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Abstract 

Background Metabolite-associated cell communications play critical roles in maintaining human biological function. 
However, most existing tools and resources focus only on ligand-receptor interaction pairs where both partners are 
proteinaceous, neglecting other non-protein molecules. To address this gap, we introduce the MRCLinkdb database 
and algorithm, which aggregates and organizes data related to non-protein L-R interactions in cell-cell communica-
tion, providing a valuable resource for predicting intercellular communication based on metabolite-related ligand-
receptor interactions.

Results Here, we manually curated the metabolite-ligand-receptor (ML-R) interactions from the literature and known 
databases, ultimately collecting over 790 human and 670 mouse ML-R interactions. Additionally, we compiled infor-
mation on over 1900 enzymes and 260 transporter entries associated with these metabolites. We developed Metab-
olite-Receptor based Cell Link Database (MRCLinkdb) to store these ML-R interactions data. Meanwhile, the platform 
also offers extensive information for presenting ML-R interactions, including fundamental metabolite information 
and the overall expression landscape of metabolite-associated gene sets (such as receptor, enzymes, and transporter 
proteins) based on single-cell transcriptomics sequencing (covering 35 human and 26 mouse tissues, 52 human 
and 44 mouse cell types) and bulk RNA-seq/microarray data (encompassing 62 human and 39 mouse tissues). 
Furthermore, MRCLinkdb introduces a web server dedicated to the analysis of intercellular communication based 
on ML-R interactions. MRCLinkdb is freely available at https:// www. cellk nowle dge. com. cn/ mrcli nkdb/.

Conclusions In addition to supplementing ligand-receptor databases, MRCLinkdb may provide new perspectives 
for decoding the intercellular communication and advancing related prediction tools based on ML-R interactions.
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Background
Cellular communication forms the foundation of inter-
cellular connections within biological systems, tran-
scending diverse biological forms and tissue structures 
[1, 2]. In multicellular organisms, intercellular commu-
nication plays a pivotal role in various physiological pro-
cesses, such as immune responses, neural transmission, 
and developmental regulation [2–4]. Immune cells uti-
lize intercellular communication to identify and combat 
invading pathogens, maintaining immune homeostasis 
within the organism [5]. Neuronal cells achieve rapid 
signal transmission through the release and reception 
of neurotransmitters [6]. During the organism’s devel-
opmental journey, intercellular communication orches-
trates cell differentiation, tissue formation, and organ 
development [7]. Furthermore, intervening in intercellu-
lar communication stands as a strategic approach, allow-
ing for the modulation of aberrant signal transduction to 
restore normal physiological function [8, 9]. Therefore, a 
comprehensive understanding of intercellular communi-
cation mechanisms can offer a theoretical foundation for 
designing novel drugs and therapeutic approaches [10].

In recent years, propelled by the rapid advancement 
of single-cell sequencing and spatial transcriptomics 
technologies, the systematic exploration of intercellular 
communication within tissues and microenvironments 
has emerged as a focal point in current research [11–15]. 
Over the past 3 years, more than 80 algorithms and data 
resources pertaining to intercellular communication have 
been developed (https:// www. cellk nowle dge. com. cn/ 
mrcli nkdb/ Litet ature CCI. html). These include methods 
based on the expression of cell-to-cell ligand-receptor 
(L-R) interactions (such as CellChat [16], CellPhoneDB 
[17], SingleCellSignalR [18], NATMI [19], ICELLNET 
[20], etc.), methods based on downstream intracellu-
lar signaling network of L-R interactions (CellCall [21], 
CCCExplorer [22], SoptSC, NicheNet [23], CytoTalk 
[24], scMLnet [25], etc.), and methods incorporating spa-
tial transcriptomics data (Cell2Cell [26], SpaOTsc [27], 
SVCA [28], stLearn [29], COMMOT [30], etc.).

The aforementioned cell-cell communication (CCC) 
prediction methods based on single-cell sequencing all 
rely on prior knowledge of L-R interactions [31]. There-
fore, apart from the L-R interaction resources such as 
DLRP [32], IUPHAR/BPS [33], KEGG [34], and HPMR 
[35] existing before the single-cell sequencing era, spe-
cialized resources targeting CCC research have also 
emerged, such as Cellinker [36], connectomeDB2020 
[17], CellTalkDB [37], OmniPath [38], and PlantPhoneDB 
[39]. Meanwhile, there are existing databases that pro-
vide cell-cell communication analysis results for indi-
vidual datasets, which can be directly accessed and 
explored by researchers. These include CellCommuNet 

[40], ABC portal [41], AgeAnno [42], HTCA [43], and 
SPEED [44]. However, most current methods and plat-
forms primarily focus on those cell communications 
and L-R pairs in which both partners are proteinaceous. 
Yet, the material foundation of intercellular communi-
cation extends beyond proteins and includes numerous 
non-protein endogenous ligands such as carbohydrates, 
lipids, inorganic compounds, metal ions, and nucleic acid 
ligands (Fig.  1). Among these, metabolites are classical 
non-protein ligands that play significant roles in cell-to-
cell interactions [45–48]. For instance, the interaction 
between tumor-derived histamine and macrophage his-
tamine receptor H1 (HRH1) can lead to T cell dysfunc-
tion [49]. Neurotransmitters, typically non-peptide small 
molecules such as glutamate and gamma-aminobutyric 
acid (GABA), are crucial for communication between 
neurons, influencing various physiological processes and 
behaviors. Glutamate and GABA not only facilitate signal 
transmission between neurons but also play important 
roles in neurons-microglia interactions [50]. Addition-
ally, cancer cells often export lactate, which induces a 
local inflammatory response in the tumor environment, 
ultimately promoting tumor cell growth and metastasis 
[51–53].

Presently, a limited number of studies have initiated 
the development of intercellular communication pre-
diction methods based on non-protein L-R interactions 
[54]. Zheng et  al. introduced the MEBOCOST algo-
rithm, which leverages the expression of various enzymes 
related to metabolites to predict intercellular commu-
nication involving diverse metabolites [54]. Zhao et  al. 
devised NeuronChat [55], a tool based on the expression 
of enzymes and transport proteins linked to neurotrans-
mitters (including many non-protein ligands), enabling 
the inference of communication between neurons. In 
addition to extensively cataloging L-R protein-protein 
interactions (PPIs), our previous work, Cellinker [36], has 
also compiled over 400 small molecule-related L-R inter-
action data. These endeavors notably expand the appli-
cation scope of intercellular communication prediction 
tools. Nonetheless, there remains a lack of a dedicated 
resource that aggregates and organizes data related to 
non-protein L-R interactions in CCC.

In this study, we developed MRCLinkdb, a resource 
of metabolite-ligand-receptor (ML-R) interactions for 
intercellular communication analysis (Fig.  2). The cur-
rent version of MRCLinkdb documents more than 
790 human and 670 mouse ML-R interactions. Addi-
tionally, the platform has compiled information on 
over 1900 enzyme entries and 260 transporter entries 
associated with these metabolites. The platform offers 
a user-friendly interface and a wealth of information, 
facilitating the browsing and presentation of ML-R 

https://www.cellknowledge.com.cn/mrclinkdb/LitetatureCCI.html
https://www.cellknowledge.com.cn/mrclinkdb/LitetatureCCI.html
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interactions, and introduces a new webserver dedicated 
to the analysis of the ML-R interaction-based intercel-
lular communication. MRCLinkdb is free available at 
https:// www. cellk nowle dge. com. cn/ mrcli nkdb/.

Results
Statistics of ML‑R interactions
The MRCLinkdb platform offers a comprehensive col-
lection of ML-R interactions. For humans, the platform 

Fig. 1 Schematic diagram of ML-R interaction-based intercellular communication

Fig. 2 Construction and content of MRCLinkdb

https://www.cellknowledge.com.cn/mrclinkdb/
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hosts 794 ML-R interactions, referencing 239 metabolites 
and 418 receptor proteins or complexes (Fig.  3A). Fur-
thermore, it documents 1962 enzyme entries (related to 
935 unique enzymes) and 244 transporter entries (related 
to 71 unique transporters). For mouse, the platform 

hosts 678 ML-R interactions, referencing 259 metabo-
lites and 356 receptor proteins or complexes (Fig.  3B). 
It also documents 1913 enzyme entries (related to 900 
unique enzymes) and 241 transporter entries (related to 
68 unique transporters).

Fig. 3 Statistical data for MRCLinkdb. A Statistics for human ML-R interactions, enzymes, and transporter proteins. B Statistics for mouse 
ML-R interactions, enzymes, and transporter proteins. C Category distributions of metabolites related to human ML-R interaction. D Category 
distributions of metabolites related to mouse ML-R interaction. E Role of human enzymes in metabolite-related reactions. F Role of mouse enzymes 
in metabolite-related reactions
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Categorically, human metabolites are distributed 
across nine types, including 39 benzenoids, 76 homoge-
neous metal compounds, 24 homogeneous non-metal 
compounds, 242 lipid-type interactions, 67 nucleosides, 
nucleotides, and analogues, 192 organic acids and deriva-
tives, 56 organic nitrogen compounds, 35 organic oxy-
gen compounds, and 57 organoheterocyclic compounds 
(Fig.  3C). Mouse metabolites are categorized into 11 
classes, including 4 alkaloids and derivatives, 58 benze-
noids, 43 homogeneous metal compounds, 14 homoge-
neous non-metal compounds, 187 lipids, 58 nucleosides, 
nucleotides, and analogues, 160 organic acids and deriva-
tives, 55 organic nitrogen compounds, 35 organic oxygen 
compounds, 55 organoheterocyclic compounds, and 3 
phenylpropanoids and polyketides (Fig. 3D).

Evaluating the role of enzymes, 915 human enzyme 
entries (46.6%) are identified as producers of their asso-
ciated metabolites. Conversely, 977 entries (49.8%) par-
ticipate in the consumption of the metabolite, with an 
additional 70 entries (3.6%) having the dual capacity 
to both generate and use the corresponding metabo-
lite (Fig.  3E). A similar pattern is seen in mouse, with 
898 enzyme entries (46.9%) for production, 946 entries 
(49.5%) for consumption, and 69 entries (3.6%) capable of 
both roles (Fig. 3F).

MRCLinkdb interface overview
The MRCLinkdb platform offers an intuitive interface 
composed of six functional modules designed to access 
and explore ML-R interaction data. These modules 
include “search”, “browse”, “webserver”, “submit”, “down-
load & API”, and a “list of CCI tools”. The “browse” mod-
ule allows easy navigation of all ML-R interactions, with 
a “more” option in each row granting detailed insights 
into selected entries. It offers extensive data annotations 
and strives to present the data as visually as possible. 
The “download & API” section ensures comprehensive 
data accessibility, while the “list of CCI tools” presents 
a curated collection of CCC prediction research from 
the past 3 years. Users are also encouraged to contrib-
ute missing ML-R interaction data through the “submit” 
page.

Data querying and result presentation
To facilitate user access and browsing of ML-R interac-
tion data, MRCLinkdb has designed an elaborate search 
and browsing interface. The overall design and layout 
of the website are illustrated in Fig.  4. If users wish to 
search for specific metabolites and/or proteins, they 
can utilize the “search” interface. MRCLinkdb offers 
two distinct search methods: “Exact Search” and “Batch 
Search”. For these searches, users are required to input 
or upload details such as the metabolite name, HMDB 

ID, PubChem CID, PubChem SID, gene symbol, Entrez 
ID, or UniProt ID of the metabolites/receptors (Fig.  4). 
The search outcomes are displayed in a tabular format 
accompanied by an embedded Sankey plot. For more 
in-depth information regarding specific ML-R interac-
tions, users can navigate to the Detail page by clicking 
on “more”. This detailed page provides extensive data, 
including (1) basic information about M-R interactions, 
such as species, metabolite name, HMDB ID, PubChem 
CID, PubChem SID, gene symbol, Entrez ID, UniProt 
ID, and source; (2) fundamental details of the metabo-
lite, like its 2D structure, molecular formula, kingdom, 
class, canonical SMILES, and the associated enzymes and 
transporter proteins of metabolic reactions; (3) source 
and destination of metabolites, such as metabolite tis-
sue, biospecimen, and cellular location information, and 
metabolite-cell interaction information; and (4) expres-
sion data for the receptor, enzymes, and transporter 
proteins based on scRNA-seq (covering tissues and cell 
types) and bulk RNA-seq/microarray data (encompassing 
tissues). Furthermore, by hovering over the bar chart of 
the scRNA-seq, users can highlight and view the distribu-
tion of tissues/cell types they are interested in. The right 
panel will then display the distribution of these tissues/
cell types, helping users in understanding the expression 
distributions of receptors, enzymes, and transporter pro-
teins more clearly.

Online tool for analyzing ML‑R interaction‑based 
intercellular communication
MRCLinkdb introduces a dedicated webserver to facili-
tate analysis of intercellular communication via metabo-
lite and receptor interactions, leveraging scRNA-seq 
data (Fig. 5). Users are required to upload an expression 
matrix file (either counts or TPM). In this matrix, rows 
correspond to gene symbols while columns represent 
individual cells. An accompanying META file should be 
provided, detailing each cell’s name and type. The plat-
form offers a customizable experience. Users can des-
ignate a threshold “N”, thereby filtering out enzymes, 
transporter proteins, or receptors expressed in fewer 
than “N%” of cells within a specific cell type. There is also 
flexibility to define the p-value threshold and stipulate 
the number of iterations for the permutation test. Upon 
analysis completion, outcomes, including MRscore and 
p-values, are displayed as a visually intuitive bubble plot 
on the result page. Additionally, users have the provision 
to download the data for offline perusal (Fig. 4).

Discussion
MRCLinkdb functions as a comprehensive platform for 
analyzing ML-R interactions in intercellular communica-
tion. However, it still presents certain limitations. Firstly, 
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MRCLinkdb provides detailed annotations for ML-R 
interactions, yet it currently lacks the capacity to offer 
insights into the specific biological processes or pathways 
in which these interactions are involved. A more nuanced 
understanding of these processes is crucial for compre-
hending the broader implications of ML-R interactions 

within distinct biological contexts. Meanwhile, the 
resource predominantly focuses on enzymes directly 
associated with metabolites but does not encompass vital 
enzyme-related chemical reaction constants, such as Km, 
Ks, and Kcat. These constants are indispensable for pre-
cisely estimating metabolite concentrations. Additionally, 

Fig. 4 The Search page, Result page, and Detail page of MRCLinkdb
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the scope of MRCLinkdb is primarily limited to data 
related to metabolite-linked transport proteins. How-
ever, the field of metabolism encompasses a wide array 
of transport mechanisms beyond transporter-mediated 
pathways. Mechanisms such as exosome and vesicle traf-
ficking, along with their associated molecules, remain 
absent from the resource. Recognizing these diverse 
aspects of metabolism is essential for a more comprehen-
sive understanding of intercellular communication.

MRCLinkdb’s webserver tool employs methods from 
MEBOCOST and NeuronChat, using enzyme RNA 
expression levels to estimate the extracellular con-
centration of related metabolites and thus infer inter-
cellular communication. However, this approach has 
limitations: (1) the relationship between enzyme mRNA 
expression levels and protein content is nonlinear, 
potentially introducing bias when inferring metabolite 
levels; (2) metabolite concentrations are also influenced 

by upstream substrates, downstream by-products, 
and environmental factors such as temperature and 
pH, which are not fully captured by transcription data 
alone; (3) high expression levels of metabolites and 
receptors do not necessarily indicate actual intercellu-
lar communication, adding uncertainty to predictions 
based solely on ligand-receptor levels. While single-cell 
metabolomics or proteomics data would provide more 
reliable insights, these techniques currently lag behind 
transcriptomics in molecular coverage and through-
put. Therefore, single-cell and spatial transcriptomics 
data remain the primary resources for these inferences. 
Moreover, few algorithms are specifically designed to 
infer metabolite-receptor interactions. Despite poten-
tial high false positive rates, existing algorithms still 
offer valuable preliminary insights into intercellular 
communication mechanisms. In conclusion, although 
using enzyme and transporter protein expression levels 

Fig. 5 Webserver and algorithm for ML-R interaction-based intercellular communication analysis



Page 8 of 12Zhang et al. BMC Biology          (2024) 22:152 

to infer metabolite-related intercellular communica-
tion has limitations, it remains a useful approach given 
current technological constraints. We look forward to 
advancements in biotechnology that will improve the 
accuracy and interpretability of these predictions.

In the evolving landscape of research concerning 
ML-R interactions, we are firmly committed to main-
taining the integrity of our platform by conducting 
regular updates. Our primary objective is to ensure 
data accuracy and comprehensiveness as new insights 
continue to emerge. One of our foremost goals is to 
broaden the taxonomic scope of our platform, encom-
passing a wider array of model organisms and systems 
pertinent to various diseases. This expansion will facili-
tate a more comprehensive understanding of ML-R 
interactions in diverse biological contexts. Moreo-
ver, our future endeavors will focus on incorporating 
additional functional data. We intend to highlight the 
dynamic changes in ML-R interactions across different 
disease states and elucidate the intricate relationships 
between ML-R interactions and cellular fate determina-
tions. This expansion will provide a richer set of anno-
tations for ML-R data. To further enrich the dataset, we 
plan to integrate detailed metabolite-related informa-
tion. This will include enzyme reaction constants and 
critical binding constants that serve as bridges between 
metabolites and receptors. This addition will signifi-
cantly enhance the depth and breadth of our ML-R data 
annotations. At last, leveraging these enhanced data-
sets, we will proceed to refine ML-R prediction meth-
odologies and further enhancing the functionalities of 
our online server.

Conclusions
MRCLinkdb represents an integrated platform that 
combines ML-R interaction data collection, curation, 
and intercellular communication analysis. It catalogs 
over 790 human and 670 mouse ML-R interactions 
and compiles information on more than 1900 enzyme 
entries and 260 transporter protein entries associated 
with these metabolites. The platform offers a user-
friendly interface and comprehensive information, 
facilitating the exploration and visualization of ML-R 
interactions. Additionally, it introduces a dedicated 
web server for intercellular communication analysis 
based on ML-R interactions. In summary, we believe 
that this platform possesses invaluable potential to 
expedite the unraveling of intercellular communica-
tion intricacies and propel the progress of algorithms 
related to scRNA-seq and spatial transcriptomics data, 
especially those geared towards predicting CCC based 
on ML-R interactions.

Methods
Collection of ML‑R interaction
The ML-R interaction data were manually curated from 
literatures and databases (Fig. 2). For curation, we search 
for literatures with the following keywords in Web of 
Science, PubMed and Google: “metabolite”, “secreted 
metabolite”, “metabolite cell–cell communication”, “extra-
cellular metabolite”, “metal ions”, “neurotransmitter”, 
“amino acid”, “carbohydrates”, “ligand to receptor interac-
tion”, “metabolite to receptor interaction”. The retrieved 
publications were then subjected to a preliminary check 
by expert curators to eliminate false-positive papers. 
Only experimentally supported ML-R interactions were 
included in the MRCLinkdb platform. Meanwhile, we 
also collected the ML-R interactions from three other 
known resources, including IUPHAR/BPS [33], KEGG 
[56], and MEBOCOST [54]. The location information 
of metabolites in tissues, biological specimens, and cel-
lular was collected from HMDB. And the metabolite-cell 
interaction pairs were collected from MACC [57]. In 
addition, in order to better assist users in understanding 
the latest developments and dynamics in CCC prediction 
research, we have compiled a list of prediction tools and 
resources from the past 3 years. This compilation, availa-
ble on our platform (https:// www. cellk nowle dge. com. cn/ 
mrcli nkdb/ Litet ature CCI. html), includes over 80 tools 
and databases and will be periodically updated to reflect 
the latest advancements.

Data annotation
To enhance the usability of the data within the platform, 
we have performed rigorous annotation of ML-R inter-
action data, referencing several authoritative resources 
(Fig.  2). For metabolite details, annotation such as the 
molecular name, HMDB ID, CID, SID, kingdom, super 
class, class, molecular formula, canonical SMILES, and 
2D structure of metabolite were sourced from NCBI 
PubChem database [58]. The metabolic reactions, 
enzymes, and transporter proteins associated with the 
metabolite were sourced the Human Metabolome Data-
base (HMDB) [59]. The relationship between metabolites 
and enzymes primarily arises from the chemical reac-
tions involving small molecules catalyzed by enzymes. 
For gene details, we referenced the NCBI Gene database 
[60] to acquire the gene name and entrez ID. Protein-
related details were obtained from UniProt database 
[61]. It is worth noting that while the HMDB exclusively 
offers information on human-related enzymes and trans-
porter proteins, we bridged this gap for mouse enzymes 
and transporter proteins using gene homology mapping. 
Orthology data for enzymes and transporter proteins was 
gathered from HomoloGene [60].

https://www.cellknowledge.com.cn/mrclinkdb/LitetatureCCI.html
https://www.cellknowledge.com.cn/mrclinkdb/LitetatureCCI.html


Page 9 of 12Zhang et al. BMC Biology          (2024) 22:152  

scRNA‑seq and bulk RNA‑seq data collection 
and processing
Human and mouse single cell atlas were collected from 
Mouse Cell Atlas (MCA) version 1.0 [62] and version 1.1 
[63]. The human cell landscape contains 344,000 cells, 
consisting of 52 cell types across 35 tissues. The mouse 
cell landscape contains 174,455 cells, consisting of 44 
cell types and 26 tissues. The bulk RNA-seq/microarray 
data for gene expression across different tissues in human 
and mouse were collected from the Human Protein Atlas 
(HPA) project (62 human tissues) [64] and the TISSUES 
2.0 database (39 mouse tissues) [65], respectively.

For further processing, we procured scRNA-seq 
raw data and any supplementary data provided by the 
authors. The raw data of human was analyzed by the 
Seurat R package (version = 4.0.5) [66]. Besides other-
wise stated, all parameters use the default values. Cells 
registering fewer than 100 detected genes were excluded 
to maintain data quality. The expression matrix, post-
filtering, was normalized using Seurat’s NormalizeData 
function (with a scale.factor set at 10,000). Leveraging 
the FindVariableFeatures function, 3000 highly variable 
genes were identified, forming the basis for subsequent 
principal component analysis. The tissue and cell type 
distributions were visualized through t-Distributed Sto-
chastic Neighbor Embedding (tSNE) via the RunTSNE 
function (dims spanning 1:50). The average gene expres-
sion was determined for each tissue and cell type. A 
parallel analysis approach was adopted for the mouse 
scRNA-seq dataset.

Inferring ML‑R interaction‑based cell‑cell communication
MRCLinkdb employed a webserver to infer cell commu-
nication based on metabolites and their receptor pro-
teins. The methodological approach was inspired by the 
MEBOCOST [54] and NeuronChat [55] algorithms. By 
contrast, MRCLinkdb’s adoption of the Euclidean norm 
in its algorithm for inferring intercellular communication 
scores improve sensitivity, interpretability, and robust-
ness. The Euclidean norm ensures balanced considera-
tion of metabolite concentration and receptor expression 
levels, enhancing sensitivity to their variations and allow-
ing for additive effects or nonlinear relationships, while 
also improving robustness by penalizing outliers less 
severely than the product approach. Within the cell, the 
concentration of a specific metabolite is highly correlated 
with the enzymes responsible for its synthesis and utili-
zation. Concurrently, for intercellular communication, 
these metabolites are relayed outside the cell through 
specific transport proteins. Given this, extracellular 
metabolite concentrations are intrinsically linked to their 
related enzymes and transport proteins. This prompted 

us to estimate the extracellular concentration of particu-
lar metabolites using the expression levels of enzymes 
and transport proteins, providing insights into intercel-
lular communication via ML-R interactions. The specific 
steps of the pipeline are as follows:

1) Estimating extracellular metabolite concentration

where M is the extracellular metabolite concentration, 
and E is the expression of the enzymes, determined as:

where P is the average expression of the enzymes that 
produces the metabolite, and m represents the number of 
the enzymes that produces the metabolite. S is the aver-
age expression of the enzyme that consumes the metabo-
lite. n represents the number of enzymes that consumes 
the metabolite. And T is the expression of the transporter 
proteins for the metabolite. The calculation of T is for-
mulated as follows:

where Tg is the average expression of the transporter 
proteins, and k represents the number of transporter 
proteins associated with the metabolite. g is the gth trans-
porter proteins in the k transporter proteins.

2) Estimating receptor expression

Receptors, often a protein or complexes, bind or 
receive metabolites to trigger signaling. If a receptor is a 
complex containing q proteins, R is defined as the geo-
metric mean of the expression value of all proteins. The 
formula is as follows:

where Rh is the expression value of protein h in the recep-
tor complex.

3) Inferring the cell-cell communication score

To infer the cell communication between different cell 
types based on metabolites and their receptor proteins. 
The MRscore is defined as the score of an ML-R interaction 
entry between different cell types, which is evaluated by 
the expression of metabolite and receptor. The formula is 
as follows:

(1)M =
2

E2 + T 2

(2)E =
m

√

∏m

i=1
Pi −

n

√

∏n

j=1
Sj

(3)T =
k

√

∏k

g=1
Tg

(4)R =
q

√

∏q

h=1
Rh
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where M is the extracellular concentration of metabolite, 
and R is the expression of receptor, respectively.

4) Estimating statistical significance of CCC score

To examine the statistical significance of each ML-R 
interaction entry, the p-value was estimated using the 
permutation test (by randomly permutating group 
labels of cells and then recalculating the communica-
tion strength for each permutation).

Architecture
The MRCLinkdb runs on CentOS Linux. The archi-
tecture of the MRCLinkdb is composed of two parts. 
The first part is the frontend, which provides a visual 
interface of the webpage and an interactive experi-
ence with users by Hyper Text Markup Language 5 
(HTML5), Cascading Style Sheets (CSS) and JavaS-
cript. The last part is the backend. All data are stored 
in MySQL. PHP plays a key role in connecting the fron-
tend and backend. PHP can execute different scripts in 
response to the user’s various requests. To streamline 
the development process and enhance functionality, 
various plugins were incorporated: DataTables, an addi-
tion to the jQuery JavaScript library, this plugin aug-
ments HTML tables with advanced features; ECharts, 
a declarative framework designed for swift creation of 
web-based visualizations; Bootstrap, a robust frontend 
toolkit that provides numerous features; Smarty, facili-
tates the separation of frontend and backend, isolating 
logical programs from external content. This ensures 
ease in subsequent management and maintenance.

Abbreviations
MRCLinkdb  Metabolite-Receptor based Cell Link Database
ML-R  Metabolite-ligand-receptor
L-R  Ligand-receptor
CCC   Cell-cell communication
PPIs  Protein-protein interactions
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