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Abstract 

Background  A central challenge in biology is to discover a principle that determines individual phenotypic dif‑
ferences within a species. The growth rate is particularly important for a unicellular organism, and the growth rate 
under a certain condition is negatively associated with that of another condition, termed fitness trade-off. Therefore, 
there should exist a common molecular mechanism that regulates multiple growth rates under various conditions, 
but most studies so far have focused on discovering those genes associated with growth rates under a specific 
condition.

Results  In this study, we found that there exists a recurrent gene expression signature whose expression levels are 
related to the fitness trade-off between growth preference and stress resistance across various yeast strains and multi‑
ple conditions. We further found that the genomic variation of stress-response, ribosomal, and cell cycle regulators are 
potential causal genes that determine the sensitivity between growth and survival. Intriguingly, we further observed 
that the same principle holds for human cells using anticancer drug sensitivities across multiple cancer cell lines.

Conclusions  Together, we suggest that the fitness trade-off is an evolutionary trait that determines individual 
growth phenotype within a species. By using this trait, we can possibly overcome anticancer drug resistance in cancer 
cells.
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Background
One of the unsolved central questions in biology is 
identifying the genomic and molecular sources of phe-
notypic variations [1]. For Saccharomyces cerevisiae, a 
number of studies have been conducted to identify the 
genomic loci that are associated with particular phe-
notypes such as gene expression levels or growth rates 
[2–5]. Among many phenotypic outcomes, the growth 

rate is of importance as a central phenotype for a uni-
cellular organism. Within yeast populations, natural 
variants have a number of polymorphisms including 
single nucleotide polymorphism, insertion and dele-
tions, and copy number variations that result in dif-
ferences in molecular functions [5]; therefore, each 
natural variant has a different growth rate depending 
on the respective environmental condition. The rela-
tionship between genomic variation and the growth 
rate under a certain environmental condition is com-
plicated, as it relies on a huge number of genomic 
diversities [3]. Despite the inherent complexity, it 
has been known that most genomic perturbations or 
variations are not impactful to phenotypes (robust-
ness), and only a few genetic perturbations dominate 
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phenotypic variations (fragility) [6]. Meanwhile, a cel-
lular system cannot obtain maximal fitness for every 
environmental condition it faces, referred to as a fit-
ness trade-off between growth and survival [7, 8] (i.e., 
a cell with a high growth rate in one condition shows 
a low growth rate in another condition). The exist-
ence of robustness and fragility, and fitness trade-off 
suggest the possibility for the existence of key genetic 
components that regulate numerous phenotypes.

It has been widely studied that a yeast strain with 
higher growth in rich condition provides worse growth 
in nutrient-limiting conditions [9] or stress conditions 
[10]. Wenger et al. [9] further found that a yeast strain 
evolved high fitness in a certain nutrient-limiting con-
dition and could also show enhanced fitness in other 
such conditions yet displays reduced fitness in rich 
conditions. Moreover, Zakrzewska et  al. [10] found 
that a yeast strain that gained stress tolerance in one 
condition also can acquire tolerance in other stress-
ful conditions, suggesting a tight coupling between 
general stress response and cellular growth rate [11]. 
However, these studies were mostly based on labo-
ratory yeast strains with genetic modifications, and 
an analysis exploring the relationship from geno-
type and gene expression profiles to fitness trade-offs 
across a diverse range of yeast strains has not yet been 
conducted.

Here, we investigated common genetic variants that 
regulate multiple growth phenotypes from diverse nat-
ural yeast isolates to the genetically crossed segregants 
of laboratory (BY) and wine (RM) yeast strains. By 
analyzing the association of growth phenotypes across 
various conditions, we found that all yeast isolates 
extensively show fitness trade-off between two clus-
tered conditions. Based on transcriptomic analysis, we 
also identified that yeast strains share two gene sets 
showing mutually exclusive expression pattern with 
different functionality, indicating that these gene sets 
underlie the molecular mechanism behind the fitness 
trade-off. Furthermore, from quantitative trait loci 
(QTL) and genome-wide association (GWA) analysis 
for the growth phenotypes, we found potential regula-
tors that are crucial for the fitness trade-off. By analyz-
ing anticancer drug resistance profiles, we found that 
the fitness trade-off in yeast also accounts for the drug 
resistance of various cancer cell lines. By applying this 
finding, it was possible to induce the sensitivity of the 
cancer cells to anticancer drugs, regardless of differ-
ent mutational backgrounds, cell types, and anti-can-
cer drugs. Taken together, we suggest that the fitness 
trade-off is an underlying principle that determines 
the individual phenotypic variation within a species.

Results
Finding the fitness trade‑off from the yeast growth 
phenome
We collected the growth rates of diverse natural isolates 
as well as the progeny of a large cross between two repre-
sentative yeast strains (BY and RM) across various envi-
ronmental conditions from five independent studies (see 
the “Methods” section). After normalizing and obtaining 
reconstructed growth phenotypes of low rank (see the 
“Methods” section), we computed the correlation of the 
reconstructed growth phenotypes across multiple condi-
tions. We found that the environmental conditions can 
be divided into two groups for most datasets analyzed, 
showing a common tendency of similar growth rates 
within clusters and antagonistic growth rates between 
the groups (Fig. 1 and Additional file 1: Fig. S1). We fur-
ther investigated whether this tendency remains con-
sistent for each yeast clade class (wild, domesticated, 
or unassigned class) or different stress types (nutrient 
requirements, environmental and metabolite stresses or 
toxins). We found the same tendency for domesticated 
and unassigned classes but not wild classes (Additional 
file 1: Fig. S2 and S3). We also found that the tendency to 
form two clustered phenotypes largely remains regard-
less of stress types (Additional file  1: Fig. S4). These 
results indicate that domesticated (and unassigned) 
yeast strains exhibit a clear fitness trade-off against vari-
ous general environmental conditions, while wild yeast 
strains relatively do not, implying that domestication 
events drive yeast to evolve dichotomous growth pheno-
types to a diverse range of environments.

Next, we investigated whether there are specific yeast 
clades that show similar growth phenotypes under 
various nutritional [12] or stress [5] conditions. Wild 
strains tend to cluster for both datasets, but this ten-
dency is much more significant under stress conditions 
than various nutritional conditions (Fig.  2A–F). Among 
stress conditions, wild strains cluster with higher fitness 
under different energy sources (acetate, galactose, sorbi-
tol, ethanol, xylose, glycerol, and ribose) than glucose 
as nutrition. Even after excluding the nutrient-limiting 
condition from our analysis, we observed that wild yeast 
strains consistently formed a group exhibiting higher fit-
ness under conditions treated with cycloheximide, ani-
somycin, and caffeine (Additional file 2: Table S1). These 
results suggest that the environmental stress conditions, 
particularly starvation conditions, might mirror the 
adaptive landscape of wild yeast strains. Furthermore, 
adaptation to one stress condition may confer the ability 
to withstand other stresses, indicating a mechanism of 
cross-stress resistance in yeast [11]. On the other hand, 
we found that under various nutritional conditions indic-
ative of specific yeast habitats, conditions treated with 
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adenine, malic acid, and methionine form a cluster with 
similar growth phenotypes. However, growth phenotype 
differences between yeast clades were not observed for 
these conditions [12]. This suggests that while adapta-
tion to specific habitats may be strain-specific, adapta-
tion to one habitat could confer fitness benefits in others, 
potentially at the expense of reduced fitness in alternate 
environments.

Identifying a recurrent gene expression pattern 
of the fitness trade‑off
We anticipated that there should be underlying molecu-
lar characteristics behind the universal fitness trade-
off across yeast strains. To investigate this hypothesis, 
we obtained two classes of datasets: Agilent microarray 
datasets of various yeast strains under various condi-
tions [13–15] and RNA-seq datasets across natural yeast 
strains in batch cultures [16]. We also collected microar-
ray datasets from steady-state chemostat cultures that are 
limited by a variety of natural nutrients but non-stress 
conditions [17–20]. These datasets were generated to 
identify the relationship between specific nutrient types 
or concentrations and the growth rate under non-stress 
conditions.

First, we analyzed mRNA expression profiles across 
various yeast strains under different conditions. We 
found that they share a commonality between recur-
rent gene expression signatures even though the gene 
expression profiles were obtained from different condi-
tions and genetic backgrounds (Additional file 1: Fig. S5) 
(see the “Methods” section). We also found that multiple 

gene expression datasets from continuous cultures share 
a commonality between the obtained recurrent gene 
expression signatures (Additional file 1: Fig. S5). Next, we 
integrated each dataset separately and identified recur-
rent gene expression signatures. We then compared these 
signatures across the three datasets to investigate how 
the recurrent gene expression signatures from diverse 
yeast strains, termed yeast-strain signatures, differ from 
those observed in chemostat culture, which represent 
slow growth without stress in yeast, termed slow-growth 
signature (see the “Methods” section). We discovered 
that the yeast-strain signatures are more correlated with 
each other than with the slow-growth signature (Fig. 3A–
C). Next, we examined the distribution of gene signature 
scores which are the values assigned to each gene within 
the recurrent gene expression signatures. A gene with a 
larger gene signature score, whether negative or positive, 
is considered a more critical determinant in differenti-
ating gene expression profiles between samples. When 
comparing the distribution of gene signature scores 
for environmental stress response (ESR) genes [21], we 
found that the differences between the distributions of 
ESR-repressed and ESR-induced genes were much larger 
in the yeast-strain signatures than in the slow-growth sig-
nature (Fig. 4A). This finding suggests that, while a slow-
growth signature is present to some extent across diverse 
yeast strains, the inherent differences in cellular states 
between yeast strains are more closely associated with 
the yeast stress response. On the other hand, we do not 
find any significant difference between the yeast-strain 
signatures and the slow-growth signature for universal 

Fig. 1  The fitness trade-off under various environmental conditions. Hierarchical clustering on the growth phenotypes across multiple conditions, 
the corresponding correlation plot, and the PAC measurements for each cluster. A denotes the growth profiles from 45 nutritional conditions 
of 1011 natural yeast strains. B indicates the growth profiles across 35 stress conditions of 975 natural yeast strains. C indicates the growth profiles 
for 38 genetically diverse yeast strains from 199 conditions. D denotes 13 stress conditions of 52 genetically diverse yeast strains. E denotes 
the growth profiles for 1008 segregants from a cross between BY and RM strains. We performed hierarchical clustering between the conditions 
using 1 − Spearman correlation as distance with the average linkage method. We note that the conditions are robustly clustered into two groups (as 
shown by two black boxes in each correlation plot and PAC index). In A, both 2 and 3 are the optimal number of clusters. In B and C, 2 is the optimal 
number of clusters. In D, 2 is the optimal number of clusters without singletons in the cluster (K < 6). E is the only phenotype that 2 is not the 
optimal number of clusters. In the presented analysis, dot sizes are proportional to the magnitude of the Spearman correlation coefficients, 
with larger dots indicating stronger absolute correlations
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growth-rate response (UGRR) genes [22] or the yeast 
metabolic cycle genes (reductive charging (RC), oxidative 
(OX), reductive building (RB)) [23] (Fig. 4B and C). These 
findings indicate that the primary factor driving the dif-
ferences among yeast strains is their varying sensitivity to 
general environmental stress responses.

As we confirmed the existence of a commonality 
between the two yeast-strain signatures, we obtained 
an integrated, robust yeast-strain signature, then inves-
tigated the functional characteristics of the genes in the 
signature (Additional file  2: Table  S2) (see the “Meth-
ods” section). Since the gene expression profile is 

zero-centered scaled, so is the recurrent gene expression 
signature. Therefore, we divided the integrated yeast-
strain signature into two gene sets, having positive or 
negative scores resulting in 1326 positive-scored genes 
(PS genes) and 1327 negative-scored genes (NS genes), 
respectively. We note that those gene sets with the same 
signs tend to positively co-express whereas those gene 
sets with the opposite signs favor negative co-expression. 
Using gene ontology (GO) enrichment analysis [24], we 
found that the PS and NS genes are mostly involved in 
“ribonucleoprotein complex biogenesis” and “catabolic 
process,” respectively (Additional file 2: Table S3).

Fig. 2  Clustering of growth phenotypes in yeast strains under nutritional and stress conditions. A A heatmap represents growth phenotypes, 
with each row corresponding to a nutritional condition and each column to a yeast strain. Strains are categorized as “wild type,” “domesticated 
(dom),” or “unassigned.” Color reflects the growth phenotype, with values scaled by row. Side color bars indicate cluster numbers and clade classes. 
Hierarchical clustering analysis was performed for each row and column using 1 − the Spearman rank correlation coefficient as the distance metric 
and the average linkage method for clustering. B Eight yeast strain clusters were determined based on the PAC. The dendrogram across conditions 
is identical to that in Fig. 1A. C A stacked bar plot shows the frequencies of the three yeast clade classes across each cluster, with wild strains 
enriched in specific clusters. For panels D–F, an identical analysis was conducted for stress conditions. The dendrogram across conditions in panel 
D matches that in Fig. 1B. Based on panel E, six yeast strain clusters were identified, and a stronger tendency for wild strain enrichment under stress 
conditions than nutritional conditions was observed. For panels C and F, the number on each bar indicates the number of yeast strains for each 
cluster. p-values were calculated using a chi-squared test



Page 5 of 15Kim et al. BMC Biology           (2024) 22:62 	

To investigate the different characteristics between the 
integrated yeast-strain signature and the slow-growth 
signature, we obtained PS (or NS) genes in the integrated 
yeast-strain signature out of NS (or PS) genes in the slow-
growth signature, termed yeast-strain specific PS (or NS) 
genes. We investigated enriched GO terms for the yeast-
strain specific PS and NS genes and found that the GO 
terms “transition metal ion transport” and “proteolysis” 
are the most significant, respectively (Additional file  2: 

Table  S4). This result suggests that these gene expres-
sion programs are unique across yeast strains and deviate 
from those associated with slow growth in the absence of 
stress.

We further examined the relationship between the 
integrated yeast-strain signature scores and various 
genomic measurements for each gene. Expectedly, the 
signature score is negatively correlated with yeast hap-
loid fitness [25] (Fig.  4D), indicating that the PS genes 

Fig. 3  A recurrent gene expression signature across various gene expression profiles of yeast. Scatter plots for the recurrent signatures obtained 
from the gene expression profiles of yeast. Each dot indicates a gene. Yeast-strain signature (Agilent microarray) denotes the recurrent gene 
expression signature obtained from gene expression profiles across various yeast strains and conditions. Yeast-strain signature (RNA-seq) indicates 
the recurrent gene expression signature obtained from various yeast strains measured by RNA sequencing. Slow-growth signature (Affymetrix 
microarray) denotes the recurrent gene expression signature computed from gene expression profiles of laboratory yeasts under nutrient-limiting 
but non-stress chemostat culture conditions. R and p-value denote Spearman’s rank coefficient and the corresponding p-value. We note 
that the recurrent gene expression signature comprises a vector of genes, each with a unique value, denoted as the gene signature score

Fig. 4  Genomic properties of the genes in the recurrent gene expression signatures. A–C Boxplots illustrating the distribution of various signature 
scores for the predefined gene sets. The gene sets are associated with environmental stress response, growth rate response, and metabolic cycle. 
D–G Scatter plots between various genomic measurements for each gene and the integrated yeast-strain signature score identified in our study. R 
and p-value indicate Spearman’s rank correlation coefficient and the corresponding p-value
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are more essential than NS genes for cell growth. We 
also found that the recurrent gene expression pattern 
shows a positive correlation with phenotypic potential 
(Additional file  1: Fig. S6) [26]—a summarizing meas-
urement for multiple quantitative phenotypes (e.g., size 
and shape) for the knockout of each gene, denoting that 
the recurrent signature is not only associated with the 
growth phenotype but also many other quantitative phe-
notypes of yeast. Regarding gene expression character-
istics, the stochastic expression variation [27] for each 
gene also showed a strong negative correlation with the 
recurrent gene expression pattern (Fig. 4E). It is also cor-
related with many of the other gene expression varia-
tion measurements, which are interconnected with each 
other [28] (Additional file  1: Fig. S6). Interestingly, this 
integrated yeast-strain signature shows a strong associa-
tion with the half-life of mRNA [29] (Fig. 4F). The inte-
grated yeast-strain signature does not show correlation to 
the abundance of mRNA (Additional file 1: Fig. S6) [30] 
but with the mRNA abundance variation [30] (see the 
“Methods” section) (Fig. 4G). These indicate that the PS 
genes are tightly regulated in terms of mRNA dynam-
ics; on the other hand, the gene expression of NS genes 
is highly stochastic depending on conditions and genetic 
backgrounds, which provides a mechanistic explanation 

of how yeast, a unicellular system, has evolved to sur-
vive and reproduce. Overall, our findings imply that the 
recurrent gene expression signature forms a molecular 
basis by which yeast strategically regulates the balance 
between growth and survival.

Identifying the genetic components that are associated 
with the balance between growth and survival
To identify the genetic sources that can potentially regu-
late the balance between growth and survival across yeast 
strains, we performed linkage analysis on a large cross 
between a laboratory yeast strain (BY) and a wine yeast 
strain (RM) dataset where growth phenotypes and high 
resolution of locus information are available between 
yeast strains [11]. To identify the common genetic link-
ages across 46 different growth phenotypes, we computed 
the first principal component of the growth pheno-
types measured as an overall growth phenotype (see the 
“Methods” section). Then, we identified QTLs that are 
associated with the phenotype (see the “Methods” sec-
tion). Among the studied genes, MKT1 and IRA2 are the 
most notable in proximity to each respective significant 
locus, due to their well-established relevance to the QTLs 
(Fig. 5A). MKT1, a protein similar to nucleases that forms 
a complex with PBP1 — a poly-A binding protein — and 

Fig. 5  The association between the genotype and the growth phenotype across yeast strains. A A LOD score plot illustrating the association 
between the genotype and the overall growth phenotype of BY and RM segregants. B, C Manhattan plots depict GWA between the overall growth 
phenotypes under various nutritional and stress conditions, and the genotypes of different yeast strains. D An error bar plot depicts the network 
size of the top-ranked genes and the random gene samples with the same number. The x-axis represents the number of genes analyzed, 
while the y-axis shows the size of the largest connected component in the gene interaction networks. The error bar indicates the standard deviation 
across 1000 random iterations. E An illustration of the identified network for the 50 highest-ranked genes, which were identified by aggregating 
p-values from six GWA analyses that examined stress and nutritional conditions across domesticated, wild, and unassigned yeast strains. The 
thickness of each edge denotes the confidence of the functional association between two genes. The network is visualized using Cytoscape 
software [37]
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regulates the stability of various mRNAs, is known to be 
related to a large number of gene expression variations 
and phenotypic trait differences [14, 31–33]. Another 
potential causal gene, IRA2 is a GTPase-activating pro-
tein that directly interacts with and negatively regulates 
RAS activity. IRA2 is also known to be associated with 
multiple gene expression variations as well as pheno-
typic variations [14, 31]. In particular, IRA2 gene was 
the most and second most significant locus associated 
with the gene expression level upon glucose and ethanol 
treatments, respectively, between BY and RM segregants 
[14]. Furthermore, IRA2 from the BY strain is known to 
be less functional than that from the RM strain; there-
fore, segregants with IRA2 from the BY strain have more 
active RAS/cAMP/PKA states in comparison to those 
with IRA2 from the RM strain [14]. Overall, we can sum-
marize that the basal activities of the RAS/cAMP/PKA, 
which are determined by the genotype of IRA2, regulate 
many gene expression levels, and hence determine the 
balance between cellular growth and survival. In other 
words, a strain with hyperactive RAS/cAMP/PKA states 
having BY-originated IRA2 shows higher gene expres-
sion levels associated with cellular growth (PS genes) 
but lower gene expression levels associated with cellular 
survival (NS genes) than that of a strain having RM-orig-
inated IRA2. To analyze whether this finding is specific 
to certain yeast strain segregants (BY/RM), we further 
performed a GWA analysis using the genotype and the 
two growth phenotypes from 1011 natural yeast isolates 
[5, 12] (see the “Methods” section). We again computed 
the first principal component as a proxy for an overall 
growth phenotype for each dataset. We were not able to 
identify any genotype with strong statistical significance 
(FDR < 0.05) associated with overall growth phenotypes 
across both datasets indicating that a single gene can-
not determine overall growth phenotypes (Fig.  5B and 
C). For stress conditions [5], TAO3 (p = 2E − 05), INO80 
(p = 3E − 05), and KAR2 (p = 4E − 05) were identified as 
the three genes with the lowest p-values. Among these, 
we note that INO80 plays a role in modulating stress gene 
transcription, while KAR2 functions as a chaperone to 
mediate protein folding [34]. For various nutritional con-
ditions [12], MDM30 (p = 5E − 06), SRB8 (p = 1E − 05), 
and CSR2 (p = 1E − 05) were identified as the three genes 
with the lowest p-values. We also note that MDM30 is 
known to be associated with mitochondrial fusion, while 
CSR2 is linked to the utilization of carbon sources [34]. 
We compared these genes and the GWA hits for specific 
conditions [5, 12], but the genes were not overlapped, 
implying the difference between the overall growth phe-
notypes and the growth phenotype under specific con-
ditions. We further investigated the top-ranked genes, 
based on p-values, by performing GWA analyses for three 

yeast clades: domesticated, wild, and unassigned (see the 
“Methods” section). We found that the top-ranked genes 
do not show any significant overlap between each other 
in most cases. These findings suggest that the most signif-
icant genes vary depending on the conditions and yeast 
clades (see Additional file 3 for the gene lists and Addi-
tional file 2: Table S5 for the GO analysis). However, we 
found that the top-ranked genes tend to be functionally 
interconnected, regardless of the differences in growth 
conditions or yeast clades (Fig. 5D and Additional file 1: 
Fig. S7) (see the “Methods” section). We have aggregated 
the p-values across conditions for each gene and then 
obtained the largest connected component based on the 
ranking of the aggregated p-values (Fig.  5E). We could 
not identify MKT1 as a potential causal gene. However, 
it is known that a nucleotide variation at the 89th base 
sequence of the MKT1 gene induces various growth phe-
notypic changes by regulating sporulation efficiency [35]. 
Given that the minor allele frequency at this position is 
less than 5% of the strains investigated [5] and the SNP 
is very specific to the S288C strain [35], therefore, the 
growth phenotype alterations attributed to the MKT1 
gene can be considered specific to the BY strain, S288C-
derived strain, and its segregants. On the other hand, we 
identified IRA2 gene, along with IRA1 and SCH9 genes, 
signaling molecules that sense nutrient levels or various 
stresses as regulators of the RAS/cAMP/PKA pathways 
[36]. We also found genes (SRS2, SGS1, RAD26, RIF1, 
and MSH6) that are associated with DNA replication 
and repair [34]. Intriguingly, we found that the genes in 
the other connected components are directly associated 
with ribosomal RNA (PWP1, POP1, UTP14, ERB1, and 
EBP2) or anaphase-promoting complex of the cell cycle 
(APC2 and APC5) (Fig.  5E), suggesting that their func-
tional changes can affect the overall growth phenotypes. 
In summary, these results suggest that the findings from 
BY/RM segregants do not entirely align with those from 
various natural yeast isolates, but there is also a com-
monality that the IRA2 gene is pivotal in the variation 
of growth phenotypes, through the regulation of RAS/
cAMP/PKA state sensitivities. Furthermore, genotypic 
differences that affect the regulation of ribosomal RNA 
and the cell cycle contribute to the growth and survival of 
yeast, thereby contributing to the fitness trade-off.

The relationship between the growth phenotype of yeast 
strains and the drug resistance of cancer cells
We further investigated whether the yeast-strain sig-
nature that is pervasive between yeast strains and 
conditions of the single-cell organism (yeast) is also 
evolutionarily preserved in a multicellular organism 
(human). If it exists, we can hypothesize that the can-
cer cell lines with the growth (survival) preferring gene 



Page 8 of 15Kim et al. BMC Biology           (2024) 22:62 

expression program should be more sensitive (resist-
ant) to anticancer drug treatments. To test this, we first 
obtained cancer cell gene expression profiles and the 
drug response profiles of the corresponding cell lines. 
Then we obtained human orthologs for the PS and NS 
genes of yeast [34] and labeled human PS and NS genes, 
respectively (see the “Methods” section). The GO enrich-
ment analysis result of the human PS and NS genes was 
also similar to that of yeast (Additional file 2: Table S6). 
Next, we calculated the median gene expression levels 
of the human PS and NS genes for each cell line, which 
we denote PS and NS scores per cell line, respectively. 
Then, we computed the correlation between the PS (and 
NS) score and the drug resistance across cancer cell lines 
and found that NS scores tend to show a positive correla-
tion to the drug resistance for both GDSC1 and GDSC2 
datasets [38, 39] (Fig. 6), indicating that the cell lines with 
relatively higher expression of the NS genes exhibit more 
resistance to various anticancer drugs. Further, the differ-
ence between PS score and NS score showed a stronger 
negative correlation with drug resistance (Fig.  6), sug-
gesting that cell lines with a gene expression program 
that prefers growth and exhibits less stress resistance 
demonstrate less resistance to anticancer drugs.

Based on this finding, we further investigated whether 
we could induce cancer cells to be more sensitive to anti-
cancer drugs across various cancer cell lines. Pyruvate is 
one of the central nutrients that induce cellular growth 
by inducing mitochondrial oxygen consumption [40]. 
We compared the drug sensitivities in cancer cells in the 
presence and absence of pyruvate. We found that can-
cer cells with pyruvate treatment showed decreased cell 

viability, in other words, increased anticancer drug sen-
sitivity, compared to the control when treated with the 
anticancer drug (Fig.  7). Importantly, we found that the 
increased drug sensitivity caused by pyruvate treatment 
did not depend on the type of cancer cells (hepatocellular 
carcinoma, colorectal cancer, breast cancer, or cervical 
cancer), mutational backgrounds (P53, RAS, Axin, etc.) 
nor the type of the anticancer drugs (multi-kinase inhibi-
tor; sorafenib or cytotoxic drug; etoposide). Overall, we 
conclude that the molecular characteristics determin-
ing growth or survival in yeast also exist in human cells, 
and they can be utilized for anticancer drug treatment 
strategies.

Discussion
The fitness trade-off, a phenomenon that arises when 
the fitness benefit in one aspect raises the fitness cost 
in another aspect, provides us with a useful conceptual 
framework to explain many biological processes, such 
as aging [41] or genetic disease [42]. A biological system 
should perform multiple, often opposing, tasks depend-
ing on the given conditions [43, 44]. Thus, the fitness 
trade-off is a common phenomenon, as a biological sys-
tem with the best performance in one condition might 
not be able to obtain the best performance in another 
condition. This has also been observed between vegeta-
tive growth and resistance to microbial infection among 
natural variants of Arabidopsis thaliana [45], which sug-
gests that the fitness trade-off is prevalent among natural 
variants.

Numerous studies have investigated that antagonistic 
pleiotropy where a single gene regulates more than one 

Fig. 6  The relationship between drug resistance and the gene expression levels of cancer cells. For each anticancer drug, we computed 
Spearman’s rank correlation between the median gene expression levels of the PS genes and the drug resistance across cancer cell lines. We 
also applied the same analysis to the median gene expression levels of the NS genes and further examined the differences in these median levels 
between the PS and NS genes
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Fig. 7  Decreased drug resistance by induced growth preference. Cells were cultured in high glucose (25 mM) DMEM for 24 h and then cultured 
in low-glucose (5.56 mM) DMEM with or without 1 mM sodium pyruvate. After 24 h, the cells were treated with the indicated concentrations 
of etoposide (sorafenib) and the controls were treated with the vehicle (DMSO) for 48 h. Cell viability was determined using the absorbance value 
of WST-8. Cell viability assays were performed in quadruplicate and were repeated three times (*p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001, 
*****p < 0.0005; Student’s t-test). HCC indicates hepatocarcinoma



Page 10 of 15Kim et al. BMC Biology           (2024) 22:62 

trait, and those traits have opposing effects on an organ-
ism’s fitness, is an underlying mechanism of the fitness 
trade-offs [42, 46]. A recent study has also shown that 
the variability of pleiotropic effects may significantly vary 
depending on the evolutionary trajectories and the spe-
cific conditions under which a yeast population evolves 
[47]. Another study found that clones which gained fit-
ness in one environment tended to lose more fitness 
under conditions that were more different from the envi-
ronment in which they evolved, suggesting the pervasive 
nature of the antagonistic pleiotropy in the evolution of 
yeast [48].

In this study, we found that natural yeast variants 
extensively demonstrate the fitness trade-off between 
growth and survival. A previous study [12] found that 
wild yeast strains generally have higher fitness under 
most stress conditions. Our analysis additionally revealed 
that these conditions are primarily nutrient-limiting and 
tend to display positively correlated phenotypes with 
each other (Additional file 2: Table S1). This suggests an 
adaptation in wild yeast strains primarily to starvation, 
with a fitness cost under other stress conditions. Com-
paring ESR, UGRR, and metabolic cycle gene expression 
between wild and domesticated strains, we observed a 
greater fold change in ESR-induced genes in wild strains, 
indicating higher expression compared to domesticated 
strains and supporting superior fitness in stressful envi-
ronments (Additional file  1: Fig. S8). However, UGRR 
gene expression differences were not significant, imply-
ing that GRR gene expression is not a major factor dis-
tinguishing wild from domesticated strains. Interestingly, 
RB genes were more expressed in wild strains, implying 
a longer low oxygen consumption phase before cell cycle 
initiation compared to domesticated strains. Addition-
ally, we found that domesticated strains exhibited clearer 
fitness trade-offs across various environmental stresses 
than wild strains (Additional file 1: Fig. S2 and S3). This 
pattern may be a result of domestication, as domesticated 
strains evolved in more uniform environments, contrast-
ing with the variable conditions faced by wild strains. 
Consequently, a broader fitness trade-off or reduced trait 
complexity in domesticated yeast strains may reflect their 
evolution in less varied environments.

It is intriguing that IRA1 and IRA2, and the human 
orthologous NF1 (neurofibromin 1) genes, which both 
negatively regulate RAS activity, thereby regulating the 
balance between growth and survival, are all hypermut-
able genes [49]. For humans, the human ortholog NF1 
has been shown that the gene is associated with multi-
ple diseases, including cancer [50]. These genes are highly 
prone to mutation and can cause a reversible phenotypic 
switching [51], which suggests that their hypermut-
ability can result in diverse phenotypic variations among 

individuals and provide fitness switching among yeast 
populations. This offers an overall fitness advantage to 
a population, as a subpopulation can easily emerge with 
the best fitness under a given condition. Therefore, the 
selection of hypermutability for IRA1 and IRA2 also sup-
ports the notion that they are strongly correlated with fit-
ness trade-offs.

The slow growth rate and stress resistance within iso-
genic populations are well-known antagonistic phenom-
ena in yeast [52] and Caenorhabditis elegans [53]. This 
indicates that the balance between growth preference 
and stress resistance can be triggered by stochastic fluc-
tuation, aging, or environmental challenges as well as by 
genomic variation. We also found a similar phenomenon 
in cancer cells, as we showed that a cancer cell grown 
with pyruvate treatment has lower fitness when treated 
with an anticancer drug. On the other hand, the fitness 
advantage for the cancer cell following pyruvate treat-
ment was not significant (Fig. 7). This might be because 
every cancer cell already obtained the maximal fitness 
advantage, and no additional fitness advantages could 
be obtained [54]. It should also be considered that the 
induced drug sensitivity observed in cancer cells treated 
with pyruvate might arise from confounding factors due 
to its significant effects on cancer metabolism [55], rather 
than solely from the mechanism we suggested. However, 
despite this, our proposed principle may still be useful 
for developing a new cancer therapeutic strategy without 
incurring additional side effects.

Conclusions
In summary, we identified that the fitness trade-off 
between growth and stress resistance is the major deter-
minant of the phenotypic variation within yeast strains. 
We further found that the same principle also holds for 
cancer cells. Together, we conclude that this might be a 
fundamental principle that explains the phenotypic dif-
ferences among individuals.

Methods
Growth rate profiles
We obtained the following five yeast phenome datasets: 
1011 natural strains under different nutritional sources 
[12]; 971 natural strains under 35 stress conditions [5]; 
38 natural strains under 199 diverse conditions [56]; 52 
natural strains under 13 stress conditions [57]; 1004 yeast 
segregants from a cross between BY and RM yeast under 
46 diverse conditions [58]. For [56], we used “growth effi-
ciency,” total change in population density for 72 h [56], 
as a growth phenotype for our analysis, but we also found 
that our conclusion largely remains consistent even if we 
apply other growth phenotypes (Additional file  1: Fig. 
S4). We removed the rows or columns of which more 
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than 10% of values were missing. Then, the missing val-
ues were imputed using knnimpute [59] function in R. 
Then, we performed sample-wise normalization with a 
mean of 0 and a variance of 1 for each growth condition. 
Next, we performed singular value decomposition (SVD) 
analysis for the phenome matrix M, as follows:

where the columns of U are left-singular vectors that are 
orthogonal with each other, S is a diagonal matrix, and 
the columns of V are right-singular vectors. Then, M can 
be reconstructed by the following matrix multiplication:

where n indicates the number of yeast strains for each 
phenome dataset. We used a reconstructed MR using the 
first two most significant ranks (n = 2) instead of the orig-
inal M to exclude the effect of growth phenotypes that 
are extremely specific to a certain condition (Fig. 1). We 
also performed the same analysis using the raw phenome 
datasets and found consistent results except one dataset 
(Additional file 1: Fig. S1). We used the svd function in R.

Consensus clustering analysis
For each phenome dataset, we performed hierarchi-
cal clustering analysis using 1 − Spearman rank correla-
tion as a distance measure and applied average linkage 
method. To obtain the optimal number of clusters, we 
performed consensus clustering analysis using Consen-
susClusterPlus [60] in R. Clusters were obtained through 
1000 resampling iterations of the hierarchical clustering 
by randomly selecting 80% of the samples and 80% of fea-
tures. Then, we obtained a condition-to-condition con-
sensus matrix for each number of cluster and computed 
the proportion of ambiguous clustering (PAC) [61] which 
denotes the ratio of condition pairs that are ambigu-
ously co-clustered between all pairs. If two conditions are 
always clustered together, the consensus index value of 
this pair is equal to 1; if they never be clustered together, 
the value is 0. Then, we have defined that a pair of condi-
tions are ambiguously co-clustered if its consensus index 
value is between 0.1 and 0.9 out of 1000 resampled itera-
tions. Therefore, for a given cluster number K, the PAC is 
computed as the proportion of ambiguous pairs, and the 
lower PAC indicates the more robust cluster.

mRNA expression profiles
For Agilent microarray datasets in batch cultures, we 
obtained the following four yeast inter-strain gene 
expression profiles: 121 yeast segregants of a cross 
between BY and RM under ethanol and glucose treat-
ments (GSE9376) [14]; 6 yeast strains (Ds288c, EM93, 

M = U ∗ S ∗ V
T

M =

n

k=1
Sk ∗ Uk ∗ Vk

T

Sgu52, Sgu407, Sgu421, and Sg60) in four different envi-
ronments (GSE3021) [15]; 196 yeast segregants from two 
sets of segregants of crosses: DBY8268 and M22, and 
DBY8268 and YPS163 (GSE54196) [13] under ethanol 
treatment. We removed the rows or columns of which 
more than 10% of values were missing, and the missing 
values were imputed by knnimpute [59] in R and sample-
wise zero-center scaled. For the RNA sequencing dataset 
in batch cultures, we analyzed RNA-seq data from natu-
ral yeast isolates [16] grown in standard synthetic com-
plete media with 2% glucose as the carbon source. This 
analysis focused on strains labeled as “wild,” “unassigned,” 
or “domesticated (dom),” yielding a total of 943 samples. 
We obtained the raw count matrix, then applied vari-
ance stabilizing transformations using vst function in the 
DEseq2 package [62] in R. For the Affymetrix microarray 
datasets in continuous cultures, we obtained four distinct 
sets of yeast gene expression profiles: 12 gene expres-
sion profiles of a laboratory yeast strain CEN.PK113-7D 
grown at steady state in aerobic continuous cultures on 
a minimal medium with glucose as the limiting nutrient 
(E-MEXP-593) [20]; 36 gene expression profiles from 
the same laboratory yeast strain under multiple condi-
tions, varying in dilution rate, nutrient limitation, and 
oxygen availability (E-MTAB-78) [45]; 170 profiles from 
the same strain across different conditions, utilizing 
multiple sample preparation protocols, with normalized 
expression profiles sourced from the supplementary files 
(12864_2008_1937_MOESM6_ESM.zip) (GSE11452) 
[18]; 48 gene expression profiles from yeast strain 
FY1679 subjected to multiple nutrient-limiting condi-
tions (E-MEXP-115) [17].

The Agilent microarray datasets from batch cul-
tures are measured based on a two-color (Cy5 and Cy3) 
hybridization protocol of a scanning system, where one 
color is from a sample RNA and the other is from a refer-
ence, a pooled RNA. Therefore, the value for each gene 
denotes the relative expression level of that gene in the 
sample compared to the averaged expression of the gene 
across all samples. On the other hand, each value denotes 
absolute expression levels for RNA sequencing or Affy-
metrix microarray. Therefore, we standardized these 
datasets to the same scale as the hybridization system, we 
normalized the expression level of each gene by subtract-
ing the gene-wise mean value and then applied sample-
wise zero-center scaling.

Finding a recurrent gene expression signature
First, we performed SVD analysis for each of the sam-
ple-wise scaled gene expression matrices. A previous 
study [63] defined eigengenes and eigenarray, where 
eigengenes and eigenarrays are the vector in each row 
of the matrix VT  and the vector in each column of the 
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matrix U, respectively. Then, the eigengenes represent 
the activities of independent regulatory gene expres-
sion programs and the eigenarrays represent the corre-
sponding cellular states. In our analysis, we focused on 
the first eigenarray—the left-most column of U—which 
represents the most influential cellular state underly-
ing the actual cellular states of yeast strains. Thus, the 
first column of U is a vector containing yeast genes, 
each with a specific value. Then, we obtained the first 
column of U for each matrix, which we call a “recur-
rent gene expression signature.” Next, we integrated 
the gene expression datasets of Agilent and Affym-
etrix microarrays, respectively. We selected the genes 
that are present in all the datasets and batch-corrected 
using the ComBat function in R [64]. The resulting inte-
grated microarray matrices in both datasets are com-
posed of 6029 genes and 493 samples, and 6057 genes 
and 266 samples, respectively. RNA sequencing dataset 
across yeast strains is composed of 6517 genes and 943 
samples. To obtain robust recurrent gene expression 
signature for each integrated dataset, we conducted 
SVD analysis iteratively 1000 times, adding Gaussian 
noise (mean = 0 and standard deviation = 1) to each 
gene expression value. We then selected only those 
genes that consistently exhibited the same sign across 
all iterations. This approach allows us to obtain robust 
and recurrent gene expression signatures, resulting in 
two yeast strain signatures (Agilent microarray and 
RNA-seq) and one slow-growth signature (Affymetrix 
microarray) (Fig.  3). The three robust recurrent gene 
expression signatures are listed in Additional file  2: 
Table  S2. For the two yeast-strain signatures, we fur-
ther filtered the genes with the same sign and obtained 
an averaged gene signature score for each gene, then 
obtained an integrated yeast-strain signature (Addi-
tional file 2: Table S2).

Identifying the largest connected component
We downloaded a network dataset from STRING [65], 
version 11.5. This network consists of nodes and links, 
where nodes represent genes and links denote the func-
tional interaction scores between pairs of genes. These 
scores range from 0 to 1, and we considered only links 
with a score higher than 0.4, indicating medium con-
fidence. Using the p-values from the GWA analysis, we 
determined the p-value for each gene by selecting the 
lowest p-value among the loci intersecting with the gene 
body. After selecting specific genes (for example, the 50 
genes with the lowest p-values), we extracted the sub-
network and computed the size of its largest connected 
component. For comparison, we did the same calculation 
from randomly selected genes with the same number.

Finding human orthologs from yeast/human orthologs
We downloaded yeast/human orthologs from the Sac-
charomyces Genome Database (SGD) [34]. From the PS 
and NS gene sets, we obtained corresponding human PS 
and NS genes, respectively. The number of human PS and 
NS genes is 297 and 77, respectively.

Genetic measurements
We obtained UGRR genes [22], ESR genes [21], and 
metabolic cycle genes [23]. Haploid fitness was obtained 
based on growth rates for haploid knockout (KO) for 
each gene [26]. Stochastic noise for each gene was meas-
ured using proteomic abundance, and the stochastic 
noise was computed as the coefficient of variation to 
the distance-to-median for each gene [27, 28]. We also 
obtained mRNA half-life and mRNA abundance variabil-
ity which was computed as the standard deviation of the 
mRNA abundances across different conditions [30].

Computing the association between genotype and growth 
phenotype
We performed principal component analysis (PCA) 
analysis on the growth rate dataset and obtained PC1 
values as an overall growth rate for each strain [11]. 
We calculated LOD (logarithm of the odds) scores for 
each genotypic marker and the overall growth rate as 
−n(ln(1− r2)/2(ln(10)) , where n denotes the number 
of segregants (in this case, n = 1008) and r indicates the 
Pearson correlation coefficient between the segregant 
genotypes and trait values. The source code for this 
computation was adopted from [58]. For GWA analysis, 
we used factored spectrally transformed linear mixed 
models (FaST-LMM) [66]. We downloaded a file named 
1011GWASMatrix.tar.gz for the genotype dataset, and 
phenoMatrix_35ConditionsNormalizedByYPD.tab.gz for 
the growth phenotype across 971 yeast strains under 35 
different conditions [5]. Then we computed PC1 values 
based on the growth phenotype matrix and performed 
FaST-LMM using the PC1 values for each strain as a rep-
resentative phenotype. The datasets are at http://​1002g​
enomes.​u-​stras​bg.​fr/​files/ and details are described in [5].

Anticancer drug responses and gene expression profiles 
of human cancer cell lines
We downloaded GDSC1 and GDSC2 [38, 39]. From the 
datasets, we used “Z_SCORE”, which is a normalized 
IC50 value for each drug across cancer cell lines as a drug 
resistance measure for each anticancer drug and can-
cer cell line pairs. A higher Z_SCORE indicates greater 
resistance of the drug to the targeted cancer cell line. We 
also downloaded the cancer cell gene expression profiles 
from the Cancer Cell Line Encyclopedia (CCLE) [67] 

http://1002genomes.u-strasbg.fr/files/
http://1002genomes.u-strasbg.fr/files/


Page 13 of 15Kim et al. BMC Biology           (2024) 22:62 	

(ndownloader.figshare.com/files/34989919). We normal-
ized the expression level of each gene by subtracting the 
gene-wise mean value. To obtain human PS and NS gene 
scores, we computed the median gene expression level of 
the human PS and NS genes, respectively, for each cell 
line. Then, we computed the Spearman’s rank correlation 
between the drug resistance and PS (or NS) gene scores 
for each anticancer drug, respectively. We further com-
puted the difference between PS and NS gene scores and 
performed the same analysis.

Cell culture
BT20, HCT116, HeLa, HepG2, Huh-7, and SNU475 cells 
were obtained from Korean Cell Line Bank (KCBL) and 
were cultured in high glucose (25 mM) Dulbecco’s modi-
fied Eagle’s medium (DMEM) supplemented with 10% 
fetal bovine serum (FBS) and antibiotics (Life Technolo-
gies Corp. Carlsbad, CA, USA) at 37  °C in a humidified 
atmosphere containing 5% CO2.

Cell viability assays
For the cell viability assays, the cells were seeded in 
96-well plates at a density of 5000 cells/well (100 μL 
total volume/well) and were grown for 24  h. The cells 
were then washed with sterile phosphate-buffered saline 
and maintained in low-glucose (5.56  mM) DMEM sup-
plemented with 10% FBS with/without sodium pyruvate 
(1  mM, Thermo Fisher Scientific, Waltham, MA, USA) 
for 24  h before adding the sorafenib (LC Laboratories, 
Woburn, MA, USA) or etoposide (Sigma-Aldrich, Saint 
Louis, MO, USA). The cells were treated with different 
concentrations of sorafenib or etoposide, and the con-
trols were treated with vehicle (DMSO, Sigma-Aldrich). 
After 24-h treatment, WST-1 solution (DoGenBio, Seoul, 
South Korea) was added to the cells for 1–2  h, and the 
absorbance at 450 nm was then measured using a VIC-
TORTMX3 Multilabel Plate Reader (PerkinElmer Inc., 
Waltham, MA, USA).
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