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Abstract 

Background Regulation of transcription by DNA methylation in 5’-CpG-3’ context is a widespread mechanism allow-
ing differential expression of genetically identical cells to persist throughout development. Consequently, differences 
in DNA methylation can reinforce variation in gene expression among cells, tissues, populations, and species. Despite 
a surge in studies on DNA methylation, we know little about the importance of DNA methylation in population dif-
ferentiation and speciation. Here we investigate the regulatory and evolutionary impact of DNA methylation in five 
tissues of two Ficedula flycatcher species and their naturally occurring  F1 hybrids.

Results We show that the density of CpG in the promoters of genes determines the strength of the associa-
tion between DNA methylation and gene expression. The impact of DNA methylation on gene expression varies 
among tissues with the brain showing unique patterns. Differentially expressed genes between parental species are 
predicted by genetic and methylation differentiation in CpG-rich promoters. However, both these factors fail to pre-
dict hybrid misexpression suggesting that promoter mismethylation is not a main determinant of hybrid misexpres-
sion in Ficedula flycatchers. Using allele-specific methylation estimates in hybrids, we also determine the genome-
wide contribution of cis- and trans effects in DNA methylation differentiation. These distinct mechanisms are roughly 
balanced in all tissues except the brain, where trans differences predominate.

Conclusions Overall, this study provides insight on the regulatory and evolutionary impact of DNA methylation 
in songbirds.

Keywords DNA methylation, Speciation, Transcriptomics, Epigenomics

Background
Genetic lineages that diverge and form new species 
acquire both genetic and phenotypic changes in the 
process. As a by-product, intrinsic reproductive isola-
tion in the form of hybrid dysfunction may evolve. The 
genetic basis of hybrid dysfunction is usually interac-
tions between incompatible alleles that have never been 
tested in the same cellular environment [1]. These so-
called Bateson–Dobzhansky–Muller incompatibilities 
(BDMIs) [2–4] are believed to be important for the com-
pletion of speciation since they are not dependent on the 
environment [5]. While some progress have been made 
in mapping BDMI loci [6], the molecular mechanisms 
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causing hybrid dysfunction is less clear [7]. Incompat-
ible interactions between transcription factors and their 
binding sites is a class of BDMIs that may cause low fit-
ness in hybrids by the misexpression of genes [8]. Mis-
expression in hybrids could also be caused by other gene 
regulatory mechanisms, e.g., aberrant levels of different 
epigenetic marks such as DNA methylation [9]. Given 
the large number of genes, transcription factors, and 
cis-regulatory elements in a vertebrate genome, gene 
regulatory mechanisms are likely to be an important 
albeit understudied source of BDMIs [10, 11]. With large 
genomic data sets, we can now both characterize genetic 
and epigenetic sources of gene regulatory variation and 
thus gain insight not only on the degree of hybrid mis-
expression but also the molecular basis of misregulation 
[12–14]. In this study, we specifically assess the role of 
DNA methylation in gene misexpression of naturally 
occurring hybrids.

In vertebrates, DNA methylation is most frequently 
occurring at cytosines in the 5’-CpG-3’ dinucleotide 
context and is often associated with transcriptional 
repression [15]. How DNA methylation regulates gene 
expression is explained by the “molecular lock” model 
[16]. Following de novo DNA methylation, a gene is 
locked in a silent state preventing further transcription 
until the DNA methylation marks are removed, either 
passively through lack of DNA methylation maintenance 
during replication or actively using enzymatic activity. 
In addition to silencing genes, DNA methylation in ver-
tebrates is also used to silence the expression of trans-
posable elements (TEs) [17–19]. Keeping genes (and 
TEs) repressed through DNA methylation is thought 
to occur through three main mechanisms that are not 
mutually exclusive: (1) DNA methylation prevents bind-
ing of transcription factors to target sequences [20], (2) 
DNA methylation acts as substrate for proteins mediat-
ing repression such as MeCP2 [21], or (3) de novo meth-
ylation alters the chromatin structure to a more compact 
inactive state [22]. Common to these mechanisms is that 
they are all predicted to yield a negative relationship 
between the level of DNA methylation in the promoter 
region and expression level. Gene body methylation on 
the other hand shows (if any) a positive or quadratic rela-
tionship with expression level, but the function of gene 
body methylation is debated [23–27].

While most of the genome is methylated in adult ver-
tebrates, some sequence regions escape the wave of de 
novo methylation occurring during development [28]. 
These so-called CpG islands (CGI) are characterized by a 
high density of CpG dinucleotides compared to the level 
predicted by their GC content [29]. Typically, unmethyl-
ated CpG dinucleotides contribute to an open chroma-
tin state permissible for transcriptional initiation [30]. 

Roughly 70% of all promoters in the human genome have 
CGIs [31]. In humans, most CpG-dense promoters (CGI 
promoters) associated with housekeeping genes remain 
unmethylated in adult tissues, while other CGI promot-
ers are dynamically regulated [32]. In contrast, questions 
remain to what extent CpG-deficient promoters are regu-
lated by DNA methylation [32, 33].

Differences in methylation caused by genetic changes 
among alleles, populations, and species can arise from 
two mechanisms: either cis-regulatory changes spe-
cific to the DNA sequence at a locus or trans-regulatory 
changes because of divergence in structure or regulation 
of interacting factors with potential to change methyla-
tion level. In model organisms, this relationship has been 
investigated using data from hundreds or thousands of 
individuals to determine quantitative trait loci affecting 
methylation level [34]. These regulatory mechanisms may 
also be distinguished using  F1 hybrid individuals, which 
was pioneered in studies of gene expression divergence in 
mice and fruit flies [35, 36], but also recently applied to 
other molecular phenotypes [37, 38]. The hybrid repre-
sents a trans environment in which allele-specific meas-
ures of molecular phenotypes can be measured and 
contrasted with parental species. Here, we extend this 
approach to DNA methylation data and develop a sta-
tistical framework to infer the molecular mechanism of 
DNA methylation differentiation.

Specifically, in this study, we investigate the regula-
tory and evolutionary impact of DNA methylation in two 
Ficedula flycatcher species and their naturally occurring 
 F1 hybrids. The pied flycatcher (Ficedula hypoleuca) and 
the collared flycatcher (F. albicollis) are two species of 
songbirds that diverged approximately 1 MYA [39]. Inter-
specific mating occurs in sympatry, e.g., on the island 
of Öland in the Baltic Sea [40].  F1 hybrids of both sexes 
are infertile [41, 42] and show reduced viability [43], and 
males have an increased metabolic rate [44, 45]. A num-
ber of studies has investigated DNA methylation in birds 
(e.g., [46–54]). In general, methylation patterns in birds 
are similar to other vertebrates. However, compared 
to mammals, much less is known about genome-wide 
DNA methylation patterns across tissues. Also, the inter-
play between DNA methylation, gene expression, and 
genetic variation, during speciation and divergence (i.e., 
the evolutionary impact of DNA methylation), remains 
largely unexplored. For this reason, we first provide a 
detailed examination of the association between DNA 
methylation and gene expression across five different tis-
sues. We then identify differentially methylated regions 
(DMRs) on a genome-wide scale between tissues and 
species and between parental species and  F1 hybrids. 
We also investigate molecular mechanisms that could 
explain the differentiation in DNA methylation as well 
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as inheritance patterns of DNA methylation. Finally, we 
explore the role of genetic vs. epigenetic change in differ-
ential gene expression among species as well as in hybrid 
misexpression.

Results
Study system and sequence data
We performed whole-genome bisulfite sequencing from 
samples of five tissues: the brain, heart, kidney, liver, and 
testis in 14 wild-caught male flycatchers belonging to two 
Ficedula flycatcher species and their naturally occur-
ring  F1 hybrids, sampled on the island of Öland in the 
Baltic Sea (Fig. 1). In total, we sequenced 6 collared fly-
catchers, 5 pied flycatchers, and 3  F1 hybrids (41.5 billion 
reads in total) [55]. All  F1 hybrids (HYB) were offspring 
from crosses between female pied (PIE) flycatchers and 
male collared (COL) flycatchers [56]. Each of the 70 
samples was sequenced using 2–9 technical replicates, 
corresponding to 372 technical samples in total (Addi-
tional file  1: Table  S1). On average, 592  M reads were 
obtained per biological sample. We then collated the 
whole-genome bisulfite sequencing data with previously 
sequenced RNA-seq data from the same 70 tissue sam-
ples [56, 57], thus forming matched genomic data sets.

Association between DNA methylation and gene 
expression across tissues
We assessed the average DNA methylation profile across 
a set of 8563 genes with annotated 5’ and 3’ UTRs, i.e., 
defined transcription start sites (TSSs) and transcription 
termination sites (TTSs) from an updated gene annota-
tion (Additional file 2: Supplementary Results 1). For this 

purpose, we a priori split the genes into two sets based 
on presence or absence of CGI annotation in their pro-
moters, referred to as CGI and Other promoters, respec-
tively. Following Mugal et al. [56], we defined promoter 
regions as the 2-kb upstream region of the TSS. CGI 
promoters made up 59% of the promoter set. We further 
split the genes into three categories of gene expression 
level: low (L: 20% of gene with the lowest gene expres-
sion level), high (H: 20% of gene with the highest gene 
expression level), and medium (M: 60% remaining genes 
with an intermediate gene expression level).

We computed the DNA methylation profile from 5 kb 
upstream of the TSS to 5 kb downstream of the TTS sepa-
rately for tissues and the different sets of genes. Among 
tissues and irrespective of promoter type, the brain 
showed the highest average methylation level and the tes-
tis the lowest (Fig. 2A–J and Additional file 2: Fig. S1). On 
average, gene bodies showed higher methylation levels 
than the 5-kb up- and downstream regions. Splitting the 
gene body into exons and introns revealed a higher meth-
ylation level in exons (Additional file  2: Fig. S2). Genes 
with CGI promoters showed a drop in DNA methyla-
tion levels especially around the TSS (Fig. 2A–E). Genes 
with low expression generally showed higher promoter 
methylation, in particular for CGI promoters, but in most 
tissues lower gene body methylation than the other cat-
egories, regardless of promoter type. The exception to the 
latter pattern was the brain which showed the lowest gene 
body methylation for genes with the highest amount of 
expression.

To further assess the relationship between DNA 
methylation and gene expression, we computed a gene 

Fig. 1 Distribution map of pied flycatcher (PIE; F. hypoleuca) and collared flycatcher (COL; F. albicollis) in the southern Baltic Sea region. Pied 
flycatchers are found all over this region (gray) and occur in sympatry (purple) with collared flycatchers in parts of continental Europe as well as two 
main islands in the Baltic Sea, including Öland where sampling was done for this study



Page 4 of 22Boman et al. BMC Biology          (2024) 22:124 

profile of their correlation across genes (Fig.  2K, L). 
Here, all tissues except the brain showed a weak posi-
tive correlation between gene body methylation and 
gene expression regardless of promoter type. For the 
brain, the relationship was negative. Correlating gene 
expression and DNA methylation across genes also 
revealed a clear difference between promoter types. 
While higher methylation levels in CGI promoters were 
consistent with lower expression (Fig. 2K), methylation 

levels in Other promoters only showed a negative rela-
tionship with gene expression for the brain (Fig. 2L).

We also correlated gene expression and DNA methyla-
tion for each gene across tissues within groups of sam-
ples, which tests whether variation in DNA methylation 
across tissues is associated with variation in gene expres-
sion across tissues (Fig. 2M). Similar to the correlations 
among genes within each tissue, DNA methylation at 
CGI promoters were more negatively correlated with 

Fig. 2 Relationship between DNA methylation and gene expression. Average methylation level was plotted in up- and downstream as well as gene 
bodies for genes with CGI (A–E) and Other (F–J) promoters. Correlation profile between DNA methylation and gene expression across genes (K 
and L) and across tissue (M). DNA methylation profiles were computed for n = 8563 genes with annotated 5’ and 3’ UTRs
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gene expression than in Other promoters, but the overall 
effect was weaker than correlations across genes. A weak 
negative correlation was observed across tissues for gene 
body methylation and expression. For these general pat-
terns of gene body and gene-proximal DNA methylation, 
the difference between COL, hybrids, and PIE was mar-
ginal. To conclude, these results show that promoter type 
is an important predictor for the association between 
promoter methylation and gene expression and that CGI 
promoter methylation is associated with tissue-specific 
gene expression.

Tissue‑specific patterns of DNA methylation
We identified regions with tissue-specific patterns of 
DNA methylation on a genome-wide scale. For this pur-
pose, we called differentially methylated regions (DMRs) 
between tissues using the BSmooth method [58], sepa-
rately per species (COL, HYB, and PIE). We then called 
regions with tissue-specific methylation (tsDMRs) by 
identifying DMRs unique for a certain focal tissue that 
is significantly differentially methylated in comparisons 
to all other tissues. For all sample groups, the testis had 
the highest number of tsDMRs, followed by the heart in 
COL and the brain in PIE and hybrids (Fig. 3A–E). In the 
heart, kidney, and liver, most tsDMRs were hypomethyl-
ated while the reverse was true in the testis (Additional 
file  2: Table  S2). We here use hyper- and hypomethyl-
ated as relative terms of lower and higher methylation in 
a comparison, following Hansen et al. [58]. Our findings 
therefore indicate that tissue-specific methylation can on 
average either have permissive or repressive functions, 
dependent on tissue.

It is possible that functionally important tissue-specific 
patterns are shared between PIE and COL and poten-
tially also present in viable  F1 hybrids. For all tissues, 
more than half of tsDMRs shared between COL and 
PIE were also found in hybrids (Monte Carlo p-value ≈ 
0; Fig.  3A–E). This indicates that the identified tsDMRs 
represent functionally important genomic regions with 
constrained methylation levels. Next, we investigated the 
overlap between tsDMRs and regions with functional 
annotation (Fig.  3F). A general pattern emerged with 
tsDMRs enriched in regulatory regions such as 5’ UTRs 
and promoter regions (especially CGI promoters). Also, 
conserved non-exonic elements (CNEEs), which are sug-
gested to function as tissue-specific regulatory elements 
[59], were enriched in tsDMRs in most tissues. Trans-
posable elements (TEs) were underrepresented in all tis-
sues except in the testis, which also showed the greatest 
bias towards hypermethylation and thus likely repression 
among their tsDMRs.

We overlapped tsDMRs shared by COL, PIE, and 
hybrids with genes and their ± 5-kb up- and downstream 

regions to investigate if tsDMRs show gene ontology 
(GO) terms consistent with tissue-specific function 
(Additional files 3–6: Tables S3-6). This revealed that 
brain-specific DMRs were enriched for genes involved in 
ion transport, while kidney-specific DMRs were enriched 
in HOX genes with developmental function. Heart-
specific DMRs showed no significant enrichment while 
testis-specific DMRs were enriched in, e.g., autophagy-
related terms but also cardiac cell functions in concord-
ance with most of testis-DMRs being hypermethylated 
(Additional file 2: Table S2). These findings highlight that 
the inferred tsDMRs show signatures of tissue-specific 
repression as well as permission [60]. We next investi-
gated the relationship between tsDMRs overlapping with 
genes and tissue-specific expression and found evidence 
for an association in the brain and testis (Additional 
file  2:  Supplementary Results 2). One interesting exam-
ple of tissue-specific regulation is that of KDM2A, a gene 
that represses transcription and is involved in pericen-
tromeric chromatin formation through binding unmeth-
ylated DNA [61], possibly an important function in the 
demethylated germline genome. Three conserved tsD-
MRs are found in the testis inside intron 11 of KDM2A. 
One of these testis-specific DMRs completely overlaps 
a CGI, which may act as an alternative promoter for a 
shorter 5’-truncated forms of KDM2A, which are known 
from other species [62].

Differential methylation between species is enriched 
in regulatory regions
We identified DMRs between species (spDMRs) by 
pairwise comparison between COL, PIE, and hybrids in 
order to investigate general patterns of DNA methylation 
differences between the two parental species and their 
viable F1 hybrids. The brain showed the highest num-
ber of spDMRs (11,330) between species while the testis 
had the lowest (7430) (Table 1). For all tissues, COL were 
significantly more often hypermethylated compared to 
PIE (p-value < 2.2 ×  10–16; binomial test). In hybrids, the 
pattern varied among tissues, with lower methylation in 
the heart and higher methylation in the testis than both 
parentals. For all tissues, there were more DMRs in the 
comparison between PIE and hybrids than between COL 
and hybrids. This means that F1 hybrids have a methyla-
tion level closer to COL than PIE. Since all crosses had 
a COL sire, this could either indicate that the paternal 
methylation pattern has a greater influence on meth-
ylation levels in male offspring or collared-dominant 
inheritance.

We next investigated the overlap between genome 
features and spDMRs. This revealed a significant 
enrichment of spDMRs in regulatory regions such as 
promoters and UTRs (Fig.  3G; adjusted Monte Carlo 
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Fig. 3 Differentially methylated regions between tissues and species. Tissue-specific DMRs (tsDMRs) were shared between sample groups 
to a much greater extent than expected by chance (odds ratio >1 in all cases; A–E). F Enrichment analysis of tsDMRs and annotation features. 
tsDMRs are especially enriched in CGI promoters and generally (but not always) depleted in transposable elements. G Enrichment analysis 
of between-species DMRs (spDMRs) and annotation features. spDMRs are also enriched at CGI promoters but generally depleted in CNEEs 
and introns. Significance in all cases was calculated using 1000 Monte Carlo replicates with a family wise error rate (FWER) of 0.1. In F, G, “fixed 
differences” refer to the 100 ± bp vicinity of fixed differences
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p-value < 0.05, for a sample size of 1000). In contrast, 
other putative regulatory regions such as CNEEs were 
significantly underrepresented among spDMRs in most 
tissues except the testis, in all pairwise comparisons. 
This indicates that CpG methylation at CNEEs may be 
under functional constraint. Transposons, in particu-
lar, long terminal repeat (LTR) retrotransposons were 
enriched in spDMRs.

DNA methylation patterns vary more among tissues 
than species
Our results showed that tsDMRs and spDMRs had 
similar enrichment patterns in promoters and UTRs 
but distinct enrichment patterns in CNEEs and TEs 
(Fig.  3). In order to assess the relative contribution 
of tissue and species to methylation variation within 
annotation sets quantitatively, we performed between-
groups principal component analysis (BCA) and tested 
the significance of the amount of explained variation 
(R2) using permutations [63]. Overall tissue differences 
in methylation level were much greater than evolution-
ary difference between the species (hybrids excluded; 
Table  2), where TEs showed the lowest between-tis-
sue R2 (51%) and highest R2 between species (11%) 
among annotated features. The ± 100 bp region around 
fixed differences showed the greatest between-species 
effect (16%), indicating a cis-genetic coupling between 
genetic and DNA methylation differences. Annotations 
with higher between-tissue R2 had in general lower 
between-species R2 even after controlling for between-
tissue variation.

Genetic differentiation is correlated with differences 
in methylation between species
We tested the association between absolute methylation 
differentiation (Mdiff) and genetic differentiation (FST) 
between COL and PIE across genes (Fig. 4A–C). In gen-
eral, we observed a clear positive correlation between 
FST and Mdiff of ~ 0.15–0.25 for FST based on CpG sites in 
the reconstructed ancestor (CpG FST) and ~ 0.05–0.1 for 
FST based on other sites (non-CpG FST) (Fig. 4D). There 
was some variation between tissues, with a stronger cor-
relation coefficient in the kidney and brain and lowest 
in the liver (Additional file 2: Fig. S3). For CGI promot-
ers, we observed a strong reduction in correlation in the 
promoter region using both CpG FST and non-CpG FST. 
This region is close to the peak of annotated CGIs along 
the gene profile (Additional file  2: Fig. S4). Assuming a 
causal effect of genetic change on DNA methylation dif-
ferences among species, this could mean that the DNA 
methylation level at CGI promoters is under purifying 
selection and that only genetic changes that do not dis-
rupt methylation level are tolerated to segregate at appre-
ciable frequencies. In support of this hypothesis, we do 
not observe this reduction in correlation for genes with 
Other promoters, which we previously determined had a 
weaker relationship with gene expression level and thus 
epigenetic changes may have less of an effect on expres-
sion (Fig.  2L). Furthermore, Mdiff is three times lower 
in the promoter region of CGI promoters compared to 
Other promoters (Fig. 4A). Both non-CpG FST and CpG 
FST are higher in promoters compared to the gene body 
(Fig. 4B, C), especially the exons, which show lower FST 
compatible with purifying selection [64]. This indicates 
that genetic differentiation in promoter regions is on 
average tolerated in both CGI and Other promoters but 
less so when affecting CpG sites in CGI promoters.

Molecular mechanism of DNA methylation differentiation
Changes in DNA methylation that are caused by genetic 
differentiation between species can either be due to 
substitutions that affect the local genomic region (cis) 
or elsewhere in the genome (trans). These molecular 
mechanism may be distinguished through contrasting 
allele-specific effects in F1 hybrids with parental differ-
ences [36]. For this purpose, we developed a statistical 
framework applicable to DNA methylation data inspired 
by previous categorization systems for gene expression 
[36, 66]. We classified loci into categories based on dif-
ferences in DNA methylation between the two parental 
species as well as between the two alleles in the hybrids 
using a beta regression model and an FDR of 0.1 (Addi-
tional file 2: Table S7). To distinguish between alleles in 
the hybrids, we polarized bisulfite-seq reads based on 

Table 2 Between-groups principal component analysis. R2 is the 
proportion of variance explained. Values were rounded to two 
decimal points

Family-wise (0.1) adjusted p-value levels: * < 0.05 ** < 0.005 *** < 0.0005

Annotation R2
between tissues R2

between species R2
between species 

controlled for tissue

Promoters (CGI) 0.75 * 0.03 0.12 *

Promoters (Other) 0.65 ** 0.05 0.14 *

Genes 0.88 * 0.02 0.13 *

Introns 0.55 * 0.09 * 0.20 *

CNEEs 0.61 * 0.04 0.11 *

CDSs 0.67 * 0.04 0.11 *

5’ UTRs 0.68 * 0.04 0.13 **

3’ UTRs 0.64 * 0.05 0.15 *

TEs 0.51 * 0.11 * 0.23 *

CR1s 0.49 * 0.12 * 0.24 *

LTRs 0.55 * 0.10 * 0.22 *

Fixed differences 0.47 * 0.16 * 0.30 *
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fixed differences between COL and PIE and calculated 
allele-specific methylation. In total, around 37,000 fixed 
differences per tissue were used as markers (Additional 
file  2: Table  S8). We measured the allele-specific meth-
ylation in the ± 100  bp region from a fixed difference. 
Most loci either had no CpG site or too low coverage to 
be considered. This restricted the dataset to 3251, 5939, 
6120, and 7701 loci in the brain, heart, liver, and testis, 
respectively.

In our analysis, we focused on the relative contribu-
tion of cis and trans effects on DNA methylation and 
if this varies with tissues and sequence divergence. A 
prediction based on gene expression differences in flies 
and yeast is that the proportion of cis-changes should 
increase with sequence divergence [67, 68]. Since 
the Z sex chromosome is more genetically differenti-
ated between flycatchers than autosomes [69], we per-
formed the analysis separately for Z and autosomes. In 
total, 1.6% of all callable loci across tissues showed a 

statistically detectable difference in at least one of the 
pairwise comparisons COL/PIE or the two alleles in the 
hybrids (Fig.  5A). Distribution of regulatory patterns 
were significantly different among tissues (Fig.  5; Fish-
er’s exact test, p ≈ 0.0002). The brain showed an excess 
of conserved loci (Fig. 5B). Among divergent (non-con-
served) loci, there was also a difference between tissues 
(p ≈ 0.01). An excess of trans differences was found on 
brain autosomes (Binomial test, p ≈ 0.001). For other tis-
sues and chromosome types, an even contribution of cis 
and trans differences could not be rejected. Overall, dis-
tribution of divergence categories was not significantly 
different between autosomes and the Z chromosome 
(p > 0.05). The exception was the testis (p ≈ 0.001), which 
showed an excess of non-conserved loci on the Z com-
pared to autosomes. A trend with a larger proportion of 
cis relative to trans on Z compared to autosomes were 
observed (Fig. 5B) but was not significant for any tissue 
(Fisher’s exact test, p > 0.05).

Fig. 4 Association between genetic and methylation differentiation. A Correlation between FST and Mdiff. B Gene profile for Mdiff. Gene profile 
for non-CpG (C) and CpG FST (D). Different lines in (A and D) are different tissues. Different line types represent the average for different promoter 
types. See Additional file 2: Fig. S3 for (A and D) colored by tissue. Lines in plots represent loess curves with shaded region representing the 95% 
confidence interval of the local regression. The legend for “Annotation” refers to panels (A–C), while FST refers to panel (D), and “Promoter type” 
refers to all panels. For Mdiff: n = 6 COL and n = 5 PIE samples were used per tissue (generated within this study). For FST: n = 19 COL and n = 19 PIE 
individuals were used [65]. Mdiff and FST were averaged in bins for n = 8563 genes



Page 10 of 22Boman et al. BMC Biology          (2024) 22:124 

We next determined the inheritance pattern of meth-
ylation at these loci and investigated its relationship with 
allele-specific methylation in hybrids. This revealed that 
the inheritance pattern is tightly related to the mecha-
nism of molecular divergence (Fig.  5C–F). Major axis 
regressions between parental and hybrid differences 
were negative for all tissues (p < 0.05), indicating an over-
all pattern of additivity (Fig. 5C–F). Subtle differences in 
spread are visible among tissues, with the liver having the 
largest variation between PIE in parental and in hybrids 
indicating more COL dominance  (Fig.  5E). The results 
illustrate two different mechanisms of additive inherit-
ance of a molecular phenotype. Loci with methylation 
difference due only to cis effects showed essentially no 
difference in methylation level whether in parentals or 
in hybrids which indicate that they are strictly additively 
inherited. In other words, cis loci are unaffected by the 
hybrid cellular environment. Other loci are affected by 
the hybrid cellular environment unveiling a trans effect. 
That trans difference here generally makes the alleles in 

hybrids more similar to each other which creates a differ-
ent route to additive inheritance since the overall state is 
in-between parentals. These two types of additive inher-
itance are only distinguishable when measuring allele-
specific methylation.

Tissue‑specific association of differential expression 
with genetic‑ and epigenetic change between collared‑ 
and pied flycatchers
Much of the interest in DNA methylation lies in its abil-
ity to regulate gene expression. Nevertheless, it is not 
clear to what extent changes in DNA methylation are 
involved in the evolution of differential expression (DE) 
between species. Besides DNA methylation patterns, 
also genetic changes in promoter regions are expected 
to affect transcriptional regulation and could ultimately 
result in differential expression. We sought to test the 
relative importance of changes in promoter methylation 
and genetic change in the evolution of differential expres-
sion between COL and PIE. Here, changes in promoter 

Fig. 5 Molecular mechanism of DNA methylation differentiation. A Proportion of different classes of molecular mechanisms of DNA methylation 
differentiation at callable loci. B Proportion of divergent (non-conserved) classes per tissue and chromosome type. C–F Difference between COL 
and PIE alleles in their native parental and hybrid cellular environment. Loci with cis-only effects are clustered close to the origin as predicted 
when the methylation level is independent of cellular environment. In contrast, loci with trans effects show greater variation but the general trend 
is a spread along the additive inheritance axis. Bold black lines in (C–F) are major axis regression lines. Values of p in (C–F) are rounded to two 
decimals. Around 37,000 fixed differences were used as markers with the exact number dependent on tissue (Additional file 2: Table S8). At each 
marker loci, the sample size was n = 3 for each sample group
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methylation are used to assess epigenetic change. We 
used non-CpG FST to assess genetic changes to more 
clearly separate genetic and epigenetic effects. First, we 
explored the patterns of differentiation around well-anno-
tated genes (having both 5’ and 3’ UTR). The number of 
differentially expressed (FDR = 0.1) genes between COL 
and PIE were lowest in the brain and highest in the testis 
(Additional file 2: Table S9). As reported above (Fig. 3G), 
between-species DMRs are enriched in the CGI promoter 
region, with an elevated enrichment in DE compared to 
non-DE genes (Table 3, Fig. 6A). Notably, this same effect 
is not observed in Other promoters (Table 3, Fig. 6C). In 
addition, we observed no clear difference in DMR fre-
quency in the bodies of DE vs. non-DE genes for most tis-
sues. Genetic differentiation (non-CpG FST) is higher for 
DE genes in CGI promoters though only significant in the 
brain and the testis after multiple-test correction (Table 3, 
Fig. 6B). All tissue and promoter type combinations had 
significantly higher non-CpG FST in the bodies of DE 
vs. non-DE genes (Table 3, Figs. 4C and 6B), revealing a 
strong association between local genetic differentiation 
and differential expression in this system.

Cis‑genetic and ‑epigenetic changes do not predict 
misexpression in hybrids
We also investigated whether genetic differentiation 
between COL and PIE as well as hybrid-specific meth-
ylation changes could predict misexpression in hybrids, 
i.e., DE between hybrids and both parental species in 
the same direction. In other words, an overdominant 
or underdominant expression pattern. Overall inherit-
ance of methylation patterns for both promoter types 

were mainly additive (Additional file  2:  Supplementary 
Results 3), in concordance with results from methyla-
tion differentiation around fixed differences (Fig. 5). We 
observed less mismethylation in CGI promoters com-
pared to Other promoters (Additional file 2: Supplemen-
tary Results 3). In general, neither DMRs between each 
parental species and hybrids nor non-CpG FST in pro-
moter regions were higher for DE genes between hybrids 
and both parental species (Additional file  2: Fig. S5). 
In gene bodies, non-CpG FST was still higher in misex-
pressed genes in some cases, while significantly lower in 
the heart (Additional file 2: Table S10). These results indi-
cate that both cis-genetic and cis-methylation differences 
play a relatively minor part in F1 hybrid misexpression 
patterns and are perhaps dwarfed in importance by trans 
effects or distal cis effects.

Discussion
In this study, we investigated both the regulatory and 
evolutionary impact of DNA methylation in two species 
of Ficedula flycatchers and their F1 hybrids. Using these 
two layers of analyses, we could evaluate both the func-
tional impact of DNA methylation in two wild bird spe-
cies and its relation to genetic divergence and differential 
gene expression. In addition, by using F1 hybrids, we 
could investigate the role of methylation in hybrid misex-
pression, thus probing deeper into the regulatory under-
pinnings of hybrid dysfunction.

Genome-wide we observed much greater differentia-
tion of DNA methylation between tissues than species, 
as expected. A similar pattern was observed in a study 
of three primates including humans [70]. Among the 
tissues studied here, the brain showed the most unique 
methylation profile. Only the brain tissue had a nega-
tive correlation between gene expression and gene body 
methylation. This distinctive pattern could be driven by 
the special role of the MeCP2 gene, which is expressed 
at remarkable levels of more than > 16  M proteins per 
nucleus in nerve cells of mammals [71]. MeCP2 binds 
to methylated C’s and recruits the NCoR1/2 co-repres-
sor complex causing transcriptional repression possibly 
through deacetylating histone tails [21, 72]. This mecha-
nism could potentially make DNA methylation marks 
at gene bodies a target of chromatin compaction, which 
could explain why gene body methylation was negatively 
correlated with expression in this case.

We observed that the relationship between DNA meth-
ylation at promoters and gene expression differed among 
promoters with or without CGIs, which we suggest affect 
their different evolutionary constraints. DNA methyla-
tion level at CGI promoters showed a stronger relation-
ship with gene expression, in congruence with a recent 
study of fibroblasts from six mammals and chicken [54]. 

Table 3 Determinants in cis of DE between COL and PIE. 
Average DMR frequency differences and non-CpG FST in the 2 k 
upstream promoter region and throughout the gene body were 
compared between DE and non-DE genes using paired t-tests. 
The table displays p-values of those tests

(-) average value lower in DE genes, P Promoter, GB Gene body

Family-wise (0.1) adjusted p-value levels: * < 0.05 ** < 0.005 *** < 0.0005

Tissue Promoter 
type

PDMR freq GBDMR freq Pnon‑CpG Fst GBnon‑CpG Fst

Brain CGI 1 0.456 (-) 0.041 * 0 ***

Heart CGI 0.023 * 0.039 * 0.1 0 ***

Kidney CGI 0.006 * 1 1 0 ***

Liver CGI 0.003 ** 0 *** 0.125 0 ***

Testis CGI 0.367 1 (-) 0.001 ** 0 ***

Brain Other 1 (-) 0.069 0.013 * 0 ***

Heart Other 0.660 0.2 1 0 ***

Kidney Other 0.171 (-) 0.023 * 1 (-) 0 ***

Liver Other 0.020 (-) 1 1 0 ***

Testis Other 1 1 0.456 0 ***
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We cannot rule out that some genes with Other pro-
moters are also regulated by DNA methylation as have 
been observed in some systems [23, 33]. Our study high-
lights the benefits of whole-genome bisulfite sequencing 
for gaining a complete view of the importance of DNA 
methylation, in contrast to the popular reduced-repre-
sentation bisulfite sequencing method which may bias 
analysis to CpG-rich genes and promoters where varia-
tion in DNA methylation may be more impactful [73, 74]. 
For example, we observed that CGI promoter methyla-
tion to a higher degree was associated with tissue-specific 

expression compared to methylation patterns at Other 
promoters, a conclusion which would be difficult to draw 
using reduced-representation data generated with CG-
specific digestion enzymes.

Beyond promoters and gene bodies, less is known of 
the regulatory impact of differential methylation. What 
is for example the impact of DNA methylation levels on 
enhancer or other kinds of cis-regulatory sequences? We 
observed an enrichment of tsDMRs and a lack of spD-
MRs in CNEEs, a subset of which putatively acts as tis-
sue-specific cis-regulatory elements. DNA methylation 

Fig. 6 Patterns of genetic and epigenetic change at differentially expressed genes between COL and PIE. DE genes had more DMRs in CGI 
promoters (A) but not in the Other promoters (C). DE genes also had higher non-CpG FST (B) across the gene bodies in all tissues and for both 
promoter types (B and D). Lines in plots represent loess curves and shaded regions around lines are the 95% confidence intervals. Differential 
expression was assessed at n = 8418 of the 8563 well-annotated genes. For each tissue, the sample size was n = 6, n = 5, and n = 3 for COL, PIE, 
and hybrids, respectively
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at cis-regulatory elements impacts binding affinities both 
positively and negatively, but the analysis is complicated 
by the fact that transcription factor binding itself seems 
to induce active demethylation possibly through attract-
ing TET demethylases [20, 75]. Still, we can conclude that 
flycatcher CNEEs are likely to be involved in tissue-spe-
cific regulation of expression potentially through tissue-
specific methylation, though experimental studies would 
be needed for robust confirmation.

While DNA methylation was constrained among spe-
cies at CNEEs, the reverse was observed for TEs. They 
showed of a lack of tsDMRs and an enrichment of spD-
MRs. More pronounced interspecific differences in 
DNA methylation at TEs than at CNEEs have previously 
been observed in primates [76]. TEs could be showing 
relatively more variation among species due to a higher 
turnover of CpG sites resulting from high methylation 
levels or relaxed purifying selection on methylation level. 
In addition, active copies of LTR retrotransposons carry 
regulatory elements which could potentially have a func-
tional role in regulating gene expression [77]. TEs may 
affect divergence and speciation of lineages in more ways 
than through their associated regulatory elements affect-
ing expression levels of proximal genes. In hybrids, TEs 
can be misregulated, which could lead to hybrid dysfunc-
tions or sterility as has been observed for the P-element 
in Drosophila [78]. While beyond the scope of this paper, 
the presented dataset could be used to test this hypoth-
esis. With that said, in flycatchers, it is possible that genic 
effects are causing hybrid male sterility since dysregula-
tion of meiotic genes have been observed through single-
cell RNA sequencing of male testes [79].

Despite having a relationship with gene expression and 
thus stronger functional constraints, we did observe an 
enrichment of spDMRs in CGI promoters. When exam-
ining the gene profile of DMR frequency, we find that the 
peak enrichment of spDMRs in the promoter is in most 
cases distal to the TSS within the promoter. Therefore, 
the enrichment of spDMRs in promoters is not coincid-
ing with the minima of correlation between FST and Mdiff 
which is more proximal to the TSS, rich in CGI anno-
tation (c.f. Figs.  4D and 6A, and Additional file  2: Fig. 
S4). Nevertheless, since we observed an enrichment of 
spDMRs within CGI promoters but a marked drop in 
cis-genetic correlation, it is likely that some spDMRs at 
CGI promoters in this system are driven by trans differ-
ences in methylation. A non-exclusive explanation would 
be that DMRs are concentrated to the shores of CGIs, 
which have been shown to be especially prone to differ-
ential methylation [80]. While we could survey genome-
wide patterns of cis and trans differences in methylation 
using fixed differences as marker loci, we lack power to 
distinguish their relative contribution to differentiation at 

promoters. Ideally, the  F1 hybrid method of determining 
the molecular mechanism of DNA methylation differen-
tiation is complemented by sequencing of trios (parents 
and hybrid offspring), which would enable much more 
and less biased marker loci to be used. Even so, we did 
observe a stronger species-effect in DNA methylation at 
fixed differences compared to other annotation sets fur-
ther indicating that genetic and DNA methylation change 
are coupled [34]. In spite of this, tissue was a stronger 
determinant of DNA methylation level than species also 
at fixed differences, highlighting the importance of study-
ing several organs/tissues or cell types for understanding 
the evolution of DNA methylation [81].

For loci with fixed sequence differences between the 
two species, we observed an equal amount of methyla-
tion differentiation attributable to cis or trans effects for 
all tissues except the brain where trans differences domi-
nated. In a cross between red-jungle fowl and domestic 
white leghorn chickens, a greater share of cis differences 
was observed in a quantitative trait locus analysis of 
hypothalamus tissue [51]. This could be due to tissue- or 
species-specific patterns or the ~ 3 × greater genetic dif-
ferentiation between red-jungle fowl and white leghorn 
compared to COL and PIE. A greater share of cis dif-
ference in gene expression with greater sequence diver-
gence has been observed in fruit flies and yeast [67, 68]. 
Though insignificant, we here observed the same trend 
for DNA methylation in the contrast between Z and 
autosomes, where the more differentiated Z has a trend 
of higher share of cis. By contrasting the allele effect in 
hybrids with parental species, we also observed that 
trans differences generally where additively inherited but 
through a distinct mechanism where both HYB alleles 
converged to the midparental value of DNA methyla-
tion. This could for example be caused by the relatively 
unexplored molecular process of transvection [82, 83], in 
which alleles affect each other’s phenotype, which have 
previously been observed to affect DNA methylation pat-
terns during meiosis in mice [82]. However, since we only 
used  F1 hybrids from one direction of the cross, inherit-
ance patterns could to some extent be confounded with 
parental effects.

In the last two decades, many studies have presented 
evidence of misexpression in  F1 hybrids of a wide range of 
species [14, 56, 84–86]. While some patterns are emerg-
ing, the regulatory mechanisms underlying hybrid misex-
pression remains relatively obscure. Dependent on tissue, 
both higher DMR frequency and larger FST in promoters 
were associated with DE between COL and PIE, while 
the same variables failed to predict DE between parentals 
and hybrids. If hybrid misexpression was driven by evo-
lution at proximal cis-regulatory elements of many genes, 
we would have expected to find similar patterns in both 
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COL-PIE and parental-hybrid comparisons. It has been 
suggested that incompatibilities between divergent cis-
regulatory elements and trans-acting factors in hybrids 
result in misregulation of genes [11, 13]. Misregulation 
evolves quickest when interacting cis- and trans fac-
tors diverge under positive selection [8], which may be 
the case for a subset of the genes differentially expressed 
between COL and PIE [87]. However, expression is likely 
in many cases to be under stabilizing selection [88, 89], 
which may also cause BDMIs if different compensatory 
mutations fix in diverging lineages [84]. We did observe 
compensatory evolution of DNA methylation at fixed dif-
ferences, though most were additively inherited and con-
sequently not mismethylated in hybrids. In addition, we 
did not observe greater frequencies of DMRs at promot-
ers of misexpressed DE genes which would be expected in 
a model where hybrid over- or underdominance in gene 
expression is caused by loss or gain of promoter methyla-
tion. One caveat is that such mismethylation might be so 
deleterious that we miss it when sampling adult yearlings 
that survived migration to Africa and back and thus are 
likely to be in better condition than the average natural 
 F1 hybrid hatched [43]. In theory, genetic or epigenetic 
misregulation at a single or few two-locus interactions 
could potentially cascade throughout the expression net-
work and cause hybrid misexpression at many genes. 
Misregulation of upstream cis-trans interactions could 
overshadow the cis effects of methylation and genetic 
difference associated with DE in the parental compari-
son. In this model, most misexpressed genes do not have 
incompatibilities in their promoter regions, instead they 
are symptoms of a few rare cascading interactions. It is 
possible that the hybrid misexpression observed here are 
metabolic responses possibly related to the transgres-
sive metabolic rate observed in  F1 hybrid flycatchers [44, 
45] and somewhat in line with results in a copepod with 
known mitochondrial dysfunction in F2 hybrids [90].

Our results showed that there was a weak but pervasive 
correlation between non-CpG genetic differentiation and 
DNA methylation except proximal to the TSS (for CGI 
promoters). While it is possible that a genetic change 
affects, e.g., the binding of a transcription factor lead-
ing indirectly to a change in methylation, it is harder to 
conceive of a molecular mechanism supporting the other 
direction of causation though it cannot be entirely disre-
garded. Recent empirical and theoretical studies suggest 
that epigenetic variation could act as a first substrate for 
divergent selection and may promote or slow down spe-
ciation [91–93]. In birds, epigenetic effects independent 
of genetic effects may have a limited impact on speciation 
processes due to weak evidence for genomic imprinting 
[94, 95]. However, transgenerational effects have been 
observed in several species [reviewed in 95] and thus 

research is needed to understand the molecular mecha-
nism of transgenerational effects in birds and potential 
associations with reproductive isolation. With this in 
mind, a limited transgenerational inheritance or extent 
of imprinting does not mean that epigenetic mechanisms 
are unimportant for speciation in birds and other verte-
brates. Epigenetic mechanisms are fundamental in con-
serving and reshaping transcriptional states, as illustrated 
by the prominent role of DNA methylation in eye degen-
eration of the cave morph of the Mexican tetra [96]. In 
other words, epigenetic mechanisms can play important 
parts without being the ultimate cause in cases of adap-
tive differentiation and hybrid dysfunction, both of which 
are important aspects of speciation.

Conclusions
In this study, we investigated the relationship between 
genetic differentiation, DNA methylation, and gene 
expression in two songbird species and their  F1 hybrids. 
The hybrids were used both as a tool to investigate the 
relative contribution of cis- and trans-factors in DNA 
methylation differentiation between the parental species 
and to investigate the role of DNA methylation in hybrid 
misexpression. We showed that DNA methylation mat-
ters more for both general gene expression patterns and 
differential expression in genes with CGI promoters. In 
general, genetic differentiation predicted methylation dif-
ferentiation but this relationship broke down close to the 
transcription start site where methylation patterns mat-
ter the most for gene regulation. This indicates that DNA 
methylation levels at CGI promoters are under strong 
purifying selection and remains conserved among spe-
cies. While these results suggest that DNA methylation 
could be important in hybrid misexpression, we did not 
find evidence for this, indicating that trans factors are 
more important than cis factors for hybrid misexpres-
sion. Overall, this study provides a deeper understanding 
of the evolution of DNA methylation patterns in song-
birds and their role in gene regulation.

Methods
Sampling scheme and tissue collection
Male flycatchers were collected at the Baltic Island of 
Öland (57°10’N, 16°56’E) during the breeding season 
of 2014 [56]. Collected samples included six collared 
(Ficedula albicollis), five pied (F. hypoleuca), and three 
 F1 hybrid flycatchers (♀PIE x ♂COL). Initially, four indi-
viduals were classified as hybrids using plumage score 
[40]. Later three of those individuals were confirmed 
genetically as hybrids [56], while a fourth was identified 
as a collared flycatcher (in this study included within the 
six collared flycatcher individuals). Tissue collection is 
described in more detail in Mugal et al. [56]. All sampling 
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procedures were approved by the Swedish Board of Agri-
culture (Jordbruksverket—DNR 21-11). The following 
organs/tissues were used for RNA sequencing [56] and 
whole-genome bisulfite sequencing (WGBS; within the 
present study): brain (caudal region of the telencephalon) 
heart, kidney, liver, and testis. In addition, we included 
RNA sequencing data for spleen for the collared fly-
catcher individuals.

Nucleic acid extractions and sequencing
Samples were homogenized using a bead beater with 
ceramic beads and aliquots were used to extract DNA 
and RNA. For details on RNA extraction and sequenc-
ing, see [56]. DNA was extracted using the phenol-chlo-
roform method. Library preparation and whole-genome 
bisulfite sequencing were performed by the SciLife 
SNP&SEQ Technology Platform in Uppsala, Sweden. 
Sequencing libraries were prepared from 100 ng of DNA 
using the TruSeq (EpiGnome) Methylation kit (Illumina 
Inc., EGMK91324) according to the manufacturers’ pro-
tocol (#15066014). Samples were multiplexed and split 
into several lanes as well as separate sequencing runs 
(Additional file 1: Table S1). Sequencing was performed 
in two separate sequencing efforts, split into a pilot study 
consisting of brain samples, and a second effort con-
sisting of the remaining samples. Brain samples were 
sequenced using v4 sequencing chemistry and 125  bp 
paired-end reads on the Illumina HiSeq2500. In total, 
14 lanes were used with two technical replicates and one 
biological sample per lane (Additional file  1: Table  S1). 
The rest of samples were sequenced using v2.5 sequenc-
ing chemistry HiSeqX with 150 bp paired-end reads. In 
total, 87 lanes were used with 6–9 technical replicates per 
biological sample. One kidney sample from one  F1 hybrid 
flycatcher (HYB02) was discarded due to allelic imbal-
ance (data not shown).

Processing of bisulfite sequence reads and methylation 
calls
Quality control, filtering, and mapping of reads as well 
as methylation calls were performed using the reproduc-
ible Nextflow workflow v20.10.0 nf-core Methylseq v1.5 
[97]. Raw reads were quality controlled using FastQC 
[98]. Adapter sequences were removed using Trim 
Galore! v0.6.4_dev, a wrapper for Cutadapt v2.9 [99]. Fur-
ther clipping was performed according to the Epignome 
profile (8  bp from both 5’ and 3’ ends of both reads in 
a pair). Reads were aligned to the chromosome version 
of the collared flycatcher reference genome, FicAlb1.5 
[100] using Bismark v0.22.3 with Bowtie2 as alignment 
tool [101]. Alignment quality was assessed using Quali-
map v2.2.2-dev [102] and visualized using MultiQC v1.8 
[103]. The percentage of uniquely mapped reads ranged 

from 50.2 to 70.1% (Additional file 1: Table S1). Fixed dif-
ferences between collared and pied flycatchers—deter-
mined using 19 individuals of each species previously 
sampled on Öland [65]—were masked prior to read-map-
ping. Bismark v0.22.3 was then used to deduplicate align-
ments and extract methylation calls for CpG sites. After 
read mapping and deduplication, the median coverage 
ranged from 7 × to 39 × .

Methylation level
Since the tissue samples we used in this study consisted 
of a population of cells each with a possibility of either 
having a methyl mark or not at a certain CpG position, 
we assessed the methylation status at each CpG posi-
tion as the proportion of methylated reads. To measure 
methylation level, we summarized the number of meth-
ylated reads (xmCpG) mapping to both strands of a refer-
ence CpG dinucleotide and divided by the total number 
of reads: xuCpG + xmCpG. As a measure of methylation level 
over n CpG dinucleotides, within a defined region, we 
used the average proportion across the individual dinu-
cleotides (i),

We only included dinucleotides with at least 6 and at 
most 200 mapped reads unless otherwise stated. The 
lower limit is included to reduce bias in estimating meth-
ylation level caused by lack of data. The upper limit is 
included to reduce bias induced by collapsed repetitive 
regions. Other methods and filtering thresholds were 
used for the smoothed methylation values produced by 
BSmooth for DMR analysis and BiSeq for the analysis of 
molecular mechanism of DNA methylation differentia-
tion respectively (see below).

Transcriptome assembly
To build the transcriptome assembly, we used RNA-seq 
reads across all five tissues plus spleen from the six col-
lared flycatchers described above (in total 36 samples). 
We concatenated all samples and generated four sepa-
rate and one consensus de novo transcriptome assembly 
using the Oyster-River protocol v2.3.1 [104]. Adapters 
were removed and bases with a Phred score lower than 
36 were trimmed from the ends of reads using Trimmo-
matic v0.39-1 [105]. Reads were further error-corrected 
using Rcorrector v1.0.3 [106]. Two transcriptome assem-
blies were created using Spades RNAseq assembler v3.14 
with k-mer size 55 and 75, respectively [107]. Further 
transcriptome assemblies were created with Trans-
ABySS v2.0.1 [108] and Trinity v2.9.1 [109]. Assemblies 
were merged using OrthoFuse [104]. First the separate 

Methylation level =

n
i=1

xmCpG

xmCpG+xuCpG

n
.
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assemblies were concatenated and groups of transcripts 
were identified using a modified version of OrthoFinder 
[110]. The best transcript in each group was then found 
based on contig score using a modified version of Tran-
sRate [111]. Transcripts with less than 1 TPM in the con-
catenated set of RNA samples and no hit to the Swissprot 
database were removed from the consensus assembly. 
The consensus assembly had a TransRate score of 0.1441 
and 96.6% of all BUSCO v3.0.2 genes using the aves_odb9 
lineage dataset [112]. Optimal TransRate score for the 
assembly was 0.2341 but filtering away lower quality con-
tigs reduced the BUSCO coverage to 94%. Since we here 
used the transcriptome assembly as a basis for a gene 
annotation update, we decided to use the more complete 
assembly of slightly lower contig quality.

Gene annotation update
With a main goal of improving the annotation of tran-
scription start sites (TSS) and transcription termination 
sites (TTS) of genes by annotation of their untranslated 
regions (UTR), we updated the gene annotation for the 
collared flycatcher genome assembly based on a de novo 
transcriptome assembly (see above). For building gene 
models, we used MAKER v2.31.10 [113]. We configured 
MAKER to update the gene models from the collared fly-
catcher Ensembl annotation (v96), by setting this anno-
tation as pred_gff in the maker_opts.ctl file. Collared 
flycatcher RNA-seq evidence for the Ensembl annotation 
consisted of eight adult organs/tissues as well as embryo 
[114]. As additional evidence in the annotation, we used 
the Oyster-River protocol transcriptome assembly and 
proteins from the chicken (Gallus sea, Ensembl annota-
tion v98) and zebra finch (Taeniopygia guttata, Ensembl 
annotation v102). We configured MAKER to allow gene 
models to be built directly from transcripts and protein 
homology. We also included genes found using a pipeline 
designed to identify so-called missing genes, i.e., genes 
that have proven difficult to annotate in the bird genome 
because of repetitiveness or extreme base composition 
such as high GC content [115]. Using candidate proteins 
(n = 2454) from the Chinese softshell turtle (Pelodiscus 
sinensis, Ensembl annotation v98), we found collared 
flycatcher candidate hits (n = 1389) using tBLASTn 
v2.7.1+ to an earlier version of the transcriptome assem-
bly [116]. Candidates were converted to gff3 file for-
mat and included as predictions in MAKER (pred_gff 
option). We used 20,000 bp as the expected max intron 
size for evidence alignments and conservatively did not 
consider single exon transcript evidence when generat-
ing annotations. We also used an updated repeat anno-
tation consisting of Aves repeats from RepeatMasker 
v4.0.7_Perl5.24.1, which was mainly repeats curated from 
chicken and zebra finch, as well as repeats from collared 

flycatcher [117], hooded crow [118], blue-capped cor-
don-bleu [119], paradise crow (Lycocorax pyrrhopterus, 
[120], Huon astrapia (Astrapia rothschildi), and paradise 
riflebird (Ptiloris paradiseus) [121]. Including consen-
sus sequences derived from TEs in related species has 
been shown to improve detection of repeats missed by 
species-specific repeat libraries [119] and should con-
sequently decrease the risk of including TE genes in the 
gene annotation.

RNA sequence read analysis
RNA-seq reads were mapped to the collared flycatcher 
reference genome, FicAlb1.5 [100], and the updated gene 
annotation with fixed differences between collared and 
pied flycatchers masked. All steps from quality control, 
read mapping to differential expression analysis were 
performed using Nextflow v21.02.0.edge nf-core rnaseq 
v3.0 pipeline [97]. Quality of raw reads were assessed 
with FastQC v0.11.9 [98] and adapters were removed 
using Trim Galore! v0.6.6, a wrapper for Cutadapt v2.10 
[99]. Bases with a Phred score < 20 were removed from 
the 3’ end of reads. Trimmed reads were aligned to the 
reference genome (see above) using STAR v2.6.1d [122]. 
Transcript quantification was performed using Salmon 
v1.4.0 [123]. Quality control was done using RSeQC 
v3.0.1 [124], SAMtools v1.1.0 [125], and visualized with 
MultiQC v1.9 [103]. Differential expression analysis was 
done with DeSeq2 v1.28 [126] with Salmon count data 
imported using tximport [127]. We considered genes 
with an FDR-adjusted p-value < 0.1 as differentially 
expressed.

Additional annotation tracks
We defined promoters as the 2-kb upstream region of 
the TSS for the set of 9597 genes with at least one tran-
script with annotated 5’ UTR. CpG islands (CGIs) were 
inferred using  CpGCLUSTER v1.0, with default parameter 
settings and a minimum length of at least 50  bp [128]. 
Promoters intersecting CGIs were classified as CGI pro-
moters using BEDtools v2.29.2 [129]. Promoters without 
any overlapping CGIs were defined as having other types 
of promoters (Other). Phylogenetic conserved elements 
(CEs) based on PhastCons [130] and a whole-genome 
alignment of 23 sauropsids were retrieved from [131]. 
Conserved non-exonic elements (CNEEs) were defined 
as CEs which did not overlap exons.

Gene profile
We investigated the average methylation patterns at 
genes and their up- and downstream regions (gene pro-
file). To construct a gene profile, we filtered for genes 
having at least one transcript with 5’ and one with a 
3’UTR such that TSS and TTS were defined. Upstream 
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and downstream 5-kb windows of each gene were split 
into 100  bp nonoverlapping segments. Genes were also 
split into 100-bp segments, then averaged per 99 ranks 
across the gene length. Variables of interest, such as 
methylation level, were averaged across genes in each 
of these 100-bp segments. For correlation gene profiles, 
we calculated the Spearman rank correlation coefficient 

between two selected variables in a segment across all 
genes using the cor.test function in R v4.0.4 [132].

Identification of differentially methylated regions
Differentially methylated regions (DMRs) between sam-
ples were identified using the BSmooth method [58]. We 
defined DMRs as regions in the 0.01 and 0.99 quantiles of 
methylation difference, keeping only CpG sites where at 
least two samples per group (of the pairwise comparison) 
have a coverage ≥ 2. In addition, DMRs needed to span at 
least 3 CpGs with a mean methylation difference equal 
to or larger than 0.1. Significant deviation from random 
(none of the compared groups had more DMRs with 
higher methylation, i.e., the random expectation is 0.5) in 
the either direction (hypo- or hypermethylation) for a set 
of DMRs was determined using binomial tests in R v4.0.4 
[132].

Classification of DMRs
We called DMRs between both tissues and species (spD-
MRs). We defined tissue-specific DMRs (tsDMRs) as 
regions with differential methylation in a focal tissue 
compared to all other tissues using BEDtools v2.29.2 
intersect requiring at least 25% reciprocal overlap [70]. 
Furthermore, to fulfill the criterion of tissue specificity, 
the same region could not be classified as DMR in any 
other tissue comparison.

A method for enrichment analysis between two sets 
of genomic ranges using resampling
Enrichment analyses of various classes of DMRs in 
genomic annotation tracks were performed using a cus-
tom Bash script employing BEDtools v2.29.2 intersect 
and calculation of empirical p-values using a Monte Carlo 
randomization procedure. For a certain overlap between 
an annotation track (e.g., introns) and a set of DMRs 
(e.g., between COL and PIE heart samples), we shuffled 
the DMRs 1000 times across the genome and calculated 
the total number of base pairs that overlapped per resa-
mpling replicate. To calculate the empirical p-value, we 

compared the overlap in the resampling replicates with 
that of the actual data and calculated the p-value as 
r/n, where r is the number of replicates with an overlap 
greater than or equal to the overlap for actual data [133]. 
p-values were corrected using the Bonferroni method to 
a family-wise error rate of 0.1. Enrichment was defined as 
the following odds ratio:

Gene ontology analysis
We performed GO analysis of tsDMRs shared among 
COL, PIE, and hybrids overlapping genes and their ± 5-kb 
neighboring regions, using ShinyGO v0.77 [134] with GO 
biological process as database. We used an FDR of 0.1 
and collared flycatcher as reference annotation.

Tissue specificity of methylation and gene expression
Tissue-specific gene expression was calculated using 
the preferential expression measure (PEM, [135]) based 
on the five tissues represented in the study. Genes with 
no expression in any of the five tissues were excluded. 
PEM is a relative measure which ranges from − ∞ to 1, 
with values below and above 0 representing relative 
under- and overexpression, respectively. To check for 
an association between tissue-specific methylation and 
expression, we selected tsDMRs overlapping annotated 
promoters. We then tested for a significant deviation in 
PEM rank for genes with a tsDMR in a focal tissue using 
χ2 test of independence (chisq.test in R). If there is a rela-
tionship between tsDMRs and PEM rank, we expect to 
see the focal tissue with tsDMR in promoter being either 
the most or least expressed gene among tissues. For tis-
sues and species combinations (e.g., COL × testis) that 
rejected the null hypothesis of the first test, we also pro-
ceeded with a secondary test. We tested for a difference 
in mean PEM between genes with a promoter tsDMR in 
a focal tissue versus genes with no promoter tsDMR in 
any tissue (reference set) using the non-parametric Wil-
coxon test. Here, we tested for differences between over-
expressed (PEM > 0) and underexpressed (PEM < 0) genes 
separately. This test investigates the relative importance 
of DNA methylation in tissue-specific expression since 
the reference set consists both of genes with ubiquitous 
expression, as well as tissue-specific genes controlled by 
mechanisms other than tissue-specific DNA methylation.

Classification framework for hybrid inheritance patterns 
at promoters
We classified the methylation patterns of  F1 hybrids 
using a cutoff strategy into the following categories of 

Odds ratio =

Overlap(DMRs and annotation track)

Total length of DMRs
/
Total length of annotation track

Genome length
.
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inheritance pattern: conserved, additive, collared-dom-
inant, pied-dominant, and the mismethylation catego-
ries overdominant and underdominant. Additive means 
a hybrid methylation level between parentals. Collared-
dominant corresponds to a methylation level in hybrids 
close to the value of COL and vice-versa for pied-domi-
nant. Over- and underdominant means hybrid methyla-
tion level above and below the value of both COL and 
PIE, respectively. We used a cutoff strategy to deter-
mine inheritance pattern instead of statistical tests 
because different number of significant tests would be 
needed for different categories. For example, no signifi-
cant difference between  F1 and both parentals for con-
served but significantly greater than both parentals for 
overdominant [86]. However, a simple cutoff strategy is 
also biased. Consider that we measure the phenotype P 
of two parental species A and B and their  F1 hybrids H. 
If we assume that the phenotypic value P is pairwise-
independent between A, B, and H then,

Since this variance is almost certainly not zero in all 
practical cases, applying a cutoff will inflate the relative 
proportion of over- and underdominance. To deal with 
this artifact, for each promoter, we randomly picked a 
hybrid sample for PH in PH – PA and another for PH in 
PH – PB. In effect, this reduces the correlation in error 
between X and Y axis [136]. Ideally, with a large sam-
ple size, many samples would be picked for each group. 
Simulations showed that this gives a roughly rhombic 
error profile around the origin, regardless of whether 
the measured phenotype is a uniform or Poisson ran-
dom variable (data not shown). To make further clas-
sifications as fair as possible, we split the X, Y field into 
8 areas defined by slices of π/8 radians. To accommo-
date this fairer classification scheme, we then defined 
a circular cutoff of 0.1 to classify promoters as either 
conserved (< 0.1) or not (> 0.1).

Ancestral genome reconstruction and estimates of genetic 
differentiation
To reconstruct an ancestral genome for the black-
and-white flycatchers, we used all-sites genotype data 
mapped to the COL genome assembly from one red-
breasted flycatcher (Ficedula parva) and one snowy 
browed flycatcher (F. hyperythra) previously sequenced 
[137]. Sites for which red-breasted and snowy browed 
flycatcher were monomorphic were considered callable 
with the ancestral state being that allele. Sites polymor-
phic within or between these two species were ignored. 
To estimate genetic differentiation, we used SNPs from 
19 COL and 19 PIE flycatchers previously sampled on 

cov(PH − PA,PH − PB) = var(PH ).

Öland [65]. Genetic differentiation between COL and 
PIE was estimated separately for ancestral CpG sites 
(CpG) and other contexts (non-CpG) using the fixation 
index FST [138] implemented in vcftools v0.1.16 [139].

Allele‑specific methylation estimation
We estimated allele-specific methylation in  F1 hybrids 
using fixed differences (see above) between collared 
and pied flycatchers as markers within the bisulfite 
sequencing reads. First, deduplicated.bam files of 
bisulfite sequence reads produced by bismark v0.22.3 
were split according to parent-of-origin allele using 
SNPsplit v0.3.2 [140]. Fixed differences C and T for for-
ward strand alignments and G and A for reverse strand 
alignments were ignored since they are indistinguish-
able from the  pattern produced by the bisulfite treat-
ment. Allelic imbalance in the number of allele-specific 
reads were determined with SNPsplit and the kidney 
sample for HYB02 was excluded due to extreme allelic 
imbalance in bisulfite-seq reads but not RNA-seq reads 
(which were analyzed to determine whether the imbal-
ance of the bisulfite-seq reads in HYB02 kidney was 
a biological effect or a technical artifact). To ensure a 
sample size of at least three, the kidney was not consid-
ered further in allele-specific analyses. Allele-specific 
methylation was called using bismark v0.22.1 methyla-
tion extractor and the methylation level was measured 
in 200-bp windows centered at the fixed difference. To 
measure methylation difference between samples, we 
used the R package BiSeq v1.28.0 [141]. In  F1 hybrids, 
read coverage was limited to the 0.9 quantile. Parental 
species for each tissue were randomly downsampled 
to 3 individuals and coverage was capped at the 0.45 
quantile to mimic the sample size and read coverage of 
hybrids. Difference in methylation between groups of 
samples for each 200-bp locus were determined using 
the beta regression model in BiSeq v1.28.0 [141].

Statistical framework for molecular mechanism of DNA 
methylation differentiation
We classified the molecular mechanism of DNA meth-
ylation differentiation by comparing the methylation 
difference between the parental species and between 
the parental alleles in the  F1 hybrid environment [36, 
66]. To ensure that the same number of null hypothe-
ses needed to be rejected for calling cis and trans dif-
ferences, we also compared the methylation difference 
of parental alleles and hybrid alleles of the same origin 
(e.g., PIE: parental—hybrid; Additional file 2: Table S7). 
This constitutes a trans effect test since by definition, 
we expect the same allele to have different methylation 
levels between the parent and hybrid environment, if 
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such an effect occurs. By comparing both COL and PIE 
methylation differences in hybrids and the trans effect 
test, we tested both row and column null hypotheses 
of a 2 × 2 matrix with COL, PIE, parental, and hybrid 
as column and row names, respectively. Due to the 
dependence of tests in this approach which is a feature 
it shares with the original framework [136], column 
and row tests should ideally be done using different 
samples, though that would require a sample size of 
hybrids of at least 6, in this case. If any sample group 
lacked methylation read information for a locus, then 
that locus was classified as ambiguous. We classified a 
locus as conserved if there was no difference between 
COL and PIE in either the parental or hybrid compari-
son. For a cis-only change, the COL and PIE allele at a 
locus had to be significantly different in the same direc-
tion both within hybrid and between parentals and no 
significant trans effect. Three different outcomes were 
possible if both a cis and a trans effect were acting at 
a locus: (1) cis + trans, significant difference between 
parental and hybrid allele for either COL or PIE but 
with a trans effect in the same direction as the cis effect, 
(2) cis x trans, cis, and trans effect in opposing direc-
tions, and (3) compensatory, no significant difference in 
the parental comparison while significant difference in 
hybrids and a trans effect. For trans-only, there needed 
to be a significant difference between parentals but not 
between alleles within  F1 hybrids and a significant trans 
effect. To estimate inheritance patterns at fixed differ-
ence marker loci, we performed major axis regression (a 
type of model II regression that does not assume that 
the predictor variable is fixed) using COL:Parental-
Hybrid as response variable and PIE:Parental-Hybrid as 
predictor variable.
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