
Thomas et al. BMC Biology          (2024) 22:168  
https://doi.org/10.1186/s12915-024-01967-1

REVIEW Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

BMC Biology

Life on a leaf: the epiphyte to pathogen 
continuum and interplay in the phyllosphere
Graham Thomas1, William T. Kay2 and Helen N. Fones1*   

Abstract 

Epiphytic microbes are those that live for some or all of their life cycle on the surface of plant leaves. Leaf surfaces are 
a topologically complex, physicochemically heterogeneous habitat that is home to extensive, mixed communities 
of resident and transient inhabitants from all three domains of life. In this review, we discuss the origins of leaf surface 
microbes and how different biotic and abiotic factors shape their communities. We discuss the leaf surface as a habi-
tat and microbial adaptations which allow some species to thrive there, with particular emphasis on microbes 
that occupy the continuum between epiphytic specialists and phytopathogens, groups which have considerable 
overlap in terms of adapting to the leaf surface and between which a single virulence determinant can move a micro-
bial strain. Finally, we discuss the recent findings that the wheat pathogenic fungus Zymoseptoria tritici spends a con-
siderable amount of time on the leaf surface, and ask what insights other epiphytic organisms might provide into this 
pathogen, as well as how Z. tritici might serve as a model system for investigating plant–microbe-microbe interactions 
on the leaf surface.
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Introduction
The relationship between plants and microbes is a mul-
tifaceted one. Plant–microbe interactions reach our 
attention most effectively when they are negative—for 
example, when crop diseases threaten harvests and live-
lihoods, or when epidemics such as chestnut blight or 
ash dieback cause unmissable alterations to landscapes 
and ecosystems [1, 2]. However, microbes are ubiquitous 
in natural environments, as components of soil [3–7], 
in water [8, 9] and even as bioaerosols [10, 11]; they are 
also key mediators of earth system processes such as the 
carbon, nitrogen and water cycles [11–15]. As a result, 
plants constantly encounter a diverse array of microbes 
across all three domains of life, and yet the vast majority 

of these interactions do not result in disease. Some 
plant–microbe interactions are symbiotic, and, again, 
we notice those where the plant benefits from the pres-
ence of the microbe. These include the closely co-evolved 
partnerships between plants and mycorrhizal fungi or 
nitrogen-fixing bacteria [16–18]. However, plants are 
populated by a whole microbiome of more loosely associ-
ated microbes [19, 20] and are further influenced by the 
community of microbes inhabiting that portion of the 
soil close to and affected by the plant roots (the rhizos-
phere) [21, 22]. These microbes influence the plant in a 
range of ways. Particularly well-studied examples include 
the plant growth promoting rhizobacteria (PGPR) and 
endophytic fungi; both of which are implicated in disease 
and stress resistance, crop yield, nutrient acquisition, 
flowering time and even plant species’ ranges [23–25]. 
Beyond this, research efforts over several decades have 
revealed many layers of interdependence between plants 
and their associated microbes, to the extent that the col-
lective term ‘holobiont’ has been applied to the host plant 
and its microbiome [24, 26–28]. Plants present various 
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microbial niches [29–32], collectively termed the rhizo-
sphere (below ground) and phyllosphere (above ground). 
The phyllosphere includes the phyllo-endosphere and 
the phylloplane (surfaces of e.g. leaves, stem, flowers, 
fruits and seeds) [33]. Each niche hosts microbial mutu-
alists, commensals and pathogens, facilitating a range of 
microbe-microbe and microbe-microbe-plant interac-
tions [34–36]. Plants influence microbial communities in 
a species- and genotype-dependent manner, via second-
ary metabolites, exudates and immune responses, all of 
which vary with developmental stage, plant compartment 
and biotic interactions [31, 35, 37–42].

The phyllosphere microbiome has historically been 
neglected by researchers, who have focused on the soil 
and rhizosphere microbiomes, but it is now appreciated 
that the phyllosphere represents the largest terrestrial 
microbial habitat on Earth [43, 44] and must be stud-
ied for full understanding of global microbial ecology 
and even earth systems, in addition to the more obvious 
research areas around plant health. The combined sur-
face area of the phyllosphere hosts in the region of  1026 
bacteria, plus yeasts, filamentous fungi, algae, viruses and 
protists [45–48]. Further, the phyllosphere represents a 
hotspot for microbial evolution and genetic exchange 
[49–52] and is a significant source of microbes in other 
environments, including soil, water and atmosphere, with 
roles in the major earth cycles. This review will therefore 
focus on phyllosphere microbes. Bacterial communities 
are the best studied in this niche; here, we will consider 
them alongside fungal communities and discuss the ways 
in which current knowledge of the factors that shape 
bacterial communities on leaves, and their relationships 
with plant host, might be extrapolated to fungal com-
munities, including their relationships with the host and 
with bacterial communities. We will consider the wheat 
pathogenic fungus, Zymoseptoria tritici, as a case study, 
discussing the importance of its epiphytic growth phase 
and potential interactions with phyllosphere microbiota.

Reaching the leaf surface
Immigration of epiphytic microbes into the phyllosphere 
is either seed-mediated—known for some fungi, bac-
teria and viruses [44, 53–55], or environmental—from 
soil, air movement, or rain-splash, which can transmit 
microbes from soil and from neighbouring plants [45, 
56–58]. Seed-mediated colonisation gives access to host 
tissues from the outset of the plants’ life, providing scope 
for long-term co-evolution between microbes and their 
hosts [44, 59]. Acorns, for example, contain a diverse 
community of microbes whose spatial distribution facili-
tates non-random transmission to the rhizo- and phyllo-
spheres, and the seedling phyllosphere closely resembles 
this acorn microbiome [60]. However, the importance 

of the seed-borne microbiome falls as the plants mature 
[55, 60]. A field study which combined carefully con-
trolled plant age and development with microbiome 
transplant experiments demonstrated that neighbour-
ing plants significantly affect epiphytic bacterial com-
munity composition [41]. In other field studies, episodes 
of heavy rain or strong winds were found to alter the 
microbial communities on leaves, as did irrigation [46, 
61, 62]. Bacteria enter the atmosphere from leaf sur-
faces and cryptogamic coverings of rocks and soils [10, 
11, 48] and are able to survive in the boundary layer and 
travel widely, even between continents [10, 11], as can 
spores of some fungi—a factor in outbreaks of the glob-
ally emerging, aggressive strain of the wheat rust fungus 
Puccinia graminis (Ug99) [63–65] and of the pan-Euro-
pean spread of the ash dieback fungus, Hymenoscyphus 
fraxineus [1, 64, 66]. Although estimates vary widely and 
are dependent upon vegetation type and climatic factors, 
a flux of around 100 bacteria and fungal spores entering 
the atmosphere every second for every square meter of 
land is an accepted approximation [10]. In one study, 7% 
of the bacteria on spinach leaves belonged to the genus 
Massilia, a common airborne bacterium [11, 67]; while 
this alone is not proof of the route by which these bac-
teria populated the leaf surface, it supports the idea that 
airborne inoculum contributes to epiphytic communi-
ties. Thus, the leaf surface microbiome will be influenced 
by many factors, including both local and global microbe 
pools and weather conditions, as well as host factors like 
species and genotype.

Leaf surface community assembly, development 
and structure
Once on the leaf surface, microbes are exposed to many 
stressors [45, 68–72]. Leaves are light-harvesting organs, 
so exposure to ultraviolet radiation is inevitable, although 
fluxes change rapidly, as do associated environmental 
factors such as temperature and humidity [36]. In addi-
tion, plant defences activation may lead to reactive oxy-
gen (ROS) stress [45, 71, 73]. The leaf surface is also 
believed to be an oligotrophic environment where access 
to carbon, nitrogen and micronutrients may be growth-
limiting and subject to competition from other resident 
microbes [74–77], as suggested by an over-representation 
of genes related to aerobic anoxygenic phototrophy in 
some epiphytic bacterial communities [76]. Phylloplane 
microbes must also contend with a multitude of anthro-
pogenic chemical inputs from agricultural practices 
(fertilisers, pesticides and pollution) [78, 79]. The phyllo-
plane is a dynamic environment [80] and microbes can 
persist only if they are adapted to its challenges.
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Leaf surface microbiomes differ from those in the sur-
rounding soil and rhizosphere of the same plants, sug-
gesting that the leaf surface is a selective environment 
[48, 49, 71, 73, 81]. Bacterial communities are generally 
dominated by four phyla—Proteobacteria, Firmicutes, 
Actinobacteria and Bacteroides [46, 76, 82], a pattern that 
has been shown to hold true across monocots including 
wheat, rice and switchgrass [54, 82], annual dicots such 
as Arabidopsis, clover, lettuce and spinach [67, 82–84], 
perennials including coffee [85] and various tree spe-
cies [68, 86–88], as well as across temperate, Mediterra-
nean and tropical climate zones [68, 89]. Fungi are often 
described as transient or ephemeral on leaf surfaces and 
only present as spores [71, 90], but this overlooks a rich 
community of largely basidiomycete yeasts, which, like 
their bacterial neighbours, are generally represented 
by a subset of possible classes—especially Cystobasidi-
omycetes, Tremellomycetes, Microbotryomycetes and 
Uridinomcyetes including Cryptococcus, Sporobolomy-
ces and Rhodotorula [45, 48, 54, 91–95]. Epiphytic yeast 
populations are estimated to reach around  105  cfu per 
gram of leaf and are understudied, with recent studies 
uncovering new species, genera, families and even orders 
[95–98] and demonstrating significant interactions with 
other microbes, including plant pathogens [99]. A few 
classes of largely ascomycete dimorphic and filamentous 
fungi are also frequent members of epiphytic communi-
ties—especially Leotiomycetes, Dothideomycetes and 
Sordariomycetes [45, 48, 54]. Notable epiphytic genera 
and species include the bacteria Pseudomonas, Methylo-
bacterium and Sphingomonas [32, 45, 48, 100], the yeast 
Aureobasidium pullulans [45, 90] and filamentous fungi 
Acremonium, Alternaria, Aspergillus, Cladosporium, 
Mucor and Penicillium [45, 54, 90].

Leaf surface microbiomes are less diverse than bio-
aerosols or soil microbiota [11, 101–103]. Hypotheses 
concerning the factors most important in shaping them 
include dynamic exchange with other niches, selection 
for abiotic stress tolerance, or microbe selection by the 
plant. It is argued that the similarity of microbial com-
munities across a wide range of plants and habitats is 
an indication that plants actively recruit and maintain 
their epiphytic microbiota [54]. This idea is supported 
by evidence that microbial communities depend on 
host species and genotype [43], and that as leaves age, 
their microbiome loses diversity, suggesting that specific 
microbial genotypes are selected on the leaf [38, 104, 
105]. Possible mechanisms for recruitment and selection 
by the plant include chemical profiles of leaf waxes, exu-
dates and volatiles [43, 106, 107] as well as physical prop-
erties [43]. Plant immune responses may also play a role, 
since immune mutants of Arabidopsis exhibited altered 
phyllosphere microbiomes [73]. There is also evidence 

that plants under stress use a chemical ‘cry for help’ to 
recruit beneficial microbes [34, 108]. Set against the idea 
the microbiomes are determined by their hosts, however, 
is evidence for geographical endemism, particularly in 
fungal epiphytes [45], and for the importance of neigh-
bouring plants and seasonal succession in shaping leaf 
surface microbiomes [41, 56, 58, 103, 109, 110], although 
it should be noted that leaf properties themselves change 
seasonally and according to plant development and age 
[37, 111–113].

Guo et al. [42] assessed the impact of host species, host 
genotype, host niche and the abiotic factor of water stress 
on the fungal microbiome of wheat (Triticum aestivum) 
and oat (Avena sativa). They reported that host niche had 
the greatest overall impact on community dynamics, but 
host genotype and water stress have significant effects on 
the community structure within niches. Using source-
tracing analysis, the authors unsurprisingly identified soil 
as the source of fungal root communities, but were una-
ble to identify the source of over half of leaf fungi; fur-
ther, less than 10% of leaf epiphytes were found in other 
host niches [42]. This study therefore supports the con-
cept that the open nature of the phylloplane is an impor-
tant factor in microbiome assembly [44].

Xiong et al. [37] made innovative use of artificial leaves 
to capture the airborne microbes in the local environ-
ment of maize plants. This demonstrated an ongo-
ing airborne contribution to phylloplane diversity [37]. 
However, host developmental stage was found to be the 
strongest determinant of maize microbiome commu-
nity composition [37]. Plant developmental stage affects 
metabolism, leaf exudation, leaf surface physicochemical 
properties and immune traits, all of which are likely to 
influence the recruitment and survival of microbes [37, 
114–118]. Interestingly, Xiong et al. showed that bacterial 
soil communities supported plant health and nitrogen 
uptake in young maize, while fungal roles in soil carbon 
and phosphorous cycling were seen later in plant devel-
opment [37]. This could be interpreted as evidence for 
host-mediated microbiome modulation, a long-proposed 
mechanism for which evidence has been steadily building 
[29, 119–123]. It is possible that such mechanisms may 
also influence leaf surface populations. Factors that shape 
the leaf surface microbiome are summarised in Fig. 1.

The leaf surface habitat
The apparently hostile, oligotrophic leaf surface environ-
ment is not homogeneous, either physically or chemi-
cally. Leaf surfaces are three dimensional and present 
heterogeneous microhabitats at the microbial scale. This 
‘landscape’ is covered by a cuticle that itself comprises 
crystalline wax structures, which vary with plant spe-
cies, genotype and development [104]. Leaf macroscopic 
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features such as veins also create an intricate topogra-
phy [32, 45, 124]. At the microscopic scale, the depres-
sions over the anticlinal cells walls are an important 
feature which patterns the leaf surface with a network of 
grooves [32, 45, 125]. There are also additional cell types, 
including trichomes and the guard cell complexes that 
surround stomatal apertures. A number of studies have 
demonstrated that the leaf surface is as heterogeneous in 
chemical factors, including water and nutrient availabil-
ity, as it is non-uniform in shape [43, 126–128]. Some of 
the most elegant of these have used bacterial epiphytes 
as bioreporters, created detailed topographic leaf surface 
replicas and/or utilised cutting-edge single-cell imag-
ing techniques, allowing the heterogeneity of the envi-
ronment to be understood at the scale experienced by 
the microbial inhabitants [32, 129–132]. Reporters have 
been used to gain insights into the spatial heterogeneity 
of sugars, phenolics and water on the leaf surface [124]. 
Carbon, present heterogeneously on the leaf surface as 
carbohydrates, amino acids, organic acids and sugar alco-
hols, is the most limiting factor to epiphytic growth [47]. 
Simple sugars, thought to leach directly from the leaf 
interior, are the dominant carbon source on leaf surfaces. 
These remain detectable in the leaf washings of heavily 
colonised plants, indicating that not all soluble sugars are 

accessible to microbes in situ [104, 133, 134]. A sucrose/
fructose responsive GFP-based reporter in Erwinia her-
bicola revealed much spatial heterogeneity in these 
sugars on bean leaves [135], while a fructose utilisation 
bioreporter based on a short half-life GFP showed that 
most bacterial cells had exhausted the available fructose 
within 24  h of inoculation [126]. However, a subset of 
leaf surface locations supported much longer-term fruc-
tose usage, suggesting that those specific areas had much 
more of the sugar present [126]. A GFP-based biosensor 
for iron constructed in Pseudomonas syringae suggested 
that bioavailable iron was also heterogeneously distrib-
uted, but that many epiphytic bacterial cells did not expe-
rience iron limitation [136].

Water availability is also heterogenous and influences 
the distribution of any dissolved solutes. Free water 
on the leaf surface is essential for the survival, growth 
and activity of phyllospheric microorganisms, allowing 
them to move, communicate and acquire nutrients [70, 
137–139]. Water vapour escaping from stomata may 
create a very thin, laminar water layer over the leaf 
surface, reducing water stress for epiphytes [104]. The 
collective body of water on the leaf surface is known 
as the phytotelma [32, 137]; its size, spread and con-
nectivity are influenced by precipitation, irrigation, 

Fig. 1 Arrival of microbes on the leaf surface and assembly of epiphytic communities. Diverse microbes (1) land on leaves by a number 
of different routes, including rain (2) and by air movement (3), as there are large fluxes of microbes into the atmosphere from surfaces 
including soil, leaves and cryptogamic coverings of, for example, rocks; and many fungal spores and bacteria can survive in the boundary layer 
and may thus be transported worldwide. Microbes may be deposited directly from the air or rained out of the atmosphere. Rain can also be 
an additional source of microbes that may be splashed from neighbouring soil and plant surfaces (4), meaning that both the neighbouring plant 
community composition and seasonal factors (5) can affect the diversity present. Once on the leaf, microbes exist in large aggregates (6) whose 
location and size are determined by the heterogeneous nature of the leaf surface topology and nutrient distribution, although individuals (7) 
and microcolonies are also present. Aggregates include mixed species communities which may exist as biofilms (8). Leaves harbour a less diverse 
microbiome than the surrounding environment, partially due to the effects of stresses such as competition (9), high temperatures, U.V. radiation 
and drying (10), low and heterogeneous water and nutrient availability (11), and the presence of toxins such as plant defence compounds 
and agricultural antimicrobials (12). The influence of the host is then proposed to further select a specialised epiphytic microbiome
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condensation, transpiration, guttation and evapora-
tion [32]. Water stress varies across the leaf surface, 
as water droplets may dry out and shrink, while the 
structures and topography of the leaf will influence 
water ingress and retention [32, 140].

Doan et al. [32] used PDMS leaf replicasts to study 
water distribution on leaves that had been dipped 
or sprayed. They used a combination of electron 
microscopy and solute biosensing bacteria to show 
that water retention is associated with venation and 
trichomes, and that the diffusion of solutes across a 
leaf surface preferentially occurs in the direction of 
the ribs in the leaf created by veins. Bacteria survived 
better on surfaces whose topography allowed greater 
water retention, and their physical clustering in the 
grooves along veins and over anticlinal cell walls, as 
well as at the base of trichomes, might be explicable 
solely through the physical effect of these structures 
on water distribution [32]. A water bioreporter con-
structed in three bacterial species (Escherichia coli, 
Pantoea agglomerans and Pseudomonas syringae) 
showed water stress began to affect cells within 5 min 
of inoculation onto bean leaves, but also that cells did 
not experience water stress as extreme as predicted 
by published psychrometer readings of leaf water 
potential, suggesting the existence of microhabi-
tats protected from drying [140]. Bacterial cells also 
respond to water stress, often showing cross-protec-
tion with other stressors [141] or the adoption of the 
resilient ‘persistor’ metabolic state [142].

The chemistry and structure of the cuticle is also an 
important factor in determining water distribution on 
the leaf surface. Cuticle permeability is important in 
epiphyte survival and growth, since it provides water 
and solutes to the leaf surface [124]. Cuticles are com-
posed of cutin—a polymer of cross-linked hydroxyl 
fatty acids—and waxes; they are not impermeable to 
water, as single molecules of water may interact with 
polar components to pass through the cuticle matrix 
[143]. While permeation is slow and does not carry 
solutes across the cuticle, aqueous pores, formed from 
clusters of polar molecules, exist within plant cuticles 
and are important for the exudation of nutrients from 
inside the leaf [48, 124, 143]. Uptake and accumulation 
of the dye berberine sulphite has been used to visualise 
the movement of water through plant cuticles [143]. 
The dye was detected first at the cuticular ledges of 
stomatal guard cells, and then appeared at anticlinal 
cell walls, trichomes and over veins [143]. Notably, 
these areas of higher permeability are also the sites on 
leaves at which highest microbial densities are found 
[70, 124, 143].

Microbial adaptation to the leaf surface
Epiphytes must either tolerate the abiotic stresses asso-
ciated with the leaf surface or  mitigate  them through 
their own actions. For this reason, successful epiphytic 
microbes must adopt a range of strategies to find or cre-
ate microhabitats that are protected from abiotic stress 
[138], including manipulation of their host to modify 
their environment [144]. The ability to navigate to, and 
remain in, those niches within the leaf surface that are 
richest in nutrients and available water is key to epi-
phytic survival of both bacteria and fungi. Bacterial cells 
are motile and can move towards favourable locations 
by chemotaxis following detection of nutrients or sig-
nals [42, 68, 90, 145, 146]. Motility is also necessary for 
virulence in bacterial phytopathogens which invade from 
the surface, such as Ralstonia, Dickeya and Xanthomonas 
[48, 90, 147]. Fungal spores are non-motile, but hyphae 
navigate the leaf surface using polar growth [148–150] 
which may be directed chemotactically or thigmotrophi-
cally [151, 152], allowing them to seek out nutrients and 
respond to the leaf topography [153, 154]. Movement 
to the most sheltered and nutrient-dense areas of the 
leaf where survival and reproduction are highest causes 
aggregation, with most of the microbes on a leaf surface 
occurring in aggregates of 1000 cells [47, 155]. Solitary 
bacteria do occur on leaves in large numbers, but the 
sheer size of some aggregates means that they may rep-
resent as much as 80% of the leaf surface bacteria [104]. 
These aggregates are often mixed species, including both 
bacteria and fungi [104, 156, 157].

To survive the abiotic stresses on the leaf surface, many 
microbes form biofilms. A biofilm may be defined as an 
aggregation of cells, attached to a surface and embed-
ded in an extra-cellular matrix (ECM) [158–166]. In 
bacteria, the ECM is usually composed of extracellular 
polysaccharides (EPS) [54, 90, 167, 168]. Biofilms are 
resistant to desiccation [103, 145, 169, 170], antimicro-
bials [104, 171–175] and reactive oxygen species, which 
are important plant defences [176, 177]. Biofilms can also 
be formed by yeasts and filamentous fungi [178–183], 
including a number of plant pathogens [177, 184–186]. 
Generally, the mechanisms of stress resistance in bio-
films are not fully elucidated, but a number of factors are 
known to contribute, including the expression of efflux 
pumps for toxins/antimicrobials; the action of the ECM 
in limiting diffusion of stressor chemicals towards cells 
and in limiting water loss; the presence of persistor cells 
within biofilms, and, more broadly, metabolic and tran-
scriptomic heterogeneity among the cells within biofilms 
[177, 187–192]. For fungal biofilms increased resistance 
to a number of stresses, such as antifungals, ROS and UV, 
is documented, and mechanisms proposed are similar to 
those seen in bacterial biofilms, with ECM components 
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such as beta-glucans and eDNA thought to contribute 
along with cell–cell heterogeneity in metabolic state, 
induced by differential resource availability across the 
biofilm [173, 192–196]. Multi-species and even cross-
kingdom biofilms, in which the ECM is derived from 
both fungal and bacterial secretions, are known and 
likely the norm on the leaf surface [90, 197–201]. As 
with single species biofilms, stress resistance is enhanced 
by a range of mechanisms in these mixed biofilms. The 
physical proximity of various microbial species in a 
stressful environment underpins a high rate of horizon-
tal gene transfer (HGT), for which the phyllosphere is a 
known hotspot, particularly for plasmid and gene cas-
sette exchange, although the mechanisms underpinning 
increased HGT in the phyllosphere are not completely 
understood at present [202–208].

Many epiphytic bacteria produce plant hormones such 
as auxins, gibberellins and cytokinins in order to commu-
nicate with and manipulate their host [45, 54]. Pantoea 
agglomerans and Pseudomonas syringae, for example, 
produce the auxin indole acetic acid (IAA) when grow-
ing epiphytically [209]. Exogenous auxin application 
causes the loosening of plant cell walls and release of sug-
ars [210, 211]; it is therefore believed that in planta IAA 
production is likely to increase the rate of sugar exuda-
tion from the leaf [104, 212]. This strategy for accessing 
carbon can provide a selective advantage—IAA produc-
ing P. agglomerans grew faster and reached larger popula-
tions than a mutant lacking this ability [212]. Production 
of the plant hormones abscisic acid (ABA) and ethylene 
can also affect stomatal opening, increasing water avail-
ability [45, 213], while cytokinins may trigger the release 
of methanol, which is metabolised by some bacterial epi-
phytes [90, 104]. The manipulation of phytohormones is 
also known in fungal endophytes, although this is often 
associated with induction of hormone production in the 
plant [214]. More recently, the direct production of phy-
tohormones by endophytic and epiphytic yeasts and fila-
mentous fungi has been observed [215, 216]. Examples 
include the production of the auxin indole acetic acid 
and the cytokinin zeatin by epiphytic basidiomycete and 
ascomycete yeasts [216, 217]. Phytohormone production 
is also known in endophytic yeasts, where it has been 
linked to plant growth promotion and pathogen suppres-
sion, although the mechanisms involved remain unclear 
[215, 216, 218].

To increase nutrient exudation and availability on the 
leaf surface, some epiphytes produce compounds known 
as surfactants that increase the wettability of the leaf 
surface [43, 44, 74, 90, 219–221]. Pseudomonas syringae 
isolates produce syringafactin and syringomycin; syrin-
gafactin is hygroscopic and sorbs to leaf cuticle waxes, 
increasing their permeability to nutrients as well as their 

wettability [222], while the potent biosurfactant syrin-
gomycin induces the formation of host membrane ion 
channels to induce a flux of metabolites from the cell 
[223]. While syringomycin is phytotoxic at high concen-
trations, sub-toxic concentrations are produced by non-
pathogenic Pseudomonas syringae isolates, indicating a 
role in epiphytic fitness [224]. Surfactant production is 
also known in yeasts and fungi, but has been studied to 
a much lesser extent in these organisms [225–227]. For 
example, surfactants produced by some Trichoderma sp. 
are thought to have a role in biocontrol activity towards 
other fungi [226].

Another strategy is the secretion of enzymes such 
as cutinases, esterases and lipases which can liberate 
nutrients from the cuticle and, by degrading cuticular 
components, increase its permeability to nutrients and 
the plants’ susceptibility to infection [228, 229]. Phyllo-
sphere microbe metaproteomes also show enrichment 
for ABC transporters, porins and TonB-dependent trans-
port systems, suggesting an enhanced capacity for nutri-
ent uptake [47, 68, 82, 84]. Proteins of the OmpA porin 
family from gram-negative bacteria are among the most 
abundant found on the leaf surface [84, 230]. It is also 
common for epiphytic microbes to produce iron-chelat-
ing siderophores to maximise iron uptake; well-known 
examples include pyochelins, pyoverdines and pseudo-
bactins from Pseudomonas species [54, 231]. Siderophore 
production is also common among epiphytic yeasts, 
where it is associated with biocontrol activities against 
fungal pathogens [99, 232].

Commonalities between epiphytic 
and phytopathogenic adaptations
Consideration of this suite of epiphytic adaptations 
raises three important points: firstly, many adaptations 
to life as an epiphyte often show similarities to the adap-
tations of biotrophic pathogens, with overlap between 
epiphytic and biotrophic adaptations such as produc-
tion of plant hormones, production of surfactants and 
plant defence suppression; these similarities will be 
explored further below. Secondly, many of the adapta-
tions necessary for life as an epiphyte moderate the 
environment around the microbe and can thus be con-
sidered public goods; and thirdly, most of these adapta-
tions seem specific to, or have largely been studied in, 
bacteria and yeasts. Together, these observations raise 
some interesting possibilities about epiphytic microbial 
ecology and evolution.

Rather than a binary differentiation between harm-
less residents and phytopathogens, these traits can 
be seen as a continuum: many hemibiotrophic bacte-
rial pathogens, in fact, behave as epiphytes during 
early colonisation of leaves [87, 233, 234]. Virulent 
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Pseudomonas syringae plant pathogens, for example, 
are often differentiated from non-pathogenic epiphytic 
strains by a single host-specific virulence factor. Strik-
ingly, many of the genes encoding virulence factors, 
particularly those for effector proteins, are found on 
plasmids or in pathogenicity islands; the difference 
between pathogenic and commensal microbe can 
therefore be the gain or loss of a plasmid [104, 235–
237]. There are similar examples of virulence factors 
being encoded on dispensable or even exchangeable 
parts of the genome in plant associated fungi, includ-
ing the transfer of ToxA from Parastagonospora nodo-
rum to Pyrenophora tritici-repentis [238].

In Pseudomonas syringae, as in other plant-associated 
bacteria, many traits that are key to both epiphytic 
and pathogenic lifestyles are under quorum sensing 
(QS) regulation [145, 219, 231]. These include swarm-
ing motility, EPS secretion, siderophore secretion, 
production of the phytotoxin coronatine and delivery 
of effectors via the type three secretion system (T3SS) 
to disarm host immunity [145, 219, 231]. QS is a pro-
cess in which bacteria produce and respond to specific 
molecules whose concentration in the environment is a 
proxy for population density [48, 145, 219]. On the leaf 
surface, QS regulation of these virulence determinants 
plays a major role, not only in determining whether 
bacteria will proliferate epiphytically or become viru-
lent, but also in co-ordinating these processes with 
abiotic conditions. On the heterogeneous leaf surface, 
water is unevenly distributed [32, 140]. The concentra-
tion of QS signals thus depends, not only on microbial 
numbers, but also on the volume of water. QS signals 
repress motility in Pseudomonas syringae [219], an epi-
phytic adaptation which helps the bacteria to remain 
in pockets of available water and nutrients, where their 
populations can expand [145, 219]. Quorum sensing 
is also known in many fungal species, where it can be 
important in determining growth form [239, 240]. 
Interestingly, fungal QS signals, such as farnesol, are 
also involved in biofilm formation in some fungi, and 
both fungal and bacterial QS signals were recently 
shown to induce biofilm formation by Ophiostoma 
piceae, including in mixed-kingdom biofilms formed in 
consortium with the bacterium Pseudomonas putida. 
Given the importance of biofilm formation, including 
cross-kingdom biofilm formation, on the leaf surface, 
this suggests that QS molecules from both bacteria and 
fungi may play an important role in determining colo-
nisation success and stress survival in epiphytic micro-
bial communities. Further, volatile QS signals have 
been identified from Fusarium culmorum and Coch-
liobolus sativus and may show promise in retarding 
phytopathogen growth [241].

Interactions between epiphytic microbes
A large proportion of leaf surface microbes occur in the 
same conducive microhabitats [83, 104, 126] and may col-
laborate intimately in multispecies biofilm formation [90, 
197–199]. Microbe-microbe interactions in the phyllo-
sphere are not always collaborative—under resource lim-
itation they are, of course, often competitive, and another 
epiphytic adaptation is the production of antimicrobials 
[34, 71, 108, 231, 242–245]. These interactions, and their 
potential exploitation for biocontrol of phytopathogens, 
are reviewed in detail elsewhere [243, 246, 247]. What-
ever their relationship, the presence of other epiphytic 
microbes will change the environment experienced by 
each. For instance, increased nutrient exudation and dif-
fusion due to surfactants make nutrients available to all 
microbes in the vicinity while siderophores can be taken 
up by any organism with the correct receptor. This has 
clear implications for microbial interactions on the leaf 
surface. In the next section of this review, we consider the 
possible interactions between the epiphytic microbiome 
and an economically important plant pathogen, the fun-
gus Zymoseptoria tritici, which spends considerable time 
as an epiphyte and so provides a particularly interesting 
case study. We propose that the research effort that has 
been put forward in understanding this crop pathogen 
could be leveraged by using Z. tritici as a model system in 
studying microbe-microbe and microbe-microbe-plant 
interactions on the leaf surface.

Zymoseptoria tritici as a case study and potential 
model system for epiphytic fungi‑bacteria 
interactions
Filamentous fungi are often considered ephemeral mem-
bers of epiphytic communities, largely because their 
success in planta is often predicated on rapid entry into 
the leaf, either through stomata or by direct penetra-
tion [248–250], and it is generally assumed that once the 
spores of these fungi germinate, there is a short window 
in which the fungus must enter the leaf interior or starve 
[251–253], leading to adaptations for rapid leaf entry. 
Puccinia graminis, for example, follows the anticlinal cell 
walls of leaves until a stomatal entry point is found, while 
Magnaporthe oryzae ignores stomata, instead enter-
ing the leaf using a high-pressure injection system—the 
appressorium [254, 255]. The perception that such adap-
tations are universal in plant-associated fungi is likely a 
product of the intensive research effort into a relatively 
small number of economically important plant patho-
genic fungi for which this is true [256]. However, there 
are filamentous fungi that are resident on the leaf surface 
for part or all of their lifecycle, and do not fit the para-
digm of ‘sense host, germinate, penetrate’ at all. Examples 
include the sooty blotch and flyspeck fungi that grow on 
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apples post-harvest [257] and biofilm forming growth of 
various fusaria [184–186, 196]. It is not currently known 
whether these filamentous fungal epiphytes possess simi-
lar adaptations to those seen in bacteria, as these fungi 
are neither economically devastating pathogens nor 
known as candidates for biocontrol of such pathogens, 
meaning that they have received little research attention.

A recent development may, however, mean that epi-
phytic adaptation has become relevant for a full under-
standing of the lifecycle of an important crop pathogen, 
Zymoseptoria tritici, the causal agent of Septoria tritici 
leaf blotch (STB) of wheat [258]. Until recently, this fun-
gus was believed to behave like other plant pathogenic 
fungi, germinating on wheat leaves and finding its way 
into the leaf through the stomata within 24–72 h [259–
264]. However, no adaptations for rapid entry compara-
ble to those in other plant pathogenic fungi have been 
found in Z. tritici. Most studies have reported random 
or untargeted growth [260, 265, 266], with hyphae often 
growing over stomata if they are closed (Fig. 3). In 2017, a 
study by Fones et al. [265] indicated that virulent isolates 
could spend up to 10 days on the leaf surface under opti-
mal conditions, during which time hyphae grew over the 

leaf surface at random before entering through stomata 
or wounds [265, 267]. This was corroborated by studies 
that showed asynchronous germination on the leaf sur-
face, followed by a variable but often prolonged period of 
epiphytic growth [268], which, in fungal isolates of equal 
virulence, varied in extent and morphology [269]. Blasto-
sporulation (microcycle conidiation; Fig.  2) and anasto-
mosis were shown to occur on the leaf surface [270] and 
epiphytic proliferation was described in isolates growing 
on resistant wheat that they could not penetrate [271]. 
Microcycle conidiation represents the simplification of 
a fungal life cycle in which the fungus produces spores 
directly from spores, rather than from mycelia [272]. This 
provides a way of building the population when spore 
germination and hyphal growth are not favourable, such 
as on a resistant host [271]. Avirulent isolates were also 
shown to contribute to sexual reproduction in planta 
even without penetrating leaves [273, 274]. Together, 
these findings indicate that Zymoseptoria tritici has an 
epiphytic stage in its lifecycle, for which it is likely to pos-
sess adaptations. Thus, this fungus, which has received 
significant research effort [260, 275–282] and for which 
molecular and genetic tools are available [278, 279, 283, 
284], can be considered a candidate model system for 
the interaction of a filamentous fungus with the leaf sur-
face microbiota. It is known that Z. tritici manipulates 
the wheat defences to create ‘systemic induced suscep-
tibility’ once it has established infection, and that this 
involves the induction of dysbiosis [285], but so far little 
or nothing is known about its interaction with epiphytic 
microbes.

Zymoseptoria tritici: epiphytic adaptations 
and potential interactions with the phylloplane 
microbiome
Many of the adaptations seen in epiphytic bacteria and 
yeasts have been detected or can be hypothesised in Z. 
tritici. For instance, pycnidiospores of Z. tritici have 
been shown to produce cutinases on the leaf surface. 
These enzymes are thought to play a role in initial adhe-
sion to the leaf [259, 264, 286], but their action is likely 
to increase cuticle permeability and thus nutrient exu-
dation, as with bacterial cutinases and esterases [228, 
229]. Transcriptome analysis has revealed other Z. tritici 

Fig. 2 Microcycle conidiation in Zymoseptoria tritici. Budding 
can occur from blastospores in a variety of environments. A 
Cryo-scanning electron micrograph of a blastospore of Zymoseptoria 
tritici IPO323 5 days after inoculation onto a wheat leaf. While 
the spore has germinated to form a hypha (left), there are also two 
buds forming (white arrows), which represent the production of new 
blastospores. B Epifluorescence micrograph of a Zymoseptoria tritici 
IPO323 blastospore carrying a cytoplasmic GFP construct, 3 days 
after inoculation into minimal medium on a glass slide. Again, buds 
are forming directly form the blastospore (black arrows). Scale bars 
represent 10 mM

(See figure on next page.)
Fig. 3 Leaf surface topology affects fungal colonisation. Scanning electron micrographs showing the effect of leaf topology and surfaces 
on the epiphytic growth of the phytopathogenic fungus, Zymoseptoria tritici IPO323. A Fungal proliferation on the leaf surface is spatially 
heterogeneous. Spores are ‘captured’ by trichomes and proliferate by both hyphal and budding growth into aggregates around the base of these 
specialised cells, possibly due to physicochemical differences such as water availability or the presence of leaf exudates in this microhabitat. B Z. 
tritici can form biofilms on leaf surfaces; here, a mass of cells embedded in ECM can be seen surrounding a wheat trichome. C Hyphal growth in Z. 
tritici is not obviously directed by leaf features; here, one hypha follows and anticlinal cell wall while others are not oriented to topological features. 
Hyphae have crossed a stomatal aperture without penetrating the leaf. Scale bars (red) = 5 mM
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Fig. 3 (See legend on previous page.)
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enzymes potentially involved in acquiring nutrients dur-
ing epiphytic growth, including peptidases, pectinases, 
lipases, cellulases, hemicellulases and xylanases [259, 
264, 286, 287]. Some of these enzymes may be linked to 
scavenging freely available nutrients; however, they may 
also be involved in the acquisition of nutrients via physi-
cal breakdown of the plant itself. Transcriptomics has 
also revealed the upregulation of genes responsible for 
the secretion of four hydrophobins, proteins involved in 
the interactions between hyphae and hydrophobic sur-
faces—these may be involved in leaf attachment [288]. 
Leaf architecture may also play a part in adhesion (see 
Fig. 3): leaf washing led to the enrichment of trichome-
associated Z. tritici [265], and preferential blastospore 
location in stomatal depressions and around trichomes 
was also observed [289].

It is notable that these zones of increased adhesion or 
multiplication by Z. tritici coincide with the leaf areas 
identified as richer in water and nutrients, and conse-
quently hosting bacterial and yeast aggregates in rela-
tively high densities. However, unlike bacterial epiphytes, 
it remains to be determined whether Z. tritici obtains 
nutrients from its host prior to penetration. A carbon 
source repressed GFP construct showed bright fluores-
cence on the leaf surface, hence no evidence of carbon 
uptake during epiphytic growth [289]. Rudd et  al. also 
failed to find evidence for hexose or nitrogen assimilation 
during the first 8  days of leaf contact in transcriptomic 
and metabolomic studies [264]. These findings contrast 
with the transcriptomic evidence for expression of leaf 
surface degrading enzymes described above. Interpreta-
tion of population-level transcriptomes is now known 
to be complicated in Z. tritici due to the asynchronous 
behaviour of the fungus in planta [265, 268, 269], but the 
results from the carbon utilisation bioreporter appear 
convincing, and it is plausible that Z. tritici does not rely 
on the leaf to provide carbon. A recent study showed 
that Z. tritici remains viable and virulent after 49  days 
suspended in pure water or in soil [290]. This work dem-
onstrated that Z. tritici relies on stored lipids during this 
extended period of starvation. Thus, carbon uptake on 
the leaf surface may not be necessary. In that case, it is 
possible that the action of cutinases, esterases and other 
cuticle-modifying enzymes, increasing the permeability 
of the cuticle and with it, nutrient exudation from the 
leaf, has another purpose. One obvious possibility is that 
Z. tritici does take up and rely upon host-derived nitro-
gen, which cannot be supplied by lipids. Alternatively, 
cuticle modification may act to recruit other microbes to 
areas of Z. tritici leaf surface colonisation. It is tempting 
to speculate that recruitment of bacteria able to increase 
the wettability of the leaf might facilitate hyphal growth 
across the surface or that Z. tritici might benefit from 

bacterial siderophore production. Z. tritici germinates 
and grows on many substrates [275], including non-host 
leaves [291], suggesting that it lacks the host percep-
tion abilities of other fungal phytopathogens. However, 
the slow rate of hyphal extension on non-host tobacco 
leaves, when compared to wheat leaves, paradoxically 
indicates some host-specificity [291]. Again, it is tempt-
ing to speculate that this difference might reflect different 
host microbiota, if the fungus is not relying on the host 
directly. Another conceivable interaction between Z. trit-
ici and other epiphytic microbes is the development of 
mixed species or cross-kingdom biofilms in which mul-
tiple epiphytes contribute to the production of the pro-
tective ECM (Fig. 4). Biofilms were recently discovered in 
Z. tritici in vitro [177], and large aggregations of Z. tritici 
cells were described in planta for both ‘necrosis-inducing 
with reduced pycnidiation’ (‘NIRP’) isolates [271], and to 
a lesser extent, for some virulent isolates on susceptible 
wheat [269]. Z. tritici is generally thought to be highly 
host specific, causing infection only on wheat and only 
on specific cultivars. However, thorough review of the lit-
erature revealed that the fungus has in fact been isolated 
from another 26 different grasses, with 6 being probable 
secondary hosts [292]. Recruitment of epiphytic ‘collabo-
rators’ might protect Z. tritici from host immunity or abi-
otic stress in hosts to which it is less well-adapted.

However, not all microbes encountered will be ben-
eficial. Z. tritici produces chloroperoxidases in planta, 
which may be involved in the production of antibiotics 
used to control competitive microbes in the phyllosphere 
[264, 293, 294]. There is also evidence of defence against 
competitive microbes via antibiotic detoxification—
a study by Levy et  al. [295] found that three catalase 
isozymes and one superoxide dismutase are synthesised 
by the fungus in response to 1-hyroxyphenazine, an anti-
biotic secreted by Pseudomonas aeruginosa. It seems 
likely that full understanding of the epiphytic phase of Z. 
tritici will require better insights into the relationships 
between this plant pathogen and other phyllosphere 
inhabitants (Fig. 4).

Conclusions and future directions
It is clear that the leaf surface is an important micro-
bial habitat that has, until fairly recently, been over-
looked by researchers interested in plant health and 
the control of phytopathogens. It is now understood 
that the microbial communities there are crafted by the 
host plant, but also influenced by and connected with 
much broader factors, such as neighbouring plants, 
soil, water and air, with influence even at the level of 
the earth’s systems. However, at the scale experienced 
by individual microbes, the leaf surface is an intricate 
landscape with variable and topographically dictated 
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availability of water, nutrients, mutualists and com-
petitors. Microbes show exquisite suites of adaptations 
that manipulate the host plant and improve access to 
nutrients. These are best understood in bacteria such 
as Pseudomonas syringae, but intriguing findings about 
the phenotype and transcriptome of the fungal plant 
pathogen Zymoseptoria tritici suggest that some similar 
adaptations may be present, for example for increasing 
cuticle permeability and breaking down cuticle com-
ponents. The evidence suggests that Z. tritici, however, 
does not necessarily obtain or rely on carbon from the 
host plant, raising the possibility that carbon liberated 
from the host cuticle could be used to recruit chemo-
tactic, mobile bacteria, with which the fungus may 
then interact. This would make Z. tritici an excellent 
model system for research into microbe-microbe-plant 
interactions on the phylloplane, as well as opening up 

potential avenues for biocontrol of this economically 
important plant pathogen.
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Fig. 4 Plant–microbe and putative microbe-microbe interactions on the leaf surface. Shown is a stylised, simplified leaf surface with resident fungal 
(e.g. Zymoseptoria) hyphae and bacterial (e.g. Pseudomonas) microcolonies. Leaf surfaces are heterogeneous and contain diverse microhabitats. 
Areas such as those over anticlinal cell walls where neighbouring cells meet, for example, often have higher nutrient and water availability 
compared to the leaf as a whole and support greater numbers of microbes (1). Epiphytic microbes have many adaptations to life on the leaf, 
including secretion of cuticle and cell wall degrading enzymes, expression of transporters, production of plant hormones and biosurfactants 
and formation of stress-resistant biofilms. In low iron conditions, for example, many microbes produce siderophores, which bind iron with high 
affinity; the complex is then taken up by either the original producer or other nearby microbes (2). Many bacteria (purple) produce surfactants 
which increase the wettability of the cuticle (3), increasing nutrient exudation from the plant and increasing nutrient diffusion across the surface. 
Others produce plant hormones such as the auxin indole acetic acid (IAA) which loosen plant cell walls and increase nutrient efflux onto the leaf 
surface (4). Increases in nutrient exudation (4) and exudate diffusion (3) benefit nearby microbes, as well as those responsible for the effect. Both 
bacteria and fungi can secrete and become embedded in a protective extracellular matrix, forming biofilms (5) which may be single species, mixed, 
or even cross-kingdom. Many fungi also secrete cell wall or cuticle degrading enzymes (6) which, like auxins, increase the permeability of the leaf 
and the rate of nutrient exudation, as well as directly liberating metabolites. This may attract motile, chemotactic microbes and may play a role 
in recruiting bacteria to cross-kingdom biofilms (5)
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