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Comparative transcriptomic analysis 
provides insights into the genetic networks 
regulating oil differential production in oil crops
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Abstract 

Background  Plants differ more than threefold in seed oil contents (SOCs). Soybean (Glycine max), cotton (Gossypium 
hirsutum), rapeseed (Brassica napus), and sesame (Sesamum indicum) are four important oil crops with markedly differ-
ent SOCs and fatty acid compositions.

Results  Compared to grain crops like maize and rice, expanded acyl-lipid metabolism genes and relatively higher 
expression levels of genes involved in seed oil synthesis (SOS) in the oil crops contributed to the oil accumulation 
in seeds. Here, we conducted comparative transcriptomics on oil crops with two different SOC materials. In common, 
DIHYDROLIPOAMIDE DEHYDROGENASE, STEAROYL-ACYL CARRIER PROTEIN DESATURASE, PHOSPHOLIPID:DIACYLGLYCEROL 
ACYLTRANSFERASE, and oil-body protein genes were both differentially expressed between the high- and low-oil 
materials of each crop. By comparing functional components of SOS networks, we found that the strong correla-
tions between genes in “glycolysis/gluconeogenesis” and “fatty acid synthesis” were conserved in both grain and oil 
crops, with PYRUVATE KINASE being the common factor affecting starch and lipid accumulation. Network alignment 
also found a conserved clique among oil crops affecting seed oil accumulation, which has been validated in Arabi-
dopsis. Differently, secondary and protein metabolism affected oil synthesis to different degrees in different crops, 
and high SOC was due to less competition of the same precursors. The comparison of Arabidopsis mutants and wild 
type showed that CINNAMYL ALCOHOL DEHYDROGENASE 9, the conserved regulator we identified, was a factor result-
ing in different relative contents of lignins to oil in seeds. The interconnection of lipids and proteins was common 
but in different ways among crops, which partly led to differential oil production.

Conclusions  This study goes beyond the observations made in studies of individual species to provide new insights 
into which genes and networks may be fundamental to seed oil accumulation from a multispecies perspective.

Keywords  Network alignment, Seed oil synthesis, Coexpression networks, Comparative transcriptomic, Differential 
expression analysis, Seed storage, Acyl-lipid metabolism, Different species

Background
Oil crops provide an abundant and renewable source 
of vegetable oil and protein for the human diet, animal 
feeds, and industrial production. According to the oilseed 
production, supply, and distribution report from the US 
Department of Agriculture (data available in April 2022), 
over the past 5 years, worldwide vegetable oil consump-
tion has been up to 209 million metric tons, growing 
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by 9.1%, with palm (35.3%), soybean (28.5%), rapeseed 
(13.9%), and sunflower seed (9.5%) taking a larger share. 
Therefore, to meet the rapid growth of food demand 
and nonfood utilization, enhancing oil productivity and 
improving the quality of seed oil are the major objec-
tives in oil crop breeding. Natural selection has produced 
crops with dramatically diverse seed oil contents (SOCs) 
that provide the opportunity to identify the underly-
ing mechanisms of large changes in oil accumulation 
through comparative biology. Soybean (Glycine max), 
cotton (Gossypium hirsutum), rapeseed (Brassica napus), 
and sesame (Sesamum indicum) are the four traditional 
oil crops used as sources of edible oil with sequentially 
increased SOCs from 20%, 30%, 40%, to 60% [1, 2], 
respectively. Soybean oil, the most widely consumed 
edible oil, is high in polyunsaturated fats [3]. Cottonseed 
oil contains high amounts of saturated fatty acids (FAs), 
which makes it more stable than other oils used for cook-
ing [4]. Another significant oil crop is rapeseed, which is 
rich in unsaturated fats [5], but also has a high level of 
erucic acid and glucosinolates [6], which are harmful and 
seriously limit rapeseed as an edible oil and oil meal. Ses-
ame with the highest oil content is considered an abun-
dant source of oleic acid (18:1) and linoleic acid (18:2) [7]. 
These four oil crops have quite different seed oil contents 
and contain distinct FA compositions, providing attrac-
tive models for studying seed oil accumulation.

Vegetable oil is stored in the seeds of higher plants in 
the form of triacylglycerols (TAGs). Many genes involved 
in acyl-lipid metabolism (ALM) have been described 
in Arabidopsis in detail [8]. The genetic engineering of 
enzymes in seed oil synthesis (SOS) has successfully 
adjusted the level and composition of FAs such as DIA-
CYLGLYCEROL ACYLTRANSFERASE (DGAT) [9, 10], 
PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANS-
FERASE (PDAT) [10], and ACETYL-CoA CARBOXY-
LASE [11, 12]. However, plant FA and lipid synthesis, 
desaturation, storage, and degradation pathways involve 
a series of complex and interconnected multienzyme sys-
tem networks, and compensation mechanisms among 
gene family members also make mutants of certain genes 
have no seed oil phenotype [13, 14]. More importantly, 
the increase in oil accumulation that is experimentally 
achieved in the model plants using genetic manipula-
tions pales in comparison with interspecies differences in 
SOCs. In addition, seed storage reserves mainly consist 
of starch, lipids, and storage proteins, and the catabolic 
and anabolic processes of the main storage compounds 
in seeds are coupled and in a dynamic equilibrium state, 
which is closely regulated in part by carbon partitioning 
at the metabolic level [15, 16]. Therefore, an in-depth 
study of the material distribution and accumulation in 
seeds is an important direction to achieve a large step 

forward in improving oil crops. A large-scale compara-
tive transcriptomic analysis of oil crops that are highly 
diverse in their SOCs would provide more insights to 
identify the signatures of oil accumulation.

As next-generation high-throughput sequencing has 
become routine, comparative studies among different 
species shed new light on finding common evolution-
ary genes regulating the same trait at the genomic and 
transcriptomic levels. For example, maize KRN2 and rice 
OsKRN2 are subject to convergent selection and enhance 
grain yields through similar pathways [17]. The G gene 
has a conserved function in controlling seed dormancy 
in soybean, rice, and tomato [18]. Meanwhile, network 
methods are currently used to study various biological 
systems by exploring the relationship between observed 
gene products, bridging the gap from individual genes to 
systems biology. Systematic analyses of coexpression net-
works demonstrate that gene modules can be highly con-
served across distant species [19].

Here, by collecting comprehensive RNA-seq resources 
of four oil crops with distinct SOCs, including soybean, 
cotton, rapeseed, and sesame (Fig.  1a), we conducted 
comparative transcriptomics to investigate the differ-
ences from the conserved mechanisms affecting seed oil 
synthesis and accumulation. Furthermore, maize (Zea 
mays) and rice (Oryza sativa) were also included to pro-
vide insights into the interconversion between seed stor-
age. The findings are aimed at enriching and expanding 
the lipid biosynthesis metabolic mechanism, which will 
help breeders modify oil content and design oil crops 
with ideal FA compositions through genetic and meta-
bolic engineering.

Results
Different SOCs and FA compositions in the four oil crops
High- and low-oil materials for each oil crop were 
included to generate inter- and intraspecies cross-com-
parisons, and the crude protein, fat content, moisture 
content, and FA composition of the fully mature seeds 
were evaluated. Different from grain crops, the carbon 
deposited in these oilseeds was mainly in the form of 
protein and fat, accounting for 63 to 77% of the total seed 
dry weight of each species on average (Fig. 1b and Addi-
tional file 1: Table S1). The total seed crude fat contents 
of soybean, cotton, rapeseed, and sesame differed from 
20 to 52% (% seed dry weight), while the crude protein 
contents decreased from 43 to 25% successively (Fig. 1b 
and Additional file  1: Table  S1), suggesting a significant 
negative correlation between the fat and protein con-
tent (Pearson’s correlation r =  − 0.82, P value = 0.0128; 
Fig.  1c). There were also differences in SOCs between 
high- and low-oil materials in each species (Fig. 1d). The 
detailed FA composition analysis showed that palmitic 
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Fig. 1  Summary of the species analyzed and seed component contents. a Seeds of the different species sampled for comparative transcriptomics. 
The samples were obtained from five different developmental stages of the high- and low-oil materials for the four oil crops. The developmental 
transcriptome data for maize were from the published data. b The crude fat, protein content, and moisture content of the mature seeds (as % seed 
dry weight). c The correlation between the fat and protein content in the oil crop seeds. Pearson’s correlation r =  − 0.82, P value = 0.0128. d The 
seed oil contents of high- and low-oil materials of the four oil crops (as % seed dry weight). e FA composition contents in the fully mature seeds 
from the four oil crops
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(C16:0), oleic (C18:1), and linoleic (C18:2) acids were 
the three major FAs in these seeds, accounting for 69 
to 94%, but their composition ratios varied among the 
species (Fig.  1e and Additional file  1: Table  S2). In soy-
bean and cottonseed oil, linoleic acid (C18:2) (52.5% in 
soybean and 54.7% in cottonseed) was two- to threefold 
that of oleic acid (C18:1) (23.1% in soybean and 16.7% in 
cottonseed). Rapeseed possessed more oleic acid (C18:1) 
(58.0%), which was approximately threefold that of lin-
oleic acid (C18:2) (17.4%). In sesame seed, the amount 
of oleic acid (C18:1) (42.0%) was almost equal to lin-
oleic acid (C18:2) (42.1%) (Fig.  1e and Additional file  1: 
Table S2). In addition to the linoleic and oleic ratios, these 
crops had their respective FA characteristics. For exam-
ple, cottonseed oil contained 26.2% saturated FAs, which 
was much higher than that of  the other crops (14.6% in 
sesame, 6.6% in rapeseed, and 15.3% in soybean) (Addi-
tional file 1: Table S2). Soybean and rapeseed contained 
much more linolenic acid (C18:3) (8.1% and 7.5%) than 
cottonseed (0.4%) and sesame (0.3%), respectively (Fig. 1e 
and Additional file  1: Table  S2). We also found that the 
FA profiles of the high-oil and low-oil materials in each 
crop were similar, except for no erucic acid (C22:1) in the 
high-oil rapeseed (12.6% in the low-oil material of rape-
seed) (Fig. 1e and Additional file 1: Table S2). It appeared 
that the FA compositions were relatively stable in each 
species due to their genetic and physiological similarities. 
Overall, their remarkable divergence in SOCs and FA 
compositions made them excellent subjects for investi-
gating the genetic basis of oil synthesis and accumulation.

Higher gene numbers and expression levels shape seed oil 
phenotypes
Number changes and differential expression in the con-
text of gene family dynamics are driving forces of mor-
phological and metabolic diversities in plants and play 
essential roles in evolutionary and developmental pro-
cesses. In Arabidopsis, 773 genes (5 pseudogenes) iden-
tified in ALM engaged in 16 pathways for the synthesis 
of TAG, plastid FAs, endomembrane lipids, storage, and 
other functions [8] (data obtained before July 2020). By 
searching these ALM-related genes, 1081, 1450, 1883, 
612, 619, and 548 putative genes, which were ortholo-
gous to the ALM genes of Arabidopsis, were identified in 
the G. max, G. hirsutum, B. napus, S. indicum, Z. mays, 
and O. sativa genomes, respectively [20–25], represent-
ing 1.40 to 2.25% of all the predicted protein-coding 
genes (Fig. 2a, Additional file 1: Table S3, and Additional 
file 2: Dataset S1). Sesame showed the highest percentage 
of ALM genes among the oil crops (2.25%) (Additional 
file 1: Table S3). A. thaliana (T) is a test that confirmed 
the validity and accuracy of the identification pipeline 
(see the “Methods” section). Compared to O. sativa, 80% 

of which is starch, oil crops had significantly more genes 
related to ALM (P < 0.01, two-sided Fisher’s exact test, 
Fig.  2a and Additional file  1: Table  S3), while there was 
no difference between Z. mays and O. sativa (P = 0.05910, 
two-sided Fisher’s exact test, Fig.  2a and Additional 
file  1: Table  S3). However, the proportional fractions of 
genes classified into 16 ALM pathways were quite simi-
lar among the seven species (Fig. 2b). Moreover, using A. 
thaliana as a dicot control, a comparison of ALM-related 
gene families among oil crops showed that B. napus had 
more variations in terms of the number of gene family 
members than the other oil crops (Additional file 3: Fig. 
S1). These exceptions were predominantly associated 
with TAG synthesis, e.g., OIL-BODY OLEOSIN (OBO) 
family genes (25 in B. napus vs eight in A. thaliana) and 
PHOSPHATIDYLCHOLINE:DIACYL-GLYCEROL 
CHOLINEPHOSPHOTRANSFERASE family genes (eight 
in B. napus vs two in A. thaliana) (Additional file 3: Fig. 
S1). Gene family expansion and contraction analysis also 
showed a high number of lipid metabolism gene fami-
lies with rapid expansions in B. napus (branch-specific 
P value < 0.01 for the significant families (family-wide 
P value < 0.05)), including PROTEASE INHIBITOR/
SEED STORAGE/LTP family (PF00234), ENOYL-ACYL 
CARRIER PROTEIN REDUCTASE (PF13561), MEM-
BRANCE BOUND O-ACYL TRANSFERASE family 
(PF13813), GDSL-LIKE LIPASE/ACYLHYDROLASE 
(PF00657), PYRUVATE KINASE (PF00224), and TYPE-2 
PHOSPHATIDIC ACID PHOSPHATASE superfamily 
(PF01569) (Additional file 3: Fig. S1 and Additional file 4: 
Dataset S2). In addition, genes encoding GDSL were also 
significantly expanded in G. max with a larger variation 
(branch-specific P value = 0.000150, Additional file 3: Fig. 
S1 and Additional file 4: Dataset S2).

To systematically characterize transcriptomic signa-
tures of seed oil accumulation, we collected ovules at 5 
developmental stages, including 0, 10, 20, 30, and 40 days 
post-anthesis (DPA), from these 4 oil crops covering dis-
tinct SOC materials. A total of 4.61 billion clean reads 
from 120 developing seed samples were generated after 
filtering the reads that were low quality and too short 
from 5.19 billion raw reads (Additional file 5: Dataset S3). 
As a control, transcriptomic data for maize whole seeds 
at 4, 14, 16, 18, 20, 24, and 26 DPA were publicly available 
[26]. The average alignment rate of the oil crop samples 
was 85.40% (Additional file 5: Dataset S3), and RNA-seq 
data from maize were calculated in the same pipeline 
(see the “Methods” section). The Spearman’s rank corre-
lation coefficients for the samples of each crop were all 
over 85% (Additional file 3: Fig. S2–S6). The first princi-
pal component (PC1), explaining 30.1% of the variance in 
gene expression, separated the samples by the develop-
mental stages of seeds, and PC2 separated the samples by 
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Fig. 2  Comparison of gene numbers and transcriptomic patterns of the oil crops and maize. a The proportions of identified ALM genes in the total 
genes of each species. N represents the total number of ALM genes. The numbers on the pie charts represent the proportions of ALM genes 
to the total number of genes of each species. Comparisons of N were performed between the different species and rice. *P value ≤ 0.05, two-sided 
Fisher’s exact test. b Percentage of genes involved in the 16 pathways of ALM in different species. c PCA based on the top 500 genes with the most 
variable expression in each species. Each dot represents replicates of each developmental stage for each material per species. d The proportions 
of expressed genes of the total, ALM, and SOS genes in different crops. *P value ≤ 0.05, two-sided Fisher’s exact test. ALM, acyl-lipid metabolism; SOS, 
seed oil synthesis. e, f Comparison of expression levels between random, SOS, and AGPase genes at different developmental stages in the high-oil 
material of sesame and maize. nsP value > 0.05, *P value ≤ 0.05, **P value ≤ 0.01, ***P value ≤ 0.001, ****P value ≤ 0.0001, Wilcoxon test
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the various species (Fig. 2c and Additional file 3: Fig. S7). 
For the principal component analysis (PCA) of individual 
species, most of the variances (84.23 ~ 91.80%) separated 
the samples by developmental stages (Additional file  3: 
Fig. S7). For the multispecies comparative transcriptomic 
analysis based on coexpression networks, our analysis 
flow is shown in Additional file 3: Fig. S8.

Depending on the ALM genes identified in the indi-
vidual species, we found that expressed genes (reached a 
minimum of ten reads in at least three libraries) involved 
in ALM showed a significantly higher proportion in each 
crop, highest in sesame (90.36%, Fig. 2d). Genes in “fatty 
acid synthesis”; “fatty acid elongation, desaturation, and 
export from plastid”; and “triacylglycerol biosynthesis” 
are directly related to seed oil synthesis and were clas-
sified as SOS genes. Their expressed ratios were much 
higher, especially in rapeseed and soybean (Fig.  2d). 
Compared with random genes in oil crops and maize, 
SOS genes had much higher expression levels and dif-
ferent durations were found in different oil crops, show-
ing the differences in critical stages of oil accumulation 
(Fig. 2e and Additional file 3: Fig. S9). In contrast, genes 
encoding ADP-GLUCOSE PYROPHOSPHORYLASE 
(AGPase), a key enzyme of the starch biosynthetic path-
way, were expressed at significantly higher levels than 
SOS genes in maize but not in oil crops (Fig.  2e, f and 
Additional file  3: Fig. S9), indicating interspecies differ-
ences between grain and oil crops.

Species differences and similarities in factors affecting oil 
accumulation
To identify the sources of intraspecies variation in oil 
accumulation, we performed differential expression 
analysis (DEA) between high-oil and low-oil materials of 
each oil crop. Based on the functional enrichment of dif-
ferentially expressed genes (DEGs), we compiled the cat-
egories that were critical to lipid accumulation, including 
photosynthesis, metabolism of carbohydrates, lipids, 
amino acids, secondary metabolites, and proteins. The 
results showed that photosynthesis, secondary, and pro-
tein metabolism formed significant differences between 
high- and low-oil materials (Additional file  3: Fig. S10). 
Between the adjacent development stages, we also con-
ducted DEA on the samples of oil crops, as well as maize 
samples with the appropriate differences based on the 
PCA (Additional file  3: Fig. S7). The largest number of 
DEGs was generally observed in the comparison of “10 
DPA vs 0 DPA” or “20 DPA vs 10 DPA” in the different oil 
crops, suggesting a dramatic change in the early stage of 
ovule development (Fig. 3a). Interestingly, the downregu-
lated expression of lipid metabolism-related genes in ses-
ame was accompanied by the upregulated expression of 
genes involved in protein metabolism, while in soybean, 

genes related to lipid metabolism and protein metabo-
lism were simultaneously upregulated (Fig. 3b), and Gene 
Ontology (GO) enrichment analysis showed the same 
findings (Additional file  3: Fig. S11). In each oil crop, 
active lipid metabolism genes were always accompanied 
by active secondary metabolism genes that were up- or 
downregulated in expression (Fig.  3b). In the four oil 
crops, secondary and protein metabolic pathways are the 
two dominant metabolic pathways that have an impact 
on oil accumulation, but mechanisms of competition 
and coordinated allocation between lipid and second-
ary metabolism or between lipid and protein metabolism 
remained different.

Furthermore, DEGs in the “fatty acid synthesis” and 
“triacylglycerol biosynthesis” pathways between high- 
and low-oil materials and between different adjacent 
developmental stages were summarized. Only genes 
upregulated were considered. In the “fatty acid synthesis” 
of all four oil crops, genes encoding DIHYDROLIPOAM-
IDE DEHYDROGENASE (LPD), the E3 component of 
PYRUVATE DEHYDROGENASE COMPLEX (PDHC), 
and STEAROYL-ACYL CARRIER PROTEIN (ACP) 
DESATURASE were both upregulated in high-oil materi-
als compared to low-oil materials (Fig.  3c). In the “tria-
cylglycerol biosynthesis,” PDAT, OBO, and CALEOSIN 
were all upregulated in the high-oil materials of each oil 
crop (Fig.  3c). In the comparison of the adjacent devel-
opmental stages, genes in “fatty acid synthesis,” includ-
ing KETOACYL ACP SYNTHASE I (KAS I), KAS II, 
KAS III, KETOACYL-ACP REDUCTASE, β-PYRUVATE 
DEHYDROGENASE, BIOTIN CARBOXYL CARRIER 
PROTEIN, BIOTIN CARBOXYLASE, and α-PYRUVATE 
DEHYDROGENASE, were differentially expressed between 
the same adjacent stages in both high- and low-oil mate-
rials of each species (Additional file  3: Fig. S12), which 
were mainly involved in the conversion of pyruvate to 
malonyl-CoA and the FA synthesis cycle. As cofactors 
for all reactions in FA synthesis and activators of fatty 
acid export from the plastid to the endoplasmic reticu-
lum, genes encoding ACP and LONG-CHAIN ACYL-
CoA SYNTHETASE were also conserved in the dynamic 
changes in the expression during the seed development 
process among species (Additional file 3: Fig. S12). Genes 
in the “triacylglycerol biosynthesis,” including PDAT, 
OBO, FATTY ACID DESATURASE 2, FUSCA3, ABSCI-
SIC ACID INSENSITIVE 3 (ABI3), ABI4, CALEOSIN, 
and HIGH-LEVEL EXPRESSION OF SUGAR INDUC-
IBLE GENE 2/VIVIPAROUS-1/ABI3-LIKE1 (HSI2/
VAL1), were actively expressed during development in 
both high- and low-oil materials of all species (Additional 
file 3: Fig. S13), which mainly served as transcription fac-
tors or lipid droplet proteins. A full pathway model of 
seed oil synthesis was summarized, and gene expression 
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profiling showed that fatty acid synthesis (FAS) genes 
were expressed relatively higher and clustered more with 
glycolysis genes in high-oil crops, and ABI3 and ABI4 

were expressed consistently with genes encoding oil-
body proteins in sesame, cotton, and soybean but not 
rapeseed (Additional file 3: Fig. S14).

Fig. 3  Differential expression analysis of genes in different species. a Number ratios of the DEGs between the adjacent developmental stages 
and the total expressed genes in the high-oil and low-oil materials. b Functional enrichment of DEGs between the adjacent developmental 
stages in the high-oil and low-oil materials. Red box on behalf of the upregulated DEGs in the corresponding pathways, and the blue represents 
those that were downregulated. Red border represents the high-oil materials, and the blue represents the low-oil materials. The C1, C2, C3, 
and C4 for the oil crops represent “10 vs 0 DPA,” “20 vs 10 DPA,” “30 vs 20 DPA,” and “40 vs 30 DPA,” respectively. The c1, c2, c3, and c4 for the maize 
represent “14 vs 4 DPA,” “18 vs 14 DPA,” “24 vs 18 DPA,” and “26 vs 24 DPA,” respectively. c Heatmap of the upregulated genes in “fatty acid synthesis” 
and “triacylglycerol biosynthesis” pathways in the high-oil materials compared to the low-oil materials in each oil crop. The median of log2FC 
of the upregulated genes represents the log2FC of the gene family. Abbreviations: LPD, dihydrolipoamide dehydrogenase; SAD, stearoyl-ACP 
desaturase; CALO, caleosin; OBO, oleosin; PDAT, phospholipid:diacylglycerol acyltransferase
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The role of glycolysis in seed oil accumulation is conserved 
among species
A weighted gene coexpression network analysis was per-
formed on the individual species to explore genes tightly 
linked to SOS genes. The expressed genes from sesame, 
rapeseed, cotton, soybean, and maize were divided into 
11, 10, 9, 7, and 7 network modules, respectively (Addi-
tional file  1: Table  S4 and Additional file  3: Fig. S15). 
Then, we identified 2 or 3 modules in each crop that were 
strongly associated with seed oil accumulation (Addi-
tional file  3: Fig. S16 and Additional file  6: Dataset S4, 
see the “Methods” section). To identify a pan-species 
transcriptomic signature that correlated with SOS, we 
ranked all the genes in the SOS modules by their Pear-
son correlation with the module eigengene  and per-
formed gene set enrichment analysis (GSEA). The KEGG 
pathways strongly enriched by the SOS modules across 
species included carbohydrate metabolism and amino 
acid metabolism (Additional file  3: Fig. S17). Interest-
ingly, in carbohydrate metabolism, “glycolysis/gluco-
neogenesis” was the strongly enriched pathway common 
to all species (GSEA P < 0.05, FDR Q < 0.1) (Fig.  4a and 
Additional file  7: Dataset S5). Genes in the “fatty acid 
synthesis” pathway in the SOS modules were expressed 
significantly higher than pathway genes not in the SOS 
modules in each crop, ensuring strong functionality from 
network collaboration (Fig. 4b and Additional file 3: Fig. 
S18). Additionally, in the SOS modules, the expression of 
genes in the “fatty acid synthesis” was significantly higher 
than that of genes in the “glycolysis/gluconeogenesis” in 
rapeseed and cotton, both of which were not significantly 
different in sesame and soybean, while in maize, on the 
contrary, genes in the “glycolysis/gluconeogenesis” were 
expressed significantly higher than that in the “fatty acid 
synthesis” (Fig. 4c and Additional file 3: Fig. S18). Spear-
man correlation coefficients between genes expressed in 
“glycolysis/gluconeogenesis” and “fatty acid synthesis” in 
the SOS modules were calculated. We found that almost 
all the genes in the two pathways were positively corre-
lated in sesame and rapeseed, while negative correlations 
were found in cotton, soybean, and maize (Fig. 4d). The 
absolute values of kME, representing the module eigen-
gene-based connectivity, of the two pathways had a sig-
nificant difference in sesame, rapeseed, and soybean, 
showing relatively high values of FAS genes (Fig.  4e), 
implying the importance of FAS genes to play hub roles 
in the networks.

Network alignment is a method for efficiently integrat-
ing diverse and complex network data to identify func-
tionally conserved networks across species. Therefore, 
to uncover evolutionarily conserved networks regulat-
ing oil accumulation, we merged the SOS modules in 
each oil crop as input, and a total of 692 aligned genes 

with similar network structures and sequence homol-
ogy from the 4 oil crops were finally found (Additional 
file 8: Dataset S6). The protein domains of all the aligned 
network genes were reported as protein kinases, recep-
tor tyrosine kinases, Cytochrome P450, MYBs, etc., 
with 465 Pfam entries common to all 4 crops (Addi-
tional file 3: Fig. S19). A conserved clique including SOS 
genes is shown in Fig. 5a. To determine the effects of the 
conserved genes on seed oil accumulation, we deter-
mined the SOCs of Arabidopsis mutants for 5 genes 
in the clique. The results showed that the SOC of the 
pdat1 mutant increased by 8% compared with that of 
the wild type, while that of the other mutants decreased 
by 15 to 56% (Fig. 5b and Additional file 9: Dataset S7). 
Furthermore, we found genes involved in “glycolysis/
gluconeogenesis” and conserved in the SOS networks 
of each oil crop (SIN_1016466, BnaC01G0366100ZS, 
GH_D12G2756, Glyma.10G201100), which encoded 
PYRUVATE KINASEs (PKs) catalyzing the conversion 
of phosphoenolpyruvate to pyruvate in glycolysis. All 4 
genes had relatively high absolute values of kME, show-
ing high intramodular connections (|kME|≥ 0.75, Addi-
tional file 10: Dataset S8). We collected the top 30 genes 
in weights connected to the PKs, and most genes were 
highly positively associated with the PKs (Fig.  5c). The 
expression of these genes also differed between high- 
and low-oil materials in each oil crop (Fig. 5d). In maize, 
PK also showed a relatively high degree of connectivity 
(|kME|= 0.76, Additional file  10: Dataset S8). The top 
30 genes linked to PK in weight contained several genes 
related to starch metabolism, such as STARCH SYN-
THASE 2, STARCH BRANCHING ENZYME 2.2, and 
AGPase (Additional file 3: Fig. S20). Among these genes, 
most were consistently highly expressed during the 
development stages (Additional file 3: Fig. S20). In sum-
mary, our cross-species screening of conserved pathway 
regulators provides detailed information on conserved 
genetic regulation of carbon source allocation and oil 
accumulation.

Competing pathways of lipid metabolism are individually 
regulated among species
Based on the DEA, we found that secondary metabolism 
as well as protein metabolism affected lipid metabolism 
to different degrees in different oil crops; therefore, we 
explored and compared the relationships between genes 
involved in the two kinds of metabolism with SOS genes 
among the four species. Through the GSEA of SOS mod-
ules, “amino acid metabolism” was significantly associ-
ated with network hubs in all oil crops and maize, while 
“metabolism of other amino acids” was significantly asso-
ciated with network hubs only in soybean (GSEA P < 0.05, 
FDR Q < 0.1, Additional file  3: Fig. S17 and Additional 
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file  7: Dataset S5). Meanwhile, different types of amino 
acids were closely associated with the SOS network 
hubs among species, such as “cysteine and methionine 
metabolism” in sesame; “phenylalanine, tyrosine, and 

tryptophan biosynthesis” and “glycine, serine, and threo-
nine metabolism” in rapeseed; “valine, leucine, and iso-
leucine biosynthesis” in cotton; and “alanine, aspartate, 
and glutamate metabolism” in soybean (Additional file 7: 

Fig. 4  Relationships between genes in the “fatty acid synthesis” and “glycolysis/gluconeogenesis” in SOS modules in different species. a KEGG 
enrichment of SOS modules in each oil crop and maize using GSEA (categories enriched at least three times more). NES represents normalized 
enrichment scores which indicate the distribution of KEGG categories across a list of genes ranked by module membership kME. b Comparison 
of expression levels between FAS genes in SOS modules and not in the SOS modules in high-oil materials of each crop. nsP value > 0.05, *P 
value ≤ 0.05, **P value ≤ 0.01, ***P value ≤ 0.001, ****P value ≤ 0.0001, Wilcoxon test. c Comparison of expression levels between “fatty acid synthesis 
(FAS)” genes and “glycolysis/gluconeogenesis (Gly/Glu)” genes in the SOS modules in high-oil materials of each crop. nsP value > 0.05, *P value ≤ 0.05, 
**P value ≤ 0.01, ***P value ≤ 0.001, ****P value ≤ 0.0001, Wilcoxon test. d Heatmaps showing the Spearman correlation coefficient between FAS, Gly/
Glu genes, and genes in both pathways. e Comparison of the absolute values of module membership kME between FAS, Gly/Glu genes, and genes 
in both pathways in different crops
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Dataset S5). Only “cysteine and methionine metabolism” 
in terms of amino acid metabolism was relatively com-
mon in the four oil crops; however, it was negatively cor-
related with “triacylglycerol biosynthesis” in sesame and 
cotton and negatively correlated with “fatty acid synthe-
sis” in cotton but positively correlated with “fatty acid 
synthesis” in soybean (Fig. 4a).

In addition, the “biosynthesis of other secondary 
metabolites” pathway in rapeseed and cotton was found 
to be significantly associated with network hubs (GSEA 
P < 0.05, FDR Q < 0.1, Additional file  3: Fig. S17 and 
Additional file 7: Dataset S5). Network alignment simul-
taneously identified the genes conserved in the SOS 
networks of four oil crops in “biosynthesis of other sec-
ondary metabolites” (SIN_1005794, BnaC03G0683600ZS, 

GH_D03G0499, Glyma.14G221200), encoding CINNA-
MYL ALCOHOL DEHYDROGENASE (CAD), which 
catalyzes the final step in a branch of phenylpropanoid 
synthesis specific for the production of lignin monomers 
[27]. When network connectivity was examined, the 
genes in rapeseed and cotton showed the most connec-
tions in the network with high kME values (|kME|≥ 0.90, 
Additional file 10: Dataset S8) but were relatively low in 
sesame and soybean (Fig. 6a), suggesting that physiologi-
cal activities of lipid metabolism and lignin biosynthe-
sis may be controlled through up- and downregulation 
of CAD in rapeseed and cotton. The 30 genes with the 
highest weights linked to CAD in different oil crops 
were also collected (Fig. 6a), and the expression level of 
CAD was relatively higher in cotton and rapeseed than 

Fig. 5  Network alignment of SOS modules across oil crops. a A conserved clique of the SOS coexpression networks across species. b Seed oil 
contents of the Arabidopsis mutants of the conserved clique single genes. ****P value ≤ 0.0001, one-way ANOVA test. c The top 30 genes in weights 
connected to the PK. The node color represents the kME value of the corresponding gene in the networks. d Heatmaps of the expression levels 
of the PK network genes of each oil crop in c. Red arrows point to the PK. The values were centered and scaled in the row direction
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that of the other 30 genes (Fig.  6b). GhCAD9 remained 
highly expressed during the critical period of oil accu-
mulation in cotton (20 DPA–30 DPA) (Fig. 6b). Similarly, 
we obtained Arabidopsis mutants of CAD9 (Fig. 6c) and 
determined the crude fat and lignin content of the seeds. 
The cad9 mutants showed a 52% decrease in crude fat 
content and a 36% increase in lignin content (Fig. 6d and 
Additional file 9: Dataset S7), suggesting the regulation of 
the relative crude fat and lignin contents by CAD9.

Discussion
Factors responsible for seed storage accumulation 
differences between grain and oil crops
Storage accumulation and seed structure differed greatly 
in monocotyledonous grain crops and dicotyledonous oil 
crops. In total, 70% of the maize kernel weight is starch, 
most of which is present in the endosperm, while maize 
oil is mainly confined to the germ [28]. The embryo is 
the major component of oil crop seeds and is the main 

site for lipid production and storage. In this study, when 
exploring the genomic factors of seed storage accumula-
tion in different types of crops, we found that the num-
ber of ALM genes in the oil crops accounted for 2% of 
the total genes, which was significantly higher than that 
in monocotyledonous grain crops such as maize and rice 
(P < 0.01, two-sided Fisher’s exact test), suggesting the 
contribution of the selection of genomic variation to dif-
ferences in seed storage accumulation.

Here, we examined the evolutionary processes underly-
ing storage accumulation in different oil and grain crops 
from the perspective of gene coexpression relationships 
in a consistent framework. The results showed that genes 
involved in “glycolysis/gluconeogenesis” were strongly 
associated with the hubs of the SOS networks in both 
grain and oil crops and connected tightly to FAS genes, 
confirming that glycolysis commonly provides the pro-
duction of most oil synthesis precursors [29] and sug-
gesting that this relationship is conserved among species 

Fig. 6  Comparison of CAD networks among different species and seed oil contents and lignin contents of Arabidopsis cad9 mutants. a The top 
30 genes in weights connected to the CAD. The node color represents the kME value of the corresponding gene in the networks. b Heatmaps 
of the expression levels of the CAD network genes of each oil crop in a. Red arrows point to the CAD. c Mature dry seeds of Arabidopsis wild 
type and cad9 mutants. d Average seed oil contents and lignin contents of the indicated genotypes. The error bars represent the standard error 
of the mean, calculated from three sets of biological replicates. *P value ≤ 0.05, ****P value ≤ 0.0001, one-way ANOVA test
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that accumulate different substances. More specifically, 
positive and negative correlations between genes in these 
two pathways also affect oil accumulation. Gene col-
laboration is essential for hierarchical regulation, which 
enables functional genes in the network to promote or 
balance each other. When more positively related genes 
with the same target function cooperate more closely, the 
function will be amplified by hubs, and the effect on the 
phenotype may be huge. Considering this, we can knock 
out or silence the hub genes that are negatively correlated 
or connected to the competitive pathway so as to create 
efficiently improved varieties. Significantly higher expres-
sion of genes in “glycolysis/gluconeogenesis” than genes 
in “fatty acid synthesis” was found only in maize, sug-
gesting the presence of other “acquisitors” of glycolysis/
gluconeogenesis” substrates in addition to the “fatty acid 
synthesis” process. However, the regulatory networks 
that govern the accumulation of seed storage reserves in 
plants are still largely unknown. Previous related studies 
found that TRANSPARENT TESTA GLABRA 1 plays 
an important role in mediating the accumulation of seed 
storage reserves in Arabidopsis [30]. In this study, we 
found that PK involved in “glycolysis/gluconeogenesis” 
was conserved through network alignment and highly 
connected in the SOS networks of each oil crop. Like-
wise, in maize, PK was highly associated with network 
hubs, and in particular, genes with high weights linked 
to PK included multiple genes involved in starch biosyn-
thesis in crops [31–33]. The importance of PK for seed 
oil accumulation, grain filling, and starch synthesis has 
been reported for a long time; for example, a reduction 
in plastid PK activity in Arabidopsis resulted in a 60% 
reduction in seed oil content [34], mutation of OsPKpα1 
decreased plastid PK activity and led to a significant 
decrease in starch content in mutant w59 grains [35], and 
loss of function of OsPK3 caused reduced PK activity and 
sucrose translocation defects from source to sink in rice, 
which led to compromised grain filling [36]. However, the 
conserved role of PK in regulating lipid accumulation in 
different oil crops has been little reported, and its role 
and interoperability in regulating the allocation of carbon 
sources to starch and lipids in plants are even less known.

Controlling competitive pathways is a potential way 
to improve SOCs
The nonphotosynthetic plastid is an important site for 
the biosynthesis of starch, FAs, and nitrogen assimila-
tion to amino acids in various plant tissues [37]. Nega-
tive correlations between protein and oil content in 
seeds are found in soybean [38–40], B. juncea [41], cot-
tonseed [42], rapeseed [43], sesame [44], and quinoa 
[45]. However, positive correlations are found in maize 
[46] and oats [47]. For a long time, research on the key 

regulatory factors between oil and protein contents in 
seeds has been limited. From the functional enrichment 
of the DEGs between high- and low-oil materials of each 
oil crop at each development stage, we found that genes 
related to protein metabolism were significantly down-
regulated in the high-oil materials of sesame and rape-
seed, which may account for the high SOC. Furthermore, 
although genes in the “amino acid metabolism” were sig-
nificantly associated with the SOS genes in both oil crops 
and maize, suggesting that lipid and protein associations 
were prevalent in different species, the interactions were 
different. First, different types of amino acids were closely 
associated with the SOS network hubs among species, 
such as “cysteine and methionine metabolism” in sesame; 
“phenylalanine, tyrosine, and tryptophan biosynthesis” 
and “glycine, serine, and threonine metabolism” in rape-
seed; “valine, leucine, and isoleucine biosynthesis” in cot-
ton; and “alanine, aspartate, and glutamate metabolism” 
in soybean. Additionally, only “cysteine and methionine 
metabolism” was relatively common in the four oil crops; 
however, its correlations with genes involved in “tria-
cylglycerol biosynthesis” and “fatty acid synthesis” in oil 
crops were different. The results revealed interspecies 
differences in the transformation and accumulation of 
proteins and oils in seeds, and it is necessary to explore 
key regulatory nodes based on species characteristics.

The biosynthesis of secondary metabolites was found 
to be strongly related to the network hubs in the single-
species SOS networks of rapeseed and cotton, indicat-
ing that competition from secondary metabolites may 
significantly influence seed oil accumulation in rapeseed 
and cottonseed. Both rapeseed and cotton had shared 
pathways in the biosynthesis of secondary metabolites 
that were closely related to the hubs of the SOS networks: 
phenylpropanoid biosynthesis and flavonoid biosynthe-
sis. CAD, which was found to be the potential regulator 
for lignins and lipids in SOS networks of rapeseed and 
cotton, catalyzes the final step in a branch of phenyl-
propanoid synthesis specific for the production of lignin 
monomers [27]. Related studies have also shown that 
lignin content in rapeseed coats is significantly negatively 
correlated with seed oil content [48, 49]. CAD was also 
functionally conserved in the SOS networks of each oil 
crop, and the differences in its regulatory mechanisms 
in different crops had critical effects on oil accumula-
tion. A comparison of the Arabidopsis cad9 mutant with 
the wild type confirmed its regulation of oil content and 
lignin content in seeds. The effect of cad4 and cad5 on 
the lignin contents in mature stems has been reported, 
whereas the induction of cad9 did not compensate for 
the absence of cad4,5 activities [50], suggesting that the 
emergence of functional differentiation and the regula-
tory role of CAD9 still needs to be further explored.
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Regulating conserved SOS genes is an important way 
to improve SOCs
To date, increasing seed oil content has been success-
fully targeted through the elucidation and genetic 
modification of the oil biosynthesis pathway. However, 
the increase in oil accumulation that is experimentally 
achieved in the model organisms using genetic manipu-
lations pales in comparison with interspecies differences 
in SOCs. Significantly improving different oil crops has 
become a key problem to be solved.

Consistent DEGs between high- and low-oil materials 
of different oil crops have the potential to act as key regu-
lators to improve seed oil content. In each oil crop, genes 
encoding LPD were both upregulated in high-oil mate-
rials compared to low-oil materials. The dominant role 
of plastid PDHC in the formation of acetyl-CoA during 
lipid synthesis in seeds has been confirmed [51]. LPD, a 
member of a large family of flavoprotein oxidoreductases, 
completes the catalytic cycle by reoxidizing the lipoam-
ide cofactor [52]. However, little is still known about how 
LPDs regulate lipid accumulation in plant seeds. In addi-
tion, we found that genes encoding stearoyl-ACP desat-
urase were differentially expressed between high- and 
low-oil materials of crops, which differed in FA composi-
tions, indicating its functional conservation among spe-
cies as well as its potential to engineer specialized seed 
oil compositions. The consistency in differential expres-
sion of PDAT between high- and low-oil materials among 
species was also found in this study, suggesting its criti-
cal role in lipid accumulation, which has been demon-
strated in individual species [10, 53]. We also identified 
a conserved clique, including the coexpression relation-
ship between PDAT, ABI3, and other genes among oil 
crops. ABI3 was also found to be expressed consistently 
with genes encoding oil-body proteins, which surround 
discrete organelles storing oils. Thus, although research 
on PDAT has never stopped, more needs to be learned 
about PDAT’s crucial interaction with ABI3 in the SOS 
network. The comparison of seed oil contents between 
the Arabidopsis pdat1 mutant and wild type showed 
that PDAT had a significant increase in oil accumulation. 
Previous studies have shown that PDAT1 and DGAT1 
have overlapping functions: the dgat1-1 pdat1-2 double 
mutation resulted in sterile pollen that lacked visible oil 
bodies, and RNAi silencing of PDAT1 in a dgat1-1 back-
ground or DGAT1 in a pdat1-1 background resulted in 
70 to 80% decreases in oil content [10]. This explains why 
the SOC increase in pdat1 mutants may be due to the 
mutual compensation mechanism of PDAT and DGAT​, 
which may be dominated by DGAT​.

Genes with consistent differential expression changes 
during developmental stages were summarized, and 
the importance of most of them for lipid accumulation 

has been verified in some species in previous research. 
The regulatory models of ACETYL-CoA CARBOXY-
LASE and PDHC have been well established [54–57]. In 
this study, genes encoding their subunits were actively 
expressed during seed development. Genes involved in 
the FA synthesis cycle were upregulated during critical 
periods of FA synthesis in different crops, suggesting that 
the elongation of FA carbon chains is strongly conserved 
among species, highlighting their importance. FUSCA3, 
ABI3, and ABI4 are three transcription factors that were 
actively expressed during seed development in all species, 
and their positive role in lipid accumulation has been 
demonstrated in several species [58–64]. Furthermore, 
the negative regulatory effect of HSI2/VAL1 on seed mat-
uration has been proposed [65, 66], but its role in seed oil 
accumulation has not been strongly confirmed, and the 
role of HSI2/VAL1 in TAG synthesis in different oil crops 
is presumed to be conserved from this study.

More importantly, the gene coexpression network 
acts as a functional amplifier and transmitter for indi-
vidual genes, which cannot work independently from 
the community. As found in this study, the expression of 
FAS genes in network modules was higher than that of 
genes not in the network in all species. Here, we identi-
fied gene modules whose coexpression relationships were 
maintained across species through evolutionary history. 
Thus, the results move beyond the observations made in 
studies of individual species to provide new insights into 
what genes and mechanisms may be fundamental to seed 
oil accumulation. For example, the gathering of positive 
effects of gene collaboration in the “fatty acid synthesis” 
and “glycolysis/gluconeogenesis” pathways is crucial for 
oil accumulation, which is reflected not only in the cor-
relation of gene expression in the two pathways but also 
in the number of function-enriched modules.

Conclusions
Overall, we generated a dataset of seed developmen-
tal RNA-seq profiles in four species with markedly dif-
ferent SOCs, providing a comprehensive comparative 
analysis of the seed oil accumulation signatures of gene 
expression and collaboration. We explored the associa-
tions between the accumulation processes of the main 
storage compounds in seeds and found conservation 
and differences among grain and oil crops. Coexpression 
network alignment provides a way to discover key con-
served genes and modules among different species. Our 
work moves beyond the observations made in studies 
of individual species to provide new insights into which 
genes and mechanisms may underlie seed oil accumula-
tion from a multispecies perspective. We hope that our 
study can provide a valuable reference for the efficient 
improvement of oil crops.



Page 14 of 19Chen et al. BMC Biology          (2024) 22:110 

Methods
Plant materials and growth conditions
The cotton materials from our laboratory were G. hir-
sutum acc. TM-1 (low SOC) and G. hirsutum cv. CRI12 
(high SOC). The sesame materials J9014 (low SOC) 
and Yu4 (high SOC) were obtained from the Oil Crops 
Research Institute, Chinese Academy of Agricultural 
Sciences. The soybean materials KF-1 (low SOC) and 
NN1138 (high SOC) were obtained from the National 
Center for Soybean Improvement, Nanjing Agricultural 
University. The rapeseed materials with different SOCs 
came from the State Key Laboratory of Crop Genet-
ics and Germplasm Enhancement, Nanjing Agricultural 
University. All the materials were grown in the field.

The control wild type was the Arabidopsis (A. thali-
ana) Columbia-0 accession. The T-DNA insertion lines 
pdat1 (SALK_032261), plt4 (SALK_097021), exosto-
sin (SALK_018694), umamit25 (SALK_140423), β-tip 
(SALK_125353), and cad9 (SALK_081375) were obtained 
from AraShare (https://​www.​arash​are.​cn/​index/). The 
homozygous mutant plants were identified by the three-
primer (LBb1.3 + LP + RP) method (http://​signal.​salk.​
edu/​tdnap​rimers.​2.​html). We surface sterilized all seeds 
using 75% alcohol before sowing them on 0.8% (w/v) 
agar solid medium (half-strength Murashige and Skoog 
medium, 1% sucrose, pH 5.8–6). After breaking dor-
mancy at 4  °C for 2  days in the dark, we allowed seeds 
to germinate and seedlings to grow in the culture room 
under 14-h light/10-h dark at 22  °C for 7  days before 
transplanting individual seedlings to the soil for further 
growth.

Lipid and protein analysis
Total fats were extracted from frozen mature seeds, and 
the amounts were determined as described in Kang and 
Rawsthorne [67]. The contents of each FA were meas-
ured by GC/MS [68]. The total amount of FAs was cal-
culated as the sum of all the principal components. To 
measure the protein content, 10 mg of seeds was homog-
enized in 1  mL of 50  mM 4-(2-hydroxyethyl)-1-pip-
erazineethane-sulfonic acid/NaOH, pH 7.4, using an 
all-glass homogenizer.

RNA sequencing data analysis
When these materials started flowering, the flowers 
were tagged and sampled randomly within a 10-day 
interval from 0 to 40  DPA. Three biological replicates 
were taken from each time point. The total RNA at five 
stages (0, 10, 20, 30, and 40 DPA) from different mate-
rials was sequenced with the Illumina HiSeq 2500 sys-
tem using the paired-end 100-bp model. The reference 
genomes of soybean, cotton, rapeseed, sesame, and 

maize have all been released and updated (Additional 
file  1: Table  S5) [21–25]. The clean RNA-seq reads 
were mapped to the reference genomes using HISAT 
2.0 [69], respectively. TPM (transcripts per kilobase of 
exon model per million mapped reads) and the mapped 
read counts were calculated by StringTie (version 1.3.5) 
[70] and featureCounts (version 1.6.4) [71], respectively. 
Binary variables (total genes and genes involved in ALM 
and SOS were expressed or not) were compared using 
Fisher’s exact test [72].

The quality of the sequenced libraries was evaluated 
between the sample replicates using PCA (FactoMineR 
version 2.4) [73] and a correlation test by the Spear-
man method as implemented in R (version 3.6.1). The 
global and species-specific PCA was performed using 
the prcomp R package (https://​www.r-​proje​ct.​org/) for 
the top 500 variation gene expression matrixes, collected 
from the read counts to which we applied the variance 
stabilizing transformation implemented in DESeq2 (ver-
sion 1.12.4) [74]. The dataset libraries in which the cor-
relation among the replicates (Spearman’s ρ) was lower 
than 0.85 were removed.

Identification and comparison of genes involved in ALM
In total, 768 genes (after excluding 5 pseudogenes) 
involved in the ALM of A. thaliana were obtained from 
http://​aralip.​plant​biolo​gy.​msu.​edu/ as the query. Protein 
sequences of Arabidopsis were employed as a test for the 
identification process. The identified genes were required 
to satisfy the following three conditions: (i) Target 
sequences with over 33.3% identical matches to the query 
sequences passed Diamond (v0.9.29.130) [75] BLASTP. 
(ii) HMMER3.1 [76] was applied to predict the protein 
domains for protein sequences of the 6 crops, with sig-
nificance thresholds defined by “-E 1e-5” and “–domE 
2e-20.” Gene pairs with the same domains were chosen. 
(iii) The default parameters (− I = 1.5) for OrthoFinder 
(version 2.4.0) [77] were used to assign the genes for each 
crop and Arabidopsis to a unique orthogroup. Binary var-
iables (genes involved in ALM or not with a certain spe-
cies and rice) were compared using a “two-sided” Fisher’s 
exact test [72].

Gene family expansion and contraction analysis
To understand the evolutionary changes of the lipid 
metabolism-related gene families among these four oil 
crops, gene family expansion and contraction analy-
sis were performed for the four crops, maize, rice, and 
Arabidopsis. First, orthologs and paralogs for all seven 
species were collected from the previous identification 
from OrthoFinder (version 2.4.0) [77] and then used to 
construct a STAG species evolutionary tree. The pre-
dicted divergence years of rice and Arabidopsis were 

https://www.arashare.cn/index/
http://signal.salk.edu/tdnaprimers.2.html
http://signal.salk.edu/tdnaprimers.2.html
https://www.r-project.org/
http://aralip.plantbiology.msu.edu/
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collected as a standard from Timetree (http://​www.​timet​
ree.​org/) for r8s (v. 1.81) to construct an over-metric 
tree, adjusting the phylogenetic tree’s scale to time. Then, 
CAFÉ (Version 4.2.1) [78] was used to determine the sig-
nificantly evolved orthogroups after excluding the gene 
families with a notable copy number variation (existing 
only in one species and N > 100). To determine the sig-
nificance of the expansion and contraction of the ortho-
groups, the P values were calculated for each orthogroup 
based on a Monte Carlo resampling procedure, and the 
threshold for a significant expansion and contraction was 
set to a P value < 0.05 (family-wide P value). The branch-
specific P values were obtained by the Viterbi method 
with a randomly generated likelihood distribution. This 
method calculates the exact P values for transitions 
between parent and child family sizes for all branches 
of the phylogenetic tree. A low branch-specific P value 
(< 0.01) indicates a rapidly evolving branch. Finally, the 
annotations of the orthogroups were performed accord-
ing to the Pfam database (http://​pfam.​xfam.​org/) using 
HMMER [76].

Differential gene expression analysis and functional 
enrichment analysis
The differential gene expression analysis was conducted 
in R (version 3.6.1) using the package DESeq2 (version 
1.12.4) [74]. The count tables from featureCounts (ver-
sion 1.6.4) [71] were used as input, and only genes that 
reached a minimum of 10 reads in at least three libraries 
were retained. The selection of P values was controlled 
for a false discovery rate (Q value) by the BH method 
[79] at α = 0.05. After constructing a unified standard 
genome-wide functional annotation for the five species 
through Mercator (https://​www.​plabi​pd.​de/​portal/​web/​
guest/​merca​tor-​seque​nce-​annot​ation), Mapman [80] was 
used to perform functional enrichment analysis of DEGs 
for each species. The model was ORA-FISHER, and Ben-
jamini Yekutilie was used for multiple testing corrections. 
GO enrichment analysis of DEGs was performed with 
the ClusterProfiler (v3.14.0) [81] package in R (version 
3.6.1).

Weighted gene coexpression network analysis
The weighted gene coexpression network analysis 
(WGCNA) package [82] in R (version 3.6.1) was used 
to build the single-species weighted gene coexpression 
networks. The rlog normalized output of the merged 
expressed gene matrix from the high-oil and low-oil 
materials from DESeq2 (version 1.12.4) [74] was used as 
the input for WGCNA. The adjacency matrix was con-
structed from the matrix of Pearson correlations between 
all pairs of genes across the samples using an appropri-
ate soft threshold for each crop. Network modules were 

defined using a dynamic tree-cutting algorithm [83], with 
a minimum module size of 100. Genes belonging to dif-
ferent modules were allocated to different colors, with 
genes not assigned the color gray. The module eigen-
gene was calculated as the first principal component of 
the standardized module expression profiles. The module 
membership of a gene, kME, representing intramodular 
connectivity was estimated by the Pearson correlation 
between the expression level of that gene and the module 
eigengene [84].

Identification of seed oil synthesis modules and gene set 
enrichment analysis
The identification of SOS modules was performed by two 
methods [85]. Genes involved in FA synthesis, FA elon-
gation, desaturation and export from plastid, and TAG 
biosynthesis were selected as SOS genes. First, SOS genes 
in each oil crop and maize were enriched in the net-
work modules using the “greater” Fisher’s exact test [72]. 
Thus, the modules with more SOS genes were chosen (P 
value < 0.05). The second method used a GSEA [86] to 
select modules in which SOS genes played important hub 
roles (GSEA P < 0.05, FDR Q < 0.1). Sets of genes related 
to SOS and genes ranked by kME were subjected to the 
GSEA function in the R package ClusterProfiler (v3.14.0) 
[81] to compare the organization of SOS coexpression 
networks in different species. The functional enrichment 
of the SOS network hubs in each species (SOS module 
networks merged) was performed using GSEA on gene 
sets derived from Kyoto Encyclopedia of Genes and 
Genomes (KEGG) databases with a significance thresh-
old of P < 0.05 and FDR Q < 0.1.

Network alignment analysis
A global alignment of multiple gene coexpression net-
works across species was performed using NetCoffee 
(version 1.0) [87]. NetCoffee searches for a global align-
ment by maximizing a target function using simulated 
annealing. The network files needed by Netcoffee came 
from the merged coexpression network of the SOS mod-
ules and were filtered by a threshold of weight > 0.1. The 
sequence similarity efiles of each pair of species were 
obtained from Diamond (version 0.9.29) [75] BLASTP 
sequence alignment results. The parameter representing 
how much topology contributes to the alignment score 
was set to 0.5 (− alpha = 0.5). Cytoscape v3.9.0 [88] was 
used for network visualizations. The Gasoline [89] plugin 
of Cytoscape v3.9.0 was used for the local alignment of 
the conservative networks from NetCoffee. The BLAST E 
value was also needed for similarity information. All the 
parameter settings were default (the density threshold 
was 0.8; sigma, representing the minimum node degree 
of the initially aligned proteins, was 3).

http://www.timetree.org/
http://www.timetree.org/
http://pfam.xfam.org/
https://www.plabipd.de/portal/web/guest/mercator-sequence-annotation
https://www.plabipd.de/portal/web/guest/mercator-sequence-annotation
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