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Abstract 

Background DNA methylation has been documented to play vital roles in diseases and biological processes. In 
bovine, little is known about the regulatory roles of DNA methylation alterations on production and health traits, 
including mastitis.

Results Here, we employed whole-genome DNA methylation sequencing to profile the DNA methylation patterns 
of milk somatic cells from sixteen cows with naturally occurring Staphylococcus aureus (S. aureus) subclinical mastitis 
and ten healthy control cows. We observed abundant DNA methylation alterations, including 3,356,456 differentially 
methylated cytosines and 153,783 differential methylation haplotype blocks (dMHBs). The DNA methylation in regu-
latory regions, including promoters, first exons and first introns, showed global significant negative correlations 
with gene expression status. We identified 6435 dMHBs located in the regulatory regions of differentially expressed 
genes and significantly correlated with their corresponding genes, revealing their potential effects on transcriptional 
activities. Genes harboring DNA methylation alterations were significantly enriched in multiple immune- and disease-
related pathways, suggesting the involvement of DNA methylation in regulating host responses to S. aureus subclini-
cal mastitis. In addition, we found nine discriminant signatures (differentiates cows with S. aureus subclinical mastitis 
from healthy cows) representing the majority of the DNA methylation variations related to S. aureus subclinical 
mastitis. Validation of seven dMHBs in 200 cows indicated significant associations with mammary gland health (SCC 
and SCS) and milk production performance (milk yield).

Conclusions In conclusion, our findings revealed abundant DNA methylation alterations in milk somatic cells 
that may be involved in regulating mammary gland defense against S. aureus infection. Particularly noteworthy 
is the identification of seven dMHBs showing significant associations with mammary gland health, underscoring 
their potential as promising epigenetic biomarkers. Overall, our findings on DNA methylation alterations offer novel 
insights into the regulatory mechanisms of bovine subclinical mastitis, providing further avenues for the development 
of effective control measures.
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Graphical Abstract

Background
Mastitis, an inflammation of the mammary gland, causes 
production and economic loses for the dairy industry 
worldwide. Mastitis also constitutes a major animal wel-
fare problem as well as a potential danger for food and 
environmental safety, making it a huge challenge for 
the dairy industry worldwide [1, 2]. Pathogenic bacte-
ria infection is the most common cause of mastitis, with 
most common infecting species being Staphylococcus 
aureus (S. aureus), Streptococci, and Escherichia coli (E. 
coli). Staphylococcus aureus as the most prevalent conta-
gious pathogen can be found on the skin of the mammary 
gland and teats. In Canada, S. aureus is an important 
causal pathogen of both clinical and subclinical mastitis 
[3–5]. Mastitis in the subclinical form is without observ-
able symptoms and accounts for a large portion (48%) of 
the economic costs related to mastitis prevention and 
control in Canadian dairy farms [6]. Due to its ability 

to colonize and multiply inside the mammary gland, S. 
aureus subverts host defenses allowing persistent mild 
subclinical infections characterized by high milk somatic 
cell count (SCC) [7–9]. It causes irreversible damage to 
mammary gland tissue resulting in reduced milk pro-
duction and inducing potential resistance to antibiotics 
(due to extended application of antibiotics treatments) 
[10–12].

During the past century, concerted efforts have been 
directed at developing effective strategies to monitor, 
prevent, and control mastitis in dairy farms. Farm man-
agement strategies and genetic strategies have demon-
strated positive contributions towards the improvement 
of dairy production [1, 13, 14]. Although production 
traits, conformation and health attributes of farm ani-
mals are primarily driven by genetic diversity, it is clear 
that epigenetic factors, including DNA methylation, con-
stitute an additional important layer influencing these 
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phenotypes. Thus, a plethora of investigations have 
revealed the impact of epigenetic modifications, includ-
ing DNA methylation alterations, on animal health and 
production [15–17] and indications that epigenetic 
impacts are not fully captured in current conventional 
genomic breeding programs [17–19]. DNA methylation 
is one of the most well-characterized epigenetic mecha-
nisms with paramount importance for mammalian devel-
opment and health, including bovine diseases such as 
mastitis [15, 19–22].

In recent years, the in vitro infection of bovine mam-
mary epithelial cells with bacterial lipopolysaccharide 
or S. aureus components such as peptidoglycan and 
lipoteichoic has implicated aberrant DNA methylations 
in the regulation of immune responses to bovine masti-
tis [23–25]. Furthermore, the DNA methylation altera-
tions in some immune-related genes, such as CXCR1, 
IL6R, TLR4, NCKAP5, CSN1S1, and CD4, have been 
found to participate in the regulation of gene expression 
during mastitis caused by E.coli or S. aureus [26–31]. 
For instance, hyper-methylation of the promoter region 
of CD4 gene was found to negatively correlate with its 
gene expression changes during mastitis [31–33]. Using 
deep sequencing technologies, the integration of whole-
genome DNA methylation and transcriptome of blood 
neutrophils identified three genes (CITED2, SLC40A1, 
and LGR4) as potential candidate markers of E.coli-
induced mastitis [34]. In addition, the same strategy 
captured the key changes related to S. aureus subclinical 
mastitis in different tissues, such as mammary gland tis-
sue [35] and peripheral blood lymphocytes in Holstein 
cows [36]. Collectively, these studies identified thousands 
of DNA methylation alterations at single cytosine sites or 
regions on key genes such as NRG1, MST1, NAT9, IL6R, 
TNF, BTK, IL1R2, and TNFSF8, indicating the important 
involvement of DNA methylation in the regulation of the 
immune response during S. aureus subclinical mastitis 
[34–37]. However, these studies used the RRBS (reduced 
representation bisulfite sequencing) and the MeDIP-Seq 
(methylated DNA immunoprecipitation sequencing) 
methods, which are not able to capture the complete 
DNA methylation landscape of the whole genome with 
the consequence that some epigenetic variants were not 
fully captured.

Most previous studies have made it clear that DNA 
methylation alterations play important roles in the 
immune response to mastitis in dairy cows. Thus, the 
application of more robust technologies (e.g., whole 
genome methylome sequencing [WGMS]) on large sam-
ple numbers will provide knowledge depths on the host 
regulatory mechanisms, which are crucial for the fur-
ther practical application of DNA methylation informa-
tion in controlling mastitis. Therefore, we adopted the 

WGMS technique and profiled the whole-genome wide 
DNA methylation patterns of milk somatic cells from 
26 Holstein cows, and portrayed the DNA methylation 
alterations related to S. aureus subclinical mastitis in 
multiple contexts, including single cytosine, methylation 
haplotype blocks (MHBs), methylation patterns of gene 
features and repeat elements, and global methylation at 
the level of the whole genome. We also integrated the 
DNA methylation alterations and transcriptome data of 
the same samples [38] to explore their possible biological 
roles and identify candidate discriminant DNA methyla-
tion and gene signatures for S. aureus subclinical masti-
tis. Finally, we validated seven differentially methylated 
MHBs in 200 cows. Overall, this study has provided a 
comprehensive resource to better understand the DNA 
methylation alterations and dynamics during S. aureus 
subclinical mastitis. It also provided candidate discrimi-
nant DNA methylation and gene markers that may serve 
as a catalyst to initiate discussions on the importance of 
quantifying the effects of epigenetic variations on live-
stock health and production, and the inclusion of such 
information in current management and breeding strat-
egies to improve the prediction of breeding values for 
mastitis resistance.

Results
DNA methylation pattern of milk somatic cells
We generated a total of 26 WGMS datasets from milk 
somatic cells from sixteen cows with S. aureus subclini-
cal mastitis and ten healthy control cows (Supplementary 
Table S1 in Additional file 1). The vast amounts of data 
(~ 294 million uniquely mapped reads) obtained from 
each sample revealed ~ 12,215 million cytosines with an 
average of 27× coverage (ranging from 21.8× to 32.8×) 
per sample which were used to identify genome-wide 
DNA methylation cytosine sites (Supplementary Table S2 
in Additional file  1). Globally, the average methylation 
level was 75.28, 0.21, and 0.18% for cytosine in the con-
text of CpG, CHG, and CHH, respectively (where H rep-
resents A or T or C). The global DNA methylation level 
of CpG sites is consistent with data on other somatic 
tissues in cattle [39], in human [40], and in mouse [41]. 
Moreover, the global DNA methylation level of CHG 
sites is consistent with non-CpG methylation recorded in 
non-brain tissues of cattle (ranged from 0.2 to 0.8%) [39, 
42].

We also characterized the DNA methylation patterns 
in specific functional genomic regions to understand 
their dynamics during S. aureus subclinical mastitis. 
The DNA methylation of CpG sites showed a concave 
change around CpG island (CGIs) with a downward 
trend in CGI shores and low level at CGIs (28.74% on 
average) (Fig. 1A). On the contrary, the CHG and CHH 
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sites showed a slight increase in their methylation levels 
at CGIs (0.29 and 0.21%, respectively) compared with 
adjacent regions (Fig.  1A). The methylation level plot 
among gene features revealed the classic downward trend 
of CpG sites with a gradual decrease in methylation at 
the promoter to reach the lowest level in the first exon 
(Fig. 1B). In addition, CHG and CHH sites showed rela-
tively stable and extremely low methylation level among 
gene regions, but was slightly higher at exons (Fig. 1B).

We then calculated the average methylation levels of 
promoters and other gene features for each gene (aver-
age value of all qualified CpG sites in corresponding 
regions) followed by integration analysis of the methy-
lome and transcriptome data with MethGET [43]. The 

CpG methylation level of promoters showed signifi-
cant but weak inverse correlation with gene expression 
level at the genome-wide scale (Pearson’s R = − 0.194, 
P = 3.76 ×  10−165) (Fig.  1C, Supplementary Fig. S1A in 
Additional file  2), which is consistent with previously 
reported effects of promoter methylation on transcrip-
tional repression [20, 44]. The general CpG methylation 
levels of both first exons and first introns also showed 
significant but weak inverse correlation with gene expres-
sion levels at the scale of the whole-genome (Pearson’s 
R: − 0.291 and − 0.173, P = 0 and 1.60 ×  10−122, respec-
tively) (Fig.  1D, E, Supplementary Fig. S1B-C in Addi-
tional file 2). This inverse correlation relationship has also 
been found in human and other model animals which 

Fig. 1 DNA methylation landscape at important genomic functional regions indicating their possible association with gene expression. A The 
distribution of DNA methylation at regions in relation to CpG island (CGI). L: left, R: right. B The DNA methylation level at genetic regions illustrating 
the classic valley-like change of DNA methylation level (CpG sites) around transcription start sites (TSS). C–E The scatterplot and fitting curves 
of DNA methylation level of regulatory regions, including promoters (C), first exons (D), and first introns (E), and expression level of genes. The 
higher the expression level of genes, the lower methylation level of their regulatory regions. F The methylation level trends around genes grouped 
by ranked gene expression level. Up-region and down-region represent the upstream and downstream region of genes, respectively. G An enlarged 
view of figure F near TSS, showing the steeper methylation level trend around TSS for genes with higher expression levels
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links the methylation at first exon and first intron to pos-
sible effects on transcriptional silencing [45, 46]. The 
valley-like changes of CpG sites at regulatory regions, 
including promoter, first exon and first intron, were 
steeper as gene expression levels rise (Fig. 1F), especially 
around the 2000 bp up- and downstream of transcrip-
tional start sites (TSS) (Fig.  1G). Besides, no significant 
correlation was found between the gene expression lev-
els and the CpG methylation levels of other gene regions 
(inner exons, inner introns, and whole gene body) (Sup-
plementary Fig. S1D-F in Additional file 2).

DNA methylation alterations during S. aureus subclinical 
mastitis
We compared the DNA methylation of cytosine sites 
between S. aureus-positive (SAP) and healthy control 
(HC) groups at different layers to investigate the DNA 
methylation alterations during S. aureus subclinical mas-
titis. Firstly, the global methylation level of CpG sites of 
SAP group was significantly higher than HC group at a 
scope of each chromosome (Chr) (Fig. 2A shows Chr11 
only, Supplementary Table  S3A in Additional file  1) as 
well as whole genome (Fig. 2B, Supplementary Table S3B 
in Additional file 1) (FDR < 0.05). This significant higher 
methylation level of CpG sites in SAP group was also 
seen at genomic functional regions, including gene fea-
tures, CGIs, CGI shores, and CGI shelves (Supplemen-
tary Table S3C in Additional file 1, Supplementary Figs. 
S2-S3 in Additional file  2). However, the difference in 
methylation levels of CHG and CHH sites between SAP 
and HC group was not significant at genome-wide scale 
(Supplementary Fig. S4 in Additional file 2), as well as in 
most genomic functional regions (FDR > 0.05) (Supple-
mentary Table S3C in Additional file 1) except CHG sites 
which showed significantly higher expression in SAP 
group at CGI (FDR = 0.025) (Supplementary Fig. S5 in 
Additional file 2).

Furthermore, we compared the methylation of each 
cytosine between SAP and HC group using Methyl-
Kit [47], and identified a total of 3,328,843, 7255, and 
20,358 differentially methylated cytosine sites (DMCs) 

in the context of CpG, CHG, and CHH, respectively 
(q-value < 0.05 and |methylation difference|> 20%) (Sup-
plementary Tables S4-S5 in Additional file  1). Con-
sistent with the globally higher methylation of SAP 
group, 80.73% of CpG-DMCs and 61.6% of CHG- and 
CHH-DMCs were hyper-methylated in SAP group 
compared with HC group (q-value < 0.05, methylation 
difference ≥ 20%) (Fig. 2C). At Chr scale, Chr11 harbored 
the most DMCs (n = 162,144, 4.83%), followed by Chr19 
(n = 157,932, 4.70%) and Chr5 (n = 155,308, 4.62%), while 
the least DMCs (n = 56,880, 1.69%) were found on Chr28 
(Fig. 2C, Supplementary Table S6A in Additional file 1). 
The annotation of DMCs to gene features revealed that 
69% DMCs were located in intergenic regions (Supple-
mentary Table S6B in Additional file 1). Also, 1,148,481 
CpG-, 2295 CHG-, and 5987 CHH-DMCs were located 
in genes and their 2 kb upstream (promoters) and 2 kb 
downstream regions. Out of these, more DMCs were 
located in introns (n = 887,913, 76.76%) followed by exons 
(n = 112,914, 9.76%) (Fig. 2D). Besides, we found 72,855 
(6.30%), 11,599 (1.00%), and 308,719 (26.69%) DMCs in 
promoters, first exons, and first introns, respectively. 
3′UTR regions harbored more DMCs than 5′UTR. 
However, 5′UTR had the highest density of DMCs (6.15 
DMCs/100 bp), followed by first exon (2.52 DMCs/100 
bp) and 3′UTR (1.90 DMCs/100 bp) (Supplementary 
Table S7 in Additional file 1).

On the other hand, we identified a total of 13,358 genes 
harboring at least 1 DMC in any of three contexts, and 
76.58% of them (n = 10,230) harbored greater than 20 
DMCs (Supplementary Table  S7 in Additional file  1). 
Integration with transcriptome data revealed that 3599 
out of 13,358 genes harboring DMCs were identified as 
differentially expressed genes (DEGs) between SAP and 
HC group (|log2FC|> 1 and FDR < 0.05). The DEGs har-
boring DMCs (n = 3599) were significantly enriched in 
20 gene ontology (GO) terms and 35 Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathways mostly 
having immune- or disease-related functions (Supple-
mentary Table  S8A in Additional file  1). Interestingly, 
DEGs harboring DMCs at their first exon (n = 431) were 

(See figure on next page.)
Fig. 2 Comparison of DNA methylation status between S. aureus-positive (SAP) and healthy control (HC) groups revealed abundant alterations. 
A A DNA methylation landscape of chromosome 11 (Chr11) illustrating the general methylation status and various DNA methylation alterations. 
A 50-kb-long window was used to count the corresponding information per track. B Comparison of global methylation level of CpG sites 
between SAP and HC groups revealed significantly higher global methylation level of SAP group. ***: significant difference (P value = 0.00076). C 
The distribution of DMCs per chromosome (Chr). The number on the top of each bar represents the percentage of hyper-methylated DMCs to total 
DMCs located in the corresponding Chr. D The distribution of DMCs in the context of CpG, CHG, and CHH among genomic functional regions. E 
The count of DMCs collocated in repeat elements, including short and long interspersed retrotransposable elements (SINE and LINE), long terminal 
repeat retrotransposons (LTR), and DNA transposons (DNA). MHBs: methylation haplotype blocks; dMHBs: differential MHBs; DMCs: differentially 
methylated cytosines which were counted in the context of CpG, CHG, and CHH, respectively; Hyper/hypo: DMCs were hyper-/hypo-methylated 
in SAP group compared to HC group; CGI: CpG island. Detailed data on the depicted findings are found in Supplementary Tables 3–6
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significantly enriched in immune-related KEGG path-
ways, including cytokine-cytokine receptor interaction 
(bta04060), Staphylococcus aureus infection (bta05150), 
and viral protein interaction with cytokine and cytokine 

receptor (bta04061) (Supplementary Table S8B in Addi-
tional file  1). In addition to immune- or disease-related 
functional annotations, DEGs harboring DMCs in the 
promoter region (n = 2735) were also enriched in KEGG 

Fig. 2 (See legend on previous page.)
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pathways related to metabolism processes, such as fatty 
acid metabolism (bta01212), propanoate metabolism 
(bta00640), and fatty acid degradation (bta00071) (Sup-
plementary Table  S8C in Additional file  1). This obser-
vation suggests that the methylation alterations may be 
involved in the regulation of mammary gland responses 
during S. aureus subclinical mastitis, and the DNA meth-
ylation at different genetic regions may play different 
roles.

DNA methylation alterations of repeat elements 
in response to S. aureus subclinical mastitis
Among all identified DMCs, we found that 28.96% 
CpG-DMCs (964,144), 41.60% CHG-DMCs (3018), 
and 43.63% CHH-DMCs (8883) were located in repeat 
elements (REs) (Fig.  2D). The DMCs were mainly 
located in non-long terminal repeat retrotransposons, 
including short interspersed nuclear elements (SINEs) 
and long interspersed nuclear elements (LINEs), fol-
lowed by long terminal repeat (LTR) retrotransposons 
and DNA transposons (Fig.  2E). To further explore 
the DNA methylation status of REs and their pos-
sible changes during S. aureus subclinical mastitis, 
we used a random forest-based algorithm to calcu-
late the methylation levels of LINE (LINE-1 elements) 
and SINE (tRNA-derived SINEs), which are the most 
abundant retrotransposons in the bovine genome. 
After filtering, a total of 321 LINE-1 elements and 217 
tRNA-derived SINEs harboring at least two CpG sites 
were retained (Supplementary Table  S9A-B in Addi-
tional file  1). In general, tRNA-derived SINEs had 
higher CpG density (2.22 CpG/100bp) than LINE-1 

elements (0.94 CpG/100bp) (Supplementary Fig. S6 in 
Additional file 2). However, LINE-1 elements had gen-
erally a higher methylation level than tRNA-derived 
SINEs; their median methylation levels were 60 and 
55%, respectively. As shown in Fig.  3A, LINE-1 ele-
ments in SAP group showed clearly higher density and 
methylation level (> 60%) compared to HC. In addi-
tion, 96 LINE-1 elements and 23 tRNA-derived SINEs 
showed significant difference in their methylation levels 
between SAP and HC group (FDR < 0.05), which also 
correlated significantly with S. aureus subclinical mas-
titis status (FDR < 0.05 and |cpb|> 0.3) (Supplementary 
Table  S9c in Additional file  1). Among them, twelve 
LINE-1 elements and nine tRNA-derived SINEs were 
collocated with protein-coding genes, and the collo-
cated genes of one LINE-1 (L1_Art, Chr2:135290744-
135291147) and three tRNA-derived SINEs (CHR-2A 
(Chr1:64176302-64176611), CHRL (Chr28:25046248-
25046370), and CHR-2B (Chr25:21749299-21749545)) 
were significantly differentially expressed between 
SAP and HC group. The methylation status of L1_Art, 
CHR-2A, and CHRL showed significantly strong and 
positive correlation with the expression levels of their 
overlapped genes (PADI4, ARHGAP31, and CCAR1, 
respectively) (Fig. 3B, C). It is worth noting that L1_Art 
and CHRL harbored the TSS of PADI4 and CCAR1, 
respectively. This suggests that the methylation changes 
of these REs, such as L1_Art, CHR-2A, and CHRL, may 
be a possible mechanism underlying the gene expres-
sion changes of their overlapped genes during S. aureus 
subclinical mastitis.

Fig. 3 Comparison of the methylation levels of repeat elements between S. aureus-positive (SAP) and healthy control (HC) groups. A The 
methylation level distribution of LINE-1 (L1) and tRNA-derived SINE (SINE/tRNA) in SAP and HC groups. B, C The methylation level of CHRL 
(a tRNA-derived SINE, Chr28:25046248-25046370) (B) and L1-Art (a LINE-1, Chr2:135290744-135291147) (C) and the expression level of their 
overlapped genes, CCAR1 and PADI4, per sample, revealing significant differences between SAP and HC groups as well as positive correlation 
between methylation level and expression level of their overlapped genes. Detailed data on the depicted findings are found in Supplementary 
Table 9
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Methylation haplotype blocks responding to S. aureus 
subclinical mastitis
To better identify small regions with abundant DNA 
methylation alterations, we used MONOD2 to identify 
MHBs that captures the co-methylation status of adja-
cent CpG sites exhibiting highly coordinated methyla-
tion [48]. Using a linkage disequilibrium (r2) cutoff of 0.5 
and minimum 3 CpG sites per block, we identified a total 
of 750,583 MHBs. The majority of CpG sites within the 
same MHB were tightly coupled (r2 ~ 1). The MHBs had a 
median length of 33.0 bp (range from 6 to 388 bp) and a 
median CpG density of 10.34 CpG/100 bp, which repre-
sents about 0.91% of the bovine genome (Supplementary 
Fig. S7A-B in Additional file 2). About three quarters of 
MHBs (576,014) were located in the intergenic region, 
while about 40% (294,672) were overlapped with tran-
scripts. MHBs were also widely distributed in known 
regulatory regions, such as promoters, CGIs, exons, and 
introns (Supplementary Fig. S7C in Additional file 2). The 
overlapping of MHBs with different genomic functional 
regions suggests their potential to represent a distinct 
type of genomic feature.

To allow the direct comparison of the methylation sta-
tus of MHBs between groups, we calculated the meth-
ylation haplotype load (MHL) for each MHB which 
was defined as the normalized fraction of methylation 
haplotypes at different lengths [48]. We found a total of 
153,783 MHBs with significant differences between SAP 
and HC groups (|MHL difference|> 20% and FDR < 0.05), 
and are here referred to as differential MHBs (dMHBs) 
(Supplementary Table S10A in Additional file 1). Among 
them, 120,033 dMHBs (78.05%) showed higher meth-
ylation levels in SAP group. The dMHBs were able to 
capture clearly the initial classification of SAP and HC 
groups, as exampled by the most variable dMHBs in 
Fig.  4A. The length of dMHBs, ranged from 6 to 318 
bp, with median length of 53 bp and median CpG den-
sity of 6.90 CpG/100 bp (Fig. 4B). The dMHBs harbored 
a total of 624,957 CpG-DMCs, accounting for 18.77% of 
total CpG-DMCs. The dMHBs showed similar distribu-
tion characteristics with DMCs. The majority of dMHBs 
(100,141, 65.12%) were found in intergenic regions while 
53,876 dMHBs were overlapped with genes (Fig. 4C). The 
dMHBs also showed significant enrichment in functional 
regulatory and genic regions, such as exons, introns, 
first intron, downstream region, first exon, promoter, 
3′UTR, and 5′UTR (P value < 0.001) (Fig.  4D). In addi-
tion, 30,938 and 50,223 dMHBs were collocated with 
QTLs for immune capacity and mastitis, respectively 
(Fig. 4C). It is worth noting that some QTLs coved a very 
large region and harbored many dMHBs, such as a QTL 
(#10446, Supplementary Table S10B in Additional file 1) 
for somatic cell score, which is about 61.3 Mbp long and 

harbors 8436 dMHBs. Since the extremely long QTLs 
are usually identified by linkage methods using low-
density microsatellites marker maps, we further checked 
the QTLs with less than one Mbp length and found 73 
immune capacity QTLs and 181 mastitis QTLs harbor-
ing 355 and 1334 dMHBs, respectively (Supplementary 
Table S10B in Additional file 1). Among them, 13 dMHBs 
harbored SNP markers, including three, two, seven, and 
one dMHBs harboring SNPs for clinical mastitis, SCC, 
somatic cell score, and eosinophil number, respectively. 
For instance, Chr1:110158892:110158992 which col-
located with exon 3 of PTX3 harbored two SNPs for 
somatic cell score (QTL #219865 and #219866). Besides, 
most of the CpG sites in the same dMHB were tightly 
linked DMCs (r2 ~ 1) which also showed clear differences 
in their methylation levels between SAP and HC groups 
(Fig. 4E).

DNA methylation at regulatory regions as potential 
regulators of gene expression
We found significant but weak inverse correlation 
between the changes in global CpG methylation lev-
els of regulatory regions, including promoter, first exon, 
and first intron, and corresponding gene expression 
level changes between SAP and HC groups at genome-
wide scale (P < 5 ×  10−8) (Fig.  4F, Supplementary Fig. 
S8 in Additional file  2). Additionally, we identified 882, 
1188, and 870 genes with significant changes in their 
gene expression levels and CpG methylation levels of 
promoter, first exon, and first intron, respectively, and 
here referred to as differential genes (|log2FC|> 1, |CpG 
methylation difference|> 10% and P value < 0.005) (Sup-
plementary Table S11 in Additional file 1). The differen-
tial genes were significantly enriched in GO terms and 
KEGG pathways related to key functions of immune 
responses and diseases, such as Staphylococcus aureus 
infection (bta05150), antigen processing and presenta-
tion (bta04612), cytokine-cytokine receptor interaction 
(bta04060), positive regulation of immune system pro-
cess (GO:0002684) among others, suggesting the poten-
tial involvement of DNA methylation at these regulatory 
regions in the host response to defense against S. aureus 
infection (Supplementary Table S12 in Additional file 1). 
Interestingly, the CpG methylation level of the regulatory 
regions of more than 50% of the differential genes (pro-
moter: 58.28%, first exon: 50.84%, first intron: 66.09%) 
were significantly correlated their gene expression levels 
(|Spearman’s rho|> 0.3 and FDR < 0.05, Supplementary 
Table S11 in Additional file 1). In particular, majority of 
them had hyper-methylated promoters (n = 286), first 
exons (n = 300), or first introns (n = 347) which were sig-
nificantly negatively correlated with the downregulated 
expression of their corresponding genes. This further 
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Fig. 4 The dMHBs and the potential effects of DNA methylation at regulatory regions on gene expression. A Heap map of top 50 most variable 
dMHBs. B The length and CpG density distribution of dMHBs. C Co-localization of dMHBs with genomic functional regions. CGI: CpG islands. D 
Enrichment of dMHBs at genomic functional regions. E An example of dMHB (Chr29:47439984:47440080) showing the coordinated methylation 
of CpG sites in the same dMHB. F Global relationship (significant negative correlation) between promoter methylation level and gene expression 
level. Each dot symbolizes a specific gene. Blue dots indicate that gene expression and methylation level changes for the corresponding gene 
were not statistically significant (Gaussian Mixture Model p > 0.005). Conversely, red dots represent differential genes with significant changes 
in both gene expression and methylation levels of their promoters (Gaussian Mixture Model p < 0.005). Red dots out of gray shadow represent 
differential genes with significant changes in the methylation level of promoter (greater than 10% changes) and gene expression level (|log2FC|≥ 1) 
between S. aureus-positive (SAP) and healthy control (HC) groups. G The top 10 most significantly enriched known motifs for transcription factors 
in hyper- and hypo-methylated dMHBs located at regulatory regions and significantly associated with gene expression (GE-dMHBs). H, I Examples 
of de novo (discovered) motifs in hypo-methylated GE-dMHBs (hypo_VGGAAR) (H) and hyper-methylated GE-dMHBs (hyper_CNGGRA) (I), showing 
high similarity with known motifs for transcription factors. Detailed data on the depicted findings are found in Supplementary Tables 10, 11 and 14
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revealed that DNA methylation in regulatory regions 
may mediate gene repression to regulate the immune 
responses of the mammary gland during S. aureus sub-
clinical mastitis.

Therefore, we selected the dMHBs that overlapped 
with promoters (n = 1261, pro-dMHBs), first exons and 
5′UTR (n = 526, FE-dMHBs), and first introns (n = 6921, 
FI-dMHBs) of DEGs to further investigate their possi-
ble regulatory roles in gene expression during S. aureus 
subclinical mastitis. We used Spearman’s rank correla-
tion coefficient (rho) to correlate each dMHB to its cor-
responding DEG. We found that the methylation status 
of 6435 dMHBs (933 pro-, 400 FE-, and 5250 FI-dMHBs) 
were significantly correlated with the expression levels of 
their corresponding DEGs (|rho|> 0.3 and FDR < 0.05), 
here referred to as gene expression correlated dMHBs 
(GE-dMHBs) (Supplementary Table  S13 in Additional 
file 1). Among them, the majority of GE-dMHBs, includ-
ing 76.85% of pro-GE-dMHBs (n = 717), 85.50% of FE-
GE-dMHBs (n = 342), and 71.37% of FI-GE-dMHBs 
(n = 3747) had significant negative correlations between 
their methylation status and the expression levels of their 
corresponding DEGs (rho < − 0.3 and FDR < 0.05). In par-
ticular, the negatively correlated hyper-methylated GE-
dMHBs and their corresponding downregulated DEGs 
accounted for the largest proportion (i.e., 533 pro-, 137 
FE-, and 627 FI-GE-dMHBs).

To explore the possible effects of GE-dMHBs on tran-
scriptional factor (TF) binding regions, we performed 
a motif search of expressed TFs in 6435 GE-dMHBs, 
including 4999 hyper- and 1436 hypo-methylated GE-
dMHBs. Firstly, 144 and 67 known motifs were sig-
nificantly enriched in hyper- and hypo-methylated 
GE-dMHBs, respectively (FDR < 0.05) (Fig.  4G, Supple-
mentary Table S14A in Additional file 1). The most sig-
nificantly enriched motifs, such as the Fork head/winged 
helix factors (FOXK1, FOXK2, FOXL1, FOXP1, FOXA3, 
and others), the TEA domain factors (TEAD1-TEAD4), 
and the tryptophan cluster factors (EHF, ETV1, ETV4, 
ELF1, ELF3, and others), have been implicated in the 
regulation of the expression of a wide range of genes [49, 
50]. The enriched SP4, EGR1, and KLF4 TF motifs have 
been found to regulate gene expression through binding 
to CpG-rich promoters [51, 52]. Additionally, the discov-
ery of de novo motifs by running Dreme from MEMEs 
[53] revealed 23 and 13 novel motifs within hyper- and 
hypo-methylated GE-dMHBs, respectively (Supple-
mentary S14B-C, Supplementary Fig. S9 in Additional 
file  2). For instance, hypo_VGGAAR and hyper_CNG-
GRA, the most significantly enriched motifs discovered 
in hypo- and hyper-methylated GE-dMHBs, respectively, 
showed high similarity with known STAT domain factors 
(STAT1 and STAT3, respectively) (Fig. 4H, I). Therefore, 

the enrichment of known and de novo TF motifs in GE-
dMHBs suggests the potential effects of GE-dMHBs on 
TF binding events and thereby transcriptional activities.

Potential functions of GE‑dMHBs in response to S. aureus 
subclinical mastitis
We applied functional enrichment analysis to GE-
dMHBs (their overlapped and significantly correlated 
DEGs) to explore their potential roles during S. aureus 
subclinical mastitis using clusterProfiler [54]. GE-dMHBs 
that negatively correlated with their overlapped DEGs 
were enriched in more functional GO terms and KEGG 
pathways than those with positive correlations. Among 
them, 3604 hyper-methylated GE-dMHBs (they were 
negatively correlated with their overlapped 816 downreg-
ulated DEGs) were significantly enriched in 38 GO terms 
(28 biological process (BP) (Fig. 5A), one molecule func-
tion (MF) and nine cellular component (CC)), and four 
KEGG pathways (Fig.  5B) (Supplementary Table  S15A 
in Additional file  1). As showed in Fig.  5A, the BP-GO 
terms were classified into clusters according to their 
pairwise similarities. The biggest cluster of BP-GO terms 
are involved in cell migration, locomotion, and related 
regulation, reflected through most significantly enriched 
BP-GO terms like positive regulation of cell migration 
(GO:0030335, FDR = 0.006), positive regulation of cell 
motility (GO:2000147, FDR = 0.006), and regulation of 
cell migration (GO:0030334, FDR = 0.006) among others 
(Supplementary Table S15A in Additional file 1). The sec-
ond cluster of BP-GO terms are related to cell develop-
ment, such as cell population proliferation (GO:0008283, 
FDR = 0.02), epithelial cell differentiation (GO:0030855, 
FDR = 0.01), and epithelium development (GO:0060429, 
FDR = 0.01), which are important for maintenance of 
mammary gland health. In addition, two BP-GO terms 
related to metabolic processes were enriched and 
clustered together, including lipid metabolic process 
(GO:0006629, FDR = 0.02) and small molecule biosyn-
thetic process (GO:0044283, FDR = 0.02). Meanwhile, a 
KEGG pathway related to lipid metabolism, the fatty acid 
metabolism (bta01212, FDR = 0.03), was also enriched 
(Fig.  5B). This suggests that the hyper-methylated GE-
dMHBs may participate in regulating mammary gland 
health and biological functions, such as cell migration, 
cell development, and metabolic processes, by mediating 
the repression of related genes during S. aureus subclini-
cal mastitis. Furthermore, a total of 32 downregulated 
DEGs that negatively correlated with their overlapped 
hyper-methylated GE-dMHBs, such as ACTN1, CLDN3, 
CLDN4, CXCL17, CXADR, FGF1, FGF2, TGFB2, SPRY2, 
and SLC9A3R1, among others, were enriched in at least 
10 GO terms and/or KEGG pathways related to the func-
tions mentioned above, highlighting their important roles 
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in mammary gland health (Supplementary Table S15B in 
Additional file 1).

Besides, the 1075 hypo-methylated GE-dMHBs (neg-
atively correlated with their overlapped 369 upregu-
lated DEGs) were significantly enriched in 18 KEGG 
pathways, mostly immune and disease-related terms 
(Fig.  5C, Supplementary Table  S15A in Additional 
file  1). For instance, some key functions of immune 
defense process were significantly enriched, including 
chemokine signaling pathway (bta04062, FDR = 0.002), 
cytokine-cytokine receptor interaction (bta04060, 
FDR = 0.002), leukocyte transendothelial migration 
(bta04670, FDR = 0.002), Th17 cell differentiation 
(bta04659, FDR = 0.004), natural killer cell-mediated 
cytotoxicity (bta04650, FDR = 0.011), and B cell recep-
tor signaling pathway (bta04662, FDR = 0.047), among 
others (Fig. 5C). It is worth mentioning that 16 upregu-
lated DEGs with hypo-methylated GE-dMHBs in their 
regulatory regions, including RAC2, IL1B, IL2RA, 
BOLA-DOB, SYK, and NCF1, among others, were 
enriched in five or more of the immune/disease-related 
KEGG pathways (Supplementary Table  S15B in Addi-
tional file 1). These enriched KEGG pathways indicated 

that the absence or scarcity of DNA methylation in 
these GE-dMHBs may be a possible regulatory mecha-
nism underlying the upregulated expression of related 
genes and potential regulation of the immune defense 
of mammary gland against S. aureus invasion. On the 
other hand, the GE-dMHBs that positively correlated 
(FDR < 0.05 and rho > 0.3) with their overlapped DEGs 
accounted for a small part (27%) of the GE-dMHBs and 
were enriched in few GO terms or KEGG pathways. 
Upregulated DEGs (n = 386) with correlated hyper-
methylated GE-dMHBs (n = 1399) were enriched in 
three CC-GO terms and five KEGG pathways (Sup-
plementary Table  S15A in Additional file  1). Mean-
while, the 187 downregulated DEGs with correlated 
hypo-methylated dMHBs (n = 364) were enriched in 
four CC-GO terms only (Supplementary Table S15A in 
Additional file  1). Furthermore, we also submitted for 
functional enrichment the DEGs that correlated with 
their overlapped pro-, FE-, and FI-GE-dMHBs sepa-
rately. In general, the functional annotations enriched 
by pro-, FE-, and FI-GE-dMHBs were similar with 
those of all GE-dMHBs (Supplementary Table  S15C-E 
in Additional file 1, Fig. S10 in Additional file 2).

Fig. 5 Functional enrichment for gene expression associated differential methylation haplotype blocks (GE-dMHBs). A, B Tree-plot showing 
the clustering of biological process GO terms (A) and enrichment map of four KEGG pathways (B), which were significantly enriched 
by downregulated differentially expressed genes (DEGs) that were negatively correlated with their overlapped hyper-methylated GE-dMHBs. 
C Enrichment map of 18 KEGG pathways significantly enriched by upregulated DEGs that negatively correlated with their overlapped 
hypo-methylated GE-dMHBs. Detailed data on the depicted findings are found in Supplementary Table 15
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Identification of discriminant signatures from GE‑dMHBs
We used DIABLO method to identify a subset of dis-
criminant and highly correlated signatures across dif-
ferent omics by integrating the 6435 GE-dMHBs and 
their overlapped correlated DEGs (n = 1484). Firstly, 
the latent component of the two OMICs (GE-dMHBs 
and DEGs) were highly correlated (r = 0.90, Fig.  6A). 
After finetuning, five GE-dMHBs, including one pro-
GE-dMHBs and four FI-GE-dMHBs, and seven DEGs 

discriminant signatures were found to explain the most 
variations delineating the SAP and HC cows (Fig. 6B–E, 
Supplementary Table S16 in Additional file 1). Although 
the discriminant GE-dMHBs were not directly located 
in the discriminant DEGs, they were significantly and 
strongly correlated with each other (Fig. 6B). The only 
pro-GE-dMHB, Chr29:46226206:46226215 located 
in the promoter of CPT1A, was the most important 
with highest loading weight (0.79). FI-GE-dMHB, 

Fig. 6 Candidate discriminant signatures related to S. aureus subclinical mastitis. A The plot at the top is based on all GE-dMHBs that collocated 
at regulatory regions and significantly correlated with their overlapped differentially expressed genes (DEGs). The plot at the bottom shows 
only GE-dMHBs that overlapped with promoters (pro-GE-dMHBs) and their corresponding DEGs. For each plot, the upper diagonal represents 
the first component and the lower diagonal the Pearson correlation between each component. B, C Circos plot showing the correlation 
between discriminant signatures from the data set of all GE-dMHBs (B) and only pro-GE-dMHBs (C). Positive (r > 0.7) and negative (r < -0.7) 
correlations are indicated by red and blue links, respectively. The external lines display the relative expression/methylation levels of discriminant 
signatures with respect to each outcome category. The yellow and blue lines represent the gene expression/methylation levels of S. aureus-positive 
(SAP) and healthy control (HC) groups, respectively, and the outer line represents the higher level. D, E Clustered Image Map (Euclidean distance, 
Complete linkage) of the discriminant signatures (GE-dMHBs and DEGs) from the data set of all GE-dMHBs (D) and only pro-GE-dMHBs (E). Samples 
are displayed in rows and discriminant signatures in columns. Detailed data on the depicted findings are found in Supplementary Table 16
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Chr28:25477467:25477579 located in the first intron 
of SRGN, was the second most important (loading 
weight = 0.51). These two GE-dMHBs and the fourth 
discriminant signature, Chr3:105951347:105951407 
located in the first intron of RLF, were all hypo-meth-
ylated in SAP group and strongly negatively correlated 
with the upregulated expression of their overlapped 
DEGs. The fifth signature, Chr22:17428396:17428497 
located in the first intron of SRGAP3, showed posi-
tive correlation between its hypo-methylation and the 
downregulated expression of SRGAP3 in SAP group. 
While the third signature, Chr25:34469403:34469492 
located in the  fist intron of DTX2, was hyper-methyl-
ated in SAP group and positively correlated with the 
upregulated expression of DTX2. However, all seven 
DEGs were downregulated in SAP group. Among 
them, three (ACOT4, PDLIM5, and RAB11FIP5) were 
also selected as discriminant genes driving the major 
changes in gene expression profiles of key gene mod-
ules related to S. aureus subclinical mastitis in our pre-
vious transcriptome analysis [38].

Many studies have demonstrated the significant effects 
of DNA methylation in promoter region on transcrip-
tional activities, especially gene expression repres-
sion [55–57]. Therefore, we further summited 933 
pro-GE-dMHBs and 516 overlapped DEGs to DIABLO 
method and identified ten signatures, including five 
pro-GE-dMHBs and five DEGs (Fig. 6C, Supplementary 
Table S16 in Additional file 1). Notably, the first signature 
(Chr29:46226206:46226215) with highest importance 
(loading weight = 0.93) was also identified as the most 
important signature based on all GE-dMHBs, further 
highlighting its capability to discriminate SAP group 
from HC group. In addition, four pro-GE-dMHBs were 
also selected as discriminant signatures but with lower 
loading weight, including Chr3:66637596:66637605, 
Chr18:51545630:51545643, Chr23:16627860:16627952, 
and Chr11:78628451:78628472 located in the promot-
ers of GIPC2, CD177, PPP2R5D, and SDC1, respec-
tively. The second (Chr3:66637596:66637605) and third 
(Chr18:51545630:51545643) signatures are hyper- and 
hypo-methylated in SAP group respectively, and also 
negatively correlated with their overlapped DEGs. While 
the last two signatures (Chr23:16627860:16627952 and 
Chr11:78628451:78628472) were both hypo-methylated 
and positively correlated with the downregulated expres-
sion of their overlapped DEGs. Moreover, all five discri-
minant DEGs were also downregulated in SAP group. 
Besides, three DGEs (ACOT4, HDCC3, and LRRC8A) 
were also identified in both analyses. As showed in 
Fig.  6D, E, the discriminant GE-dMHBs and DEGs dis-
played a nice classification of SAP and HC group, sug-
gesting their potential to be candidate discriminant 

markers for S. aureus subclinical mastitis that needs fur-
ther validation in larger herds.

Validation of the DNA methylation status of seven 
GE‑dMHBs in a larger sample size
To validate the methylation status of GE-dMHBs and 
explore their possible practical applications, we used tar-
geted bisulfite amplicon sequencing (TBAS) to detect the 
methylation status of some GE-dMHBs in milk somatic 
cells in a larger sample size (200 cows from nine herds 
and do not include individuals used in the discovery 
phase) (Supplementary Table S17A in Additional file 1). 
Unfortunately, primer selection for the discriminant sig-
natures identified by DIABLO above failed. Therefore, we 
considered seven GE-dMHBs that passed primer design 
criteria, including two hypo-methylated GE-dMHBs 
found in the promoter regions of IL1B and MEF2A, and 
five hyper-methylated GE-dMHBs found in the first exon 
of TRAK1 and the promoter regions of CD81, CRYAB, 
EVPL, and TCIM. Two-hundred cows were grouped 
according to their SCC records from dairy herd improve-
ment (DHI) test results into high SCC group (HSCC, 
n = 100) and low SCC group (LSCC, n = 100) (Supple-
mentary Table S17B in Additional file 1). Then, genomic 
DNA isolated from milk somatic cells of these 200 cows 
were used for TBAS of seven GE-dMHBs. Following 
PCR amplification and library preparation, the seven GE-
dMHBs were sequenced with at least ten thousand reads 
coverage depth per CpG site per cow to further explore 
their methylation status (Supplementary Table  S17C-
D in Additional file  1). We firstly checked the correla-
tion between detected CpG sites per GE-dMHB, which 
indicated that all of them were significantly and strongly 
correlated (r > 0.8), supporting the co-methylation status 
of adjacent CpG sites in MHBs (Fig. 7A, Supplementary 
Table S17E in Additional file 1). In addition, TBAS data 
identified significant correlation between neighboring 
CpG sites surrounding GE-dMHBs and CpG sites inside 
GE-dMHBs, suggesting that deeper sequencing with 
larger sample size may help to improve the identifica-
tion of MHBs with more co-methylated CpG sites (Sup-
plementary Table  S17E in Additional file  1). Then, the 
methylation levels of each GE-dMHB per sample were 
calculated as the arithmetic mean of CpG sites they har-
bored as well as the correlated neighboring CpG sites 
(Fig.  7B). Moreover, as shown in Fig.  7C, the methyla-
tion status of the GE-dMHBs showed obvious clustering 
for cows with HSCC and LSCC. In particular, cows of 
HSCC group were further clustered into two sub-groups 
(HSCC1 [mean SCC = 663,903 cells/mL] and HSCC2 
[mean SCC = 734,291 cells/mL]), whose GE-dMHBs 
had extremely different methylation levels. Given the 
absence of a significant batch effect (parity, lactation 
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stage, and farm) in the background information of cows, 
the observed division in the methylation status of HSCC 
cows prompts further investigation. For example, the 
high SCC of cows in the HSCC group might have been 
caused by the presence of different pathogens or fac-
tors. Additionally, variations in infection stages or the 
duration of infection could potentially contribute to the 
observed disparities in methylation status. Therefore, we 
divided HSCC group into HSCC1 and HSCC2 according 
to PCA clustering for the statistical comparisons.

The comparison of methylation status of the seven 
GE-dMHBs revealed significant differences between 
HSCC1, HSCC2, and LSCC groups (FDR < 0.05) (Sup-
plementary Table  S17F in Additional file  1). Taking 
the hyper-methylated GE-dMHB in the first exon of 
TRAK1 (GE-dMHBs-TRAK1) as an example (Fig.  7D), 
GE-dMHB-TRAK1 had significantly different meth-
ylation levels between the three groups with highest 
level in HSCC1 (91.15%) and lowest level in HSCC2 
(34.97%). Interestingly, the methylation level changes of 
GE-dMHB-TRAK1 in HSCC1 group compared to LSCC 

group (16.30%) was similar with its change between SAP 
and HC cows identified by WGMS data (hyper), while 
the methylation level changes in HSCC2 group com-
pared to LSCC group (− 39.88%) was the opposite of that 
identified by WGMS data. Moreover, the similar meth-
ylation changes in HSCC1 group and opposite changes 
in HSCC2 group compared to WGMS data were also 
observed for four hyper-methylated GE-dMHBs and 
two hypo-methylated GE-dMHBs (Fig.  7E, Supplemen-
tary Fig. S10 in Additional file 2). This revealed the sta-
bility of DNA methylation changes of these GE-dMHBs 
observed between S. aureus-positive cows and healthy 
cows. This also suggests that the higher SCC and methyl-
ation alterations of cows in HSCC1 group may be due to 
S. aureus pathogens or pathogens causing mastitis. Then, 
we compared cows of HSCC1 and HSCC2 group with 
LSCC group, respectively to investigate the correlation 
between GE-dMHBs and mammary gland health condi-
tion. The methylation levels of all five hyper-methylated 
GE-dMHBs showed significant positive correlations with 
the SCC and milk somatic cell score (SCS) in HSCC1 and 

Fig. 7 Validation of the DNA methylation status of seven GE-dMHBs in 200 cows. A Correlation plot of GE-dMHBs located in the first exon of TRAK1 
(GE-dMHBs-TRAK1) as example, showing strong positive correlation between CpG sites detected in GE-dMHBs. B List of seven GE-dMHBs subjected 
to targeted bisulfite amplicon sequencing in 200 cows. C Principal component analysis plot illustrating the clustering of cows with HSCC into two 
sub-groups (HSCC1 and HSCC2) with extremely different methylation status of the GE-dMHBs. D, E Boxplot showing the significantly different 
methylation status of GE-dMHBs-TRAK1 (D) and GE-dMHBs-MEF2A (E) between three groups. *** denotes a statistically significant difference 
between the corresponding groups, with p < 0.05. F, G Boxplot showing the significantly different methylation status of GE-dMHBs-TRAK1 (F) 
and GE-dMHBs-MEF2A (G) between cows with different milk yield, including high (HMY, ≥ 40 kg/day, n = 69), middle (MMY, 30 ~ 40 kg/day, n = 73), 
and low milk yield (LMY, ≤ 30 kg/day, n = 58). The number atop each bar represents the p-value between the respective groups. Detailed data 
on the depicted findings are found in Supplementary Table 17
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LSCC cows (FDR < 0.05 and r > 0.3), and significant nega-
tive correlation in HSCC2 and LSCC cows (FDR < 0.05 
and r < − 0.3) (Supplementary Table  S17F in Additional 
file  1). In contrast, the methylation levels of two hypo-
methylated GE-dMHBs were negatively correlated with 
SCC and SCS in HSCC1 and LSCC cows, and positively 
correlated with SCC and SCS in HSCC2 and LSCC cows. 
Moreover, the correlation of GE-dMHBs with SCS (|r|: 
0.56–0.71) was more significant and stronger than that 
with SCC (|r|: 0.33–0.59) (Supplementary Table S17F in 
Additional file 1). This observation suggests the potential 
of GE-dMHBs for capturing mammary gland health sta-
tus and mastitis susceptibility in dairy cows. In addition, 
we also compared the methylation status of these seven 
GE-dMHBs by grouping cows according to their milk 
production traits, including test day milk yield (MY), 
milk protein, and fat percentages. The hyper- and hypo-
methylated GE-dMHBs showed significantly higher and 
lower methylation levels in cows with high MY (> 40 
kg/day), respectively, compared to cows with low MY 
(< 30 kg/day) (FDR < 0.05) (Fig.  7F, G, Supplementary 
Table S17F in Additional file 1 and Fig. S11 in Additional 
file 2). The methylation levels of the GE-dMHBs in cows 
with medium MY (20–30 kg/day) were similar with that 
in cows with high MY, but their differences compared 
with cows with low MY were less significant (0.05 < p 
value < 0.1). The difference in methylation levels of GE-
dMHBs between cows with different MY suggests the 
possible association between DNA methylation altera-
tions and milk production performance of dairy cows. 
However, no significant differences in the methylation 
levels of these GE-dMHBs were found between cows 
producing difference milk fat or protein percentages.

Discussion
To date, few studies have addressed the potential influ-
ence of DNA methylation in the regulation of bovine 
mastitis caused by two prevalent pathogens, E. coli and 
S. aureus [26–28, 32, 33, 35], and in particular subclini-
cal mastitis caused by S. aureus [36]. A larger propor-
tion of them used in vitro infection strategies to induce 
clinical inflammatory responses followed by evaluation of 
the DNA methylation alterations related to mastitis [29, 
35]. For instance, the strategy of using pathogen cell wall 
components to challenge bovine mammary epithelial cell 
lines has been commonly used [23–25]. Our study inves-
tigated the involvement of DNA methylation in relation 
to naturally occurring S. aureus subclinical mastitis. Milk 
somatic cells are capable to capture the global mammary 
gland responses to mastitis [58, 59]. This biological tissue 
is easy to collect without causing extra trauma to lactat-
ing cows and is thus considered as an efficient tissue for 
studying the related genetic and epigenetic changes and 

for future on farm testing applications. Yet, the DNA 
methylation characteristics of bovine milk somatic cells 
and their possible association with mastitis are still 
vague. In this regard, our study provides the first catalog 
of whole-genome DNA methylation alterations in milk 
somatic cells related to S. aureus subclinical mastitis.

Our data revealed abundant DNA methylation altera-
tions during S. aureus subclinical mastitis at different 
layers including global DNA methylation levels at whole 
genome and per chromosome scales, general meth-
ylation level of genomic regulatory regions, REs, MHBs, 
and single cytosine sites. Globally, DNA methylation 
level was elevated in SAP group, mainly reflected in the 
higher global methylation level and hyper-methylation 
of about 80% of DMCs and dMHBs, compared to the 
control group. Consistent with our finding, the higher 
total DNA methylation level has also been found in Chi-
nese Holstein cows with S. aureus mastitis [36] and in 
a mouse model for S. aureus mastitis [29] compared to 
healthy controls. This observation contrasts the lower 
global DNA methylation level observed in cows with 
mastitis caused by E. coli [34] and S. uberis [60] (which 
are pathogens belonging to environmental bacteria), and 
mammary epithelial cells in vitro challenged with bacte-
rial lipopolysaccharide [23]. The changes of DNA meth-
ylation in different directions between mastitis caused 
by S. aureus and other pathogens indicate the potential 
of using DNA methylation information to detect sub-
tle differences among bovine mastitis infections due to 
various causes. This may give a possible explanation to 
the division of 100 cows of HSCC group into two sub-
groups showing significant methylation changes in 
opposite directions in this study. Accordingly, we spec-
ulate that intermammary inflammation of cows in the 
HSCC1 subgroup with mean SCC (663,903 cells/mL) and 
that showed similar DNA methylation alterations with 
WGMS results in this study might have been caused by 
S. aureus. It is important to note, however, that the stage 
or duration of infection, such as the early (acute), middle 
(chronic), or last (just resolved infection) stages, could 
also contribute to the differentiation in DNA methylation 
status during subclinical mastitis. These aspects warrant 
further investigation to comprehensively understand the 
dynamics of DNA methylation changes in response to 
different stages of infection.

We also explored the DNA methylation alterations in 
genomic regulatory regions. Repeat elements, in particu-
lar the two abundant families (LINE-1 and tRNA-derived 
SINE), harbored abundant DNA methylation alterations 
related to S. aureus subclinical mastitis. The abundant 
accumulation of differential DNA methylation alterations 
in REs is consistent with the previously reported interac-
tions between DNA methylation and RE activities, such 
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as transposition, repression, or expression [61]. Although 
our understanding of the functions and regulatory mech-
anisms of REs is in its infancy, DNA methylation has 
already been found as an integral feature of RE control in 
mammals [62, 63]. The methylation of REs contributed 
to genome expansion and also provided opportunities 
for transcriptional control by RE-based regulatory sites 
[61, 64]. For instance, dynamic DNA methylation has 
been reported to reactivate REs as cryptic promoters that 
drove the widespread expression of oncogene expression 
across cancers [65]. In this study, we found two cases of 
correlation between RE, TSS, and DEGs (L1_Art-PADI4 
and CHRL-CCAR1) that are consistent with this hypoth-
esis. It is worth noting that L1_Art and CHRL harbored 
the TSS of PADI4 and CCAR1, respectively. Additionally, 
PADI4 has been found as a putative candidate marker 
for susceptibility to subclinical mastitis in Norwegian 
Red cattle [66]. The strong positive correlation between 
hyper-methylation of L1_Art and CHRL and the upreg-
ulated expression of PADI4 and CCAR1 in this study 
revealed the possibility that aberrant DNA methyla-
tion may mediate activities of REs and thereby affect the 
transcriptional activities of corresponding genes during 
S. aureus subclinical mastitis. We need more functional 
validations to support this hypothesis; however, our cur-
rent results suggest that exploration of DNA methylation 
alterations in REs may present novel avenues to further 
elucidate the regulatory mechanisms underlying bovine 
mastitis and even other diseases.

Comparing the DNA methylation level of single cyto-
sine (DMC) or regions (DMR) (with fixed window size) 
has been the main strategy to evaluate DNA methylation 
alterations [67, 68]. However, there are limitations asso-
ciated with these strategies. For example, the possible 
technical noise of measuring methylation levels of single 
cytosine sites may lead to false identification of DMCs. 
Although the approach of DMR could help to reduce this 
potential bias, it still has the limitation of subjectively 
choosing the window size and sliding step. Furthermore, 
the DNA methylation alterations in response to external 
stimulus, especially disease-causing pathogens, are medi-
ated by corresponding changes in the activities of impli-
cated enzymes [69]. The enzyme activities usually show 
coordinated regional effects leading to methylation hap-
lotypes harboring adjacent CpG sites with similar meth-
ylation status [48]. Therefore, in our case, we employed 
the method of MHB that considers both the methylation 
levels of single CpG sites and the co-methylation between 
adjacent CpG sites, to investigate the DNA methyla-
tion alterations related to S. aureus subclinical mastitis. 
We identified numerous dMHBs with median length 
of 53 bp, which is much shorter than the window size 
(1000 bp) normally used for DMRs. More importantly, 

as shown in Fig. 4E, the methylation alterations of CpG 
sites, which were mostly identified as DMCs in the same 
dMHB, were tightly linked to each other. These relatively 
short dMHBs with coordinated methylation alterations 
exhibited significant differences between SAP and HC 
samples. Moreover, dominant dMHBs are the shorter 
fragment of DMRs enriched in DMCs. In this regard, the 
strategy of dMHB could help to overcome the limitations 
of DMC (high possibility of technical noise) and DMR 
(specifying window size). Hence, we suggest that iden-
tification of dMHBs could be a more reliable strategy to 
investigate the DNA methylation alterations related to S. 
aureus subclinical mastitis and other health and produc-
tion traits.

We next explored the relationship between DNA 
methylation and gene expression, which is usually com-
plex. DNA methylation patterns demonstrate cell-type 
specificity and are established by site-specific remod-
eling at regulatory regions during the dynamic mamma-
lian differentiation events [70]. We observed the classic 
valley-like distribution of CpG methylation around TSS 
(Fig.  1), confirming the absence of DNA methylation at 
major gene regulatory sequences, especially promoter, 
as an important signature/guarantee for normal gene 
expression [71, 72]. In general, negative correlation 
has been found between methylation level of CpG sites 
located in gene promoters, first exons, and introns, and 
gene expression in the genome of various species, such 
as model pufferfish and frog, and different human tis-
sues [45, 46, 73]. In line with this, our data revealed weak 
negative correlations between methylation levels of regu-
latory regions (promoters, first exons, and first introns) 
and the expression levels of corresponding genes at a 
whole genome scale. We also found that the changes in 
the methylation of these regulatory regions were also 
negatively correlated with the gene expression changes 
related to S. aureus subclinical mastitis. In addition, the 
major GE-dMHBs located in these regulatory regions 
also showed negative correlations with their overlapped 
DEGs. Our findings are consistent with previous reports 
that indicated the repressive effects of DNA methyla-
tion at regulatory regions on gene expression [70, 73, 
74]. The TF motif identification in GE-dMHBs revealed 
the enrichment of some common factors like IRF2, SP4, 
EGR1, and KLF4 that have been found to regulate gene 
expression through binding to CpG-rich promoters [51, 
52]. This further supports the involvement of DNA meth-
ylation alterations at regulatory regions, particularly GE-
dMHBs, in the regulation of gene expression in response 
to S. aureus subclinical mastitis.

Our results also revealed that genes harboring DNA 
methylation alterations may have immune-related func-
tions during S. aureus subclinical mastitis. For instance, 
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Staphylococcus aureus infection (bta05150) pathway was 
significantly enriched by genes (e.g., CATHL2, CATHL3, 
KRT18, FGG) harboring DMCs at their first exons as 
well as differential genes (identified by MethGET) hav-
ing significant DNA methylation changes in their regu-
latory regions. For example, KRT18 and FGG are key 
mediators that bind with microbial surface compo-
nents recognizing matrix molecules of pathogens like S. 
aureus and thereby indirectly affect their colonialization 
[75]. Our data revealed the downregulation of these two 
genes and the higher general methylation levels at their 
regulatory regions. Moreover, the upregulated C5AR1, 
FCGR3A, and FCAR  that have indirect effects on inhi-
bition of chemotaxis and phagocyte activation [76], all 
had lower general methylation levels at their regulatory 
regions. We also found low methylation level of regula-
tory region of upregulated CATHL3, which may affect 
its antimicrobial activity. We therefore speculate that 
the abnormal expression of these genes may be associ-
ated with the inverse changes of the methylation states 
of their regulatory regions, which potentially contribute 
to the regulation of mammary gland immune defense 
against S. aureus. In support of this, our results of the 
functional enrichment of GE-dMHBs (correlated with 
their overlapped DEGs) further suggest the involve-
ment of DNA methylation alterations in the regulation of 
immune functions. Upon S. aureus invasion of the mam-
mary gland, a series of immune responses are triggered, 
such as recruitment of leukocytes [77] and production 
of cytokines [78]. Consistently, the upregulated DEGs 
that negatively correlated with their overlapped hypo-
methylated GE-dMHBs were enriched in multiple KEGG 
pathways with key immune functions, such as chemokine 
signaling, cytokine-cytokine receptor interaction, and 
activities of immune-related cells (leukocyte, Th17, natu-
ral killer cell and B cell, etc.). This suggests that the hypo-
methylation of GE-dMHBs at regulatory regions may play 
roles in the upregulated expression of these DEGs, which 
probably contributed to increase the bacteriostatic and 
bactericidal activities required to kill S. aureus [77, 79]. 
On the other hand, S. aureus invasion of mammary gland 
cells during long-term subclinical mastitis cause damage 
to the epithelial cell lining of the mammary gland, which 
impairs its recovery ability and affects milk production 
[80]. We found that downregulated DEGs that were nega-
tively correlated with their overlapped hyper-methylated 
GE-dMHBs were enriched in some important biologi-
cal functions, such as cellular activities related to cell 
migration and localization, cell development, especially 
epithelial cell differentiation and epithelium develop-
ment, and metabolic processes. The hyper-methylation of 
related GE-dMHBs might have played a role in the down-
regulated expression of these DEGs and thus reflects a 

possible regulatory mechanism underlying impaired cel-
lular activities and decreased productivity of the mam-
mary gland during subclinical mastitis. In this regard, we 
believe that DNA methylations, especially GE-dMHBs, 
could be a possible mechanism of the genetic regulation 
of mammary gland responses during S. aureus subclini-
cal mastitis. However, our current findings could not fur-
ther pin-point the causation between DNA methylation 
alterations and gene expression changes during S. aureus 
subclinical mastitis.

A plethora of studies in the subject area of epigenetics 
have revealed that DNA methylation alterations could 
provide new avenues to investigate the portion (“black 
box”) of phenotypic variations unexplained by genetic 
variation [17]. Epigenetic information is valuable as it 
further understanding of how environmental influences 
on the genome shape phenotypic expression of livestock 
production traits, which may contribute to the improve-
ment of breeding and farm management strategies [16, 
19, 81–83]. Therefore, by integrating GE-dMHBs and 
their significantly correlated DMGs, we identified discri-
minant signatures that differentiated between SAP and 
HC groups and which have the potential to be further 
validated as candidate markers for S. aureus subclini-
cal mastitis. It is worth noting that the pro-GE-dMHB 
(Chr29:46226206:46226215) located in the promoter of 
CPT1A showed the highest potential to drive the epige-
netic variations between SAP and HC group. CPT1A is 
a key gene related to fatty acid oxidation and play impor-
tant roles on lipid metabolism in dairy cattle [84]. A pre-
vious study identified upregulated expression of CPT1A 
in response to intra-mammary lipopolysaccharide chal-
lenge [85], which agrees with its upregulation in milk 
somatic cells during S. aureus subclinical mastitis in 
this study. The strong negative correlation between this 
pro-GE-dMHB and the expression of CPT1A further 
strengthens the association of this epigenetic signature 
with S. aureus subclinical mastitis. The hypo-methyla-
tion status of this pro-GE-dMHB may also be an epige-
netic regulator of the increased expression of CPT1A in 
response to S. aureus infection. Unfortunately, we did 
not find appropriate primers for this pro-GE-dMHB to 
validate its methylation status in a larger sample size. 
However, the validation of other dMHBs revealed the 
stability of methylation alterations of dMHBs between 
cows with high and low SCC. Therefore, we believe that 
this pro-GE-dMHB has great potential to be a candi-
date epigenetic maker for S. aureus subclinical mastitis, 
but more functional validations are needed. In addition, 
GE-dMHBs offer notable advantages inherent to dMHBs. 
Their relatively short length and high density of co-meth-
ylated cytosine sites make them particularly amenable 
to analysis, ensuring higher accuracy and reliability with 
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currently available technologies. This intrinsic charac-
teristic enhances their potential for in-depth exploration 
and interpretation. Looking ahead, the ongoing advance-
ments in technology, particularly the potential develop-
ment of specialized DNA methylation assays or chips 
tailored for bovine genomes, offer the prospect for cost-
effective and high-throughput detection of GE-dMHBs 
in large sample sizes. This technological stride not only 
presents an opportunity for widespread identification but 
also holds the potential to validate further the candidacy 
of our identified discriminant GE-dMHBs as promising 
epigenetic biomarkers for subclinical mastitis. This pro-
gress will not only facilitates the widespread identifica-
tion of these epigenetic features but also paves the way 
for their practical application in the field. The applica-
tions could span various areas in dairy farming such as 
incorporation in to current genomic breeding strate-
gies, evaluation of calf or heifer production performance, 
early-stage diagnosis of subclinical mastitis, and develop-
ment for therapeutic applications. The versatility of GE-
dMHBs, coupled with evolving technological capabilities, 
position them as valuable tools for advancing precision 
management practices in the dairy industry.

In this study, we profiled the DNA methylation pat-
tern of milk somatic cells and investigated the altera-
tions related to S. aureus subclinical mastitis. Milk 
somatic cells are a mixture of multiple types of cells, 
each of which may have different epigenetic responses 
to S. aureus infection due to the high cell-type specific-
ity of DNA methylation. This may be considered a limi-
tation in this study since the detected DNA methylation 
alterations are possibly coming from these various cell 
types probably caused by the changes in milk somatic cell 
composition during mastitis, especially a higher propor-
tion of immune cell populations responding to S. aureus 
presence in SAP samples [58, 59]. The cell-type specific-
ity of DNA methylation alterations nor the contribution 
due to the changed proportion of different cell types in 
SAP group could not be tested by the WGMS technology 
used in this study. Therefore, future studies would benefit 
from having access to robust technologies like single-cell 
sequencing or spatial profiling of mammary gland tissues, 
which will help to better investigate the spatiotempo-
ral specific DNA methylation alterations of the different 
cell types during S. aureus subclinical mastitis. However, 
since the milk somatic cells captures most cell popula-
tions involved in the mammary response to infection and 
are easy to collect, our study has demonstrated the pres-
ence of DNA methylation alterations of relevance to S. 
aureus subclinical mastitis that can be further validated/
developed for practical on-farm applications. Besides, we 
demonstrated the significant correlation between DNA 
methylation alterations and gene expression changes 

related to S. aureus subclinical mastitis. But we could 
not determine whether these identified DNA methyla-
tion alterations were the cause or the consequence of the 
gene expression changes with the current data. It is cru-
cial to acknowledge the intricate relationship between 
these two molecular processes. Transcript activity 
changes can induce alterations in DNA methylation pat-
terns, and conversely changes in methylation patterns 
can impact gene expression. This dynamic interaction 
forms a complex feedback loop, where each component 
has the potential to influence the other. The precise inter-
play between DNA methylation and gene expression in 
the context of S. aureus subclinical mastitis is a captivat-
ing avenue for further exploration in order to offer fur-
ther insights into the nuanced regulatory mechanisms 
at play. Another limitation of this study is that the phe-
notype of cows used for population analysis was based 
on their SCC records without bacteriological examina-
tion to give details on the infecting pathogens or specific 
health status. Therefore, we could not further check the 
possible reasons for the obvious clustering of cows with 
HSCC into two sub-groups with different DNA methyla-
tion alterations of dMHBs in this study. Further investi-
gations with detailed mammary gland health condition 
will be needed to validate the potential of DNA methyla-
tion alterations to detect subtle differences among bovine 
mastitis due to various causes. Finally, as is the case for 
DNA methylation studies in human diseases, the analysis 
of DNA methylation changes will further understanding 
of the underlying mechanisms of S. aureus subclinical 
mastitis and provide new avenues for improving mastitis 
control strategies.

Conclusions
In this study, we comprehensively analyzed the whole-
genome DNA methylation pattern of milk somatic cells 
and identified a wide variety of DNA methylation altera-
tions related to S. aureus subclinical mastitis. Firstly, 
the global DNA methylation level trend was higher dur-
ing S. aureus subclinical mastitis. Secondly, 3.36 million 
DMCs and 153,783 dMHBs (which considers the co-
methylation status of adjacent CpG sites) were identified. 
Thirdly, we found that DNA methylation alterations in 
regulatory regions displayed inverse relationships with 
gene expression which suggest roles in the regulation of 
gene expression during S. aureus mastitis. Out of 6435 
GE-dMHBs at the regulatory regions of DEGs with sig-
nificant correlation with their overlapped DEGs, nine 
GE-dMHBs emerged with discriminant signatures that 
may drive the epigenetic changes between SAP and HC 
groups. Additionally, the DNA methylation alterations 
are involved in the regulation of immune responses to S. 
aureus subclinical mastitis as revealed by the significant 
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enrichment of genes harboring DNA methylation altera-
tions in immune- and disease-related pathways. Finally, 
the stability of DNA methylation alterations of seven 
dMHBs and their association with mammary gland 
healthy was validated in a larger sample size. Overall, our 
findings provided a comprehensive DNA methylation 
profile of milk somatic cells and abundant DNA meth-
ylation alterations relevant to S. aureus subclinical mas-
titis, and revealed the possible roles of DNA methylation 
in the regulation of health and milk production perfor-
mance of dairy cows. Finally, our results may contribute 
to promote the application of epigenetics information in 
furthering understanding of host responses to mastitis 
pathogens and in improving mastitis control strategies in 
the dairy industry.

Methods
Cow selection and sample collection
Lactating Canadian Holstein cows with naturally occur-
ring S. aureus subclinical mastitis were selected from 
five commercial farms in Quebec. The details about cow 
selection and sample collection are described in our pre-
vious transcriptome study [38]. Briefly, we firstly selected 
cows with consecutively high (> 350,000 cells/mL) 
(HSCC) or low (< 150,000 cells/mL) (LSCC) SCC over 
a period of 3 months or more. Milk samples (~ 5 mL) 
from each mammary quarter of cows in HSCC group or 
a composite sample from each cow in the LSCC group 
were aseptically collected and subjected to bacteriologi-
cal examination (Biovet laboratories, St-Hyacinthe, QC, 
Canada). Next, fifteen cows of LSCC group negative to 
all mastitis pathogens tested and eighteen cows of HSCC 
with one or more quarters positive to S. aureus only, were 
enrolled as healthy control (HC) and S. aureus positive 
(SAP) groups, respectively. About 200 mL of composite 
milk from each HC cow and 200 mL of milk from one 
positive quarter of each SAP cow was collected as the 
final milk samples. Due to the short period (3–5 days) 
between receiving bacteriological examination and final 
milk sampling, a small portion (~ 2 mL) of final milk 
samples per cow of both SAP and HC group was sent for 
bacteriological examination as validation of initial bacte-
riological results. A total of sixteen SAP quarters (cows) 
and ten HC cows with consistent bacteriological results 
were finally kept for subsequent analyses (Supplementary 
Table S1 in Additional file 1). The final milk samples were 
placed on ice and immediately transported to our labora-
tory for isolation of milk somatic cells by centrifugation 
at low speed (1500 × g, 15 min, 4 ℃) with washing twice 
(PBS added and centrifugation at 1500 × g for 15 min at 4 
℃). The isolated milk somatic cells were stored at − 20 °C 
for DNA isolation.

DNA isolation and WGMS
DNeasy Blood and Tissue Kit (Qiagen Inc., Toronto, ON, 
Canada) was used to isolate genomic DNA from milk 
somatic cells, and the quality and quantity was checked 
with Quant-iT™ PicoGreen® dsDNA Assay Kit (Life 
Technologies, Burlington, ON, Canada). The bisulfite 
treatment commonly employed in whole genome bisulfite 
sequencing can induce damages such as fragmentation, 
DNA loss, and biased sequencing data. To mitigate these 
effects, this study utilized the NEBNext® Enzymatic 
Methyl-seq kit (New England BioLabs Ltd., Whitby, 
ON, Canada) for WGMS library preparation. This kit 
employs enzymatic reactions, contrasting with bisulfite 
conversion, to detect cytosine methylation (5mC) [86]. 
The two-step enzymatic process involves the initial con-
version of 5mC into products resistant to APOBEC3A 
deamination by TET2. Subsequently, APOBEC3A cata-
lyzes the conversion of unmodified (unmethylated) 
cytosine to uracil. This approach offers an alternative to 
traditional bisulfite treatment, enhancing the robustness 
and accuracy of methylation detection. Next, the quality 
of WGMS libraries were checked by using Kapa Illumina 
GA with Revised Primers-SYBR Fast Universal kit (Kapa 
Biosystems Inc., Wilmington, MA, US), and the average 
size of fragments was determined with a LabChip GX 
(PerkinElmer Inc., Waltham, MA, US) instrument. Then, 
the libraries were normalized and equimolar pooled for 
denaturation in 0.05 N NaOH and neutralization in HT1 
buffer. The library pool was then loaded at 225 pM on an 
Illumina NovaSeq S4 lane using Xp protocol according 
to the manufacturer’s recommendations. The sequencing 
was run for 2 × 100 cycles in paired-end mode that a phiX 
library was mixed with library at 1% level as control. Pro-
gram RTA (version 3.4.4) and bcl2fastq2 (version 2.20) 
were used for base calling and generating fastq reads, 
respectively.

Raw data processing and differential methylation site 
identification
The raw WGMS data was processed using the standard 
pipeline for DNA methylation sequencing (methylseq 
from nf-core) [87] with modifications. Briefly, the first 
8 bp of each read was removed by selecting “EM Seq” 
trimming profile to avoid potential bias towards non-
methylation at the end of reads caused by end repair-
ing. FastQC (version 0.11.9) and Trim Galore! (Version 
0.6.6) were used for generating sequence quality report 
and trimming (adapter sequences and low-quality reads), 
respectively. The clean reads with high quality were then 
merged and aligned to the bovine reference genome 
(ARS-UCD1.2) using bowtie2 under Bismark (version 
0.22.0) [88]. The BAM files was generated using Samtools 
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(version 1.11) [89]. Identification of methylation sites in 
the context of CpG, CHG, and CHH (H means A or T 
or C) was performed with bismark_methylation_extrac-
tor under Bismark. Methylation sites detected in ≥ 80% 
of samples per group with ≥ 7 reads coverage depth were 
retained for the next-step analyses.

DNA methylation levels of detected cytosines were 
compared between SAP and HC groups using Methyl-
kit (version 3.12) [47] to identify DMCs in three contexts 
(CpG, CHG, and CHH). Possible effect factors, including 
farm, lactation stage, and parity, were included to elimi-
nate batch effects and decrease random noise. DMC was 
defined as methylation site that passed two filter thresh-
olds, including > 20% difference in methylation level and 
q-value < 0.05. In addition, the methylation level com-
parisons between SAP and HC groups were processed by 
two-tailed t test at the scale of the whole genome, chro-
mosomes, and genomic regions (such as gene features 
and regions related to CGI). The p-value was adjusted by 
Benjamini and Hochberg false discovery rate (FDR) cor-
rection [90], and FDR < 0.05 was used to define signifi-
cant difference between groups.

Methylation level prediction and comparison for repeat 
elements
The methylation level was predicted for LINE-1 and 
tRNA-derived SINEs, which are the most abundant LINE 
and SINE superfamily in the bovine genome, respectively, 
by using the random forest-based algorithm (correspond-
ing R package, REMP, version 1.22.0) [91]. In brief, the 
beta value of all qualified CpG sites and the annotation 
data of REs were used for the calculation of REMP. The 
annotation file of REs was downloaded from UCSC Table 
browser by choosing the track “ReapeatMasker”. Since 
nearby CpG sites tend to be co-methylated, REMP pre-
dict the methylation level of target CpG sites located in 
REs by using neighboring CpG sites within a flanking 
window size (1000 bp). To increase the reliability of pre-
diction, target CpG sites with at least two neighboring 
CpG sites within the flanking window were kept for the 
prediction. Then the random forest model was used to 
predict the methylation level of target CpG sites located 
in LINE-1 elements and tRNA-derived SINEs per sample 
by using function “remp()” with default parameters. REs 
with at least two predicted CpG sites were kept, whose 
methylation levels were further calculated by averaging 
the predicted methylation of CpG sites in them. Then 
the genomic region indicators, including protein-coding 
genes, TSS, 5′UTR, coding DNA sequence regions, exon, 
and 3′UTR, were added for LINE-1 elements and tRNA-
derived SINEs. The methylation level of LINE-1 elements 
and tRNA-derived SINEs were then compared by two-
tailed t test between SAP and HC group, and p-value was 

adjusted by Benjamini and Hochberg false discovery rate 
(FDR) correction [90]. FDR < 0.05 was used to define the 
significance of differences between two groups. Besides, 
the methylation level of LINE-1 elements and tRNA-
derived SINEs were correlated to the healthy status of 
cows (SAP or HC) by using Point-Biserial Correlation 
Coefficient  (rpb), and significant correlation was defined 
by |  rpb |> 0.3 and adjusted p-value (FDR) < 0.05.

Methylation haplotype blocks identification 
and comparison
To investigate the regions with highly coordinated meth-
ylation, MONOD2 was used to identify MHBs [48]. 
Briefly, the clean and qualified reads of all samples were 
pooled to split the reference genome (ARS-UCD1.2) into 
non-overlapping “sequenceable and mappable” segments. 
The methylation haplotypes were identified from mapped 
reads inside each segment. Methylation linkage disequi-
librium was then calculated for methylation haplotypes 
of all samples to identify MHBs, which was defined as 
the regions harboring ≥ 3 CpG sites and having ≥ 0.5 r2 
value for any two adjacent CpG sites. Next, the normal-
ized methylation level (methylated haplotype load, MHL) 
was calculated for each MHB per sample. Two-tailed 
Student’s t test was used to compare the methylation 
status of MHBs between SAP and HC groups to identify 
dMHBs. The p-value was adjusted as FDR, and dMHB 
was defined as MHB having ≥ 20% difference in MHL 
between groups and FDR < 0.05.

Annotation and enrichment analysis
The genome structure annotation file of the bovine ref-
erence genome (ARS-UCD1.2), including position infor-
mation of genes, REs and CGI was downloaded from 
the UCSC Table browser. The 2000-bp region upstream 
of TSS was considered as the promoter, while “down-
stream region” was referred to as the 2000-bp region 
downstream of the transcription termination site. Rela-
tive to CGI, CGI shores, CGI shelves, and CGI desserts 
were defined as 0 ~ 2000 bp, 2001 ~ 4000 bp, and > 4000 
bp regions upstream/downstream of CGI, respectively. 
Reported QTLs for mastitis and immune capacity were 
download from CattleQTLdb (https:// www. anima lgeno 
me. org/ cgi- bin/ QTLdb/ BT/ index, accessed at  20th Janu-
ary, 2023). The REs were obtained from the track of 
“RepeatMasker”. The annotatr (version 3.12) was used 
to check the overlapping of methylation sites, DMCs, 
MHBs, and dMHBs with these genomic regions. In addi-
tion, regioneR (version 1.28.0) was used for the enrich-
ment analysis of dMHBs in genomic regions that all 
identified MHBs were set as the background (permuta-
tion test: 1000) [92].

https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
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Correlation between DNA methylation and transcriptome
MethGET program [43] was utilized to investigate the 
correlation between DNA methylation and gene expres-
sion. In brief, the three input files used for MethGET 
analysis included the DNA methylation CGmap file (con-
verted from methylation coverage report files generated 
by Bismark), normalized gene expression file of the same 
samples [38], and gene annotation GTF file (converted 
from GCF_002263795.1). First of all, the general meth-
ylation levels of the different genomic functional regions, 
including promoter, first exon, first intron, exons, introns, 
and gene body, were calculated by averaging the methyla-
tion levels of all qualified CpG sites in the correspond-
ing regions. Then, Pearson correlation coefficient was 
used to investigate the correlation between DNA meth-
ylation levels of the different regions and gene expres-
sion levels per sample at a scope of the whole genome. 
Besides, the changes in general DNA methylation lev-
els of the different genomic functional regions and gene 
expression changes between SAP and HC groups were 
also correlated by Pearson correlation coefficient on a 
genome-wide scale. Then, p-value < 5 ×  10−8 was used 
as the threshold of significant genome-wide correlation. 
Furthermore, the Gaussian Mixture Model from the 
machine learning package (scikit-learn) in python was 
used to identify genes with significant changes of gen-
eral DNA methylation level of specific regulatory regions 
(promoter, first exon or first intron) and/or gene expres-
sion levels (referred to as differential genes) [93]. The 
p-value calculated by Gaussian Mixture Model less than 
0.005 was used to define significant differential genes. 
The identified differential genes were further filtered by 
only keeping those having more than 10% difference in 
general methylation changes of corresponding regula-
tory regions and greater than 1 of absolute  log2FC in gene 
expression changes.

In addition, Spearman’s rank correlation coefficient 
(rho) was used to correlate the methylation status of 
dMHBs that overlapped with promoter, first exon or 
first intron of DEGs, and the expression level of their 
overlapped DEGs. P-value was adjusted by FDR through 
independent hypothesis weighting (IHW) framework 
[94]. Significant correlation between the methylation 
status of dMHBs and the expression level of the corre-
sponding overlapped genes was defined as |rho|> 0.3 and 
FDR < 0.05.

Identification of candidate discriminant signatures
The DIABLO framework (Data Integration Analysis 
for Biomarker discovery using a Latent cOmponents) 
from mixOmics (version 6.22.0) [95] was used to iden-
tify highly correlated GE-dMHBs (pro-GE-dMHBs) and 

DEGs as candidate signatures that could explain the cat-
egorical outcome between SAP and HC groups. The core 
DIABLO method is designed to integrate multiple het-
erogeneous datasets from same biological samples based 
on a variant of the multivariate methodology Generalized 
Canonical Correlation Analysis (GCCA) [95, 96]. The 
DNA methylation status of GE-dMHBs (pro-GE-dMHBs) 
and the expression level of corresponding overlapped 
DEGs were used as two input datasets for DIABLO. 
The full weighted design was used to get the trade-off 
between maximizing correlation between input datasets 
and the discrimination of selected signatures. The two 
key parameters, including number of components and 
number of signatures, were set following the authors’ 
recommendation [95]. According to the recommend K-1 
components (K: number of groups) to get the best classi-
fication performance, the number of components was set 
as one in this study. The number of signatures with best 
predictive performance were determined by perform-
ing repeated cross-validation (5-fold cross-validation, 50 
times repeat) thorough “tune” function.

Target bisulfite amplicon sequencing for validation 
of GE‑dMHBs in a larger sample size
The methylation levels of seven GE-dMHBs were fur-
ther checked in a bigger sample size by next-generation 
sequencing-based TBAS method. A total of 200 cows 
were sampled from nine commercial farms in Quebec, 
Canada, and grouped according to their SCC records as 
high SCC (HSCC, ≥ 200,000 cell/mL, n = 100) and low 
SCC (LSCC, ≤ 100,000 cell/mL, n = 100). Milk samples 
were collected from the cows on the same day of milk col-
lection for monthly DHI test. Milk somatic cell isolation, 
DNA isolation and qualification were done as described 
above. Then the qualified DNA samples were used for 
TBAS. Briefly, candidate discriminant GE-dMHBs (n = 5) 
and further top GE-dMHBS (n = 9) were selected for 
primer design using the online MethPrimer software [97] 
for TBAS application (Supplementary Table S17 in Addi-
tional file 1). Unfortunately, the genomic regions of the 5 
candidate discriminant GE-dMHBs and 2 top GE dMHBs 
did not support the design of appropriate primers. One 
microgram of genomic DNA was bisulfite converted 
using the ZYMO EZ DNA Methylation-Gold Kit (Zymo 
Research, Irvine, CA, USA). Then, one twentieth of the 
eluted DNA conversion products were used as template 
for PCR amplification with 35 cycles using KAPA HiFi 
HotStart Uracil + ReadyMix PCR Kit (Kapa Biosystems, 
Wilmington, MA, USA). The PCR products of each GE-
dMHBs were then pooled equimolarly as the sequencing 
library for each sample, 5’-phosphorylated, 3’-dA-tailed 
and ligated to barcoded adapter by using T4 DNA ligase 
(New England Biolabs, Ipswich, MA, USA). Barcoded 
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libraries of all samples were sequenced on the Illumina 
Hiseq platform using paired-end (150 bp) strategy.

The raw data of target bisulfite sequencing was firstly 
filtered to remove adapter sequences and low-quality 
sequences (having greater than 5% unknown bases or 
having greater than 50% of bases with Phred score less 
than 20) using Trimmomatic (version 0.36) [98]. Then the 
clean sequencing data was aligned to the bovine refer-
ence genome (ARS-UCD1.2) using BSMAP (version 2.73) 
[99]. The beta methylation level was calculated for each 
detected CpG site. The correlation between CpG sites 
located in the same GE-dMHB was evaluated by using 
the R package EnMCB (version 1.10.0) [100]. The signifi-
cance of difference in methylation level of each CpG sites 
and GE-dMHBs were compared between groups by using 
two-tailed t test. The p value was adjusted as FDR, that 
FDR < 0.05 was used to define significant difference. And 
then another R package CpGassoc (version 2.60) [101] 
was used to calculate the association between methyla-
tion level of GE-dMHBs and SCC as well as milk produc-
tion traits (milk yield, milk fat, and protein percentages) 
(Supplementary Table S17 in Additional file 1).

Functional annotation analysis
The gene functional enrichment analysis, including GO 
and KEGG pathway, was performed with ClusterPro-
filer (Version 4.2.2) [54] for selected gene lists, which 
represent association with GO terms and KEGG path-
ways without indicating the direction of regulation. The 
method “simplify” was used to reduce redundancy of 
enriched GO terms caused by the parent-child struc-
ture of GO terms. Significant enrichment of GO terms 
or KEGG pathways were considered as having adjusted 
p-value (FDR) < 0.05. The enrichment results were visu-
alized with enrichplot (version 1.16.1). Function “AME” 
and “runDreme” from MEMEs (version 1.6.0) [53] were 
used to detect the transcription factor motif enrichment 
and de novo discovery of motifs in GE-dMHBs, respec-
tively. Known motifs (width 6 to 35 base pairs) in mam-
mals from  JASPR2022 core vertebrates database (https:// 
jaspar. elixir. no/ search? q= & colle ction= CORE& tax_ 
group= verte brates) corresponding to expressed genes in 
milk somatic cells in this study were set as the relevant 
candidate motif database to improve statistical power of 
motif search by MEMEs.
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