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Abstract 

Background  Hepatocellular carcinoma (HCC) is a prevalent malignancy with a pressing need for improved therapeu-
tic response and prognosis prediction. This study delves into a novel predictive model related to ferroptosis, a regu-
lated cell death mechanism disrupting metabolic processes.

Results  Single-cell sequencing data analysis identified subpopulations of HCC cells exhibiting activated ferroptosis 
and distinct gene expression patterns compared to normal tissues. Utilizing the LASSO-Cox algorithm, we con-
structed a model with 10 single-cell biomarkers associated with ferroptosis, namely STMN1, S100A10, FABP5, CAPG, 
RGCC, ENO1, ANXA5, UTRN, CXCR3, and ITM2A. Comprehensive analyses using these biomarkers revealed varia-
tions in immune infiltration, tumor mutation burden, drug sensitivity, and biological functional profiles between risk 
groups. Specific associations were established between particular immune cell subtypes and certain gene expression 
patterns. Treatment response analyses indicated potential benefits from anti-tumor immune therapy for the low-risk 
group and chemotherapy advantages for the high-risk group.

Conclusions  The integration of this single-cell level model with clinicopathological features enabled accurate overall 
survival prediction and effective risk stratification in HCC patients. Our findings illuminate the potential of ferroptosis-
related genes in tailoring therapy and prognosis prediction for HCC, offering novel insights into the intricate interplay 
among ferroptosis, immune response, and HCC progression.
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Background
Primary liver cancer ranks among the most prevalent 
malignant neoplasms on a global scale, representing 
a significant menace to human health owing to its high 
incidence and mortality rates [1]. Hepatocellular carci-
noma (HCC) represents its predominant biological sub-
type, with 50% of HCC cases originating from China [2]. 
Despite the potential life-saving benefits of curative sur-
gery, radiotherapy, transcatheter arterial chemoemboliza-
tion, and targeted therapy in the management of HCC, a 
considerable proportion of patients unfortunately receive 
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a diagnosis when they are already in advanced stages or 
exhibit insensitivity or resistance to drug treatment [3, 
4]. Despite efforts, the overall prognosis for HCC is still 
unsatisfactory, with a 5-year survival rate of less than 20% 
[5]. As of now, there is still a lack of widely established 
predictive models that can reliably forecast patients’ sur-
vival prognosis and assist clinical practitioners in mak-
ing treatment decisions, surpassing the traditional TNM 
staging system and Child–Pugh scoring system based on 
liver function assessment [6–8]. Therefore, a comprehen-
sive understanding of the molecular biology mechanisms 
driving HCC is essential for exploring innovative thera-
peutic strategies and identifying prognostic biomarkers 
that can accurately predict survival outcomes.

Ferroptosis is a programmed cell death mechanism 
closely associated with disruptions in intracellular iron 
metabolism, lipid metabolism, and redox homeostasis [9, 
10]. Multiple studies have indicated the significant regu-
latory role of ferroptosis in HCC, including its ability to 
inhibit tumor cell proliferation and modulate the tumor 
immune microenvironment (TIME) [11, 12]. The recent 
progress in single-cell transcriptomic technology has sig-
nificantly mitigated the limitations associated with bulk 
RNA sequencing, specifically in capturing the diversity 
among cells [13]. This advanced technique offers a higher 
level of precision in identifying distinct cell types and 
their states, thus serving as a formidable tool for investi-
gating potential mechanisms involved in ferroptosis and 
the pathogenesis of HCC.

In this study, we conducted an integrative analysis of 
RNA sequencing data from HCC single-cell datasets 
obtained from the Gene Expression Omnibus (GEO). 
Additionally, bulk transcriptome data containing clinical 
and prognostic information were sourced from The Can-
cer Genome Atlas (TCGA). By utilizing bioinformatics 
techniques, we revealed the susceptibility of populations 
with HCC to therapy and identified prognostic biomark-
ers that can aid in predicting survival outcomes. Further-
more, we established a clinical predictive model linked to 
ferroptosis and investigated the influence of tumor muta-
tion burden (TMB) and TIME in individuals with HCC 
who possess different risk profiles. It is worth highlight-
ing that with the aid of single-cell analysis, our research 
has shed light on the biological mechanisms of ferropto-
sis and provided insights into precision medicine strate-
gies in HCC.

Results
Profiling the GSE140228 cohort through scRNA‑seq
Revealed in Fig.  1 is a comprehensive portrayal of the 
cohort and study workflow, providing a holistic under-
standing of the research process. Following preliminary 
quality control assessment and twin cell removal, a total 
of 31,869 cells were obtained from the single-cell HCC 
dataset GSE140228. As illustrated in Fig.  2A, this study 
encompassed a combined total of 13 samples compris-
ing cancer and control groups. The cellular distribution 
between groups exhibited relative uniformity, indicating 

Fig. 1  Workflow of this study
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Fig. 2  Subsets within cell types identified through single-cell RNA sequencing. A Distribution of HCC and normal control samples as shown 
in the t-SNE plot. B Distribution of clusters of HCC cells depicted in the t-SNE plot. C Annotation results of HCC cell subgroups indicated by the t-SNE 
plot. D Distribution of cell types between HCC and normal control groups displayed in the cumulative histogram. E Expression of marker genes 
in each cell type
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the absence of noticeable batch effects among the sam-
ples. Based on the gene expression traits of each cluster, 
we classified all cells into 17 discrete groups (Fig.  2B). 
Different cell types were then annotated using cell-spe-
cific biomarkers. As depicted in Fig.  2C, six cell types 
were identified: T cells, myeloid cells, NK cells, plasma 
cells, B cells, and hepatocytes. However, cluster 14 could 
not be distinguished and was denoted as “unknown.” The 
proportions of each distinct cell type within the groups 
are displayed in Fig.  2D. Specific genes associated with 
each cell type were visualized through dot plots (Fig. 2E).

Identification and developmental trajectory analysis 
of ferroptosis‑active cell subgroups
To identify active cell subsets demonstrating ferroptosis 
activity at the single-cell level, we employed an optimal 
threshold determined by the expression levels of ferrop-
tosis-related genes (Additional file  1: Table  S1) across 
various cell populations within the investigated cohort. 
Cells surpassing this threshold were considered actively 
engaged in ferroptosis. The resultant analysis revealed 
585 cells displaying ferroptosis activity, as depicted in 
Fig. 3A. Cell populations with an AUC value greater than 
0.2 were categorized as highly active in ferroptosis (Addi-
tional file  2: Table  S2), while those with a value lower 
than 0.2 were classified as having low ferroptosis activity. 
The t-SNE plots presented in Fig. 3B, C visualize the dis-
tribution of active cells, highlighting myeloid cells as the 
most active subset.

For the myeloid cells cluster, we established a pseudo-
time cell trajectory (Fig. 3D) to investigate the dynamics 
and gene expression programs underlying ferroptosis. In 
fact, the transitional states within the trajectory reveal 
distinct processes (Fig.  3E). Profound variations in 
AUCell scores are evident throughout the trajectory, 
wherein Cellfate1 (state 4) demonstrates a sustained 
level of ferroptosis activity that remains relatively stable 
compared to the pre-branch phase. Conversely, Cell-
fate2 (state 5) exhibits a significant reduction in ferrop-
tosis activity, as illustrated in Fig. 3F. The differential gene 
expression analysis conducted on cells before and after 
the branching point (Additional file  3: Figure S1, Addi-
tional file 4: Figure S2) provides valuable insights into the 
biological relevance of ferroptosis-related characteristics 

in myeloid cells. To elucidate the molecular basis of 
these transitions, we explored the genes that govern 
the branching of cell fate in ferroptosis. Genes highly 
expressed in the pre-branch were primarily enriched in 
the “vacuolar lumen,” “receptor-mediated endocyto-
sis,” and “blood microparticle” GO biological process 
pathways. Genes enriched in pathways such as “tertiary 
granule,” “positive regulation of response to external 
stimulus,” “specific granule,” and “ficolin-1-rich gran-
ule” were highly expressed in cell branch 2, while genes 
involved in pathways like “MHC class II protein com-
plex,” “cytosolic ribosome,” and “cytoplasmic translation” 
were highly expressed in cell branch 1 (Fig.  3G) (Addi-
tional file 5: Table S3).

Intercellular communication between specific immune 
subpopulations with myeloid cells involved in ferroptosis
To gain further insights into the interplay within the 
TIME of HCC, we investigated the intercellular com-
munication between specific immune subpopulations 
and myeloid cells involved in ferroptosis. We compared 
these interactions between HCC tissue and normal tis-
sue to understand the alterations occurring in the can-
cer context. Compared to normal tissue, we observed an 
increase in the total number of cell interactions within 
the HCC microenvironment, while the intensity of these 
interactions decreased (Fig.  4A). Specifically, the quan-
tity and strength of signals sent from B cells to NK cells 
increased, while the quantity and intensity of signals 
sent from NK cells to T cells decreased. Furthermore, 
the quantity and intensity of signals sent from T cells to 
myeloid cells increased (Fig. 4B). These patterns of signal 
reception and transmission between normal tissue and 
HCC are depicted in Fig. 4C. Notably, the intensity of the 
GALECTIN signal targeting myeloid cells diminished in 
HCC, whereas the MHC-I signal originating from mye-
loid cells strengthened in this context (Fig. 4C).

Considering that myeloid cells represent a highly 
active subset associated with ferroptosis, we conducted 
an analysis of receptor-ligand pairs potentially regulat-
ing communication between myeloid cells and other 
immune cells. In HCC, we observed an increased inter-
action involving the macrophage migration inhibitory 
factor (MIF) ligand derived from T cells binding to the 

(See figure on next page.)
Fig. 3  Identification and developmental trajectory analysis of ferroptosis-activated myeloid cells. A AUC scores of ferroptosis-related genes 
with a threshold of 0.2. B tSNE plot displays the distribution of cells with AUC values greater than the threshold. C tSNE color plot represents 
the activity scores of cells. Brighter colors indicate higher activity. D Pseudotime color gradient transitions from dark blue to light blue. E 
Pseudo-time trajectory is divided into five distinct states by Monocle2. F Pseudo-time trajectory based on AUCell scores, with darker colors 
indicating higher ferroptosis activity. G Heatmap reveals differentially expressed genes (DEGs) in different branches (cell fate). Enriched GO 
pathways for different gene clusters are displayed on the left
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Fig. 3  (See legend on previous page.)
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corresponding receptors on myeloid cells (Fig. 4D). Con-
versely, the interaction between the amyloid precursor 
protein (APP) ligand sourced from hepatocytes and the 
corresponding receptors on myeloid cells decreased in 
HCC (Fig. 4D). Furthermore, we delved into studying the 
reciprocal interactions between the MIF and APP path-
ways within the cellular milieu of HCC. In this context, 
the APP signaling pathway is emitted from hepatocytes 
and received by myeloid cells (Fig.  4E), while the MIF 
signaling pathway is emitted by hepatocytes, plasma 
cells, NK cells, and T cells, and received by myeloid cells 
(Fig. 4F). These findings collectively emphasize the com-
plex nature of the TIME in HCC.

Enrichment analysis of DEGs related 
to ferroptosis‑activated myeloid cells
To investigate the biological functions and pathways 
related to differentially expressed genes (DEGs) in fer-
roptosis-activated myeloid cells, we identified 1943 DEGs 
by applying statistical criteria. Specifically, we consid-
ered genes with significant adjusted p-values (< 0.05) 
and a log2 fold change exceeding a threshold of > 0.25 
or <  − 0.25 based on their expression levels, as sum-
marized in Additional file  6: Table  S4. To visualize the 
expression patterns of the top 20 ranked DEGs among 
these 1943 genes, a heatmap was generated (Fig. 5A). The 
DEGs included LYZ, CST3, HLA-DRA, S100A9, C1QA, 
C1QB, AIF1, S100A8, FTL, HLA-DPA1, GPX1, HLA-
DPB1, CD69, NKG7, IL32, CCL5, IGHG4, IGKC, IGHG3, 
and IGLC2. Additionally, by comparing HCC samples to 
normal controls within the GSE140228 dataset, we iden-
tified 336 DEGs that exhibited statistically significant 
differences between these two groups (Additional file 7: 
Table S5). Among these DEGs, a heatmap displayed the 
top 10 upregulated genes (HSPA1A, IGHG4, IGHG1, 
IGHG3, IGLC2, IGLC3, HSPA1B, APOC1, APOE, and 
HSPA6) and the top 10 downregulated genes (KLRB1, 
CD69, KLRG1, FOS, CD160, TRGC2, SYTL3, CCL3L3, 
KLRF1, and CMC1) in HCC samples (Fig. 5B). Next, we 
determined the intersection of DEGs between ferropto-
sis-activated myeloid cells and HCC samples, resulting 
in a set of 273 hub genes (Fig. 5C). These hub genes rep-
resent common differentially expressed genes associated 

with both ferroptosis activation in myeloid cells and 
HCC.

The GO analysis results showed enrichment in various 
biological processes, including leukocyte-or lymphocyte- 
mediated immunity and T cell activation. In addition, 
enrichment was observed in several cellular components, 
such as MHC class II protein complex, MHC protein 
complex, and clathrin-coated endocytic vesicle mem-
brane (Additional file  8: Table  S6). Furthermore, the 
molecular function analysis revealed enrichment in MHC 
protein complex binding, MHC class II protein com-
plex binding, and immune receptor activity (Fig. 5D, E). 
Besides, the enriched KEGG pathways (Additional file 9: 
Table  S7) included antigen processing and presenta-
tion, rheumatoid arthritis, and graft-versus-host disease 
(Fig. 5D, E). Understanding the molecular processes and 
pathways involved in ferroptosis-activated myeloid cells 
and their relevance to HCC can help uncover potential 
therapeutic targets and mechanisms underlying immune 
responses of patients with HCC.

Construction and validation of the single‑cell ferroptosis 
risk gene scores
To identify genes associated with prognostic-related 
features within the set of 273 hub genes specific to 
TCGA-LIHC, we performed univariate Cox analysis. 
This analysis revealed 36 genes significantly correlated 
with HCC prognosis, which are summarized in Addi-
tional file  10: Table  S8. To construct and validate the 
predictive model, the HCC samples were randomized 
into two subsets: a training set, which included 7/10 of 
the samples (n = 173), and a validation set, which com-
prised the remaining 3/10 of the samples (n = 91). The 
training set was subjected to LASSO regression analy-
sis aimed at eliminating redundant genes, leading to the 
identification of a subset of 10 genes associated with 
HCC patient prognosis (Additional file  11: Table  S9). 
The selection process is illustrated in Fig.  6A, B. To 
assess the robustness of the model, we used the calcu-
lated median risk score as the threshold to divide the 
patients into two stratifications based on the 10 gene 
features. Significant differences in overall survival were 
observed between the training cohort (Fig.  6C) and 
the validation cohort (Fig.  6F), with high-risk patients 

Fig. 4  Cell–cell communication analysis of myeloid cells in HCC. A Number and strength of interactions between normal and HCC cell types. 
B Network plot depicting the changes in the number and strength of interactions between normal and HCC cell types. C Signaling pathways 
involved in cell type reception and transmission in normal and HCC cells. D Communication strength between myeloid cells and other cell 
subgroups is characterized by increased or decreased receptors. E Receptor pairs associated with both incoming and outgoing signaling pathways 
of the APP signaling pathway between cells in HCC. F Receptor pairs associated with both incoming and outgoing signaling pathways of the MIF 
signaling pathway between cells in HCC

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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showing significantly worse prognosis compared to 
low-risk patients across both cohorts according to 
Kaplan–Meier (KM) survival curves stratified by differ-
ent age groups, gender, and tumor stages (Additional 
file 12: Figure S3). The heatmap (Fig. 6D, G) additionally 
demonstrates the expression patterns of the 10 selected 
ferroptosis-active genes. Moreover, we assessed the 
predictive performance of the model using receiver 
operating characteristic (ROC) curves. In the training 
queue, the area under the curve (AUC) values for the 
1-year, 3-year, and 5-year survival periods were calcu-
lated as 0.799, 0.725, and 0.693, respectively (Fig.  6E). 

In the validation queue, the AUC values for the same 
time points were 0.721, 0.746, and 0.807, respectively 
(Fig. 6H). The reliability of the model was further vali-
dated using an external cohort of 231 patients from 
Japan (ICGC-LIRI-JP). Remarkably, consistent with 
previous findings, the high-risk group exhibited signifi-
cantly poorer survival outcomes. The ROC curve analy-
sis also substantiated the excellent predictive capacity 
of our model in this cohort, as depicted in Additional 
file 13: Figure S4. Hence, the scFRGs scores calculated 
using the 10 gene features have the potential to pre-
dict the prognosis for HCC patients effectively in both 
groups, indicating their robustness and applicability.

Fig. 5  Visualizations of functional enrichment analysis results. A Differential expression of genes within ferroptosis-activated myeloid cells in HCC. B 
Significant differential expression of Top 20 DEGs in HCC vs control samples. C Venn diagram representing the intersection of key genes. D Circular 
plot illustrating the GO and KEGG enrichment analysis results for the key genes. E pathway IDs and corresponding description
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Fig. 6  Identification of core genes involved in scFRGs. A Trajectory of variable changes in LASSO regression, where the x-axis represents 
the logarithm of the lambda values for the independent variables and the y-axis represents the obtainable coefficients. B Confidence intervals 
at each lambda value in LASSO regression. C Survival curves of high-risk and low-risk groups of patients from the training cohort. D Risk ternary 
plot of the training set. E Time-dependent ROC curves for the 1-year, 3-year, and 5-year models trained on the training cohort. F Survival curves 
of high-risk and low-risk groups of patients from the validation cohort. Red represents the high-risk group, while blue represents the low-risk group. 
G Risk ternary plot of the validation set. H Time-dependent ROC curves for the 1-year, 3-year, and 5-year models validated on the validation cohort
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Distinct pathway patterns between scFRG‑related risk 
subgroups
To gain insights into the potential mechanisms under-
lying the DEGs between scFRG-based risk groups, we 
conducted GSEA enrichment analysis using pathway 
information from the MsigDB database. The most sig-
nificant pathways were identified based on normalized 
enrichment scores (NES) (Additional file 14: Table S10). 
The GSEA results indicated significant enrichment in 
the following pathways: SPLICEOSOME (NES = 1.5506, 
adjusted p = 0.0069, FDR = 0.0038, Fig.  7A), DNA 
REPLICATION (NES = 1.5442, adjusted p = 0.0069, 
FDR = 0.0038, Fig.  7B), CELL CYCLE (NES = 1.5159, 
adjusted p = 0.0069, FDR = 0.0038, Fig.  7C), LEUKO-
CYTE TRANSENDOTHELIAL MIGR (NES = 1.2067, 
adjusted p = 0.0402, FDR = 0.0223, Fig.  7D), ALZHEI-
MERS DISEASE (NES = 1.1901, adjusted p = 0.0203, 
FDR = 0.0113, Fig.  7E), and PRIMARY BILE ACID 
BIOSYNTHESIS (NES =  − 2.141, adjusted p = 0.0414, 
FDR = 0.0223, Fig.  7F). The most significant differences 
between risk groups were used to select the top 5 path-
ways, which were visualized in a pathway activity heat-
map (Fig. 7G, Additional file 15: Table S11) based on the 
function of “GSVA” analysis. Insights into the functional 
implications of these pathways can shed light on the 
underlying mechanisms driving HCC and, in turn, facili-
tate the identification of potential therapeutic targets for 
developing novel treatment strategies.

Analysis of immune infiltration and predictive value 
of the immunotherapy response of scFRG signatures
To investigate the characteristics in TIME between the 
high-risk and low-risk groups, we analyzed the infiltra-
tion levels of 28 immune cell types (Additional file  16: 
Table S12) using the ssGSEA method. Significant differ-
ences were observed for several immune cells between 
the groups, including activated B cell, activated CD4 T 
cell, activated CD8 T cell, activated dendritic cell, and 
central memory CD4 T cell (p < 0.05, Fig.  8A). Most 
immune cell types showed positive correlations with 
each other, indicating a coordinated immune response. 
However, a few immune cell types exhibited negative 
correlations. Activated CD8 T cells exhibited signifi-
cant negative correlations with some specific immune 
cell populations, such as central memory CD8 T cells 
and effector memory CD4 T cells, as indicated by the 
blue-colored blocks in Fig.  8B. Furthermore, we found 
significant correlations between each intersection gene 
and its corresponding immune cell type (Fig.  9). As for 
the specific genes, ANXA5 was significantly correlated 
with regulatory T cell (R = 0.4129, p < 0.001) (Fig.  9A), 
while CXCR3 exhibited significant correlations with acti-
vated B cell, activated CD4 T cell, activated CD8 T cell, 

immature B cell, and regulatory T cell (Fig. 9B–F). Addi-
tionally, STMN1 showed significant correlations with 
activated CD4 T cell and type 2  T helper cell (Fig.  9H, 
I), while ITM2A showed a significant correlation with 
Activated B cells (Fig.  9G). These findings highlight the 
associations between specific genes and immune cell 
types, providing insights into the potential interactions 
and roles of the immune system within the identified risk 
subgroups based on scFRGs.

To evaluate the potential response to immunotherapy 
in various risk subgroups, we utilized the Tumor Immune 
Dysfunction and Exclusion (TIDE) algorithm (Addi-
tional file  17: Table  S13). The TIDE prediction score 
reflects the likelihood of immune evasion, indicating a 
lower probability of benefiting from immune checkpoint 
inhibitors (ICIs) treatment. In the conducted investiga-
tion, it was observed that the low-risk subgroup dem-
onstrated lower TIDE scores in contrast to the high-risk 
subgroup. This suggests a lower T cell exclusion score 
and reduced T cell dysfunction in the high-risk sub-
group, as depicted in Fig. 8C. Furthermore, most of the 
cases showing response to ICIs were observed within the 
low-risk group (Fig.  8D). This observation suggests that 
patients with a lower risk score are more likely to derive 
benefits from ICIs treatment compared to those with a 
higher risk score. Therefore, understanding the relation-
ships between gene expression and TIME can contrib-
ute to a better understanding of the immune landscape 
in HCC and aid in patient stratification and personal-
ized treatment decisions, including but not limited to 
immunotherapy.

Furthermore, we plotted time-dependent ROC curves 
for 1, 3, and 5 years based on the ssGSEA immune infil-
tration scores of immature B cells and CD4 + T cells. 
Our findings revealed that the validation efficiency of 
our model was superior to that of the prognostic models 
based on the immune infiltration scores of immature B 
cells and CD4 + T cells in both the training and validation 
sets of the TCGA-LIHC dataset as well as in the external 
validation dataset ICGC-LIRI-JP (Additional file 18: Fig-
ure S5).

Tumor mutation burden (TMB) and drug sensitivity 
analysis
To assess immunotherapy sensitivity in risk-stratified 
populations with HCC, we evaluated the TMB. Specific 
gene mutations were detected in HCC, and a visualiza-
tion was generated for the top 20 mutated genes. Among 
the analyzed genes, TP53 stood out with the highest 
mutation frequency in both groups, closely followed by 
CTNNB1 (Figs. 9B and 10A). Despite the absence of sig-
nificant differences in TMB between the scFRG-based 
risk groups (p > 0.05) (Fig.  10C), TMB holds promise 
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Fig. 7  Pathway analysis of the scFRG-related risk subgroups. GSEA analysis reveals the enrichment of the following pathways: A SPLICEOSOME, B 
DNA REPLICATION, C CELL CYCLE, D LEUKOCYTE TRANSENDOTHELIAL MIGR, E ALZHEIMERS DISEASE, F PRIMARY BILE ACID BIOSYNTHESIS. G The 
pathway heatmap generated from GSVA enrichment analysis depicts the differential enrichment between scFRG-based risk groups
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Fig. 8  TIME disparities between high- and low-risk groups. A Estimated proportions of immune cells between high-risk and low-risk groups. B 
Relationships among immune cells. Asterisks indicate p-values: ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. C Differences in T cell dysfunction, T 
cell exclusion, and TIDE scores between high-risk and low-risk groups. D Predicted response to immune therapy according to TIDE analysis
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as a potential marker for predicting immunotherapy 
response. Considering TMB as an indicative factor sheds 
light on identifying patients who could potentially benefit 
from immunotherapy.

Furthermore, as chemotherapy continues to be an 
effective treatment approach for HCC, we conducted an 
analysis to determine whether risk scores could reliably 
predict the response to chemotherapy for patients with 
HCC. We examined the response to various drugs such 

as Bortezomib_1191, Daporinad_1248, Dinaciclib_1180, 
Docetaxel_1007, Eg5_9814_1712, Sepantronium bro-
mide_1941, Staurosporine_1034, Vinblastine_1004, and 
Vinorelbine_2048 (Additional file 19: Table S14). Based on 
our analysis, it was observed that patients with high-risk 
scores may have a higher likelihood of positive response 
to Bortezomib_1191, Daporinad_1248, Dinaciclib_1180, 
Docetaxel_1007, Eg5_9814_1712, Sepantronium bro-
mide_1941, Staurosporine_1034, Vinblastine_1004, and 

Fig. 9  Correlation between ferroptosis-related hub gene and immune cells. A Correlation between gene ANXA5 and regulatory T cell. B–F gene 
CXCR3 and activated B cell, activated CD4 T cell, activated CD8 T cell, immature B cell, and regulatory T cell. G Gene ITM2A and activated B cell. H, I 
Gene STMN1 and activated CD4 T cell and type 2 T helper cell illustrated in the scatter plots
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Fig. 10  Differences in tumor mutational burden (TMB) and drug sensitivity between high-risk and low-risk groups. Top 20 genes with the highest 
mutation frequency in the high-risk group (A) and the low-risk group (B). Difference in tumor mutational burden (TMB) between the high-risk 
and low-risk groups (C). Differential drug sensitivity to Camptothecin_1003 (D), CDK9_5038_1709 (E), Dactinomycin_1811 (F), Dactinomycin_1911 
(G), Eg5_9814_1712 (H), Epirubicin_1511 (I), Podophyllotoxin bromide_1825 (J), Rapamycin_1084 (K), and Podophyllotoxin bromide_1825 (L) 
between the high-risk and low-risk groups
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Vinorelbine_2048 (Fig.  10D–L). These findings under-
score the potential of chemotherapy as a promising treat-
ment option for the high-risk group. They also emphasize 
the significance of risk scores in predicting both immu-
notherapy response (via assessment of TMB) and chemo-
sensitivity in HCC. By integrating risk stratification with 
mutational analysis and drug sensitivity profiling, person-
alized treatment strategies can be developed, facilitating 
more effective and tailored approaches for patients based 
on their individual risk profiles.

Prognostic nomogram for scFRG‑based risk model in HCC
The potential of the scFRG-based risk model was vali-
dated through univariate and multivariate Cox regression 
analyses on clinicopathological characteristics, revealing 
a consistent independent prognostic risk factor for HCC 
patients (Fig. 10B and 11A). A predictive nomogram was 
established from the multivariate Cox regression results 
(Fig.  11C), visually illustrating each variable’s contribu-
tion to overall prognosis and enabling survival probability 
estimation at specific time points. Performance assess-
ment of the risk model involved generating ROC curves; 
AUC values of 0.775, 0.756, and 0.749 were obtained 
for 1-year, 3-year, and 5-year survival rates respectively 
(Fig. 11D). Moreover, a calibration curve displayed strong 
agreement between predicted and observed 1/3/5-year 
survival probabilities (Fig.  11E). As a practical tool, the 
nomogram aids clinicians in estimating individual patient 
prognosis based on multiple variables, thereby augment-
ing personalized treatment decision-making and patient 
management.

Validation of differential expression of ferroptosis‑related 
signature genes in transcription and protein levels
To further verify the expression differences of the selected 
10 signature genes related to ferroptosis activity in tumor 
and normal cells, we performed qRT-PCR analysis to 
assess their expression levels in human hepatocellular car-
cinoma cell lines Huh7 and LM3 relative to normal liver 
cells THLE-2 (Fig. 12A). The study confirmed an elevated 
trend in the transcription levels of these 10 genes in both 
Huh7 and LM3. Notably, seven genes (STMN1, S100A10, 
FABP5, CAPG, RGCC, ENO1, CXCR3) exhibited signifi-
cant statistical differences compared to THLE-2 (p < 0.05). 
Additionally, we validated the protein-level expression of 
these seven genes through immunohistochemistry using 
the Human Protein Atlas (HPA), which substantiated their 
high expression in tumor tissues (Fig. 12B).

Discussion
Hepatocellular carcinoma (HCC) is a prevalent and 
aggressive tumor associated with high morbidity rates 
among patients. While certain environmental and 

genetic risk factors have been identified in relation to 
HCC, the underlying molecular processes leading to its 
development remain largely unknown. Sorafenib has 
emerged as the primary targeted therapy for advanced 
HCC. Inducing ferroptosis and enhancing its sensitiv-
ity while circumventing apoptosis in sorafenib resist-
ance could effectively enhance the treatment outcomes 
for HCC, reducing the occurrence of drug resistance 
[14]. Drug insensitivity or resistance presents significant 
challenges in the management of HCC, highlighting the 
need for therapeutic agents with a distinct mechanism of 
action. Identifying such agents is crucial to overcoming 
these obstacles and developing new treatment strategies 
that effectively target HCC, ultimately improving patient 
outcomes [15].

Ferroptosis, defined by iron-dependent lipid peroxida-
tion, epitomizes an exceptional cellular demise modal-
ity that distinguishes itself from programmed cell death 
mechanisms like apoptosis [16]. Focusing on ferroptosis 
emerges as an innovative strategy to combat HCC [17]. 
The synergistic utilization of ferroptosis modulators with 
chemotherapy or ICIs represents a highly promising 
therapeutic strategy, despite the ongoing laboratory-stage 
studies [11]. Mechanistically, by regulating ferroptosis, 
it is possible to enhance the sensitivity of HCC cell lines 
and reshape the immunosuppressive microenvironment 
in HCC, ultimately transforming “cold” tumors into “hot” 
tumors that respond better to treatment [18–20]. Conse-
quently, there is an increasing demand for robust ferrop-
tosis-related gene (FRG) signatures that accurately predict 
patient outcomes in HCC. However, current predictive 
models lack single-cell-level precision. In our study, we 
utilize single-cell sequencing technology and machine 
learning to fill this gap. By leveraging single-cell sequenc-
ing and machine learning, we identify robust FRG signa-
tures as reliable prognostic tools in HCC. This approach 
allows us to distinguish tumor cells from normal cells 
based on ferroptosis-active cell subpopulations. Fur-
thermore, we perform pseudotemporal analysis and cell 
communication analysis on these specific subgroups, pro-
viding deeper insights into the biological background and 
functional interaction networks of the ferroptosis model.

To validate our findings, we extensively validate and 
predict prognostic outcomes using external datasets, 
strengthening the reliability of our results. Additionally, 
we thoroughly examine genomic variations, drug sensi-
tivity differences, and immune infiltration characteristics 
between high and low-risk groups, offering a multidi-
mensional understanding of the clinical implications of 
our model.

These comprehensive analyses provide nuanced 
insights into the clinical implications of our model, aiding 
in personalized patient management.
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Fig. 11  Nomogram construction with risk score and clinical characteristics. Univariate Cox regression (A) and multivariate Cox regression (B) 
analysis on clinical features displayed on forest plot. C Nomogram of the predictive model. Each segment represents the contribution of a clinical 
factor to the outcome event, and the total score represents the sum of individual scores for all variable values. The bottom three lines represent 
the prognosis corresponding to 1-year, 3-year, and 5-year survival periods for each value point. Time-dependent ROC curves (D) and calibration 
curves (E) for the 1-year, 3-year, and 5-year of scFRGs model
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This single-cell ferroptosis-based classification system 
aims to categorize HCC tumors based on their molecular 
characteristics related to ferroptosis. STMN1, S100A10, 
FABP5, CAPG, RGCC​, ENO1, ANXA5, UTRN, CXCR3, 
and ITM2A, a set of ten scFRGs signatures, have been 
adopted for acquiring a refined model by LASSO-Cox 
regression approach. Upregulation of STMN1 in HCC 
facilitates microvascular infiltration and metastasis, is 
associated with immune infiltration and DNA methyla-
tion alterations, and serves as an independent prognos-
tic factor [21, 22]. S100A10, belonging to the S100 family, 
plays a crucial role in HCC stemness-related properties, 
making it a potential diagnostic marker for HCC pro-
gression [23]. FABP5, identified as an immunometabolic 
marker in HCC, correlates with improved overall survival 

and CD8 + T cell infiltration [24]. Elevated CAPG expres-
sion in tumors indicates a poorer prognosis in breast 
cancer patients [25]. RGC-32 serves as a marker for M2 
macrophage polarization and influences the immune 
response within the tumor microenvironment [26, 27]. 
Additionally, abnormal expression of α-enolase 1 (ENO1) 
inhibits ferroptosis in HCC cells by degrading iron regu-
latory protein 1 mRNA [28]. Overexpression of ANXA5 
enhances clinical progression and lymphatic metastasis 
in HCC patients [29]. In melanoma, reduced expression 
of UTRN is associated with advanced clinical character-
istics and poorer prognosis, leading to shorter survival 
time [30]. Meanwhile, CXCR3, an important chemokine 
receptor, is a key mediator of crosstalk between myeloid 
and B cells, which helps to shape the microenvironments 

Fig. 12  Verification at the transcriptional and protein levels of ferroptosis-related genes. Expression of 10 genes in different cell lines (A). Protein 
of significant genes in HCC tumor tissues compared to normal tissues (B). Data are shown as the mean ± SD of three experiments, two-tailed 
Student’s t test: ns, nonsignificant (p > 0.05), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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of primary and secondary HCC [31]. ITM2A was identi-
fied as a hub mRNA prognostic biomarker within a com-
petitive endogenous RNA (ceRNA) regulatory network in 
HCC [32]. In line with the aforementioned findings, our 
study provides additional experimental evidence to con-
firm the significant upregulation of seven genes (STMN1, 
S100A10, FABP5, CAPG, RGCC​, ENO1, and CXCR) in 
hepatocellular carcinoma cell lines. Furthermore, immu-
nohistochemistry results further bolster these conclu-
sions, underscoring the robust biological foundation of 
our model. These findings serve as a crucial cornerstone 
for advancing comprehensive basic research and facilitat-
ing the clinical translation of our model.

The scFRG-based risk score model for HCC was devel-
oped combined machine learning techniques and gene 
expression features. The formula consists of weights 
assigned to specific genes and was validated as an inde-
pendent prognostic factor for HCC. A nomogram model 
based on these ten genes was constructed, providing an 
intuitive prediction of HCC patients’ overall survival at 1, 
3, and 5 years. The accuracy of these genes was demon-
strated in both the training and validation sets using the 
TCGA-LIHC dataset. Notably, the low-risk score group 
exhibited significantly longer overall survival compared 
to the high-risk score group. Mutations in TP53, MUC16, 
and TTN were found to be frequently associated with 
poor prognosis in various cancers, consistent with previ-
ous research [33–35]. Differences in the activation levels 
of immune cell populations were observed between the 
high- and low-risk groups, suggesting that the risk score 
not only correlates with prognosis but also reflects differ-
ences in the immune response within the tumor micro-
environment. Our study revealed significant correlations 
between ANXA5, CXCR3, ITM2A, and STMN1 genes 
among the scFRGs and specific immune cell populations, 
providing valuable insights into the potential role of these 
genes in modulating the immune response in HCC.

In addition to our study on risk score development and 
gene expression analysis, pathway enrichment analysis 
was conducted to delve deeper into the biological impli-
cations of the identified signatures. The identification of 
significant enrichment of intersecting genes in pathways 
associated with immune response, specifically pertaining 
to leukocyte-mediated immune processes such as lym-
phocyte-mediated immunity and T cell activation, sug-
gests a close correlation between ferroptosis in HCC and 
the TIME. Dysregulation of immune responses and the 
interplay between iron metabolism, oxidative stress, and 
immune system function could play a role in the develop-
ment and progression of HCC. It is noteworthy that based 
on the TIDE prediction, the low-risk group identified by 
scFRGs may have a higher likelihood of benefiting from 

immunotherapy. Interestingly, based on IC50 predic-
tions, individuals at high risk may indeed benefit from 
chemotherapy treatments such as docetaxel, vinblastine, 
and vinorelbine. This finding further emphasizes the 
importance of scFRGs as potential prognostic factors and 
immune-related gene sets in guiding personalized treat-
ment strategies for hepatocellular carcinoma patients.

Conclusions
In conclusion, our study has provided significant insights 
into the prognostic implications, molecular character-
istics, immunological factors, and pharmacogenomic 
aspects related to ferroptosis in HCC at single-cell reso-
lution. Our findings highlight the potential of targeting 
ferroptotic cell death as a therapeutic strategy and prog-
nostic indicator in HCC. The development of a novel fer-
roptosis classification system using ten scFRG signatures 
holds promise for accurately predicting survival out-
comes in HCC patients. By integrating gene expression 
features, we have successfully constructed an independ-
ent risk score formula and developed a nomogram model 
for overall survival prediction. Moreover, our analysis 
has revealed distinct mutational profiles and variations 
in the tumor immune microenvironment among scFRG-
based risk groups, providing insights into the intricate 
interplay between ferroptosis, immune response, and 
HCC progression. These findings shed light on the com-
plex molecular mechanisms underlying ferroptosis and 
immune response in HCC. Further research is warranted 
to gain a comprehensive understanding of the identified 
genes and pathways in HCC and explore their thera-
peutic implications. Such endeavors will contribute to 
advancing our knowledge and translating these models 
into clinical applications, ultimately improving patient 
management and outcomes in HCC.

Methods
Bulk transcriptome data curation
The HCC’s whole-genome transcriptomic profiles, clini-
cal information, and single-nucleotide variation (SNV) 
data were primarily obtained via the TCGAbiolinks pack-
age from the TCGA (https://​portal.​gdc.​cancer.​gov/). A 
total of 374 HCC samples and 50 normal control tissues 
were included, amounting to 424 cases. Among these, 
338 HCC samples with survival information were used 
for survival-related analysis. Inter-group differential anal-
ysis of TCGA-LIHC transcriptomic data was conducted 
utilizing the R package limma (version 3.50.0) [36]. The 
validation data were mainly from the ICGC database 
(https://​dcc.​icgc.​org), and the ICGC-LIRI-JP included a 
total of 231 primary HCC samples with complete prog-
nostic information.

https://portal.gdc.cancer.gov/
https://dcc.icgc.org
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Single‑cell RNA sequencing data curation
The single-cell dataset GSE140228 was manually down-
loaded from the GEO (http://​www.​ncbi.​nlm.​nih.​gov/​
geo) database and imported for analysis using the Seurat 
package (version 4.2.0) [37]. In this study, we obtained a 
cohort consisting of 8 HCC samples and 5 normal tissues 
for analysis purposes. Only cells with gene expression 
counts fluctuating between 200 and 60,000 were included 
for analysis, and the percentage of mitochondrial genes 
was restricted to below 10%. Single-cell gene expres-
sion profile was preprocessed and subjected to principal 
component analysis (PCA) for dimensionality reduction. 
Subsequently, the cells were clustered using the Louvain 
algorithm on the K-nearest neighbors (KNN) graph, con-
structed based on the principal component (PC) space. 
The batch effects across different samples were mitigated 
using the Harmony method [38]. A total of 17 clusters 
were generated with 30 PC components at a resolution of 
0.5 using t-SNE in Seurat. We utilized the FindAllMark-
ers function with default parameters to identify differ-
entially expressed genes (DEGs) within the cell clusters. 
Subsequently, we employed cell type-specific biomark-
ers to classify the cell clusters and further quantified and 
evaluated the proportions of different cell types.

Ferroptosis‑related gene score based on single‑cell clusters
AUCell is a statistical method used specifically for single-
cell analysis to determine if a given gene set is enriched 
at the top quantile of a ranked gene feature [39]. In this 
study, we utilized AUCell package (version 1.18.1) to cal-
culate the enrichment scores by determining the AUC 
for a selected set of 484 ferroptosis-related genes. Cells 
exhibiting greater gene expression within the given gene 
set exhibited higher AUC values. The “AUCell explore-
Thresholds” function was used to determine the thresh-
old for identifying cells with gene set activity. Finally, 
the AUC score of each cell was visualized on the t-SNE 
embedding using the ggplot2 R package to identify clus-
ters with active gene sets.

Pseudotime trajectory analysis
The Monocle2 algorithm was utilized for conducting 
developmental trajectory analysis using genes with high 
dispersion and expression levels (dispersion estimate ≥ 1 
and mean expression ≥ 0.1) [40, 41]. Genes exhibiting 
significant expression variation along the branches were 
chosen for further Branch Expression Analysis Modeling 
(BEAM) [41].

Cell‑communication analysis
The “CellChat” R package is used to explore cellular com-
munication and molecular mechanisms between single 

cells [42]. The “mergeCellChat” function is employed to 
combine each group’s CellChat objects, enabling compari-
sons of the total number of interactions and interaction 
strengths. Additionally, the “netVisual” series of functions 
are utilized for visualization purposes.

Pathway enrichment analyses
The “clusterProfiler” R package (version 4.2.2) was utilized 
to perform GO and KEGG enrichment analyses to explore 
the biological functions and pathways of differential gene 
sets in cell subpopulations exhibiting high ferroptotic activ-
ity in hepatocellular carcinoma [43–45]. To investigate the 
potential functions linked to highly correlated DEGs, we 
conducted GSEA utilizing molecular signatures c2 from 
MSigDB database (http://​softw​are.​broad​insti​tute.​org/​gsea/​
msigdb). For each analysis, gene set permutations were 
performed 1000 times based on an ordered list of all genes 
according to their log2FC values [46]. Significantly enriched 
gene sets were identified based on a p-value < 0.05. Addi-
tionally, we employed GSVA and visualized the outcomes 
using the “pheatmap” R package (version 1.0.12) [47].

Construction and evaluation of the scFRGs prognostic model
To assess the correlation between differentially expressed 
genes related to ferroptosis at the single-cell level and over-
all survival (OS) in the tumor cohort, we combined the data 
from TCGA-LIHC and randomly divided it into a training 
set and a validation set in a 7:3 ratio. We performed uni-
variate Cox regression analysis to evaluate the association 
of each gene with OS. Genes with a p-value < 0.05 were 
included in the LASSO Cox regression model, and the pen-
alty parameter (λ) was determined based on the minimum 
criteria [48]. By applying the risk formula, we performed 
calculations to assign scores for individual patient and sub-
sequently classified them into different risk stratifications. 
We assessed translational value by analyzing the risk model 
alongside clinicopathological features using univariate and 
multivariate Cox regression. Additionally, we employed the 
“RMS” package in R to construct a validated nomogram for 
predicting overall survival rates at multiple time intervals. 
Similarly, we employed the same method to conduct exter-
nal validation using data from the ICGC-LIRI-JP.

Immune infiltration, TMB, and immune therapy response 
within the scFRGs model
Immune cell infiltration
We downloaded immune cell expression profile data 
from the TISIDB (Tumor and Immune System Interac-
tions Database) (http://​cis.​hku.​hk/​TISIDB/​index.​php) 
as a reference. Using the ssGSEA function in the GSVA 
package, we quantitatively analyzed the expression pro-
files of 28 immune cell types based on cancer samples 
from TCGA-LIHC [24].

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
http://cis.hku.hk/TISIDB/index.php


Page 20 of 22Zhou et al. BMC Biology          (2024) 22:133 

TMB
The “maftools” package was employed to curate the SNV 
data from TCGA-LIHC, enabling us to visualize somatic 
variations such as single-nucleotide polymorphisms 
(SNPs), insertions and deletions (INDELs), TMB, and 
mutation frequency [49].

TIDE
To evaluate the response to immune therapy, we per-
formed TIDE (Tumor Immune Dysfunction and Exclu-
sion, http://​tide.​dfci.​harva​rd.​edu/) analysis [50].

To compare the superiority of the prognostic model 
based on the ferroptosis signature with that based on 
immune cells, we used data from TCGA-LIHC and 
ICGC-JP to plot time-dependent ROC curves for 1, 3, 
and 5  years based on the ssGSEA immune infiltration 
scores of immature B cells and CD4 + T cells.

Drug sensitivity analysis
To analyze drug sensitivity, we obtained the half-maximal 
inhibitory concentration (IC50) data and corresponding 
gene expression data from the GDSC database (Genomics of 
Drug Sensitivity in Cancer, https://​www.​cance​rrxge​ne.​org/) 
[51]. Using the “oncoPredict” R package (version 0.2), we 
predicted the potential therapeutic drug sensitivity in high 
and low-risk groups of TCGA-LIHC cancer patients [52].

Cellular level quantitative real‑time polymerase chain 
reaction (qRT‑PCR)
Total RNA was extracted from cells using RNAex Pro (AG, 
Hunan, China). The quality of total RNA was assessed using 
a spectrophotometer (Thermo Scientific™ NanoDrop™ 
One). Reverse transcription was carried out using Evo 
M-MLV reverse transcriptase (AG) on a TaKaRa PCR Ther-
mal Cycler. The reaction conditions included incubation at 
37 °C for 15 min, followed by denaturation at 85 °C for 5 s 
and cooling to 4 °C for 10 min. For qRT-PCR, gene expres-
sion analysis was performed on a LightCycler 96 (Roche) 
PCR System using SYBR Green Pro Taq HS (AG). The 
reaction conditions involved a preincubation step at 95  °C 
for 600 s, followed by 40 cycles of denaturation at 95 °C for 
10 s, annealing at 59 °C for 10 s, and extension at 72 °C for 
10  s. Relative gene expression levels were calculated using 
the 2−ΔΔCt method. The primer sequences are provided in 
Additional file 20: Table S15. Protein expression levels were 
evaluated through immunohistochemistry analysis obtained 
from the Human Protein Atlas (HPA). Detailed information 
can be found on the website http://​www.​prote​inatl​as.​org/.

Statistical analysis
Continuous variables were examined using the non-par-
ametric Wilcoxon test, while proportions were compared 

using either the chi-square test or Fisher’s exact test. 
Kaplan–Meier survival curves were fitted using the 
“ggsurvplot” function from the “survminer” package in R 
software, and statistical differences were assessed using 
the log-rank test. Feature gene selection and model con-
struction were carried out using LASSO-Cox regression 
analysis, with predictive performance evaluated through 
ROC and time-dependent ROC curves. A significance 
level of p < 0.05 (two-tailed) indicated statistical signifi-
cance. All analyses were conducted using R software ver-
sion 4.1.2.
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