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Abstract 

Background  Malaria, a deadly disease caused by Plasmodium protozoa parasite and transmitted through bites 
of infected female Anopheles mosquitoes, remains a significant public health challenge in sub-Saharan Africa. Efforts 
to eliminate malaria have increasingly focused on vector control using insecticides. However, the emergence of insec-
ticide resistance (IR) in malaria vectors pose a formidable obstacle, and the current IR mapping models remain static, 
relying on fixed coefficients. This study introduces a dynamic spatio-temporal approach to characterize phenotypic 
resistance in Anopheles gambiae complex and Anopheles arabiensis. We developed a cellular automata (CA) model 
and applied it to data collected from Ethiopia, Nigeria, Cameroon, Chad, and Burkina Faso. The data encompasses 
georeferenced records detailing IR levels in mosquito vector populations across various classes of insecticides. In char-
acterizing the dynamic patterns of confirmed resistance, we identified key driving factors through correlation analysis, 
chi-square tests, and extensive literature review.

Results  The CA model demonstrated robustness in capturing the spatio-temporal dynamics of confirmed IR states 
in the vector populations. In our model, the key driving factors included insecticide usage, agricultural activities, 
human population density, Land Use and Land Cover (LULC) characteristics, and environmental variables.

Conclusions  The CA model developed offers a robust tool for countries that have limited data on confirmed IR 
in malaria vectors. The embrace of a dynamical modeling approach and accounting for evolving conditions and influ-
ences, contribute to deeper understanding of IR dynamics, and can inform effective strategies for malaria vector 
control, and prevention in regions facing this critical health challenge.
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Background
Malaria, caused by the protozoa parasite of the genus 
Plasmodium and transmitted to people through bites 
of infected female Anopheles mosquitoes, remains a 

significant global health challenge. In 2020 for instance, 
approximately half of the world’s population faced 
malaria risk, with 227 and 241 million cases reported in 
2019 and 2020, respectively [1]. Over the same period, 
an estimated 627,000 and 558,000 malaria-related 
deaths occurred. Of the deaths reported, 95% occurred 
in sub-Saharan Africa, with children under 5  years 
accounting for 80% of these deaths [1]. Due to the 
high prevalence of malaria cases in Africa, the World 
Health Organization (WHO) African region carries a 
disproportionately high share of the global malaria bur-
den. Notably, in 2020, four African countries Nigeria 
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(31.9%), the Democratic Republic of the Congo (13.2%), 
Tanzania (4.1%), and Mozambique (3.8%) accounted for 
over half of all malaria deaths worldwide [1].

To combat malaria, several goals that include those 
outlined in the WHO Global Technical Strategy for 
Malaria 2016–2030 have been initiated. These goals, to 
be achieved by 2030, encompass (i) reducing malaria 
incidences by at least 90%; (ii) reducing malaria mor-
tality rates by at least 90%; (iii) eliminating malaria in 
at least 35 countries; and (iv) preventing a resurgence 
of malaria in all countries that are malaria-free [1]. 
To realize these ambitious goals, the focus has shifted 
toward malaria prevention tools and strategies, which 
have significantly reduced the global malaria burden 
over the past two decades [1]. However, recent years 
have witnessed a mitigation slowdown or stagnation, 
particularly in highly burdened countries of sub-Saha-
ran Africa [1, 2].

Methods that include malaria vaccine, preventive 
chemotherapies, and mosquito vector control are com-
monly used to control malaria. Mosquito vector control 
strategies encompass vectors genetic engineering and 
the application of insecticides [3]. However, the develop-
ment of insecticide resistance (IR) among the mosquito 
vectors, and the spatial IR spread remains a significant 
challenge in using insecticides [1, 4]. Hence, over 78 
countries have reported mosquito vector resistance to at 
least one of the four commonly used insecticide classes 
(pyrethroid, organochlorine, carbamate, and organo-
phosphate) between 2010 and 2019 [1]. Additionally, 29 
countries have reported mosquito vector resistance to 
the four major insecticide classes [1]. Spatial distribution 
maps depicting IR reveal alarming prevalence, particu-
larly for pyrethroids and dichlorodiphenyltrichloroeth-
ane (DDT) across sub-Saharan Africa from 2005 to 2017. 
In some areas, the vectors’ mean mortality following 
insecticide exposure declined from almost 100% to less 
than 30% [5].

Insecticide resistance (IR) can occur through various 
mechanisms broadly categorized into four types: tar-
get-site, metabolic, behavioral, and cuticular resistance. 
Target-site resistance is primarily caused by mutations 
at the site of action of an insecticide, which subsequently 
reduces or prevents the insecticide’s binding affinity [6–
8]. Metabolic resistance arises from increased detoxifi-
cation resulting from over-expression or conformational 
changes of the enzymes involved in the metabolism, 
sequestration, and excretion of the insecticide [7, 9]. 
Behavioral resistance involves any modification in the 
insect’s behavior that helps it avoid the lethal effects of 
insecticides [8, 10], while cuticular resistance arises from 
reduced uptake of insecticide because of the modifica-
tions in the insect cuticle [6, 7, 11].

For effective vector control, comprehensive informa-
tion on the occurrence, extent, and temporal dynam-
ics is necessary [5]. To acquire such critical insights, an 
increasing number of studies have focused on suscepti-
bility tests and the modeling and mapping of the spatial 
distribution of IR in malaria vectors. The spatial mod-
eling techniques commonly employed include Bayesian 
geostatistical, generalized linear models (GLMs), gen-
eralized additive models (GAMs), and mapping using 
geographic information system (GIS) [5, 12, 13]. Sev-
eral studies have also employed mathematical models 
to elucidate the population dynamics, and evolution of 
IR in vector populations. Notably, study by McCormack 
et  al. [14] utilized a stochastic metapopulation model 
to explore mosquito population dynamics emphasizing 
the effects of breeding site fragmentation on fine-scale 
mosquito population dynamics. Yamashita et  al. [15] 
introduced a numerical model to simulate the popula-
tion dynamics of Aedes aegypti in an urban neighbor-
hood. The study involved use of finite volume method, 
and integrated various external factors such as wind pat-
terns, chemical insecticide usage, and topology data to 
understand mosquito population spread within the city. 
Another study by da Silva [16] explored the impact of 
releasing genetically modified male mosquitoes on the 
spatial dynamics of Aedes aegypti populations. Further 
contributions to the field include the development of a 
deterministic mathematical model focusing on mosquito 
population dynamics with chemical control interventions 
[17], and the integration of mathematical models with 
trap data to estimate the growth, prevalence, and man-
agement strategies for Aedes aegypti [18]. Other math-
ematical modeling efforts have aimed at understanding 
mosquito population dynamics [19], dispersal patterns 
in varied environments [20], and the effects of seasonal 
changes on mosquito population sizes [21].

The accuracy and robustness of the models employed 
are intrinsically tied to the quality of the gathered data. 
However, modeling efforts are confronted by numer-
ous challenges, chief among them being the scarcity of 
IR data, particularly in regions where susceptibility tests 
have not been conducted. Furthermore, mapping IR 
involves navigating diverse agro-ecological zones, each 
with its unique physical characteristics, vector habitats, 
ecological nuances, and vector biological traits. These 
agro-ecological variations introduce complexity into the 
modeling process, as the IR dynamics may vary signifi-
cantly across different zones. Hence, understanding the 
intricacies of vector ecology and their responses to insec-
ticides within these various ecological contexts is essen-
tial for the development of robust and accurate models. 
To develop an optimal model, it is essential to account 
for the variability in IR attributed to different ecological 
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zones. Whereas current models provide valuable insights, 
they are static in nature, meaning that the coefficients 
estimating the level of IR remain constant over time. 
However, the spread of IR is akin to a diffusion process, 
influenced by a cause-and-effect mechanism. Hence, it 
is necessary to consider the adoption of dynamic mod-
els as they have the capability to capture the spatial and 
temporal dynamics of confirmed IR in various locations. 
Unlike static models, dynamic models recognize that IR 
levels can change over time due to evolving ecological 
conditions and selective pressures. However, to the best 
of our knowledge, there has been no study that utilizes 
a dynamic model to characterize IR. We believe that 
such an approach could provide a new perspective and 
a more accurate representation of the evolving nature of 
IR, especially in the context of changing ecological con-
ditions and the complex cause-and-effect mechanisms 
at play. In this study, we introduce an innovative model 
designed to characterize the spatio-temporal phenotypic 
resistance in the Anopheles gambiae complex and Anoph-
eles arabiensis malaria vector species.

Results
Exploratory data analysis
Principal component analysis (PCA) results for An. gam-
biae complex and An. arabiensis indicate that the first 
eight (8) principal components (PCs) explain over 80% of 
the variation in the data for pyrethroid, organochlorine, 
and organophosphate classes. All PCs have eigenvalues 
greater than 1, which is consistent with the Kaiser crite-
rion suggesting the use of PCs with eigenvalues exceed-
ing 1. The summarized results are presented in Table 1.

For each PC, the drivers considered important (i.e., 
those with absolute correlation coefficients of > 0.2) are 
listed as supplementary materials (Additional file  1: 
Table S1). The results showed that a majority of PC1 con-
sisted of drivers related to agricultural activities.

In the correlation analysis, it was observed that IR 
drivers were significantly correlated with confirmed 
resistance to different classes of insecticides. These driv-
ers included human-related activities and characteris-
tics such as crop farming and population densities and 
counts. However, the correlation tests also revealed weak 
correlations between most IR drivers and confirmed IR 
(Additional file 2: Table S2).

The cluster analysis was performed to identify groups 
of IR drivers that exhibited similar patterns. Additional 
file 3 presents both dendrogram and tabular summary of 
the clustering of drivers. These clusters were valuable in 
determining the similarity between variables, which was 
further supported by the correlation output results, and 
whether they explained the variation in the same compo-
nent in PCA analysis.

The results of chi-square tests indicated a significant 
association between different LULC classes and IR states. 
The classes include urban and built-up lands, croplands, 
cropland/ natural vegetation mosaics, woody savannas, 
mixed forests, grasslands, barren, water bodies, savannas, 
permanent wetlands, evergreen broadleaf forests, closed 
shrub lands, open shrub lands, and deciduous broadleaf 
forest. Further, the use of indoor residual spraying (IRS) 
was found to be significantly associated with the IR states 
in most of the cases. Table  2 and Additional file  4 pre-
sents the results of chi-squared test.

Within the LULC classes, urban and built-up lands, 
croplands, cropland/natural vegetation mosaics and 
grasslands, woody savannas, and water bodies had higher 
reported incidences of confirmed IR to pyrethroid and 
organochlorine. Further, barren land and mixed forests 
exhibited strong association with confirmed vector’s 
resistance to pyrethroids (Fig. 1).

Spatio‑temporal distribution of confirmed IR state 
in anopheles gambiae complex
The CA model successfully predicted the spatio-tempo-
ral distribution of confirmed IR in An. gambiae com-
plex in Ethiopia, Cameroon, and Burkina Faso with 

Table 1  Principal component analysis (PCA) results for Anopheles 
gambiae complex and Anopheles arabiensis for pyrethroid, 
organochlorine, and organophosphate classes

PC principal components

Anopheles 
gambiae 
complex

Anopheles 
arabiensis

Insecticide class PC8 PC6
Pyrethroid Eigenvalue 1.035 1.301

Proportion of variance 0.023 0.038

Cumulative propor-
tion

0.810 0.815

Organochlorine PC8 PC5
Standard deviation 1.036 1.410

Proportion of variance 0.023 0.046

Cumulative propor-
tion

0.810 0.818

Carbamate PC19 PC9
Eigenvalue 0.960 1.226

Proportion of variance 0.020 0.042

Cumulative propor-
tion

0.804 0.830

Organophosphate PC8 PC8
Eigenvalue 1.020 1.311

Proportion of variance 0.023 0.048

Cumulative propor-
tion

0.805 0.841
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accuracies over 80% in most cases after fine-tuning 
(Additional file  5: Table  S4). Moreover, a significant 
proportion of the georeferenced points on confirmed 
presence of IR state coincided with the locations iden-
tified by the CA models as having a likelihood of con-
firmed IR state (Figs.  2, 3, and 4). Additional file  5 
presents the accuracies obtained following comparison 
of the actual and predicted spatio-temporal distribution 
of confirmed IR in An. gambiae complex in different 
countries for the entire study period. However, Figs. 2, 

3, and 4 present visual representation of selected years 
within the study period.

Cellular automata (CA) model validation
The CA models, when validated in Nigeria and Uganda, 
accurately predicted the spatio-temporal dynamics of 
confirmed IR in An. gambiae complex with high accu-
racies over 80% in most of the years (Additional file  2: 
Table S2). When comparing the locations with reported 
confirmed IR state and the model’s predictions, it was 
observed that the majority of the actual and predicted 

Table 2  Results of chi-square test on the association between potential insecticide resistance (IR) drivers and the confirmed resistance 
state in malaria species

df degree of freedom, IRS indoor residual spaying, IR insecticide resistance

Species Potential IR drivers Insecticide class Chi-squared value df P-value

Anopheles gambiae complex Land use land cover Pyrethroid 174.7500 26  < 0.0001

Land use land cover Organochlorine 104.7500 26  < 0.0001

IRS pyrethroid Pyrethroid 109.5300 2  < 0.0001

IRS Organochlorine Organochlorine 60.6070 2  < 0.0001

IRS Carbamate Carbamate 4.4636 2 0.1073

IRS Organochlorine Organophosphate 25.9680 2  < 0.0001

Anopheles arabiensis Land use land cover Pyrethroid 179.5200 28  < 0.0001

Land use land cover Organochlorine 112.1900 28  < 0.0001

IRS pyrethroid Pyrethroid 3.1051 2 0.2117

IRS Organochlorine Organochlorine 39.9720 2  < 0.0001

IRS Carbamate Carbamate 5.9679 2 0.0506

IRS Organochlorine Organophosphate 5.5849 2 0.0613

Fig. 1  Distribution of confirmed insecticide resistance across various land use land cover classes
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confirmed IR locations coincided. Figures 5 and 6 provide 
visual representations of the model outputs for selected 
years, following model validation. The years present were 
selected because of high frequencies of reported con-
firmed IR compared to the excluded years. Additional 
file 2 presents the corresponding accuracy values for all 
the entire study period.

Spatio‑temporal distribution of confirmed IR state 
in Anopheles arabiensis
The CA models accurately represented the spatio-
temporal distribution of confirmed IR in An. arabien-
sis in Ethiopia and Chad, achieving accuracies of over 

80% in most cases following fine-tuning (Table 3). Fur-
thermore, a significant portion of the georeferenced 
points indicating confirmed IR state coincided with 
the locations identified by the CA models as likely to 
contain confirmed IR state, as illustrated in Figs.  7 
and 8. Table  3 details the accuracy levels achieved by 
comparing the actual versus predicted spatio-temporal 
distribution of confirmed insecticide resistance (IR) 
in An. arabiensis across various countries throughout 
the entire study duration. Conversely, Figs. 7 to 8 offer 
a visual depiction of the confirmed IR distribution for 
specific, selected years within the study period, high-
lighting temporal variations and trends.

Fig. 2  Spatio-temporal dynamics of confirmed resistance in Anopheles gambiae complex to a pyrethroid, b organochlorine, c carbamate, and d 
organophosphate in Ethiopia
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Cellular automata (CA) model validation
Due to limited data points for confirmed IR in An. arabi-
ensis for many countries, with some having 1 or 2 records 
for the entire period considered, validation of the mod-
els was challenging. To address this, the CA models were 
deployed to Cameroon with acceptable data points, and 
the results compared with those from previous stud-
ies. This comparison revealed that CA model outputs as 
shown in Fig. 9, coincided with locations where previous 
studies reported IR. The maps also coincide with regions 
of occurrence of An. arabiensis consistency. This clear 
demonstration underscores the strength of our method-
ology, which possesses the capability to predict patterns 
and occurrences in regions where the model did not have 
access to data during the calibration exercise. In essence, 
it showcases the robustness and generalizability of our 
model beyond the specific data points used for its devel-
opment. This ability to extrapolate and generate accurate 

predictions in data-scarce areas is a significant advantage 
of our approach and contributes to its effectiveness in 
understanding and characterizing the spatial and tem-
poral dynamics of confirmed insecticide resistance in 
malaria vectors.

Discussion
The developed CA models exhibit a remarkable capabil-
ity to effectively capture the spatio-temporal dynamics of 
confirmed insecticide IR state in An. gambiae complex 
and An. arabiensis populations. This efficacy is clearly 
demonstrated by the strong agreement between the 
actual confirmed IR incidences and the CA outputs gen-
erated by the CA models. Moreover, the high accuracy in 
scores obtained during out-of-sample validation highlight 
the reliability and precision of our modelling approach, 
which has also been demonstrated in literature [22]. The 
models’ ability to accurately depict the distribution of 

Fig. 3  Spatio-temporal distribution of confirmed resistance in Anopheles gambiae complex to a pyrethroid, b organochlorine, and c carbamate 
in Cameroon
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confirmed IR can be attributed to; firstly, the inclusion 
of transition rules that account for the variability of IR in 
different agro-ecological zones contributes to their effec-
tiveness. This consideration ensures that the models can 
adapt to the specific conditions and factors influencing 
IR within each zone, resulting in a more accurate repre-
sentation of the spatio-temporal dynamics.

Secondly, a significant enhancement to the method-
ology is the incorporation of an additional term in the 
CA’s function, allowing for the modeling of the spatio-
temporal distribution of confirmed IR states. This exten-
sion enables the models to account for the possibility of 
confirmed IR emerging in areas that are not part of the 

immediate neighborhood cells. This is particularly valu-
able in  situations where the spread of IR is not solely 
determined by neighboring cells but is influenced by 
the conditions prevailing in specific locations. Thus, the 
results emphasize that confirmed IR states are highly 
dependent on the unique conditions of locations, rather 
than solely on the spread from an initial point. The key 
driving factors identified through correlation analysis, 
chi-square tests, and existing literature include insecti-
cide use, agricultural activities, human population den-
sity/counts, and environmental factors (temperature, 
humidity, and precipitation) [15, 17]. Notably, urban 
and built-up lands, croplands, and cropland/natural 

Fig. 4  Spatio-temporal distribution of confirmed resistance in Anopheles gambiae complex to a pyrethroid, b organochlorine, c carbamate, and d 
organophosphate in Burkina Faso
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vegetation mosaics consistently exhibited higher propor-
tions of confirmed IR compared to other LULC classes. 
This association can be explained by the increased pres-
ence of human populations, intensified agricultural activ-
ities, and higher insecticide usage in these areas, all of 
which contribute to a greater likelihood of confirmed IR. 
Previous studies have also highlighted the role of urbani-
zation and various agricultural practices, such as rice, 
cotton, sugarcane, and vegetable farming, in promoting 
the emergence of IR within malaria vector populations 
in different regions. These findings underscore the com-
plex interplay of environmental and human-related fac-
tors in shaping the dynamics of IR in mosquito vectors, 

emphasizing the need for region-specific approaches to 
IR management and control [16, 23–26].

Our findings also indicate a prevalent resistance among 
vector to organophosphates in barren land. These areas 
are often characterized by irrigation practices to facilitate 
agriculture, as noted in [27]. The agriculture activities in 
such drylands are susceptible to severe pest infestations, 
resulting in high use of inorganic pesticides, including 
organophosphates, to combat these pests [27]. Addition-
ally, the use of organophosphates extends beyond agri-
culture for the control of a wide range of public health 
pests across different land use and land cover (LULC) 
classes [28], Confirmed resistance of malaria vectors to 

Fig. 5  Spatio-temporal distribution of vectors confirmed resistance in Anopheles gambiae complex to a pyrethroids, b organochlorine, c carbamate, 
and d organophosphate in Nigeria
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organophosphates in irrigated regions has also been doc-
umented [29], suggesting that the extensive application 
of these chemicals is a likely catalyst for the development 
of resistance in both targeted and non-targeted insect 
populations, including vectors. Moreover, the widespread 
resistance of vectors to pyrethroids and organochlorines 
has led to an increased reliance on organophosphates and 
carbamates as alternative control measures. This shift 
raises concerns about the potential for vectors to develop 
resistance to these insecticides as well [30], highlighting 
a cycle of resistance development that could undermine 
efforts to manage vector populations effectively.

Furthermore, the significant correlation between 
environmental factors and IR in malaria vectors can be 
attributed to the ectothermic nature of these vectors. 
Ectothermic organisms, like malaria vectors, rely heav-
ily on local environmental conditions for their survival 
and metabolic activities. Hence, it becomes crucial to 
consider environmental variables when monitoring 
IR, as they directly impact the vector populations [31]. 
Temperature plays a vital role in shaping the dynamics 
of IR in mosquito vectors. Temperature has a signifi-
cant association with IR because it can regulate enzyme 
activities and gene expression, thereby influencing the 

Fig. 6  Spatio-temporal distribution of vectors confirmed resistance in Anopheles gambiae complex to a pyrethroid, b organochlorine, c carbamate, 
and d organophosphate in Uganda
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metabolism of insecticides within the malaria vectors 
[32]. In harsh environmental conditions, the expres-
sion of enzymes in insects tends to increase, potentially 
leading to higher levels of resistance [32]. Previous 
studies have also demonstrated that mosquito vectors 
exposed to insecticides tend to have higher levels of 
enzyme expression [27, 29]. Therefore, temperature can 
significantly affect the efficacy of insecticides against 
African malaria vectors [33].

The observed significant association between insec-
ticide usage and confirmed IR across various areas fur-
ther highlights the role of insecticide pressure in driving 
IR in mosquito vectors. The intensive use of insecticides 
for malaria vector control, whether through ITNs or IRS, 
is a major contributing factor to the development of IR 
in mosquito populations [34]. The continued applica-
tion of insecticides exerts selective pressure on the vector 
populations, favoring the survival and reproduction of 
individuals with resistance traits. As a result, IR becomes 
more prevalent within the mosquito vector populations 
over time. These findings underscore the importance of 
sustainable and strategic insecticide use in malaria con-
trol programs to mitigate the development of IR and 
ensure the continued effectiveness of vector control 
interventions.

While our model incorporated various factors associ-
ated with IR occurrence, there were factors, such as oil 
spillage, specific agricultural insecticide usage, and their 
concentration levels, that were not included due to data 
unavailability [35]. Because such IR driving factors vary 
in space and time, we believe that their inclusion could 
have further enhanced the robustness of the CA model 
in predicting IR dynamics. These additional variables, 
if considered, might have provided more comprehen-
sive insights into the mechanisms driving IR in malaria 
vectors.

It is important to note that the data available for IR in 
the earlier years may not be as accurate and detailed as 
contemporary data, primarily due to differences in data 
collection methodologies, reporting, and geo-referenc-
ing. This potentially leads to discrepancy in data qual-
ity. However, in the recent years, advances in technology 
and improved surveillance systems, and standardization 
procedures of conducting susceptibility tests have led to 
more accurate and precise data. This discrepancy in data 
quality could partially explain instances where the model 
achieved lower accuracy scores.

Additionally, some of the countries used for model vali-
dation had limited initial and subsequent IR data records, 
making it challenging to conduct a comprehensive 

Table 3  Accuracy scores obtained following the validation of our cellular automata models’ outputs for confirmed insecticide 
resistance IR state in Anopheles arabiensis in Ethiopia and Chad

CA cellular automata

Anopheles arabiensis

Ethiopia Chad

Year Pyrethroid Organochlorine Carbamate Organophosphate Pyrethroid Organochlorine Carbamate Organophosphate

2001 - - - - - - - -

2002 - - - - - - - -

2003 - - - - - - - -

2004 - - - - - - - -

2005 - - - - - - - -

2006 - - - - - - - -

2007 - - - - - - - -

2008 - - - - 1.0000 - - -

2009 - - - - 1.0000 1.0000 - -

2010 - - - - 1.0000 - - -

2011 1.0000 1.0000 - - - - - -

2012 - - - - - - - -

2013 1.0000 1.0000 - - - - - -

2014 1.0000 0.8333 - 0.7500 - - - -

2015 1.0000 0.8462 1.0000 0.5000 - - - -

2016 0.7778 0.7778 1.0000 1.0000 - - - -

2017 - - - - - - - -

Mean 0.9556 0.8839 1.0000 0.7500 1.0000 1.0000 - -
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comparison between the actual and predicted maps. To 
overcome this limitation, we compared our model out-
puts with those of other studies. For instance, in Cam-
eroon, our model’s identification of areas with confirmed 
resistance in An. arabiensis coincided with habitat suit-
ability maps for the same species from previous studies 
[36]. Generally, in addressing the challenge of confirmed 
IR prevalence, a significant obstacle is the absence of data 
on reported cases in many regions [37]. This gap neces-
sitates the prediction of IR in areas lacking direct evi-
dence. A case in point is the upper regions of Cameroon, 
where records of confirmed IR to An. Arabiensis are 

notably sparse. Intriguingly, this area is adjacent to the 
lower regions of Chad, which possess numerous records 
of confirmed IR, suggesting a consistency in the predic-
tion of IR within the same agro-ecological zone. Such 
results further highlights lack of records of confirmed IR 
in some regions, possibly because no IR related study has 
been carried out there, or else, the findings have not been 
availed publicly. Hence, the results primarily highlight 
the scarcity of reported IR cases rather than inaccura-
cies in prediction leading to false positives. This scenario 
underscores the critical role of modeling in identifying 
potential hotspots of confirmed IR cases in regions yet to 

Fig. 7  Spatio-temporal distribution of confirmed resistance in Anopheles arabiensis to a pyrethroid, b organochlorine, c carbamate, and d 
organophosphate in Ethiopia
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Fig. 8  Spatio-temporal distribution of confirmed resistance in Anopheles arabiensis to a pyrethroid and b organochlorine in Chad

Fig. 9  Spatio-temporal distribution of confirmed resistance in Anopheles arabiensis to pyrethroids in Cameroon for selected year
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be directly investigated, thereby offering valuable insights 
into the spread and prevalence of IR where empirical data 
is limited. This external validation helped confirm the 
validity of our model predictions.

Another potential limitation is that some of the 
driver data were available only on a yearly or irregu-
lar basis, while the model was implemented on a 
monthly time step. This discrepancy in temporal reso-
lution could have influenced the results, hence further 
research is needed to assess the impact of data tem-
porality on the accuracy of the CA model. While our 
CA model provides valuable insights into the spatio-
temporal dynamics of confirmed IR in malaria vectors, 
it is important to acknowledge these limitations and 
consider them when interpreting the results. Future 
research should aim to improve data availability and 
accuracy and explore additional factors that could con-
tribute to IR in mosquito populations.

Conclusions
The Cellular Automata (CA) model provides a robust 
characterization of phenotypic resistance in malaria 
vector populations across both space and time. It 
effectively accounts for variations in agro-ecological 
conditions and allows for the possibility of confirmed 
insecticide resistance (IR) occurring in locations that 
may not be in the immediate neighborhood of previ-
ously confirmed IR cases. This modeling approach is 
particularly valuable for identifying areas with the 
potential for malaria vector populations to develop 
resistance, thereby informing more effective manage-
ment strategies for IR. One of the key strengths of 
this model is its adaptability to settings where lim-
ited susceptibility test data is available. By harnessing 
the power of CA, it becomes possible to gain insights 
into IR dynamics in regions with sparse or incom-
plete data, aiding in the early detection and mitigation 
of resistance. Furthermore, the CA models devel-
oped in this study can be applied in various contexts 
beyond malaria vector resistance modeling. They can 
be used in  situations where a particular phenomenon 
is dependent on the unique conditions of a location, 
rather than solely relying on neighboring cells for its 
spread. This versatility opens new avenues for mode-
ling and understanding complex spatial and temporal 
processes. In summary, the CA model presented in this 
study offers a powerful and flexible tool for character-
izing phenotypic resistance in malaria vectors, which 
can contribute to more informed decision-making and 
effective interventions in the fight against malaria and 
other vector-borne diseases.

Methods
The study site
The study was conducted in parts of the African con-
tinent that bear the largest burden of malaria risk and 
have reported cases of IR in malaria vectors [1]. The 
study focused on Nigeria, Burkina Faso, Ethiopia, 
Mali, Cameroon, Ghana, Tanzania, Côte d’Ivoire, and 
Mozambique due to the consistent availability and the 
reliability of data records on IR in malaria vector popu-
lations, spanning from 2005 to 2017.

Data
In this study, we used spatio-temporal data on IR in 
malaria vectors from the Vector Atlas (VA) database. 
This dataset encompasses georeferenced records detail-
ing IR levels in mosquito vector populations across 
various classes of insecticides, namely pyrethroid, 
organochlorine, carbamate, and organophosphate. The 
IR state at each location is quantified as the percent-
age of vectors that survive (or perish) when subjected 
to susceptibility tests. Our study primarily focused 
on regions with extensive and consistent data records 
spanning over 15 years in Nigeria, Burkina Faso, Ethio-
pia, Mali, Cameroon, Ghana, Tanzania, Côte d’Ivoire, 
and Mozambique. By correlating the coordinates of 
these spatio-temporal IR data with corresponding IR 
driver values, we obtained information from various 
databases (Additional file 6: Table S5).

The IR driver variables were chosen based on a thor-
ough review of existing literature and prior research 
endeavors around the modeling and mapping of IR distri-
bution. The drivers encompass a range of critical factors 
that are known to influence the prevalence and spatial 
distribution of IR in mosquito vector populations. These 
factors include:

(1)	 Human population density/count: The density and 
count of human populations in specific regions 
play a pivotal role in shaping IR dynamics. Areas 
with high human density often experience more 
extensive insecticide usage and consequently have a 
greater potential for the development and spread of 
IR [31].

(2)	 Insecticide usage for vector control: The frequency 
and intensity of insecticide application for vector 
control significantly impact the selection pressure 
on mosquito populations. Areas with widespread 
insecticide use are more likely to witness the emer-
gence and propagation of IR [23].

(3)	 Agricultural activities: Agricultural practices can 
influence the presence of IR in malaria vectors. The 
use of insecticides in agriculture can contribute to 
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the selection of resistance traits in mosquito popu-
lations [25].

(4)	 Environmental/Climatic factors: Environmen-
tal and climatic conditions, such as temperature, 
humidity, and precipitation, can affect mosquito 
vector biology and behavior, which, in turn, can 
influence the development and spread of IR [5, 17].

A comprehensive summary of these IR drivers, along 
with their associated sources and relevance, is provided 
in Table  4. These drivers were carefully considered to 
construct a robust model that can effectively characterize 
the spatio-temporal dynamics of phenotypic resistance in 
malaria vector species.

Data exploration
Prior to extracting values of IR drivers from various 
databases, we excluded non-georeferenced records to 
ensure data consistency and reliability. Subsequently, 
we conducted an in-depth exploratory data analysis 
(EDA) for each class of insecticide. The primary objec-
tive of this analysis was to identify the key drivers that 
significantly influenced occurrence of confirmed IR 

state in both space and time. The criteria for defining 
confirmed IR state were based on the guidelines pro-
vided by the WHO, where confirmed IR state is charac-
terized by vector populations exhibiting a mortality rate 
of less than 90% within 60 min following susceptibility 
testing [38]. It is important to note that other states, 
such as possible resistance (mortality ranging from 90 
to 97%) and susceptible resistance (mortality between 
98 and100%), were also considered [38]. However, our 
specific focus was solely on confirmed resistance.

We further assessed the strength of the correlation 
between the identified IR drivers and the confirmed 
resistance state. Additionally, we explored the existence 
of any correlation or clustering patterns among the IR 
drivers themselves. To achieve this, we employed sev-
eral EDA techniques tailored to the nature of the data. 
For continuous data, we utilized principal component 
analysis (PCA), correlation tests, and cluster analysis. 
On the other hand, for categorical data, we performed 
chi-square tests. One of the key metrics used to quan-
tify the strength of correlation was the correlation coef-
ficient (r), expressed mathematically as:

Table 4  Potential drivers of insecticide resistance in malaria vectors

Human population Agricultural activities

1 Population count 23 Millet farming using all techniques

2 Population density 24 Millet irrigated portion

Insecticide use 25 Cassava farming using all techniques

3 Insecticide-treated bed nets (ITN) use 26 Cassava irrigated portion

4 Indoor residual spraying (IRS); pyrethroid, organochlorine, carba-
mate, organophosphate, combined insecticides

27 Sorghum farming using all techniques

Agricultural activities 28 Sorghum irrigated portion

5 Rice farming using all techniques 29 Wheat farming using all techniques

6 Rice irrigated portion 30 Wheat irrigated portion

7 Soybeans farming using all techniques 31 Vegetable farming

8 Soybeans irrigated portion 32 Vegetable irrigated

9 Groundnuts farming using all techniques 33 Banana plantains

10 Groundnuts irrigated portion 34 Yams

11 Other oil crops using all techniques Climatic/environmental drivers
12 Other oil crops irrigated portion 35 Precipitation

13 Coffee farming using all techniques 36 Temperature minimum

14 Coffee irrigated portion 37 Temperature maximum

15 Potatoes farming using all techniques 38 Wind speed

16 Potatoes irrigated portion 39 Relative humidity

17 Sugarcane farming using all techniques 40 Solar radiation

18 Sugarcane irrigated portion 41 Surface water balance

19 Cotton farming using all techniques 42 Normalized difference vegetation index (NDVI)

20 Cotton irrigated portion 43 Enhanced vegetation index (EVI)

21 Maize farming using all techniques 44 Elevation

22 Maize irrigated portion
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where. r = correlation coefficient xi and x are the values 
and mean of x variable respectively yi and y are the values 
and mean of y variable respectively.

The equation for chi-square statistic is.

where χ2 is the chi-square statistic Oi is the observed 
frequency Ei is the expected frequency

To identify the key drivers using PCA, our first step 
involved identifying the principal components (PCs) that 
collectively explained over 80% of the variation in the 
data based on cumulative proportion. Once we had iden-
tified these essential PCs, we then selected IR drivers that 
exhibited loading exceeding 0.25 from each of the iden-
tified PCs. We then used cluster analysis (dendrograms) 
to obtain clusters of the IR drivers. These clusters were 
instrumental in determining which drivers were closely 
related. The selection process for variables to retain or 
drop within these clusters was informed by various cri-
teria. We considered the strength and significance of the 
correlation of each driver with the confirmed IR, as well 
as the correlations among the drivers within the same 
cluster. Additionally, we considered the loadings derived 
from the PCA outputs. In the process of determining 
which drivers to include, we also conducted a literature 
review to help us make informed decisions on which IR 
drivers from the clusters were most relevant and essen-
tial for our study. After obtaining the refined subset of IR 
drivers for use in our analysis, we implemented cellular 
automata (CA) models. We employed the CA approach, 
which allows for consideration of the potential initiation 
of the IR state at different locations, providing a more 
comprehensive understanding of IR dynamics. The CA 
models were specifically designed for An. gambiae com-
plex and An. arabiensis and were implemented separately 
for each class of insecticide under consideration.

Cellular automata (CA) approach
Cellular automata (CA) belongs to a group of spatially 
explicit models (SEM) which are constructed upon 
transition rules defining the progression of a geographi-
cal phenomenon [39]. SEM are computational methods 
rooted in geographical locations, allowing for replica-
tion of the dynamics of geographical phenomenon [40]. 
CA operates by utilizing a grid consisting of individuals 
cells each assigned a finite state. Over time, these cells 
undergo state changes governed by specified transition 

(1)r =
(xi − x) yi − y

(xi − x)2 (yi − y)2

(2)χ2
=

k
∑

i=1

(Oi − Ei)
2

Ei

rules influenced by the state of neighboring cells. In the 
CA approach, the spatial domain is divided into grid 
cells, each initially assigned a state denoted as Ct=0

ij  . The 
state of cell (i,j) at t + ∆t is expressed as;

where Ct
ij is the cell state at time t, Ot

ij is the state of cells 
in its neighborhood,  R represents the transition rules, 
and ∆t is the time step.

In our study, we extended the CA model to encom-
pass the potential for the state of interest, which is con-
firmed resistance, to emerge in cells that do not belong 
to the immediate neighborhood cells at time t + ∆t. This 
confirmed IR state could initiate in any location beyond 
the neighboring cells, if the prevailing conditions in that 
specific location permit the onset of the confirmed resist-
ance state at a given time t. This extension allows for 
accounting for the possibility that “confirmed resistance” 
may develop in areas that are not in direct proximity to 
the current location. It acknowledges that the spatial 
distribution of IR is influenced not only by neighboring 
cells but also by conditions and factors that may impact 
IR emergence in more distant locations within the grid. 
This enhanced model provides a more comprehensive 
understanding of how “confirmed resistance” spreads and 
evolves in space and time. We represented this novel con-
cept as.

where Ct
ij is the cell state at time t, Ot

ij is the state of cells 
in its neighborhood, R represents the transition rules, 
and ∆t is the time-step Nt

ij is the cell which is not part of 
neighborhood cells and whose conditions at time t allows 
for the commencement of the state of interest, in this 
case, confirmed resistance to insecticide.

In the model, the appearance or disappearance of a 
confirmed IR state within a specific cell at a given time (t) 
depends on the current state of the IR drivers associated 
to that cell at time t. For instance, should temperature 
and other relevant IR drivers in the cell favor the preva-
lence of confirmed IR state to prevail, then it persists over 
time. However, if the temperature rises above a threshold 
where the vector with confirmed IR state cannot survive, 
applying the transition rules lead to the disappearance of 
confirmed IR state in that cell, at a given time. This t can 
be expressed mathematically as in Eq. 5;

(3)Ct+�t
ij = f (Ct

ij ,O
t
ij ,R)

(4)Ct+�t
ij =

{

f (Ct
ij ,O

t
ij ,R),N

t
ij = 0

f (Ct
ij ,O

t
ij ,R,N

t
ij),N

t
ij > 0

(5)Ct+�t
ij =

{

1 if R or Nt
ij = True

0 otherwise
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where Ct+�t
ij  is the cell state at time t + ∆t. Here, a value 

of 1 signifies a cell in a confirmed IR state, indicating that 
the cell will maintain this state if the IR driver conditions 
are conducive to the persistence of confirmed IR within 
the mosquito population. Should these conditions dete-
riorate over time, cells previously in a confirmed IR state 
will lose this designation. Such changes in the IR driver 
conditions drive the dynamics of confirmed IR states. 
Similarly, this framework applies to the genesis of con-
firmed IR states in cells beyond the immediate vicinity. 
A cell transitions to a confirmed IR state if the IR driver 
conditions are favorable for the emergence of a mosquito 
population exhibiting confirmed IR.

Model implementation
From the subset of IR drivers obtained after conduct-
ing EDA, we formulated the transition rules for the CA 
model, with a focus on each species and insecticide class. 
These transition rules governed the interaction of differ-
ent IR drivers within cells of interest, that is neighbor-
hood cells and cells within the study area, to determine 
whether the state of IR in such cell transitioned to con-
firmed IR or not. This underscored the importance of 
considering the values of the IR drivers at each cell at 
time step to ascertain the expected dynamics of con-
firmed IR state.

To determine these transition rules and set appropri-
ate thresholds and association between IR drivers and 
confirmed IR state, we employed various analytical tech-
niques including descriptive statistics, cross-tabulations, 
boxplots, proportion tables, pivot tables, and charts. 
Through summary statistics and literature review, we 
established boundaries for the continuous factors driving 
IR. This process involved setting the observed minimum 
and maximum values of these IR drivers as the lower 
and upper thresholds, respectively. For categorical vari-
ables, thresholds were determined by analyzing how their 
categories correlated with the confirmed IR state, utiliz-
ing proportionate analyses, pivot tables, and charts for 
this purpose. To refine our dataset further, we employed 
boxplots to identify and subsequently exclude poten-
tial outliers. In our quest to discern the conditions con-
ducive to the emergence of confirmed IR states in cells 
removed from their immediate neighborhood, we under-
took exploratory data analysis. This step was crucial for 
observing trends in confirmed IR states across varying 
combinations of IR drivers, with cross-tabulations and 
pivot tables being instrumental in this endeavor. Addi-
tionally, we pinpointed specific IR drivers that, even in 
isolation, were linked to higher frequencies of confirmed 
IR prevalence. The significance of these IR drivers was 
ascertained through correlation tests, aiding in the iden-
tification of unique driver combinations that consistently 

foster confirmed IR states in mosquito populations. Liter-
ature reviews further reinforced our findings, confirming 
that certain IR driver combinations indeed promote con-
firmed IR states. For instance, we found that mosquito 
populations from areas practicing rice farming through 
irrigation consistently exhibited confirmed IR states, 
regardless of other agricultural methods employed. 
Other significant combinations identified include areas 
engaging in both irrigated rice and vegetable farming 
with temperatures spanning 15 to 38 °C; and locales with 
insecticide coverage (ITN use and IRS) surpassing 0.76, 
alongside vegetable farming and similar temperature 
ranges, as supported by literature [41, 42]. These explora-
tory analyses underscore the concept that IR states can 
propagate from their point of origin to neighboring areas, 
a phenomenon supported by various studies [30, 43–45] 
and indicative of a diffusion process. Furthermore, the 
transition rules derived from our analyses are detailed in 
the code, available in the section dedicated to data and 
material availability.

Once the transition rules were established, we 
divided several countries into grid cells measuring 5 
by 5 km. We then extracted the values of the IR driving 
factors from various databases, utilizing the centroids 
of each cell for the period spanning from 2000 to 2018. 
These countries included Ethiopia, Cameroon, Burkina 
Faso, Uganda, and Nigeria. The data were available on 
various temporal scales, including monthly, yearly, or 
at intervals of several years. To standardize the tempo-
ral aspect, we converted the data to a yearly basis and 
interpolated them to create monthly time steps, facili-
tating the use of monthly intervals during the model 
implementation.

With the data of all IR drivers for each country for the 
entire period, we arranged them sequentially then con-
verted the data to rasters. The resulting rasters were then 
stacked together, with centroids identifying each cell 
uniquely, while time identified each time step uniquely. 
Therefore, with transition rules formulated, and study 
areas gridded, and rasters for IR variables arranged 
sequentially, the next task was to identify the cell which 
contained the initial records of confirmed IR state for 
respective cell, determine its neighborhoods, then use the 
transition rules to establish whether the neighboring cells 
or those within the study area but not part of the neigh-
borhoods cell would result into confirmed IR state or not. 
Therefore, to implement the CA models, we designated 
certain initial cells as points for the commencement of 
IR, assigning a value of 1 to cells with a confirmed IR 
state and 0 to those without. Subsequently, we executed 
the CA model based on the formulated rules, utilizing 
the Moore neighborhood configuration. Figure  10 illus-
trates the implementation of the model.
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We implemented the CA model for both An. gambiae 
complex and An. arabiensis species, encompassing each 
of the four insecticide classes. The CA models were exe-
cuted using R version 4.0.5 [46].

Model assessment
Model fine-tuning emerged as a critical phase in our 
study, aiming to ensure the model’s capability to accu-
rately reflect the dynamics of IR particularly within the 
An. gambiae complex and An. arabiensis found in sev-
eral parts of Africa. For An. gambiae complex, we con-
centrated our fine-tuning efforts on Ethiopia, Cameroon, 
and Burkina Faso selected for their representation of 
Africa’s diverse agro-ecological landscapes. These coun-
tries served as the backdrop for adjusting our CA mod-
els to predict confirmed IR states for different classes of 
insecticides and vector species accurately. The fine-tun-
ing process was thorough, with a primary focus on refin-
ing transition rules and thresholds, key determinants of 
the CA models’ ability to mimic the actual IR dynamics 
accurately. This refinement began with establishing tran-
sition rules based on identified thresholds, which are 

the ranges of predictor variables linked to confirmed IR 
states. Following this, the models were implemented, and 
their outputs were juxtaposed with actual IR case data to 
evaluate their accuracy. This evaluation informed further 
adjustments to the transition rules and thresholds, along-
side the introduction of new rules catering to interactions 
among subsets of predictors, leading to iterative model 
implementations until the models proficiently mirrored 
the IR dynamics.

Subsequent to the fine-tuning phase, we proceeded to 
validate the models for confirmed IR within An. gambiae 
complex and An. arabiensis. Validation was executed 
using countries not previously involved in the EDA, rule 
formulation, or fine-tuning stages, such as Nigeria and 
Uganda for An. gambiae complex, and Cameroon for 
An. arabiensis. This approach, encompassing both spa-
tial and temporal validation methods, aimed to assess 
if the models’ predictions of IR locations aligned with 
actual reported IR incidences over time, thus ensur-
ing the validation was conducted on an out-of-sample 
basis. Performance metrics, including the classification 
accuracy score, were employed to gauge the CA models’ 

Fig. 10  Summary flowchart of insect resistance model implementation
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effectiveness. This meticulous process of model fine-tun-
ing and validation underscores our commitment to creat-
ing robust and accurate models capable of contributing 
significantly to the understanding and management of IR 
dynamics in mosquito populations across diverse African 
ecosystems.

where; Tp is the true positives Tp is the true negatives Fp is 
the false positives Fp is the false negatives

In addition, we conducted a comparative analysis of the 
outputs of our model with existing models on mapping 
phenotypic resistance in Africa.
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