive feature elimination) and builds a directed graph 
in the form of a linked list with the results of the seven 
methods. Then, the PageRank algorithm is used to sort 
the linked list to obtain the final feature set.

Deep learning model
The CircDC model constructed in this paper is mainly 
composed of a CNN [39] and BLSTM [40, 41] network. 
TensorFlow v2.4 is used to implement the deep learn-
ing model [42]. The CNN consists of convolutional lay-
ers. The obtained four sets of features are input into the 
convolution layers, and new deep features are extracted 
from the original sequence features. The number of 
convolution kernels in each convolutional layer is the 
same, that is, the output feature dimensions are the 
same. Convolution is used to further mine the relation-
ships between different features, strengthening the con-
nections between extracted features and improving the 
accuracy of the prediction results. Pooling layers are 
used to reduce the data dimensionality. A BN layer is 
used to normalize the data to speed up the training pro-
cess. Then, the obtained features are concatenated into a 
vector, which is input into the BLSTM network to extract 
latent feature patterns and capture the short-term and 
long-term sequential dependencies between features. 
The output of the BLSTM unit in the last layer serves as 
the input to three fully connected layers. To reduce the 
overfitting of the model, a dropout layer is added. The 
ReLU function is used in the two fully connected layers, 
and the softmax function is used in the final output layer 
for binary classification.
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Performance metrics
We used four indicators to evaluate the performance of 
our CircDC model, namely, SE, SP, ACC and MCC [43]. 
SE represents the correct rate of positive sequence pre-
diction. SP represents the correct rate of negative exam-
ple prediction. ACC stands for classification accuracy. 
The MCC reflects the reliability of the classifier and can 
more fairly reflect the predictive ability. The larger the 
MCC is, the better the reliability.
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