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Abstract 

Background  Single-cell RNA sequencing enables studying cells individually, yet high gene dimensions and low cell 
numbers challenge analysis. And only a subset of the genes detected are involved in the biological processes underly-
ing cell-type specific functions.

Result  In this study, we present COMSE, an unsupervised feature selection framework using community detection 
to capture informative genes from scRNA-seq data. COMSE identified homogenous cell substates with high resolu-
tion, as demonstrated by distinguishing different cell cycle stages. Evaluations based on real and simulated scRNA-
seq datasets showed COMSE outperformed methods even with high dropout rates in cell clustering assignment. 
We also demonstrate that by identifying communities of genes associated with batch effects, COMSE parses signals 
reflecting biological difference from noise arising due to differences in sequencing protocols, thereby enabling inte-
grated analysis of scRNA-seq datasets of different sources.

Conclusions  COMSE provides an efficient unsupervised framework that selects highly informative genes in scRNA-
seq data improving cell sub-states identification and cell clustering. It identifies gene subsets that reveal biological 
and technical heterogeneity, supporting applications like batch effect correction and pathway analysis. It also pro-
vides robust results for bulk RNA-seq data analysis.
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Background
High-throughput single-cell RNA sequencing (scRNA-
seq) have enabled the elucidation of transcriptomic pro-
files on a cell-by-cell basis [1, 2]. Statistical and machine 

learning analyses of scRNA-seq data have provided 
unprecedented opportunities to elucidate the biologi-
cal processes underlying phenomena such as cell fate 
determination [3] and the development and progression 
of complex diseases [4, 5]. However, analyzing scRNA-
seq data presents three primary challenges: (a) a typical 
scRNA-seq experiment detects ~ 20,000 genes across just 
a few thousand cells. Datasets with large numbers of fea-
tures but relatively small sample sizes are problematic 
for traditional statistical and machine learning methods. 
(b) Current scRNA-seq protocols capture only 10–40% 
of mRNAs within a cell [6–9]. As a consequence, lowly 
expressed genes may be recorded as zeros in the count 
matrix, and the high dropout rate introduces consider-
able noise and sparsity into scRNA-seq data. (c) Most 
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functional pathways and biological processes involve only 
subsets of genes. An important computational challenge 
is selecting the most relevant features [10]. In most cases, 
true labels for cell types are unavailable for scRNA-seq 
data; thus, unsupervised feature selection is necessary 
for both dimensionality reduction and data denoising. 
Even for high-cell number droplet-based dataset [11], 
gene selection remains challenging due to extreme spar-
sity and noise. While sample sizes increase, dropout rates 
also rise, and most genes are detected in only a tiny frac-
tion of cells [12]. Sensitive, scalable methods are needed 
to distinguish signals of interest.

Several computational approaches are commonly 
applied for gene selection in scRNA-seq data analysis, 
including Seurat [13], M3Drop [10] scran [14], BASiCS 
[15], and scLVM [16]. These methods share two main 
components: data normalization and analyzing variation. 
Normalization is often achieved through variance-stabi-
lizing transformation, as in DESeq2 [17], or converting 
raw counts to relative expression. Different approaches 
were adopted to highly variable genes (HVGs) by these 
methods. For example, scLVM’s LogVar algorithm and 
scran calculate variance from a logarithmically normal-
ized expression matrix. BASiCS uses hierarchical Bayes-
ian model, while Brennecke uses the squared coefficient 
of variation to estimate dispersion in expression. Each 
method fits mean–variance relationships to their model 
and selects HVGs [18]. Identifying HVGs aims to retain 
genes exhibiting biologically heterogeneity while remov-
ing genes primarily contributing technical noise, thereby 
enhancing the biologically relevant signal and reducing 
dimensionality for improved computational efficiency 
in downstream analyses like clustering. However, HVGs 
often correlate or are redundant, especially in heterog-
enous populations. Redundancy can cause overfitting, 
variance inflation, low efficiency, and poor performance. 
Moreover, not all biologically relevant genes are highly 
variable, so selection based solely on mean–variance 
relationships causes information loss.

Feature selection aims to identify the most informative 
and relevant features for building models in tasks such 
as classification, trajectory analysis [19], or other down-
stream analyses. It also facilitates model interpretability 
and generalizability. We focus on unsupervised feature 
selection (UFS) methods, as true cell type labels are 
often lacking in scRNA-seq data. We proposed a novel 
unsupervised feature selection (UFS) method named as 
COMSE. This method first partitions all genes into dif-
ferent communities in latent space inferred by principle 
component analysis (PCA) using the Louvain algorithm 
[20]. Within each community, we apply a denoising pro-
cedure to remove noise introduced during sequencing or 
other procedures. It then selects highly informative genes 

(referred to HIGs hereafter) from each community based 
on the Laplacian score [21] (Fig. 1). Louvain algorithm is 
a hierarchical clustering method that optimizes modular-
ity to detect community structure. Laplacian score is a 
feature selection approach based on spectral graph analy-
sis that ranks features by local neighborhood connectiv-
ity and global distinctiveness using similarity matrix.

To assess the performance of our method COMSE, we 
applied it to actual and simulated scRNA-seq data. We 
found that COMSE was more sensitive to detect sub-
tle differences between homogenous cells without any 
extra information, which facilitates a more sophisticated 
understanding of the functionality inherent to cellular 
subpopulations (Fig.  2). Moreover, COMSE gave more 
precise and concise cell clustering than other commonly 
used tools (Fig. 3, Additional file 4: Fig. S5, 6, 7). We also 
demonstrated that the communities identified by our 
method provide insight into gene function at both broad 
and gene-specific levels (Fig.  4A, B). The community 
structure is also able to separate subgroups associated 
with batch effects, allowing us to remove such effects 
(Fig.  4E). Therefore, we show that COMSE could aid in 
interpreting variability arising from either biological or 
technical sources. We also applied the denoising step in 
COMSE to bulk RNA-seq data; the results showed that 
after denoising, the data yielded a more robust identifica-
tion of differentially expressed genes and better reflected 
the biological differences between groups (Fig. 5).

Results
The workflow of COMSE
We proposed an approach that consists of three main 
steps (Fig.  1). First, we construct a K-nearest neighbor 
graph (KNN graph) based on the Euclidean distance 
between genes in the low-dimensional space obtained by 
principal component analysis (PCA). Then, we partition 
the KNN graph into multiple subgraphs using the Lou-
vain algorithm for community detection.

Secondly, we perform a denoising procedure for heter-
ogeneous gene expression datasets. For scRNA-seq data, 
where covariate information is unavailable for each cell, 
we first infer a covariate matrix based on a KNN graph 
within the low-dimensional space from PCA. We then 
implement a linear mixed regression model to remove 
noise introduced by different methods in each subgraph. 
For bulk RNA-seq data, we can extract sample group 
labels (e.g., “Cancer” vs. “Normal”) to use as covariates. 
Thus, inferring a covariate matrix is unnecessary. How-
ever, it is important to note that this step is optional. It 
should be considered only if the data is deemed to con-
tain a considerable amount of noise. If the data quality 
is adequate and the noise level is acceptable, this step 
can be omitted, and the analysis can proceed to the next 
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stage. The primary purpose of introducing this step is to 
mitigate the potential impact of noise on downstream 
analyses, thereby obtaining more reliable and accurate 
results.

Finally, we select the informative genes in each sub-
graph through the Laplacian score. For each gene in a 
subgraph, we calculate the Laplacian score with multi-
subsample randomization and choose genes with the 
smallest scores, assuming that data from the same class 

are often close to each other. We then rank the genes 
based on gene–gene correlation to remove redundancy.

COMSE identifies sub‑states in homogeneous cell 
populations
Approaches for highly variable gene selection typically 
filter for features (genes) exhibiting greater variance, spe-
cifically larger biological variance. These techniques fre-
quently enhance downstream analyses like cell clustering 

Fig. 1  An overview of the COMSE method for selecting informative genes from single-cell RNA-seq data. A The log-normalized gene expression 
profile of each cell is projected into a low-dimensional latent space using principal component analysis (PCA). The low-dimensional representation 
is then used to construct a gene similarity graph with the K-nearest neighbors (KNN) algorithm. Gene graph is partitioned into several subgraphs 
by Louvain algorithms for community detection. B When sample covariates lacking, covariate matrix for each cell were estimated through KNN 
in low-dimension PCA space with given neighbor number. Then linear mixed regression model was applied to estimate and remove noise 
from data within each gene subgraph. C An unsupervised feature selection technique based on the Laplacian score is applied to choose HIGs 
in each subgraph
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and pseudo-time inference. However, when examin-
ing single-cell RNA-seq data with multiple subtypes of 
homogeneous cells, differences between subtypes of an 
identical cell type are commonly minute. Variance within 
a cell type may subsume variance between subtypes, 
confounding the separation of in-group variance and 
between-group variance. Consequently, unambiguously 
discriminating distinct subtypes of the same cell type 
may prove challenging.

To further validate our hypothesis, we generated a data-
set containing three groups and three types of features. 
The first type of feature was sampled from three normal 
distributions for different groups, with small mean dif-
ferences between the three distributions and small vari-
ances. The second type of feature was also sampled from 
three normal distributions for different groups, with simi-
larly small mean differences but larger means and smaller 
variances. The third type of feature was sampled from 
a single normal distribution for all three groups, with a 
mean similar to the second feature type and larger vari-
ance than other types of features. Only the first two types 
of features represent between-group differential genes 
for each group, while the last feature type corresponds 
to the in-group differential genes we mentioned above. 
We found that inter-group differential genes can effec-
tively separate the three sample groups. Furthermore, we 
used feature selection methods to screen for features for 
downstream clustering analysis. However, differentially 
expressed genes selected based on commonly used HVG 

detection methods had difficulty distinguishing the three 
sample groups, while the features selected by our method 
separated the three groups well, further validating our 
hypothesis (Additional file  1: Fig. S1). We further vali-
dated our hypothesis on simulated datasets using Splatter 
[22], which contained substantial within-group variance 
and minimal between-group variance to mimic the cell 
subtypes in true scRNA-seq dataset. Similar results were 
obtained consistent with our previous simulation experi-
ment (Additional file 2: Fig. S2).

Moreover, single-cell RNA sequencing (scRNA-seq) is 
commonly used to identify different cell types from het-
erogeneous tissues or complex cell populations. However, 
even seemingly homogeneous cell populations consist of 
cells in distinct cellular states due to differences in devel-
opmental stage, cell cycle phase, or microenvironment. 
Several studies have found that the cell cycle contributes 
to phenotypic and functional cell heterogeneity even in 
homogeneous cell populations [23, 24]. Due to the high 
prevalence of dropout events and technical noise in 
scRNA-seq data, it is difficult to distinguish cells in dif-
ferent phases of the cell cycle in a homogeneous cell pop-
ulation [23].

Therefore, we analyzed a scRNA-seq dataset of mouse 
embryonic stem cells (ESCs) sorted into the G1, S, and 
G2M phases of the cell cycle [16]. Cells in different phases 
were not clearly separated using the top 2000 HVGs 
selected by widely used HVGs selection methods with 
the standard Seurat workflow (Fig. 2A). We hypothesized 

Fig. 2  COMSE identified cell cycle states in mouse embryonic stem cells (ESCs). A The UMAP plots of the real scRNA-seq data for cell cycle 
states of homogeneous mouse ESCs grouping by predicted label using genes selected by different feature selection methods and true label. 
B Four external clustering validations (purity, F score, RI, and ARI) were used to indicate the performance and robustness of the four methods 
with the mouse ESCs dataset. C The Venn plots of genes selected by each feature selection method using G1 phase mouse ESCs only, G2M phase 
mouse ESCs only, S phase mouse ESCs only, and all mouse ESCs
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that the selected HVGs are in-group differential genes 
rather than between-group differential genes. To verify 
this, we applied HVGs (HVGs) selection methods sepa-
rately to cells in G1, S, and G2M phases. We observed 
extensive overlap among the HVGs selected from cells 
in different cell cycle phases (Fig. 2C). This suggests that 
HVGs selection methods may have difficulty differenti-
ating the relatively subtle differences in gene expression 
that distinguish distinct cellular states within a homoge-
neous population. While highly variable gene selection 
can be useful for identifying major sources of variation, 

more nuanced methods may be needed to resolve minor 
differences within a seemingly homogeneous cell popu-
lation. Using the top 2000 genes selected with our pro-
posed method, COMSE, we generated a clear cluster 
structure reflecting the different cell cycle states with the 
highest performance across four external clustering vali-
dation methods.

Currently, there are also methods for distinguishing 
different cell cycle phases, such as the cell cycle score in 
Seurat and Cyclone in scran. These methods generally 
classify cells based on known cell cycle-related genes, 

Fig. 3  COMSE yields more accurate cell classification results with four scRNA-seq datasets. A, B, C UMAP plots of the mouse brain dataset, Baron 
pancreas dataset, and Bunis HPSC dataset using top 2000 genes obtained from COMSE with denoising, COMSE only, and other three widely used 
HVG selection methods. D, E, F The cell clustering results using top 2000 genes selected by COMSE with denoising, COMSE only, and other three 
widely used HVG selection methods of three heterogeneous public scRNA-seq datasets with true labels, including a mouse brain cortex (Zeisel) 
dataset, the human pancreas (Baron) dataset, and human hematopoietic stem and progenitor cell (Bunis HPSC) dataset. Four external clustering 
validations (F score, CSI, PSI, ARI, and NMI) were used to indicate the performance and robustness of the five methods on three public scRNA-seq 
datasets
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Fig. 4  Biological interpretation of subgraph generated by COMSE. A Density plot of the results obtained with mouse brain dataset and of the 
activities of each subgraph in each cell generated by COMSE. The different color represents heterogeneous cell populations. B Dot plot 
of the results obtained by introducing gene ontology (GO) pathways analysis into subgraphs 3, 9, and 18; only the top 5 categories were shown. 
COMSE removed the batch effect introduced by different scRNA-seq protocols with high efficiency using two human pancreatic islet datasets. C 
Histogram of the results obtained with the human pancreatic islet dataset and of the activities of each subgraph in each cell generated by COMSE. 
The red color represents the cell using the scRNA-seq protocol SMARTER, while the blue color represents the cell using SMART-seq2. D After 
using the AUC scores of three subgraphs to regress out the HIGs with high variability selected by COMSE, UMAP plots of the human pancreatic 
islet datasets were obtained with the top 2000 genes selected by COMSE. E Four external clustering validations (purity, F score, RI, ARI) were used 
to indicate the performance of COMSE on cell clustering. F Average silhouette width (ASW) assessments of different batch effect removal methods 
on the human pancreatic islet dataset, smaller values of which indicate better batch effect removal and less heterogeneity introduced by different 
protocols
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i.e., by pre-specifying between-group differential genes. 
We also included both these methods in our comparison. 
Overall, we found that our method performed better in 
distinguishing cells in different cell cycle phases (Fig. 2B). 
We also validated that COMSE can effectively identify 
different B cell subsets in patient samples of colorectal 
cancer (Additional file 3: Fig. S3) [25] and rare cell sub-
sets in patient samples of neck squamous cell carcinoma 
(Additional file  3: Fig. S4) [26]. Therefore, our method 
has high sensitivity for distinguishing different subtypes 
of the homogeneous cell type.

Accurate and robust single‑cell classification using COMSE
To evaluate the performance of our proposed method on 
cell clustering analysis, we collected single-cell RNA-seq 
datasets with true labels, including the data from the cer-
ebral cortex of mouse [27] (GSE60361, 3005 single cells 
from 33 males and 34 females), the dataset from the pan-
creas of human [28] (GSE84133, 8569 single cells con-
taining 14 common cell types in pancreas), the dataset 
from the human fetal, newborn, and adult hematopoietic 
stem and progenitor cells [29] (GSE158493, 5183 single 
cell samples containing 5 cell types), the dataset Zheng-
mix4uneq [30] containing four pre-sorted cell types 
(1000 B cells, 500 naive cytotoxic T cells, 2000 CD14 
monocytes, and 3000 regulatory T cells) from Homo 
sapiens, the dataset mixology10 × 5  cl containing five 
human lung adenocarcinoma cell lines (GSE118767, 3918 
cells from H2228, H1975, A549, H838, and HCC827), 
and the dataset Koh [31] containing purified H7 human 
embryonic stem cells (GSE85066, 531 cells from 9 FACS 
purified differentiation stages). As previously articulated, 
the denoising procedure predominantly proves pertinent 
for interrogating heterogeneous corpora. Accordingly, 
within our analyses, we enlisted COMSE and COMSE 
with denoising step for the Bunis HSPC data, Zeisel 
brain data, and Baron pancreas data. For residual arrays, 
we eschewed the denoising maneuver. In addition to 
COMSE, we utilized the widely used M3Drop, Scran, and 
Seurat for cell clustering comparison.

Primarily, we extracted the top 2000 feature genes from 
COMSE with denoising, COMSE alone, scran, M3Drop, 
and Seurat. Cell clustering was ensued in compliance 
with the Seurat conventional procedure. To evaluate the 

performance of cell clustering, we enlisted four exter-
nal clustering validation implements (purity, F score, RI, 
ARI).

Amid the Zeisel brain dataset and Baron pancreas 
dataset, all four clustering validations systematically 
evinced COMSE with denoising accomplished best cell 
clustering. As for the Bunis HPSC dataset, COMSE with 
denoising also showed the better performance on F score, 
RI, and ARI and similarly to other common HVG selec-
tion methods in purity (Fig. 3D, E, F). For other simpler 
data (with fewer cell types or bigger differences between 
heterogeneous cells), we also found that COMSE gave 
accurate clustering results (Additional file  4: Fig. S5). 
Furthermore, to validate the performance of our method 
with different numbers of features, we compared the 
clustering results using top 500, 1000, and 2000 features. 
We found that our method achieved robust performance 
under different feature numbers, indicating that our 
method can not only obtain more accurate cell clustering 
results but is also robust to the number of features (Addi-
tional file 4: Fig. S6). Additionally, we also evaluated the 
performance of COMSE on the atlas-level datasets using 
mouse cell atlas (MCA) [32]. We found that COMSE 
achieved reasonable results and performed better vali-
dated by the four external clustering validation (purity, F 
score, RI, ARI), further demonstrating the accuracy and 
robustness of COMSE in analyzing large-scale dataset 
(Additional file 4: Fig. S7).

COMSE enhances the interpretation of variability
As the delineation of gene subgraphs depends upon 
Euclidean separation in the latent space extrapolated by 
PCA, we speculated genes inhabiting the equivalent sub-
graph may represent a functional module. We used sub-
graphs partitioned from gene graph through the Louvain 
algorithm using a mouse brain dataset to demonstrate 
functional relevance. We calculated the AUC activity 
score of each subgraph in each cell generated by COMSE. 
Then, we selected subgraphs having differential activ-
ity scores among heterogeneous cell populations, which 
were subgraphs 18, 9, and 3 (Fig. 4A, B). The Gene Ontol-
ogy (GO) analysis of genes in these three subgraphs dem-
onstrated the consistency between the enriched signal 
pathways using genes in each subgraph and the function 

Fig. 5  Denoising in COMSE boosts the bulk RNA-seq data analysis. A, B The PCA plots of the bladder bulk RNA-seq original data, ComBat-modified 
data and COMSE-modified data, denoted by sample type and batch. C The UMAP plots of the native TCGA HNSC data and COMSE-processed data, 
labeled by sample type. D The box plots of paired F1 values computed from differentially expressed genes (DEGs) extracted via each approach 
including t-test, Wilcoxon-test, limma, and KS-test in each group. p-values were derived using the t-test. E Box plots of paired Jaccard similarity 
coefficients between DEGs elicited via each approach including t-test, Wilcoxon-test, limma, and KS-test in raw down-sampled data collection 
and denoised down-sampled data collection separately. p-values were produced using the t-test

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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of cell types that have exclusively high AUC scores in 
the corresponding subgraph. Oligodendrocytes are the 
myelinating cells of the central nervous system, whose 
main function is to generate myelin, which is an extended 
membrane from the cell that wraps tightly around axons 
[33]. And what contains genes enriched in gliogenesis 
and myelination pathways are highly consistent with the 
function of oligodendrocytes in the central nervous sys-
tem which had exclusively high AUC scores in subgraph 
18 (Fig.  4A, B). Besides, interneurons had exclusively 
high AUC scores in subgraph 9 which contained genes 
enriched in pathways relative to signal transduction and 
transmission of neurons. And neurons including pyrami-
dal CA1, pyramidal SS, and interneurons had activity 
scores in subgraph 3 which contained genes enriched 
in the pathways involved in the function of neurons 
such as synapse organization and dendrite development 
(Fig.  4A, B). Above all, we verified our speculation to a 
certain extent, the subgraphs partitioned from the gene 
graph could be identified as functional modules and 
could improve our understanding of biological variability 
among heterogeneous cell populations.

Due to the development of fast and accurate scRNA-
seq technologies, the number of cells and studies using 
scRNA-seq technology grows rapidly [34]. Another chal-
lenge in single-cell transcriptomics data analysis is the 
batch effect, which is a systematic bias of transcriptomics 
profile introduced by one batch to another such as differ-
ent scRNA-seq protocols [12]. The systematic variability 
generated by different batches could confound biological 
variations. Therefore, beyond the biological variability, 
we also wonder whether subgraphs generated by COMSE 
could be used for removing systematic variability intro-
duced by batch.

We combined two publicly available datasets on the 
human pancreas generated using SMA [35] and SMART-
seq2 [36]. Before the batch effect removal, the biological 
variability of heterogeneous cell populations was cov-
ered by the systematic variability introduced by different 
scRNA-seq protocols (Additional file  5: Fig. S8). Since 
the outcome of COMSE in step 1 was the subgraph par-
titioned from the whole gene graph through the Louvain 
algorithm, we were curious whether we could find out 
some specific subgraph that was batch relevant. We ini-
tially identified the top 100 differentially expressed genes 
between cells from two distinct scRNA-seq protocols. 
These genes were exclusively enriched in subgraphs 1, 16, 
and 21 (Additional file  5: Fig. S9). We hypothesize that 
the information encapsulated within these three sub-
graphs could potentially be related to the batch effects 
introduced by the two different scRNA-seq protocols. 
Then, we calculated the AUC activity score of subgraphs 
1, 16, and 21 in each cell using the AUCell R package [37]. 

Surprisingly, the AUC activity score of these three sub-
graphs could separate the cell from two scRNA-seq pro-
tocols (Fig. 4C). Therefore, we supposed these subgraphs 
could explain the systematic variability introduced by 
protocols; then, we scaled the original data matrix by 
regressing out all the AUC scores of three subgraphs, and 
the scaled data was used for downstream analyses. After 
using the AUC score to regress out HIGs with high vari-
ability, we could observe that the batch effect introduced 
by protocols was removed efficiently with no large impact 
on cell clustering assignments (Fig. 4D). Besides COMSE, 
we utilized the widely used Harmony and Seurat CCA 
for batch effect removal comparison. The cells from two 
scRNA-seq protocols integrated well in each cell type 
cluster through Harmony, but the scRNA-seq dataset 
using SMARTER did not contain any acinar and ductal 
cells while the integrated data have shown some cells of 
SMARTER merged acinar and ductal cells from SMART-
seq2 (Additional file 5: Fig. S10). To systematically evalu-
ation of the efficiency of batch effect removal and the 
accuracy of cell clustering, we used purity, F score, RI, 
and ARI four widely used metrics. COMSE outper-
formed other widely used methods with these two valida-
tions (Fig. 4E, F). Above all, COMSE was shown to enable 
a highly interpretable and efficient batch effect removal.

Harnessing denoising in COMSE elevates bulk RNA‑seq 
inquiry
Bulk RNA-seq data analysis can be substantially hindered 
by considerable noise or batch effects arising from dis-
crepancies in sampling locations, operators, and data ori-
gins. When replicate samples are available, batch effects 
can be eliminated using techniques such as ComBat [38]. 
However, for certain public databases like TCGA, most 
samples lack replicates, complicating the removal of 
noise intrinsic to TCGA data. Our denoising approach 
operates on a sample-wise basis, obviating the need for 
replicates across all samples. Consequently, our method-
ology can attenuate noise from both data with and with-
out replicates, demonstrating robust reproducibility.

To substantiate this, we first deployed the denoising 
procedure on bladder data from bulk RNA-seq. We 
ascertained the processed data could adeptly distin-
guish discrete biological conditions while congregat-
ing biopsy and normal tissues belonging to the normal 
group, indicating no supplementary noise was intro-
duced (Fig. 5A, B).

Crucially, our denoising maneuver functions indepen-
dently of replicates, circumventing limitations faced by 
existing batch effect correction techniques reliant on 
replicate concordance. By operating at the sample level, 
our approach exhibits marked resilience and wider appli-
cability across diverse data types, especially data lacking 
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replicate samples such as TCGA. Therefore, we analyzed 
data from TCGA HNSC samples and found the denoised 
data could better distinguish different biological condi-
tions (Fig. 5C, D).

More importantly, in routine experimental designs, 
we may not have large sample sizes like in the TCGA 
database. We hope to obtain relatively stable estimates 
from a small number of samples. Since stable estimation 
often means the identified DEGs show strong consist-
ency for bulk RNA-seq data analysis, we down-sampled 
the TCGA HNSC data by sampling 100 samples from the 
data each time and selected DEGs between cancer and 
normal groups using t-test, Wilcoxon-test, KS-test, and 
limma [39], repeating 1000 times. We then compared the 
similarity of DEGs obtained from each group of samples 
by calculating the pair Jaccard similarity and F score of 
the DEG lists. We found DEGs obtained after denoising 
step processing showed higher similarity, while the num-
ber of DEGs obtained from the data did not differ much 
from the original data (Fig. 5D, E, Additional file 6: Fig. 
S11), that is, the denoising step did not significantly affect 
the power to screen for DEGs in the data.

In summary, our method can not only better reflect dif-
ferences between biological conditions but also enable 
more robust analysis results.

Discussion
Many studies have shown different methodologies 
for highly variable gene selection in analyzing single-
cell transcriptomics data. These widely used methods 
achieved dimensional reduction as well as denoising. 
However, it is difficult for these methods to distinguish 
the source of variability in some scenarios, especially 
when variability introduced by biological differences and 
other batch effects are similar in amplitude. As we ana-
lyzed the homogenous cell population at different cell 
cycle stages, it was difficult to distinguish cells from dif-
ferent stages using HVGs (Fig. 2A).

In this paper, we proposed a new approach for fea-
ture selection based on community detection, named 
COMSE. Using this approach, we could acquire HIGs 
from different subgraphs, even genes in some sub-
graphs were functionally conserved, which were not 
highly variable. And we could use these HIGs to dis-
tinguish different cell cycle stages in the same cell 
populations (Fig.  2A, B). Besides, we could speculate 
that genes in the same subgraph have a similar func-
tion; in other words, the Louvain algorithm parti-
tions the whole gene graph into several functional 
modules (Fig.  4A). Furthermore, these subgraphs 
could be regarded as the source of systematic varia-
tion introduced by different modules, such as different 

functional modules and other potential batch effects, 
which meant that we could use these subgraphs for 
variation decomposition. To verify this speculation, we 
also collected single-cell RNA-seq data using different 
protocols, after regressing out the HVGs in HIGs using 
AUC scores calculated from three batch-related sub-
graphs (the “ Batch effect removal” section), we could 
remove the batch effect introduced by different proto-
cols using this highly interpretable and efficient strat-
egy (Fig.  4C, E). These comprehensive experiments 
showed that we were free to remove the variability 
introduced by unconcerned covariates on the data or 
figure out the main effect of these covariates on the 
data which could provide new insights into uncovering 
the relationship between covariates and different cell 
populations.

Moreover, when we analyzed the single-cell RNA-
sequencing data, we were concerned about the quan-
tity of selected feature genes for downstream analyses. 
COMSE shows the robustness in performance of cell 
clustering using the different numbers of HIGs. We 
mainly attribute the robustness and high accuracy in 
cell clustering of COMSE to the highly informative 
gene selection strategy applied in each subgraph sepa-
rately. First, we selected genes from each subgraph in 
equal proportions. Therefore, using these HIGs even 
with small numbers, we could obtain a more complete 
depiction of data, which allowed us to get better esti-
mates even with less information. Also, the denoising 
procedure ameliorates bulk RNA-seq data analysis by 
attenuating dataset-specific noise and batch effects, 
enabling more accurate biological inference. Operat-
ing at the sample level, this approach overcomes limi-
tations of existing batch correction methods reliant on 
replicates, demonstrating marked resilience and wider 
applicability across diverse data types. By facilitating 
meaningful insight even when replicates are unavail-
able, the denoising step addresses significant challenges 
pervasive in bulk RNA-seq inquiry (Fig. 5).

Regardless of the outstanding performance in feature 
selection and downstream analyses, COMSE still has 
some limitations. Firstly, COMSE takes slightly more 
running time compared to Seurat, but the requirements 
of memory and runtime are acceptable for a feature 
selection process (Additional file 7: Fig. S12). Secondly, 
like other feature selection methods, although we pro-
vided some reasonable hyperparameters, manual tun-
ing such as minimum cells count, k-neighbors number, 
and Laplacian score’s sample size may still be neces-
sary to achieve the desired effects for different datasets. 
Although we kept the original method despite recog-
nizing potential areas for enhancement, we look for-
ward to the accomplishment in further research.
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Conclusions
In conclusion, COMSE provides an effective unsuper-
vised feature selection framework based on community 
detection, capable of identifying highly informative genes 
from scRNA-seq data. COMSE demonstrates enhanced 
sensitivity in detecting sub-states within homogeneous 
cell populations and outperforms existing methods in 
terms of accuracy and robustness in cell clustering. Fur-
thermore, we discovered that the different gene subsets 
identified by COMSE characterize both biological and 
technical heterogeneity, enabling additional applications 
such as batch effect removal and pathway analysis. Nota-
bly, the application of COMSE can be extended to bulk 
RNA-seq data analysis, yielding more robust results.

Methods
Data preprocessing and normalization
ScRNA-seq data is always organized as a data matrix with 
rows as genes and columns as cells, which is the input of 
COMSE. We only kept genes in count matrix expressed 
more than three cells. Each gene expression values for 
each cell were divided by the total values of each gene 
and multiplied by 10,000. These normalized values were 
then natural-log transformed using log1p function before 
further downstream analyses.

Gene graph construction
We first introduced principal components analysis (PCA) 
into log-normalized data matrix, using the prcomp func-
tion in R, after scaling and centering the data. To over-
come the extensive technical noise in any single cell for 
scRNA-seq data, we selected the number of PCs to keep 
through the “elbow” according to Elbow plot (a ranking 
of PCs based on a percentage of variance explained by 
each PC). In all datasets used in our studies, we chose 
top 3 PCs for downstream analyses. After we embedded 
the original log-normalized data matrix into low-dimen-
sional latent space inferred by PCA, a K-nearest-neigh-
bors (KNN) gene graph was constructed based on the 
Euclidean distance in latent space with given K (config-
urable, but typically around 30, we used 30 here, a com-
mon value for graph construction [40, 41]) neighbors. 
Then, we binarized the KNN graph by assigning non-zero 
edge to 1, and this binarized KNN graph was used as the 
adjacent matrix between genes for the following analy-
sis. And this binarized adjacent matrix constructed gene 
graph.

Gene subgraph partition
Louvain algorithm is a widely used community algorithm 
based on the modularity and a hierarchical approach with 
the goal of maximizing the modularity. This algorithm can 

be used for partitioning undirected graph to find relevant 
nodes in graph without overlapping. We performed Lou-
vain algorithm for gene graph and obtained dozens of sub-
graphs partitioned from binarized adjacent matrix using 
multilevel.community function in R. We supposed that 
we could partition the whole gene graph into several func-
tional modules which could improve our interpretation of 
variability introduced by heterogenous cell populations or 
different batches. Through this step, we obtain a series of 
subgraphs with functional potential. More importantly, for 
each subgraph, the quantity difference between cells and 
genes becomes smaller, or the number of cells even exceeds 
the number of genes. In this way, we have largely addressed 
the imbalance between features and sample sizes.

Covariate X calculation
We first re-normalized the scRNA-seq data matrix by scal-
ing each gene’s expression values for each cell by the total 
expression values of that cell and multiplying by 10,000. 
The re-normalized values were then log-transformed using 
the log1p function. We performed PCA on the normal-
ized and log-transformed data, retaining components that 
capture major variability. We used the PCA space to build 
a KNN graph connecting cells with similar expression pat-
terns, using 30 nearest neighbors by default. We binarized 
this KNN graph by setting all non-zero edge weights to 1. 
The binarized KNN graph served as an adjacency matrix 
between all cells and was then utilized as the covariate 
matrix X in our subsequent denoising procedure. For bulk 
RNA-seq data, sample group labels could be used as covar-
iate X directly.

Linear mixed regression model for denoising
We assume that noise affecting genes within the same sub-
graph and cell, from various sources, follows a normal dis-
tribution with the same parameters. Then, we use a linear 
mixed regression model to decompose gene expression in 
each cell and subgraph  into baseline average expression αj , 
biological condition βTxi , and mean noise components γki , 
where i represents the cell, j denotes the gene, and k stands 
for the index of subgraph. By estimating the mean noise 
( γki ) for each cell in a subgraph, we obtain a proxy for the 
total nuisance technical variation, allowing us to denoise 
the data.

yij ∼ N αj + βT xi + ak , bk + δ2j , εij ∼ N 0, δ2j , γki ∼ N (ak , bk )

yij = αj + βTxi + γki + εij

y∗ij = yij − γ̂ki
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Highly informative gene selection
We chose HIGs in each subgraph independently. For 
each subgraph, we first randomly selected n cells (con-
figurable, we used 100 to 300 here based on the number 
of cells in the dataset) with replacement N (default 100) 
times. We then calculated the Laplacian scores for each 
gene in each subset. We calculated the mean Laplacian 

score for each gene across all subsets as the final Lapla-
cian score for each gene. However, we found that the 
correlations among the top genes were usually large, 
meaning that directly selecting the top genes would 
lead to information redundancy. To address this issue, 
we ranked the genes using the following steps based on 
gene–gene correlation (Algorithm 1).

 Algorithm 1 Gene sorting (subgraph-wise)

Specifically, when analyzing data with lower cellular 
heterogeneity, such as PBMC data, we set to between 0.3 
and 0.5. When analyzing data with substantial biological 
variability introduced by heterogeneous cell populations, 
we set to 0.5. Once we obtained for each subgraph, we 
selected HIGs in equal proportions based on the number 
of genes in each subgraph.

Cell classification
After obtaining the HIGs selected from COMSE or 
HVGs from other widely used methods, we used these 
genes as input for PCA reduction using the RunPCA 
function in Seurat. We then used the first 10 principal 
components as input for cell classification, UMAP reduc-
tion, and visualization following the standard work-
flow of Seurat for analyzing single-cell RNA-seq data. 
To determine the optimal resolution for clustering, we 
tested 10 different resolutions (from 0.1 to 1) for each 

feature selection method and evaluated the results using 
four external validation metrics. The resolution with the 
best overall scores across these metrics was selected for 
further analysis of the data processed by that method.

AUCell activity score
We can quantify the activity of subgraphs in each cell 
using AUCell [37]. AUCell takes gene sets of interest as 
input and converts the expression matrix of genes in cells 
into an AUC matrix of subgraph activity for each gene. 
We used the AUC activity score in batch effect-associated 
subgraphs as covariates to remove batch effects.

Batch effect removal
We first calculated the AUC activity score of subgraphs 
1, 16, and 21 obtained by the Louvain algorithm (Fig. 
S8). We then identified the top 2000 HIGs selected by 
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COMSE and the top 2000 HVGs (HVGs) selected by 
Seurat. We considered the intersecting genes between 
HIGs and HVGs to be HIGs with high variability. We 
hypothesized that these HIGs with high variability were 
more likely to reflect systematic variability introduced by 
different batch effects. Therefore, we used the ScaleData 
function in Seurat with a “negbinom” model to regress 
out these highly informative HVGs using the AUC scores 
of subgraphs 1, 16, and 21. We then performed standard 
single-cell RNA-seq analysis and evaluation using Seurat, 
including cell clustering, UMAP reduction, and visualiza-
tion (Fig. 4E, Additional file 5: Fig. S7,9).

Cluster validation
External indexes use the true label for comparison; 
among the hundreds of clustering validation methods, we 
selected some widely used indexes that consider exter-
nal validation for reference, including purity, F score, 
Rand index (RI), and adjusted Rand index (ARI). Purity 
measures the ability of a clustering method to recover 
known classes. F score is the harmonic mean of preci-
sion and recall. RI measures the similarity between two 
known clusters. ARI is adjusted for the chance grouping 
of elements.

Average silhouette width (ASW)
We performed the ASW [42] on the batch labels to assess 
batch correction. The silhouette score of each cell is cal-
culated by subtracting its average distance to other mem-
bers in the same cluster from its average distance to all 
members of the neighboring clusters and then dividing 
by the maximum of the two values. The range of result 
score is between − 1 and + 1, where a high score means 
that the cell fits well in the current cluster, while a low 
score denotes a poor fit. The average score of all cell 
can be used for evaluating overall batch mixing through 
batch effect labels; for batch effect, the smaller the bet-
ter. In our study, we used the UMAP embedding of the 
datasets as input to calculate the distance among cells to 
obtain the ASW scores.

Bulk RNA‑seq data analysis
During bulk RNA-seq data assessment, sample group 
labels comprise the covariate X matrix. Consequently, 
subsequent to subdividing gene subgraphs, we estimated 
the mean noise effect of each subgraph’s according to 
Eq. (2), thereby procuring denoised data.

We performed PCA on the original and denoised blad-
der bulk RNA-seq data [43] and visualized the first two 
principal components. For TCGA HNSC bulk RNA-seq 
data [44], we first selected the top 2000 HVGs following 
the standard Seurat protocol. We then chose the first 10 

principal components for UMAP dimensionality reduc-
tion and visualization of the original and denoised data.

To compare the reproducibility of DEGs detected from 
subsample data before and after noise removal, we repeat-
edly down-sampled 100 samples from the full HNSC data 
for 1000 times. For each down-sampled data, after remov-
ing noise, we used four methods (limma [39], t-test, Wil-
coxon test, and KS test) to screen DEGs in both the raw 
and denoised subsample data. We directly used limma to 
find DEGs between normal and tumor groups. For t-test, 
Wilcoxon test, and KS test, we first calculated p-values 
based on each gene’s expression in the tumor versus 
normal groups. Then, we adjusted the p-values using 
the Benjamini-Hochberg (BH) method for multiple test-
ing correction. We considered any gene with an adjusted 
p-value less than 0.05 as a DEG for further analysis. To 
evaluate DEG reproducibility before and after denoising, 
we calculated the paired Jaccard similarity and F score 
between DEGs identified using each method in the 1000 
original and denoised down-sampled datasets separately.

Jaccard similarity
The Jaccard similarity index quantifies the resemblance 
between two sample collections, defined as the cardinal-
ity of their intersection divided by the cardinality of their 
union. Its values span 0 to 1, where 0 signifies the two 
sample groups completely differ, and 1 denotes they per-
fectly agree.
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