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Abstract 

Background Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance 
of the human microbiome in relation to human health. Identifying microbes associated with diseases is crucial 
for early disease diagnosis and advancing precision medicine.

Results Considering that the information about changes in microbial quantities under fine-grained disease states 
helps to enhance a comprehensive understanding of the overall data distribution, this study introduces MSignV-
GAE, a framework for predicting microbe-disease sign associations using signed message propagation. MSignV-
GAE employs a graph variational autoencoder to model noisy signed association data and extends the multi-scale 
concept to enhance representation capabilities. A novel strategy for propagating signed message in signed net-
works addresses heterogeneity and consistency among nodes connected by signed edges. Additionally, we utilize 
the idea of denoising autoencoder to handle the noise in similarity feature information, which helps overcome 
biases in the fused similarity data. MSignVGAE represents microbe-disease associations as a heterogeneous graph 
using similarity information as node features. The multi-class classifier XGBoost is utilized to predict sign associations 
between diseases and microbes.

Conclusions MSignVGAE achieves AUROC and AUPR values of 0.9742 and 0.9601, respectively. Case studies on three 
diseases demonstrate that MSignVGAE can effectively capture a comprehensive distribution of associations by lever-
aging signed information.

Keywords Variational graph autoencoder, Microbe-disease association, Signed message propagation, XGBoost

Background
Microbes are a class of microorganisms that typically 
exist as single cells or cell colonies [1]. Accumulated 
research has shown that microbial communities primar-
ily consist of viruses, archaea, bacteria, and protozoa, 
and they have close interactions with human hosts [2, 3]. 
The majority of commensal microorganisms in humans 
are harmless and even have mutually beneficial relation-
ships with their human hosts. Human microbiota can 
resist pathogen invasion, promote nutrient absorption, 
and enhance metabolic capabilities [4]. For example, 
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probiotics can stimulate the host’s immune system by 
producing immune-modulatory signals, enhancing 
protection against pathogens [5]. Therefore, ecological 
imbalance or dysbiosis of microbial communities can 
lead to human diseases [6–12]. Furthermore, studies have 
shown that microbial metabolism can significantly influ-
ence clinical responses to drugs, and drug administration 
can also have specific effects on microbial communities 
[3, 13, 14]. For example, Panebianco et al. reported inter-
actions between gut microbiota and anticancer drugs, 
affecting drug efficacy and side effects [15]. Maier et  al. 
discovered that approximately 24% of drugs designed 
for the human body have inhibitory effects on microor-
ganisms, particularly antipsychotic drugs [16]. Despite 
the growing body of research that uncovers the role of 
microorganisms in the development of human diseases, 
our understanding of how microorganisms residing in 
the human body impact human health and contribute to 
diseases remains limited. The identification of microbes 
associated with diseases and the prediction of trends in 
microbial population changes can not only deepen our 
understanding of potential disease mechanisms but also 
facilitate early diagnosis and advancements in precision 
medicine.

In recent years, there has been a proliferation of com-
putational methods for identifying disease-related 
microbes [17]. These methods can be broadly categorized 
into four groups: network-based methods, matrix factori-
zation methods, regularization methods, and neural net-
work methods, as discussed by Wang et al. [18] and Wen 
et  al. [19]. (1) Network-based methods: This category 
includes methods that leverage topological information 
from networks constructed using multiple databases. 
For instance, Lei et  al. designed LGRSH, which applies 
the node2vec [20] algorithm to obtain low-dimensional 
representations and employs an improved rule-based 
inference method to predict disease-related microbes 
[21]. (2) Matrix factorization methods: The core idea of 
these methods is to factorize the input matrix into two 
lower-dimensional matrices while preserving the recon-
structive property. For example, Peng et  al. introduced 
RNMFMDA, which employs random walk with restart 
for reliable negative sampling. They then employ a neigh-
borhood regularized logistic matrix factorization method 
to predict disease-related microbes [22]. (3) Regulariza-
tion methods: These methods involve applying different 
forms of regularization to least square classifications. Xu 
et  al. proposed MDAKRLS, which combines Kronecker 
regularized least square with hamming interaction spec-
tral similarity to predict the likelihood of microbe-dis-
ease associations [23]. (4) Neural network methods: This 
category of methods has gained considerable popular-
ity in recent years. Long et  al. introduced GATMDA, a 

framework that represents microbes and diseases and 
predicts associations using an optimized graph attention 
network with inductive matrix completion (Fig. 1) [24].

With the accumulation of microbe-disease associa-
tion data, no research has yet utilized the information 
on microbial quantity changes under disease status to 
predict microbe-disease associations, which hampers 
the comprehensive capture of data and feature distribu-
tion between diseases and microbes. Furthermore, most 
existing models for signed graph representation learn-
ing are predominantly designed for social networks and 
struggle to effectively capture the signed structural char-
acteristics of biological networks [25, 26]. In the realm 
of social networks, several notable methods for signed 
graph representation learning have been developed. Derr 
et  al. pioneered the use of Signed Graph Convolutional 
Network (SGCN [27]), which builds upon the theory of 
structural balance to obtain signed graph representa-
tions. Huang et al. and Li et al. introduced two models, 
SiGAT [28] and SNEA [29], respectively, which leverage 
attention mechanisms to differentiate the importance of 
different neighboring nodes. More recently, Li et al. com-
bined spectral graph theory with graph signal process-
ing techniques and presented a powerful model called 
SLGNN [30] for capturing the structural information of 
signed graphs. Taking a spectral perspective, they effec-
tively retained the similarity and dissimilarity between 
connected nodes by preserving the low-frequency and 
high-frequency information.

Although significant progress has been made in 
microbe-disease association prediction tasks, we still 
face some challenges [31]. First and foremost, the main 
challenge lies in how to effectively capture a more com-
prehensive and authentic data distribution using this 
signed message in microbe-disease association databases. 
Furthermore, there is a lack of consistency in the condi-
tions of repeated biological experiment validations, and 
conflicting microbe-disease signed association informa-
tion also exists in the signed association databases. Mod-
eling the significant amount of noise in association data 
remains a key issue. Lastly, addressing biased similar-
ity data solely through similarity fusion is insufficient to 
completely mitigate this bias. It is crucial to explore effec-
tive methods that can reduce bias in microbe-disease 
association studies.

In this study, based on signed message propagation, 
we propose a framework, Multi-scale Sign Variational 
Graph AutoEncoder (MSignVGAE), for microbe-disease 
signed association prediction. MSignVGAE utilizes a 
graph variational autoencoder to model noisy signed 
association data and extends the multi-scale concept 
from previous work [32] to enhance the representa-
tional power of the graph variational autoencoder. The 
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key contribution of our work lies in the development of 
a novel strategy for propagating signed message in signed 
networks. This strategy specifically addresses the propa-
gation process between different nodes, effectively man-
aging the heterogeneity and consistency among nodes 
connected by various signed edges. Additionally, build-
ing upon the similarity network fusion [33] method 
that combines multiple disease similarity matrixes and 
microbe similarity matrixes, we further employ the idea 
of denoising autoencoders to add noise to the similar-
ity data and reconstruct signed associations through 
the graph variational autoencoder to overcome the bias 
issue present in the similarity data. MSignVGAE utilizes 
similarity information as node features to represent the 
heterogeneous graph of microbe-disease associations 
and then employs a multiple classifier XGBoost [34] 
for predicting the signed associations between diseases 
and microbes. Notably, MSignVGAE is the first method 
that utilizes signed message to predict microbe-disease 
signed associations. The AUROC value and AUPR value 
of MSignVGAE reached 0.9742 and 0.9601, respectively. 
Furthermore, case studies on three different diseases 

demonstrate that MSignVGAE, by leveraging the signed 
message, can capture a more comprehensive distribution 
of associations.

Results and discussion
Experiment settings
In this study, we employed tenfold cross-validation to 
ensure the accuracy and reliability of MSignVGAE. We 
utilized a range of commonly used metrics, including 
AUROC, AUPR, precision, recall, F1, and accuracy, to 
evaluate the performance of across all comparison exper-
iments [35, 36]. Considering the sparsity and reliabil-
ity of the microbe-disease signed association data, this 
work focuses primarily on experiments conducted using 
the Peryton database. In the SNF section, the number of 
neighbors for diseases and microbes in the KNN algo-
rithm is set to 5 and 140, respectively. In the sign graph 
convolution encoder part, we employed three scales of 
multi-scale encoders for similarity networks. The scales 
used were 64, 32, and 16. Moreover, we set the param-
eters of the XGBoost classifier as default. To control the 
learning rate during training, we adopted the StepLR 

Fig. 1 Framework of MSignVGAE. A Calculate the similarities for diseases and microbes. B Adopt signed message propagation strategy and VGAE 
to obtain latent representation for microbes and diseases. C Leverage XGBoost for predicting potential disease-related microbes with signs
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strategy, where the learning rate progressively updated 
until it reached the specified number of epochs. This 
strategy helps optimize the training process and enhance 
model convergence.

Ablation study
To analyze the contributions of each module in MSign-
VGAE, this section conducted ablation experiments 
based on the Peryton database. The results are shown in 
Table 1, where MSignVGAE refers to the complete model 
without removing any modules. Del_Noise represents 
the model with the similarity feature denoising module 
removed from MSignVGAE. Del_Multi represents the 
model with the multi-scale SignGCN removed from the 
sign graph convolutional encoder module. Del_SignGCN 
represents the model with a simple GCN module replac-
ing the SignGCN module in MSignVGAE. This section 
aims to analyze the individual contributions of each com-
ponent to the overall model accuracy and performance.

As shown in Table 1, it is evident that the whole MSign-
VGAE model, without removing any modules, achieves 
the highest performance across various metrics. Among 
the three ablated modules, the SignGCN module con-
tributes the most. In fact, even when using the original 
GCN, which is not specifically designed for signed graph 
neural networks, the performance in the prediction task 
of microbe-disease signed associations is still consider-
able, with AUROC and AUPR values reaching 0.9418 and 
0.9065, respectively. This can be attributed to the fact that 
the similarity features of diseases and microbes already 
possess certain representational capacity before undergo-
ing graph representation learning. However, the original 
GCN fails to further integrate the similarity features with 
the structural information of the signed graph network, 
resulting in unsatisfactory performance in signed asso-
ciation prediction task. Furthermore, the improvement 
brought by the similarity feature denoising module is also 
significant. It enhances the overall model performance by 
0.78% and 1.38% in terms of AUROC and AUPR, respec-
tively. This indicates that the similarity feature denois-
ing module helps further enhance the robustness of the 
model within the VGAE framework. The last ablated 
module is the multi-scale SignGCN module. From 

Table 1, it can be observed that although the performance 
improvement brought by the multi-scale SignGCN mod-
ule is relatively small, this module allows the model to 
learn effective representations even when the AUROC 
reaches 0.9731. Considering the remaining potential for 
improvement, the multi-scale SignGCN module achieves 
a 4.09% improvement in the AUROC metric.

Performance comparison with SOTA methods
Considering that MSignVGAE is the first method to 
utilize sign information for predicting microbe-disease 
associations, we selected a subset of state-of-the-art 
(SOTA) graph representation learning methods from 
the fields of unsupervised graph representation learning, 
signed network embedding, and graph theory for com-
parison. After obtaining node representations using these 
SOTA graph representation learning methods, we uni-
formly input them into an XGBoost multi-classification 
model for microbe-disease signed association prediction. 
Additionally, considering the notable performance of the 
GATMDA model in microbe-disease association predic-
tion task, we also compared it in the context of microbe-
disease signed association task. Moreover, in line with the 
approach of the MVGAEW model, this section also com-
pared MSignVGAE from the perspective of reconstruct-
ing similarity matrixes. All comparison experiments in 
this section were conducted on the Peryton database, and 
the results can be found in Fig. 2 and Table 2. The meth-
ods included in these comparisons are as follows:

• MSignVGAE-sign2: This method follows the 
approach of the MVGAEW model. It utilizes the 
known microbe-disease signed association matrix as 
node features and reconstructs the disease-disease 
similarity matrix and microbe-microbe similarity 
matrix separately. It employs a multi-classification 
XGBoost model to predict the presence of associa-
tions between diseases and microbes and to identify 
the associated signs in cases where associations exist.

• TrustSGCN [37]: TrustSGCN is a novel signed net-
work embedding method based on GCN. This model 
introduces a strategy to measure the credibility of 
high-order associated sign edges inferred from the 

Table 1 Performance of ablation experiments based on Peryton database

The bold values denote the max value in columns

Method AUROC AUPR F1 Precision Recall Accuracy

MSignVGAE 0.9742 0.9611 0.8738 0.8744 0.8738 0.8841
Del_Noise 0.9667 0.9480 0.8516 0.8534 0.8504 0.8651

Del_Multi 0.9731 0.9585 0.8719 0.8725 0.8719 0.8823

Del_SignGCN 0.9418 0.9065 0.7507 0.7508 0.7515 0.7975
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theory of structural balance. It further corrects the 
incorrect embedding propagation process in the 
structural balance theory based on the credibility 
strategy.

• GREET [38]: GREET addresses the tendency of 
existing unsupervised graph representation learning 
methods to perform smooth learning along all edges, 
thereby neglecting the heterogeneity of nodes with 
different attributes. It constructs a homogeneous/
heterogeneous edge discriminator to infer the homo-
geneity/heterogeneity of edges based on both feature 
and structural information. By minimizing a care-
fully designed pivot-ranking loss, GREET utilizes a 
homogeneous/heterogeneous dual-channel encoder 
to learn node representations.

• SLGNN [30]: SLGNN is based on graph theory and 
graph signal processing. It designs different low-pass 
and high-pass graph convolution filters to extract 
low-frequency and high-frequency information from 
positive and negative links, respectively. It employs a 
“self-gating” mechanism to control the influence of 
low-frequency and high-frequency information dur-
ing the message passing process, thereby combining 
them into a unified message propagation framework.

• GATMDA [24]: It incorporates the concept of “Talking 
Head” into an optimized graph attention network to 
learn latent representations of microbes and diseases.

Figure  2 displays the receiver operating characteristic 
curves and precision-recall curves of the comparative 
methods in signed association prediction task. Table  2 
presents the performance of different methods across 
multiple metrics in signed association prediction task. 
Compared to other methods, the proposed MSignV-
GAE model demonstrates superior performance across 
all metrics, showcasing its excellent performance. It 
is worth noting that compared to MSignVGAE-sign2, 
MSignVGAE shows a 5.06% improvement in AUROC 
and an 8.42% improvement in AUPR. This suggests that 
directly reconstructing known signed associations and 
using similarity information as features is more effective 
than reconstructing disease-disease similarity matrixes 
and microbe-microbe similarity matrixes separately 
while using known signed association information as 
node features. The reason behind this improvement is 
that when separately reconstructing similarity matrixes, 
the fusion of heterogeneous graph structure information 
and similarity information is disconnected. In contrast, 

Fig. 2 The ROC curve and PR curve for signed association prediction under tenfold cross-validations on Peryton database

Table 2 Performance comparison for signed association prediction under 10-fold cross-validations on Peryton database

The bold values denote the maximum value in columns, while the italicized values represent the second-best value in columns

Method AUROC AUPR F1 Precision Recall Accuracy

MSignVGAE 0.9742 0.9601 0.8738 0.8744 0.8738 0.8841
MSignVGAE-sign2 0.9273 0.8855 0.7398 0.7407 0.7395 0.7771

TrustSGCN 0.9233 0.8697 0.7710 0.7810 0.7635 0.7903

GREET 0.9639 0.9445 0.8133 0.8137 0.8149 0.8446

GATMDA 0.7198 0.5877 0.4500 0.4619 0.4510 0.5286

SLGNN 0.9732 0.9579 0.8715 0.8726 0.8708 0.8793
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reconstructing known signed associations enables an 
additional cross-fusion of the two types of information.

Furthermore, both GREET and SLGNN exhibit high 
performance across various metrics. This can be attrib-
uted to the utilization of low-pass and high-pass filters in 
both methods, enabling the models to learn features at 
different hierarchical levels. In comparison to these two 
methods, the advantage of MSignVGAE lies in its multi-
scale SignGCN module, which integrates different sign 
propagation processes into a unified whole. This allows 
the model to capture features at different hierarchical lev-
els without the need to separate low-frequency and high-
frequency information of the graph. Notably, TrustSGCN 
demonstrates superior performance on real-world sign 
networks but performs poorly in microbe-disease signed 
association prediction task. This is because there stands 
a significant difference between real-world sign net-
works and heterogeneous networks in the bioinformatics 
domain, making the structural balance theory inappli-
cable to heterogeneous networks in the bioinformatics 
field. An intuitive observation is that GATMDA exhibits 
a noticeable performance gap in signed association pre-
diction task compared to other methods. This discrep-
ancy may be attributed to GATMDA’s failure to consider 

the influence of sign information. Based on this observa-
tion, it can be inferred that using only similarity informa-
tion can still maintain a certain level of signed association 
prediction capability.

Performance comparison in unsigned association 
prediction
To further validate the effectiveness of the MSignVGAE 
method in efficiently integrating signed features, this 
section utilizes representations obtained from state-of-
the-art graph representation learning methods in signed 
association prediction tasks. These representations are 
then inputted into an XGBoost binary classification 
model for unsigned association prediction. The results 
can be found in Fig. 3 and Table 3.

Figure  3 displays the receiver operating characteris-
tic curves and precision-recall curves of the compara-
tive methods in unsigned association prediction tasks. 
Table  3 presents the performance of different methods 
across multiple metrics in unsigned association predic-
tion tasks. Compared to other methods, the proposed 
MSignVGAE model is not the optimal one in terms 
of performance. However, all its performance metrics 
are comparable to those of MVGAEW on the Peryton 

Fig. 3 The ROC curve and PR curve for unsigned association prediction under tenfold cross-validations on Peryton database

Table 3 Performance comparison for unsigned association prediction under tenfold cross-validations on Peryton database

The bold values denote the maximum value in columns, while the italicized values represent the second-best value in columns

Method AUROC AUPR F1 Precision Recall Accuracy

MSignVGAE 0.9622 0.9549 0.9059 0.8887 0.9241 0.9041

MSignVGAE-sign2 0.9517 0.9438 0.8861 0.8694 0.9037 0.8839

TrustSGCN 0.8970 0.8923 0.8217 0.8143 0.8294 0.8201

GREET 0.9847 0.9812 0.9489 0.9286 0.9703 0.9478
SLGNN 0.9656 0.9614 0.9071 0.8958 0.9188 0.9059
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database [32]. This indicates that utilizing sign infor-
mation does not have a significant impact on unsigned 
association prediction tasks and can improve the accu-
racy of the model. Notably, in Table 3, both the GREET 
and SLGNN methods exhibit superior performance 
compared to the MSignVGAE method. However, inter-
estingly, their performance is relatively lower than the 
MSignVGAE method in Table  2. This observation sug-
gests that the MSignVGAE method, specifically designed 
to incorporate sign information, effectively integrates 
sign features when predicting associations.

Furthermore, on the Peryton database, the GREET 
method demonstrates a significant improvement across 
various performance metrics compared to the MVGAEW 
method. This finding further emphasizes the benefits of 
utilizing sign information, as it leads to enhanced model 
performance. Consistent with the results presented in 
Table  2, the MSignVGAE method also outperforms the 
MSignVGAE-sign2 method in unsigned association 
prediction tasks. However, it is noteworthy that Trust-
SGCN, which demonstrates outstanding performance 
in real-world signed networks, does not perform well in 
microbe-disease association prediction tasks. This find-
ing highlights the inherent differences between real-
world signed networks and the heterogeneous networks 
present in the field of bioinformatics.

Performance comparison with widely used databases
With the accumulation of data, databases have become 
more mature and now contain an increasing number 
of effective signed associations between microbes and 
diseases. To verify the generalization ability of MSign-
VGAE on databases of different scales, this section con-
ducts several experiments on three additional databases 
(HMDAD, Disbiome, and MicroPhenDB), all of which 
also contain sign information. Considering the sparse 
matching of microbes between the microbe-disease 
database and the microbe-drug database, this section 
calculates the microbial similarity in the latter database 
without relying on drug-based functional similarity. 
Table  4 presents the performance comparison of differ-
ent microbe-disease signed association databases under 
tenfold cross-validation. It can be observed that the 

performance of MSignVGAE is lowest on the HMDAD 
database. This is because the HMDAD data contains 
fewer signed association samples. Even in the case of a 
small dataset, MSignVGAE still maintains good signed 
association prediction ability. Consistent with the trend 
observed in previous work [32], as the quality and quan-
tity of signed associations between diseases and microbes 
in the database increase, the performance of the MSignV-
GAE model also improves.

Interpretation of latent representation
In order to further explore the interpretability of latent 
representations from the distributional perspective, this 
section visualizes the feature distributions of microbe 
representations. Specifically, we achieved this by employ-
ing the t-SNE [39] method, which is a dimensionality 
reduction technique, to project high-dimensional data 
into a lower-dimensional space for visualization. The vis-
ualization results for the Peryton database are illustrated 
in Fig.  4. Figure  4a displays the distribution of microbe 
representations obtained after applying MSignVGAE 
to the microbe-disease sign association matrix, while 
Fig.  4b shows the distribution of the original microbe-
microbe similarity matrix. In Fig. 4, the points labeled as 
“Increased” and “Decreased” represent different types of 
changes (increase or decrease) in microbe quantity under 
disease states. The points labeled as “Non_association” 
represent microbes that are not associated with Alzhei-
mer’s disease [40] in the Peryton database. The points 
labeled as “Increased_pred” and “Decreased_pred” repre-
sent the top 50 microbes predicted by the MSignVGAE 
model to have the highest probability of increasing or 
decreasing in association with Alzheimer’s disease.

From Fig. 4b, it can be observed that the two types of 
microbes in the original Peryton database are roughly 
distributed together. This indicates that the original 
microbe feature distribution is difficult to distinguish 
between the two types of microbes. In Fig. 4a, the dark 
green and light green points tend to be biased towards 
the left. This phenomenon is primarily due to the intro-
duction of sign information propagation strategy, which 
causes the feature distributions of different types of 
microbes to be pulled apart from each other. One notable 

Table 4 The comparison of different microbe-disease signed association databases under tenfold cross-validation

The bold values denote the max value in columns

Database AUROC AUPR F1 Precision Recall Accuracy

HMDAD 0.9028 0.8313 0.7112 0.7232 0.7099 0.7556

Disbiome 0.9367 0.8954 0.7696 0.7718 0.7680 0.7995

MicroPhenDB 0.9673 0.9463 0.8418 0.8427 0.8417 0.8666

Peryton 0.9742 0.9601 0.8738 0.8744 0.8738 0.8841
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observation is the presence of outlier clusters in deep 
blue in the original feature distribution. These clusters 
exhibit significant differences in distribution compared to 
the known signed associations. Most proposed methods 
for predicting microbe-disease associations tend to pre-
dict potential disease-related microbes that fall near the 
known association distribution, rather than exhibiting 
outlier clusters similar to the deep blue cluster in Fig. 4a. 
Regarding the deep blue cluster in Fig. 4a, the prediction 
of these microbe nodes is likely to rely on the dark green 
nodes (predicted to be “Decreased” type) as bridges to 
establish connections between the light blue nodes (pre-
dicted to have “Increased” type) and the deep blue nodes 
(predicted to have “Increased” type).

Case studies
Consistent with previous work [32], this section presents 
case studies focusing on specific diseases to showcase 
the predictive capability for disease-related microbes. 
The diseases examined in this section are colorectal 
neoplasms [41], Alzheimer’s disease [40], and Crohn’s 
disease [42]. The analysis is based on the Peryton data-
base, where known microbe-disease signed associations 
were excluded. The top 20 “Increased” and “Decreased” 
microbes with the highest predicted probabilities for 
each respective disease were identified. Furthermore, 
relevant literature from PubMed was provided to sub-
stantiate the presence of these signed associations. The 
specific microbes associated with colorectal neoplasms, 
Alzheimer’s disease, and Crohn’s disease can be found in 
Tables 5, 6, and 7, respectively.

By cross-referencing the prediction results from this 
section with the corresponding results from previous 
work [32], we identified common microbes that were 
predicted as relevant. These include (1) Epsilonproteo-
bacteria, Schwartzia, and Bacillaceae associated with 
Crohn’s disease; (2) Erysipelotrichia, Erysipelatoclostrid-
ium, and Flavonifractor associated with colorectal neo-
plasms; and (3) Klebsiella and Oscillospira associated 
with Alzheimer’s disease. Furthermore, it is noteworthy 
that all the commonly predicted relevant microbes in 
both studies belong to the “Decreased” type, indicat-
ing that the omission of signed message may introduce 
a certain bias in the model. Among them, only Erysip-
elotrichia lacks literature reporting its association with 
colorectal neoplasms, while all other commonly pre-
dicted microbes are supported by literature. This sug-
gests a high likelihood of a “Decreased” association 
between Erysipelotrichia predicted by the MSignVGAE 
model and colorectal cancer, despite the lack of specific 
literature evidence.

Additionally, this section visualizes the distribution of 
known signed associations and predicted signed associ-
ations related to specific diseases, as depicted in Fig. 5. 
The distribution of “Decreased” associations predicted 
by MSignVGAE also reveals a pattern where central 
microbes influence multiple diseases. Furthermore, the 
distribution of “Increased” associations predicted by 
MSignVGAE tends to be associated with a single dis-
ease, indicating that this pattern arises from the trans-
mission of signed message and was not observed in the 
case studies of previous work.

Fig. 4 Visualizations of distribution whether adopt MSignVGAE for microbes related to Alzheimer’s disease. a The latent distribution by adopting 
MSignVGAE. b The raw distribution of integrated similarity network
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Table 5 Top-20 “Increased” and “Decreased” microbes associated with colorectal neoplasms

Increased Decreased

Rank Microbes PMID Rank Microbes PMID

1 Prevotella Scopos 31791356 1 Abiotrophia 30112040

2 Actinomyces sp. oral taxon 877 31171880 2 Erysipelotrichia Unconfirmed

3 Bacteroides-like sp. oral clone AU126 Unconfirmed 3 Sphingomonas Azotifigens 28914591

4 Thermales 37317301 4 Pseudomonas Aeruginosa 36018829

5 Sporosarcina Unconfirmed 5 Erysipelatoclostridium 35269806

6 Thermaerobacter Unconfirmed 6 Cutibacterium Acnes 38027096

7 Eubacterium Ramulus Unconfirmed 7 Flavonifractor 34799562

8 Oribacterium sp. oral taxon 108 31609493 8 Limosilactobacillus fermentum 31729242

9 Arthrobacter 30101351 9 Raoultella Unconfirmed

10 Anaerotignum Lactatifermentans Unconfirmed 10 Schlegelella Unconfirmed

11 Shigella Boydii Unconfirmed 11 Negativicutes 31619268

12 Blautia sp. 36539569 12 Erysipelotrichales Unconfirmed

13 Porphyromonas Bennonis 31450675 13 Brevibacillus Unconfirmed

14 Shigella Flexneri 30418409 14 Candidatus Saccharibacteria 30574173

15 Entylomataceae Unconfirmed 15 Lachnobacterium Unconfirmed

16 Tremellales Unconfirmed 16 Anaerotruncus Colihominis Unconfirmed

17 Eggerthellaceae Bacterium AT8 36313092 17 Methanobrevibacter Smithii 15963794

18 Streptococcus Gallolyticus subsp. Gallolyticus 29666615 18 Mycoplasma 37772998

19 Ruminococcus Bicirculans 37548332 19 Methanobacteria 35420474

20 Neisseria Mucosa 32517306 20 Barnesiellaceae Unconfirmed

Table 6 Top-20 “Increased” and “Decreased” microbes associated with Alzheimer’s disease

Increased Decreased

Rank Microbes PMID Rank Microbes PMID

1 Pseudogymnoascus sp. VKM F-4518 (FW-2643) 36861650 1 Limosilactobacillus Fermentum 33536656

2 Neurospora Crassa 32946564 2 Tissierellaceae Unconfirmed

3 Pisolithus Unconfirmed 3 Prevotella Copri 36093695

4 Victivallales 35275534 4 Streptococcus Sanguinis Unconfirmed

5 Fusobacterium Naviforme 35364661 5 Shigella 27776263

6 Cetobacterium Somerae Unconfirmed 6 [Ruminococcus] Gnavus 37254223

7 Anaerolineae Unconfirmed 7 Streptococcus Mutans 35139675

8 Actinomyces Radicidentis Unconfirmed 8 Burkholderiaceae 36286029

9 Salmonella Enterica 30723884 9 Klebsiella 36068280

10 Schaalia Cardiffensis Unconfirmed 10 Oscillospira 36185477

11 Prevotella sp. oral taxon 300 35364661 11 Micrococcus 2560791

12 Aspergillus Versicolor Unconfirmed 12 Fusobacteriaceae Unconfirmed

13 Treponema sp. oral taxon 250 35364661 13 Roseburia 36430144

14 Olsenella Profusa Unconfirmed 14 Erysipelatoclostridium 36615777

15 Phascolarctobacterium Succinatutens Unconfirmed 15 Porphyromonas Endodontalis Unconfirmed

16 Cardiobacteriales Unconfirmed 16 Capnocytophaga 35950713

17 Tannerella Forsythia 26063967 17 Megasphaera Unconfirmed

18 Thielaviopsis Unconfirmed 18 Fusobacterium Nucleatum 25576662

19 Peptoniphilaceae 32533776 19 Centipeda 27846826

20 Neisseria Oralis Unconfirmed 20 Escherichia Coli 29472250
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Table 7 Top-20 “Increased” and “Decreased” microbes associated with Crohn’s disease

Increased Decreased

Rank Microbes PMID Rank Microbes PMID

1 Uncultured Selenomonas sp. Unconfirmed 1 Epsilonproteobacteria 32040665

2 Bordetella 27557706 2 Oceanospirillales Unconfirmed

3 Orthomyxoviridae 24374880 3 Prevotella Nanceiensis Unconfirmed

4 Poxviridae 23624886 4 Fusobacterium Varium 29216329

5 Cladosporium 34850076 5 Tissierellaceae Unconfirmed

6 Polyomaviridae 20298966 6 Schwartzia 3318407

7 Geotrichum Unconfirmed 7 Bacillaceae 35967326

8 Spirochaeta 4235262 8 Bifidobacterium Bifidum 37240476

9 Uncultured Succinivibrionaceae Bacterium 33125440 9 Bradyrhizobium Unconfirmed

10 Hymenolepis 20044996 10 Streptococcus Parasanguinis 34427649

11 Edwardsiella 31016054 11 Corynebacteriales Unconfirmed

12 Toxocara 26878617 12 Raoultella 37337895

13 Pleistophora Unconfirmed 13 Acidobacteria 26922889

14 Arcanobacterium Unconfirmed 14 Corynebacteriaceae 31155731

15 Uncultured Veillonellaceae Bacterium 24629344 15 Filifactor Unconfirmed

16 Cardiobacteriales Unconfirmed 16 Capnocytophaga 35950713

17 Tannerella Forsythia 26063967 17 Megasphaera Unconfirmed

18 Thielaviopsis Unconfirmed 18 Fusobacterium Nucleatum 25576662

19 Peptoniphilaceae 32533776 19 Centipeda 27846826

20 Neisseria Oralis Unconfirmed 20 Escherichia Coli 29472250

Fig. 5 The distribution of existing and predicted Increased/Decreased association related to case diseases
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Methods
Data sources
Microbe‑disease association databases
Until now, researchers have developed several widely 
used microbe-disease association prediction data-
bases, summarized in Table 8. Ma et al. [43] developed 
the first Human Microbe–Disease Association Data-
base (HMDAD). By eliminating redundancy, HMDAD 
gathered 450 confirmed microbe-disease associations 
between 292 microbes and 39 diseases from published 
literature. Among these associations, there were 205 
“Decreased” type associations and 245 “Increased” 
type associations. In 2018, Janssens et  al. [44] estab-
lished Disbiome, a database documenting 8731 known 
associations between 1622 microbes and 374 diseases. 
The content was selected from 1,191 published aca-
demic papers without redundancy, and the numbers 
for “Decreased” and “Increased” types were 4157 and 
4574, respectively. Subsequently, MicroPhenDB was 
constructed using the same methodology as HMDAD 
and Disbiome by Yao et  al. [45]. It included 5511 
non-redundant associations between 1774 microbes 
and 500 diseases in 22 newly collected human body 
sites. Among these associations, there were 1819 
“Decreased” type associations and 3692 “Increased” 
type associations. The last one, Peryton, proposed by 
Skoufos et al. [46], encompasses 4172 associations that 
are supported by experimental evidence, linking 1396 
microbes with 43 diseases. Specifically, there were 2130 
associations categorized as “Decreased” and 2042 asso-
ciations categorized as “Increased.” To facilitate usabil-
ity, we transformed the information regarding known 
microbe-disease signed associations into a matrix 
A ∈ R

nm×nd . In this matrix, a value of 1 indicates the 
presence of an increased microbe-disease association in 
the database, while a value of − 1 indicates the presence 
of a decreased microbe-disease association. Conversely, 
a value of 0 signifies the absence of the corresponding 
item. Let us denote the variables nd and nm to repre-
sent the number of diseases and microbes, respectively.

Similarity calculation
Based on previous related work [32, 47–53], This study 
extends the similarity calculation methods within the 

MVGAEW model framework. The key distinction 
lies in the utilization of disease-disease similarity and 
microbe-microbe similarity compared to the known 
microbe-disease association matrix. In the MVGAEW 
model framework, the association matrix elements are 
binary, taking values of either 0 or 1 to indicate the 
absence or presence of an association, respectively. 
However, in this study, the known microbe-disease 
signed association matrix is used. In this matrix, ele-
ments representing edges connecting decreased asso-
ciations are assigned a value of − 1, whereas edges 
connecting increased associations are assigned a value 
of 1. Elements corresponding to no association retain 
a value of 0. The disease-disease similarity measures 
employed in this study encompass disease Gauss-
ian interaction profile kernel similarity (GIP-D), dis-
ease semantic similarity (DSS1), and disease symptom 
similarity (DSS2). For microbe-microbe similarity, the 
measures include microbe Gaussian interaction pro-
file kernel similarity (GIP-M), disease-based functional 
similarity (DFS1), and drug-based functional similarity 
(DFS2). Finally, a similarity network fusion approach 
[33] is employed to separately integrate the similarities 
of diseases and microbes, enabling a comprehensive 
analysis and understanding of the relationships within 
the system.

MSignVGAE
The overall framework of MSignVGAE is depicted in 
Fig. 1. Firstly, MSignVGAE employs a similarity network 
fusion approach independently integrate multiple dis-
ease similarities and microbe similarities. Furthermore, 
MSignVGAE utilizes a graph variational autoencoder 
with a signed message propagation strategy to recon-
struct the known microbe-disease signed association 
matrix. The noisy similarity data, which has undergone 
a denoising process, is employed as the initial feature 
input for the variational autoencoder component. Nota-
bly, signed graph structural features are leveraged to 
characterize diseases and microbes. Lastly, based on the 
representations of diseases and microbes, a multi-class 
XGBoost classifier is applied to determine the presence 
of associations between given microbe-disease pairs and 
identify the corresponding signs for the associations. 

Table 8 Databases for microbe-disease association prediction

Database Associations Microbes Diseases Decreased Increased Year

HMDAD 450 292 39 205 245 2016

Disbiome 8731 1622 374 4157 4574 2018

MicroPhenDB 5511 1774 500 1819 3692 2020

Peryton 4172 1396 43 2130 2042 2021
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Figure  1 illustrates the framework of MSignVGAE, and 
subsequent sections of this paper will elaborate on each 
component in the framework in detail.

Similarity feature noising
Similarity feature noising refers to the introduction of 
Gaussian noise to the similarity data during the pro-
cessing. Building upon the utilization of a similarity 
network fusion approach to integrate multiple disease 
similarity matrixes and microbe similarity matrixes, 
further advancements are achieved by incorporating 
the concept of a denoising autoencoder. This involves 
the addition of Gaussian noise to the similarity data 
and utilizing a graph variational autoencoder to recon-
struct signed associations, thereby overcoming biases 
present in the similarity data. For convenience, the 

node similarity features were represented as F  , as 
shown below:

where SD denotes the integrated disease similarity 
matrix, SM denotes the integrated microbe similarity 
matrix, O denotes the zero matrix, and F  is a (nd + nm)

-dimensional square matrix. After applying Gaussian 
noise, the node similarity features F ′ can be expressed as:

where ε(nd+nm) represents Gaussian noise following a 
standard normal distribution, with dimensions matching 
F .

Sign graph convolution encoder
For convenience, in this section, the initial graph node fea-
tures X denotes the node similarity features F ′ after add-
ing Gaussian noise. This module consists of two shared 
SignGCN layers and a multi-scale variational inference 
layer. Each scale of the variational inference layer has two 
SignGCN modules, which calculate the mean µ and vari-
ance σ of the latent variable Z , respectively. Additionally, W0 
represents the model parameters that need to be learned in 
the first SignGCN layer. The first shared SignGCN layer 
can be represented by the following equation:

(1)F =
SM,O

O, SD

(nd+nm)

,

(2)F ′ = F + ε(nd+nm), where ε(nd+nm) ∈ N (0, 1),

(3)X1 = SignGCN (X ,A) = ReLU
(
Anorm · X ·W0

)
,

where A represents the matrix A with self-loops, which 
can be denoted as A = A+ I . Anorm represents the 
matrix after symmetrically normalized Laplacian matrix 
processing. Compared with unsigned GCN, in SignGCN, 
the used D̃ is no longer the degree matrix of the input 
graph structure matrix with self-loops but the absolute 
degree matrix of the signed association matrix in Eqs. (4) 
and (5). In essence, the matrix in this section corresponds 
to the low-pass feature aggregation filter [54]. The propa-
gation of sign information in this filter is illustrated in the 
sign information propagation module in Fig. 1 and can be 
represented by the following equation:

In details, hli represents the feature vector of the i-th 
node in the l-th layer of SignGCN. N−

i  represents the 
neighboring nodes that have “Decreased” associations 
with node i , while N+

i  represents the neighboring nodes 
that have “Increased” associations with node i . By utiliz-
ing the absolute degree matrix as weights for aggregating 
information from nodes connected by different signed 
edges, the model can effectively control the diversity and 
consistency among nodes with different signed associa-
tions. The equation for the second shared SignGCN layer 
can be expressed as follows:

where W1 represents the model parameters that need to 
be learned in the second shared SignGCN layer. Simi-
larly, the third multi-scale SignGCN layer represents the 
data distribution using the logarithm of the mean µ and 
the logarithm of the variance σ , as follows:

Considering that the concatenation and reparameteriza-
tion technique in previous work, the resulting latent vari-
ables are shown below:

where  denotes concatenation procedure.

(4)Anorm = D̃− 1
2 · A · D̃− 1

2 , D̃ = D + I ,

(5)D = diag
{
d1, · · · , dnd+nm

}
, di =

∑
j

∣∣Aij

∣∣,

(6)hli =
1

di
hl−1
i −

∑

k∈N−
i

1√(
di + 1

)(
dk + 1

)h
l−1
k +

∑

j∈N+
i

1√(
di + 1

)(
dj + 1

)h
l−1
j

(7)
X2 = SignGCN

(
X1,A

)
= ReLU

(
Anorm · X1 ·W1

)
,

(8)
µi = SignGCNµ

(
X2,A

)
= Anorm · X2 ·W

i
µ, i ∈ {1, 2, 3},

(9)log σi = SignGCNσ

(
X2,A

)
= Anorm · X2 ·W

i
σ , i ∈ {1, 2, 3},

(10)Z = Z1|Z2|Z3, Zi = µi + σi ∗ ε, ε ∈ N (0, 1),
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Dot decoder
After obtaining low-dimensional representations Z 
through a multi-scale encoder, in this section, a simple 
and efficient dot product decoder is utilized to recon-
struct the signed association matrix, denoted as Â . The 
matrix Â is used to reconstruct the input matrix A , as 
shown below [32]:

In fact, the dot product decoder module alone can 
achieve satisfactory outcomes for microbe-disease 
signed association prediction task. However, considering 
that the objective of the decoder in the graph variational 
autoencoder framework is to reconstruct the original 
input matrix as accurately as possible, its core lies in the 
fusion of similarity features with heterogeneous net-
work structure information. Therefore, relying solely on 
the predictions of the simple dot product decoder tends 
to favor known associations. To overcome this limita-
tion, an efficient ensemble learning method, XGBoost, 
is employed to fully leverage the strengths of the graph 
variational autoencoder in effectively integrating similar-
ity features with heterogeneous network structure infor-
mation. This approach enhances the overall performance 
of the MSignVGAE model framework.

Loss function
The loss function can be formulated as below [55]:

In details, the first part 
∑nd

i

∑nm
j

(
Â′

ij − A′
ij

)2
/(nd · nm) represents the mean 

square error loss between the input signed association 
matrix A and the reconstructed signed association matrix 
Â . The second part represents the Kullback–Leibler 
divergence loss between the latent representation distri-
butions q(Zm|SM,X) at all scales and the prior standard 
normal distribution p(Zm) ∼ N (0, I) . Additionally, simi-
lar to MVGAEW, each iteration of MSignVGAE involves 
training on the entire graph and utilizes the Adam opti-
mizer [56] to optimize the learnable parameters of the 
MSignVGAE model. To ensure model convergence, a 
stepLR learning rate decay strategy is employed during 
the training phase of MSignVGAE to control the learning 
rate.

(11)Â = Z · ZT ,

(12)

L =
1

nd · nm

nd∑

i

nm∑

j

(
Âij − Aij

)2

+
1

M

M∑

m=1

(KL[q(Zm|A,X)|p(Zm)])

XGBoost classifier
In this work, similar to MVGAEW, MSignVGAE also 
utilizes the concatenation of disease representations and 
microbe representations to train an XGBoost [34] multi-
class classification model. The objective is to predict the 
existence of associations between pairs of microbes and 
diseases as well as the specific type of association (e.g., an 
edge indicating an increase in microbe abundance or a 
decrease in microbe abundance).

XGBoost is known for its excellent scalability [57–60] 
and can be easily extended from binary classification to 
multiclass task. In the multiclass XGBoost setting, the 
One-vs-All strategy is employed for classification. This 
means that a separate binary classification XGBoost 
model is trained for each class, treating the target class 
as the positive class and the other classes as the nega-
tive class. The goal of each binary classification XGBoost 
model is to differentiate whether a sample belongs to 
the current class or not. The models are then optimized 
using gradient boosting algorithms. The multiclass algo-
rithm in XGBoost uses class scores to indicate the degree 
of membership for each class. It employs the soft-max 
Loss function for optimization. By normalizing the class 
scores, it yields the probability distribution of a sample 
belonging to each class.

Conclusions
In this work, we propose a novel model framework called 
MSignVGAE, which can effectively identify disease-asso-
ciated microbes and predict trends in microbial quantity 
changes. Firstly, we start with fine-grained signed message 
and design a new strategy for signed message propaga-
tion that defines the information dissemination process 
between different nodes while controlling the heteroge-
neity and consistency among nodes connected by differ-
ent signed edges. Secondly, we employ a graph variational 
autoencoder framework with a multi-scale perspective to 
model the signed association data and address the issue of 
inconsistent signed associations. Additionally, we utilize 
the denoising autoencoder approach to handle the noise 
in similarity feature information, which helps overcome 
biases in the fused similarity data. Notably, MSignVGAE 
is the first method that utilizes signed message to predict 
microbe-disease signed associations. The AUROC value 
and AUPR value of MSignVGAE reached 0.9742 and 
0.9601, respectively. Furthermore, case studies on three 
different diseases demonstrate that MSignVGAE, by lev-
eraging the signed message, can effectively capture dis-
tinct feature distribution patterns in signed networks.

It is worth noting that the signed message propagation 
strategy designed in MSignVGAE only controls the infor-
mation propagation process among nodes connected by 
different signed edges, without considering the differences 
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among neighbors of nodes connected by the same type of 
edges. Thus, the utilization of signed message is still not 
fully optimized. In reality, the introduction of signed mes-
sage can improve the performance ceiling of the microbe-
disease association prediction task. Further exploration 
of information related to diseases and microbes can help 
complete the global distribution of microbe-disease asso-
ciations. The relationship between diseases and microbes 
is highly complex, and both are intricately connected to 
the bridge of medications. Solely focusing on processing 
microbe-disease association data may overlook this infor-
mation. The next focus should be on constructing various 
bridges that connect diseases and microbes, considering 
factors such as polysaccharide information that can simul-
taneously affect the states of both diseases and microbes.
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