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Abstract 

Background Sensory systems evolved intricate designs to accurately encode perplexing environments. However, 
this encoding task may become particularly challenging for animals harboring a small number of sensory neurons. 
Here, we studied how the compact resource-limited chemosensory system of Caenorhabditis elegans uniquely 
encodes a range of chemical stimuli.

Results We find that each stimulus is encoded using a small and unique subset of neurons, where only a portion 
of the encoding neurons sense the stimulus directly, and the rest are recruited via inter-neuronal communication. 
Furthermore, while most neurons show stereotypical response dynamics, some neurons exhibit versatile dynamics 
that are either stimulus specific or network-activity dependent. Notably, it is the collective dynamics of all respond-
ing neurons which provides valuable information that ultimately enhances stimulus identification, particularly 
when required to discriminate between closely related stimuli.

Conclusions Together, these findings demonstrate how a compact and resource-limited chemosensory system can 
efficiently encode and discriminate a diverse range of chemical stimuli.

Keywords Caenorhabditis elegans, Sensory system, Neuronal dynamics, Stimulus identification, Neuronal 
communication

Background
Living organisms critically rely on chemical signals. 
These signals direct fundamental behaviors such as locat-
ing food sources and mating partners, or avoiding toxins 
and predators. Sensory systems therefore evolved to dif-
ferentiate between the multitude of chemical stimuli to 
allow animals to form an accurate representation of the 
environment [1, 2].

In vertebrates, chemosensation is segregated into the 
olfactory and the gustatory modalities. Each of these 
modalities relays the information through several neural 
layers, and this distributed information is then integrated 
in deeper cortical areas [3]. Within the olfactory system 
itself, accurate identification of odorants is performed 
already in the glomeruli and relies on both the population 
coding and the timing in which each olfactory neuron 
was activated [4, 5].

Invertebrates, particularly those with small nervous 
systems, have shallower networks with limited neural 
layers. As such, chemosensory information is likely to be 
integrated, even partially, already at the level of the sen-
sory layer [6–11]. But how can such sensory systems with 
limited sensory resources uniquely encode many differ-
ent stimuli?
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For example, the nervous system of Caenorhabditis ele-
gans (C. elegans) nematodes consists of 302 neurons with 
well-established synaptic connections [12–14]. The main 
chemosensory organ, the amphid, is situated anteriorly 
and includes 12 bilaterally symmetrical pairs of neurons. 
Many of these chemosensory neurons respond to a vari-
ety of chemical stimuli, including olfactory and gustatory 
cues [15–19]. Indeed, single cell RNA-seq data indicate 
that each neuron expresses an array of chemosensory 
receptors [20, 21].

The C. elegans connectome shows a high degree of 
inter-connectivity within the sensory layer, suggesting 
that sensory coding may be shaped by neural communi-
cation among the sensory neurons or via feedback from 
the downstream interneurons [22]. While some of the 
neurons respond to the stimulus directly (primary neu-
rons), others respond through recruitment via chemical 
synapses, electrical gap junction, or humorally via neu-
ropeptide signaling. This unique representation poses 
even greater coding limitations since only a smaller sub-
set, consisting of the primary neurons only, can uniquely 
encode the target stimulus.

Ample studies quantified neural responses to a myriad 
of stimuli, focusing mainly on the sensory population 
coding and the response magnitudes [15–17, 19, 23]. 
These studies revealed that the sensory system employs 
a hierarchical sparse coding scheme, whereby some 
neurons respond to a wide range of stimuli, while oth-
ers are more selective. In addition to population cod-
ing, response dynamics was also shown to be carrying 
important functional information. For example, pulsatile 
activity in the sensory neuron AWA underlies an effi-
cient chemotactic navigation that allows animals to reach 
attractive cues faster [24, 25].

In this study, we comprehensively analyzed with cel-
lular resolution how the chemosensory system of C. 
elegans responds to and codes various chemical stimuli. 
We reveal that stimuli are encoded using a small, usually 
bilaterally symmetric, subset of neurons, where primary 
neurons consist of only 2–4 neurons on average. Interest-
ingly, some neurons possess rich response dynamics that 
is stimulus specific or network-communication depend-
ent. This rich response dynamics repertoire significantly 
improves discernment between similar neural population 
coding, thus endowing limited sensory systems with the 
capacity to encode a larger amount of information.

Results
A comprehensive functional analysis of the chemosensory 
system
To systematically study how the compact chemosensory 
system of C. elegans worms encodes various chemi-
cal stimuli, we imaged activity from virtually all of the 

chemosensory neurons. For this, we used a transgenic 
strain expressing the genetically encoded calcium indica-
tor GCaMP in all amphid sensory neurons (Fig. 1A, B). 
Individual animals were inserted into a custom-made 
microfluidic device [26], and neuronal activity was meas-
ured in response to diverse olfactory and gustatory stim-
uli, representing both attractive and repulsive agents: 
isoamyl-alcohol (IAA), diacetyl (DA), sodium chlo-
ride (NaCl), hyperosmotic (1  M) glycerol (Gly), quinine 
(Quin), and sodium dodecyl sulfate (SDS), where IAA, 
DA, and NaCl are attractive cues, while glycerol, quinine, 
and SDS are repellents. For all conditions, we assayed 
neural activity for both the presentation (ON step) and 
the removal (OFF step) of the stimulus (Fig. 1C). To ver-
ify that the delivery, or the removal, of the stimulus was 
temporally accurate, we added a fluorescent dye (rhoda-
mine) to the stimulus. We therefore also assayed neural 
responses to the buffer supplemented with rhodamine 
only (control group, Fig. 1C). In general, rhodamine alone 
elicited minimal responses and all our statistical analyses 
account for these background-level responses (see the 
“Methods” section).

To simultaneously image all of the neurons, we used a 
confocal system equipped with a fast-resonating scan-
ner that allowed imaging the entire brain volume at 2 Hz 
(30–40 slices, at a 0.6–0.7  μm Z-resolution), provid-
ing the necessary spatiotemporal resolution to reliably 
extract activity from individual sensory neurons [16, 17, 
23, 27–30]. These acquisition settings, coupled with our 
analysis pipeline (see the “Methods” section), allowed 
tracking and measuring activity of all chemosensory neu-
rons from both the right and left lateral sides (22 in total), 
excluding only AFDL/R which were often below detec-
tion levels (Fig. 1A, B).

The populations of responding neurons per each stimu-
lus were generally in line with previous reports (Fig. 1C). 
For example, the AWC-type neurons responded to the 
removal of most stimuli in an OFF-step response man-
ner [31]. Similarly, ASH, known as polymodal aversive 
neurons [32], responded upon encountering noxious 
stimuli, such as the hyperosmotic solution of 1  M glyc-
erol, and SDS. The ASEL and ASER neurons responded 
to the addition and removal of NaCl, respectively [18]. 
Consistent with previous reports [15, 16], we observed 
a functional hierarchy in the chemosensory network. 
This hierarchy is reflected in that some neurons are gen-
eral responders (AWC, AWB), responding to most or all 
of the tested stimuli, whereas other neurons are more 
selective to particular stimuli (e.g., ASG, AWA). All of 
the examined neuron classes responded to at least one 
of the tested conditions. Together, these findings indicate 
that individual neurons in this transgenic reporter strain 
are functionally intact and that our automated analysis 
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system reliably segments and identifies individual target 
neurons to extract accurate dynamic responses to various 
stimuli (Fig. 1C).

Lateral symmetric neurons generally show highly 
correlated activity
Apart from the ASE [18] and the AWC [33] neurons, 
it is generally assumed that the left and right bilater-
ally symmetric sensory neurons exhibit similar neural 
responses [16, 15]. We therefore utilized our ability to 
simultaneously measure functional responses from both 

lateral organs and analyzed the correlation between 
them. For this, we performed a pairwise correlation 
analysis between all the responding neurons across all six 
conditions.

Indeed, the lateral right- and left-symmetric neurons 
showed highly correlated activity dynamics across all 
conditions (Fig.  2A), and these correlations tended to 
increase with the response amplitude (Fig.  2B, C). The 
only exceptions to this were the AWC neurons, which 
responded asymmetrically in some conditions, and the 
ASER/L neurons that showed negative or no correlation 

Fig. 1 Functional dynamics of the C. elegans chemosensory system in response to a variety of chemical stimuli. A A confocal image of the right 
side of the amphid organ. Imaging was done using the strain azrIs280 [osm-6::GCaMP3, osm-6::mCherry-NLS] [29, 30]. Red, nuclear mCherry; 
green, cytoplasmic GCaMP. Neuron identification relies on known anatomical position. B Visualization of the amphid nuclei segmented from A. 
Fluorescence intensity was measured from the segmented spheres. Right side, purple; left side, blue. C Mean neural dynamics of individual 
neurons following stimulus presentation and removal. White dashed lines indicate ON/OFF steps. Note that the ASK, ASH, and ADL neurons 
respond to blue light, hence the activity at the start of the imaging period. Conditions tested: control (n = 7); DA, diacetyl  10−4(n = 23); IAA, isoamyl 
alcohol  10−4 (n = 18); NaCl, sodium chloride 50 mM (n = 26); glycerol 1 M (n = 7); Quinine 5 mM (n = 11); SDS 0.1% (n = 12). A fluorescent red dye 
(500 nM rhodamine) was added to the stimuli to verify accurate stimulus switch. The control condition consisted of switching between buffer 
and buffer + dye. Responses observed in the control condition served as the baseline responses for neurons that may have responded to the dye 
only. The AWC pair is sorted by activation strength in each worm and is marked AWC s (strong) and AWC.w (weak)
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at all (Fig.  2). The correlation matrices also show that 
neuron types cluster in a stimulus-specific manner, as 
clustering varied across the different conditions (Fig. 2A). 
For example, in response to IAA, the activities of the 
AWA, AWB, and ASER neurons are correlated with each 
other and negatively correlated with the activity of the 
AWC neurons. However, in response to glycerol, activ-
ity of AWB and AWC is highly correlated and negatively 
correlated with the activity of ASER. These results indi-
cate a unique correlation pattern for each condition, pro-
viding a “finger-print” of the neuronal representation of 
a given stimulus. Due to the symmetry in responses, all 
neuron pairs, aside from AWC and ASE, were grouped 
for subsequent analyses.

Neural dynamics varies in a stimulus‑dependent manner
The strong correlation between the two lateral amphid 
neurons effectively reduces the number of “coding units” 
in the system by roughly a half. We therefore asked 
whether, in addition to the ensemble of responding neu-
rons, stimulus identity could be further signaled by the 
activation dynamics of specific neurons.

Upon exposure to (or removal of ) a stimulus, respond-
ing neurons typically show a sharp calcium increase 
that slowly, over several seconds, decays to baseline lev-
els (Fig. 3, blue). But how stereotypic are these response 
dynamics? For example, do individual neurons show 
stereotypic responses regardless of the specific stimu-
lus? Do certain stimuli elicit the same response dynam-
ics in different neurons? To address these questions, 
we performed a PC analysis on the response traces 
of all responding neurons across all of the conditions 
(Fig.  3). The first two principal components combined 
explain ~ 80% of the variance, and appear to reflect the 
absolute activity levels before and after presentation of 
the stimulus (Additional file  1: Fig. S1A-B). However, 
clustering by the PCs 3–4 (accounting for ~ 10% of the 
variance) provides a clear separation into three clusters, 
based on the shape of the response dynamics (Additional 
file 1: Fig. S2A-B). Most responses (~ 75%) form a single 
cluster representing the stereotypical response dynam-
ics of a sharp rise in Calcium levels to a narrow peak 
followed by an exponential-like decrease until resuming 

baseline levels (Fig. 3, blue). This cluster includes each of 
the responding neurons in at least one condition, both 
ON and OFF step responses, and all tested stimuli.

Two additional clusters represent variable response 
dynamics, including sustained elevated activity (AWC 
in IAA/DA OFF step. Figure  3, red), and inhibitory 
responses with decreased calcium levels with (or with-
out) an initial peak (ASH in Gly OFF step and AWC in 
IAA ON step, respectively, Fig.  3, green). These vari-
able responses were observed primarily in three neuron 
classes (AWC, ASH and ASI), suggesting that some neu-
rons possess a larger repertoire of response dynamics 
than others, possibly providing more nuance in signaling 
stimulus identity.

Thus, while chemosensory neurons typically respond 
with very stereotypic activation dynamics, under some 
conditions, the same neurons exhibit vastly different 
dynamics. Such alternative responses suggest that sen-
sory neurons may convey different messages depending 
on the specific stimulus, effectively increasing the infor-
mation capacity of the sensory layer.

Inter‑neuronal communication shapes the sensory 
response
Sensory responding neurons can be classified as either 
primary responders, neurons that sense the stimulus 
directly and independently (e.g., via a dedicated recep-
tor), or secondary responders, neurons that receive sig-
nificant input from the network that elicits or shapes 
their response [34, 35]. Importantly, the same neuron 
can be primary, secondary, or non-responding depending 
on the stimulus, its concentration, and background con-
ditions. The recruitment of secondary responders may 
be facilitated by synaptic neurotransmitters, extra-syn-
aptically via secreted neuromodulators/neuropeptides, 
or through electrical gap junctions. The chemosensory 
neurons receive all these input types both laterally from 
sensory-layer neurons and from other neurons, most of 
which are interneurons [12–14, 36].

As internal communication may influence the response 
dynamics of individual neurons, we set out to discern 
the degree to which this inter-neuronal signaling shapes 
such sensory responses. For this, we measured response 

Fig. 2 Activity of the right and left laterally symmetric neurons is highly correlated. Pairwise time-series correlation matrices of the amphid 
neurons response dynamics. Correlations were first calculated across all neurons of each worm and then averaged over all worms in a condition. 
Each matrix was sorted using agglomerative hierarchical clustering. Pairs of right and left symmetric neurons are indicated by connecting lines. A 
Histograms of the correlations of responding left–right neuron pairs. Only pairs with a mean response amplitude above 0.1 were used. B Scatter 
plots of the mean pair response amplitude vs the pair’s correlation. The ASE and some of the AWC neurons show neutral or negative correlations. 
C Clustered activity across all conditions reveals the overall lateral functional symmetry. Neuron pairs are sorted by the mean correlation over all 
conditions. Only the ASER/L pair does not show correlated activity across all conditions

(See figure on next page.)
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Fig. 2 (See legend on previous page.)



Page 6 of 16Bokman et al. BMC Biology          (2024) 22:173 

dynamics in unc-13 and unc-31 mutant strains that are 
defective in neurotransmitter (synaptic) and neuropep-
tide (extrasynaptic) release, respectively (Fig.  4A and 
Additional file 1: Fig. S3).

Comparing neural responses in these mutant strains 
to responses in WT animals reveals extensive inter-neu-
ronal communication (Fig.  4A). Over 40% of the neural 
responses showed altered activity in at least one of the 
mutants where they were either completely abolished or 
significantly diminished (marked in asterisks in Fig. 4A). 
For example, the AWA and AWB neurons responded to 
IAA presentation in WT worms (pink asterisk) but failed 
to respond in the unc-13 mutants (black asterisks), sug-
gesting that these neurons are secondary responders to 
IAA and that they are recruited to respond via neuro-
transmitter signaling. Examples of the mean traces and 
response magnitudes of the various neurons across the 
different conditions and strains are provided in Addi-
tional file 1: Fig S4.

Subtler changes were observed in other neurons whose 
responses were merely modulated rather than completely 
abolished (Additional file  1: Fig. S5). Examples include 
the shift in activity of the ASJ neurons to the ON/OFF 

step (Additional file  1: Fig. S5A-D) and changes in the 
maintenance of activity throughout the step in AWC and 
ASH (Additional file 1: Fig. S5E-H). Moreover, modulated 
activity of some neurons (e.g., ASJ) is stimulus specific 
and also depends on neuropeptide signaling (Additional 
file  1: Fig. S5A-D). Dependence of neural activity on 
internal network signaling and on the specific stimulus 
may further increase the coding capacity of the sensory 
layer neurons.

Overall, out of the subset of responding neurons in 
each condition, only a few (typically 2–4) were unaffected 
by inter-neuronal communication and can therefore 
be classified as primary sensory neurons (Fig.  4B). The 
secondary responders, forming the rest of the encoding 
ensemble, are recruited by the primary responders via 
inter-neuronal signaling, presumably to form the unique 
nuanced response of the specific stimulus.

Stimulus identity can be predicted by network activity
If stimulus identity were only signaled by primary 
responders, the sensory system could face a combinato-
rial problem in that the variety of distinct environmen-
tal stimuli far outnumber the possible combinations of 

Fig. 3 Activity dynamics varies in a stimulus-dependent manner. PC analysis of neuronal response dynamics. The PCA was performed on individual 
neuron traces, and each point is the average trace of a single neuron across all worms in a condition projected onto the PC space. K-means 
clustering revealed the dynamics differences in PCs three and four. K = 3 was chosen based on silhouette scores (Additional file 1: Fig. S2A). The 
blue cluster represents stereotypical dynamics and includes examples from all neuron classes. The red and green clusters show non-stereotypical 
dynamics and consist mostly of the ASH, ASI, and AWC neurons in response to specific stimuli. Notably, these three neurons are also represented 
in the stereotypical-dynamics blue cluster. Inset traces show representative examples of response dynamics for each cluster. Each trace 
is normalized to its maximal level
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primary responders. To estimate how well population 
coding discriminates between the various stimuli, we 
trained a random forest classifier on the peak activities of 
the 13 chemosensory neurons (9 left–right pairs and the 
individual AWC and ASE neurons) in response to stimu-
lus presentation and removal, for a total of 26 parameters 
per observation. The classifier perfectly predicted the 
identity of the stimulus presented to WT worms, and this 
prediction accuracy decreased the more neurons were 

removed from the training set (Fig.  5A and Additional 
file  1: Fig. S6). This suggests that when considering the 
entire ensemble of chemosensory neurons, it is very easy 
to discriminate between the different stimuli.

Next, we analyzed the relative contribution of indi-
vidual neurons to coding each of the stimuli by train-
ing the classifier on the ON and OFF responses of a 
single neuron. While the classification accuracy using 
individual neurons was generally low, neurons varied 

Fig. 4 The C. elegans chemosensory system relies on extensive inter-neuronal communication. A Changes in neuronal activities in response 
to ON and OFF steps of the different stimuli. The neural activities are based on the first 7 s after each step. The respective control response of each 
neuron was subtracted from the stimulus response (see the “Methods” section). Pink asterisks denote significant WT responses (p < 0.05), and black 
asterisks denote significant differences between the WT and the mutants (p < 0.05). Both sides of each neuron class were pooled, aside from the 
AWC and the ASE neurons. p-values were obtained using one or two-tailed t-tests corrected for multiple comparisons using FDR. B Schematic 
representation of primary (red) and secondary (green) responding neurons for each of the tested stimuli as determined by the dependence 
of the response on synaptic transmission. The ASJ neuron type, whose response was merely modulated (Additional file 1: Fig. S5), is denoted in cyan
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in the degree and type of classification they allowed for 
(Fig. 5B and Additional file 1: Fig. S7). For example, activ-
ity of the olfactory AWA neurons is sufficient to differ-
entiate between the volatile IAA and DA and the other 
stimuli; however, as evidenced by the frequent mutual 
misidentification of the two, it is insufficient to distin-
guish between the two volatiles. Similarly, using the ASH 
neurons only, the classifier divided the stimuli into three 
distinct groups (IAA and DA, Gly and SDS, and NaCl 

and Quin) but had difficulties differentiating between 
the stimuli within each group. These results indicate that 
individual neurons contribute in varying degrees to the 
signaling of certain stimuli but, when combined, provide 
sufficient information to accurately identify all of the 
stimuli in our sample.

We next asked whether the internal communication 
(neurotransmission, neuropeptide release) in the network 
is crucial for stimulus identification. For this, we used the 

Fig. 5 Neuronal activity predicts stimulus identity. Confusion matrices of a random forest classifier (100 trees and a depth of 4) trained on response 
dynamics of WT animals. The classifier was applied to test predictions on WT (A, B), unc-13 (C, D), and unc-31 (E, F) neuron activities. A, C, E 
Training data contained the responses of the entire network. B, D, F Training data contained single neuron responses to both ON and OFF steps 
of the stimuli. G, H Confusion matrices for classifying by valence (G) and volatility (H). Numbers next to each row show the stimulus-specific 
F-scores. The performance scale bar is the same for all panels
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classifier trained on neuronal activity recorded from WT 
worms to predict stimuli based on the neuronal activ-
ity of the unc-13 and unc-31 mutants. Tested on unc-31 
data, the classifier performed nearly as well as on WT 
data, suggesting that neuro-peptidergic signaling plays a 
relatively minor role in stimulus identification (Fig.  5C, 
D). In contrast, the classifier poorly predicted the stimuli 
in unc-13 mutants, suggesting accurate coding is heavily 
reliant on neurotransmission (Fig. 5E, F).

Prompted by the coarse separation of the classifier 
when relying on single neurons, we asked whether cer-
tain neurons are tuned towards specific properties of the 
stimulus. We therefore divided our stimulus sample by 
volatility (IAA and DA—volatile, NaCl, Gly, Quin, and 
SDS—nonvolatile) and valence (IAA, DA, and NaCl—
attractive, Gly, Quin, and SDS—aversive) and trained 
the classifier again using the entire set of chemosensory 
neurons as well as with single neurons. The classifier 
performed well on both categories when trained on all 
chemosensory neurons (Fig.  5G, H). Individual neurons 
varied widely in their ability to classify stimuli by cat-
egory, where classification of volatility was best achieved 
using AWA, ASH, and ASE, whereas classification of 
valence was best when using the ADF, ASH, and AWB 
neurons (Additional file 1: Fig. S8-9).

Together, our results suggest that individual neurons 
can encode specific features of a stimulus and that pre-
cise stimulus identification is achieved when combining 
a small number of responding neurons. Moreover, neu-
rotransmitter, rather than neuropeptide, signaling plays 
a pivotal role in modulating neural responses to allow 
stimulus discrimination.

Temporal dynamics improves stimulus discrimination
This far, we showed that considering peak neural 
dynamics sufficed to accurately identify all stimuli in 
our data (Fig.  5A). However, this could be due to the 
diverse nature and the small sample size of the stimuli 
used herein as well as the large amount of neuronal data 
collected per trial. But could stimulus discrimination 

be improved by taking into account activity dynamics, 
in addition to peak activity?

To utilize time series in the classifier, we used 
CAnonical Time-series CHaracteristics (CATCH-22) to 
reduce the dimensionality of the response dynamics of 
each individual step response [37]. CATCH-22 is a set 
of diverse time-series analysis methods optimized for 
classification performance with minimal redundancy. 
The computed features include the mode of Z-scored 
distribution, time intervals between extreme values, 
linear and non-linear autocorrelations, and meas-
ures of periodicity. The complete list of 22 features is 
given in Lubba et  al. This reduced each step response 
trace to 22 features that describe the time series, and 
allowed us to completely separate the amplitude of the 
response from the time-dependent dynamics. We then 
performed a principal component analysis on these 
features and retrained the classifier by adding the first 
three components of each neuron (together explaining 
55% of the variance, Additional file 1: Fig. S10) as vari-
ables. Thus, each dataset consisted of a single neuron’s 
response represented by eight variables—ON and OFF 
step response magnitudes and three dynamics features 
obtained by CATCH-22 and PCA per step, for a total of 
six trace features. We next compared the performance 
(F1 score from cross-validation) of the classifiers when 
trained on the response amplitude only, on the three 
principal components of the trace dynamics only, and 
the combined amplitudes and trace dynamics for each 
individual neuron (Fig. 6A–D).

For most neurons, considering both aspects of the 
response had an additive effect, where performance 
of the classifier trained on both trace dynamics and 
amplitudes was better than each by itself (Fig.  6A). 
However, a classifier that was trained on only the 
dynamics features of either AWCW or ASI performed 
better than when trained on amplitudes alone, and 
combining traces and amplitudes of these neurons 
resulted in minimal additional improvement (Fig.  6A, 
B). In contrast, for ASJ and ADF, the amplitude 

Fig. 6 Temporal dynamics provides additional information for stimulus identification. A Global F1 scores (across all conditions) for each neuron 
when considering only the trace dynamics, the amplitudes, or both. B Scatter plot depicting the contribution of the amplitudes and the response 
dynamics to the overall performance of classification by each neuron as shown in A. Amplitudes and dynamics are expressed as a fraction 
(relative contribution) of their combined accuracy as shown in the third column of A. C Averaged F1 scores across all neurons for each condition 
when considering only the trace dynamics, the amplitudes, or both. D Scatter plot depicting the contribution of the amplitudes and the dynamics 
to the overall performance of classification of each stimulus as shown in C. Amplitudes and dynamics are expressed as a fraction (relative 
contribution) out of their combined accuracy as shown in the third column of C. E Classifier accuracy scores predicting stimulus identity based 
on dynamics, amplitudes, and both. The data used herein was obtained from [16] consisting of 11 sensory neurons across 23 different stimuli 
at  10−4,  10−5 and  10−6 concentrations. *p <  10−3 (one sided t-test, FDR corrected). F Classifier accuracy scores predicting stimulus identity based 
on dynamics, amplitudes, and both when combining all the data from Lin et al. (irrespective of the specific concentration). *p < 10.−4 (one sided 
t-test, FDR corrected)

(See figure on next page.)



Page 10 of 16Bokman et al. BMC Biology          (2024) 22:173 

Fig. 6 (See legend on previous page.)
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provided the most information, and taking trace fea-
tures into account did not improve performance 
further.

We also estimated the contribution of amplitudes 
and trace dynamics to the representation of each stim-
ulus by taking the mean F1 score of each stimulus over 
all neurons (Fig.  6C, D). For most stimuli, the effect 
of combining amplitudes and trace features was addi-
tive. Interestingly, overall performance of the classifier 
tended to be better for the aversive stimuli (Quin, SDS, 
and Gly) than for the attractive ones (IAA, DA, NaCl), 
suggesting that the sensory system is more finely tuned 
to precisely identify noxious stimuli (Fig. 6C).

These results suggest that given a sufficiently diverse 
stimulus space, the identities of the stimuli can be 
efficiently encoded using response amplitudes alone 
(Fig. 4A and Fig. 5A). However, response dynamics of 
individual neurons carry considerable additional infor-
mation that could be used to help distinguish between 
more closely related stimuli, particularly aversive ones.

To better understand the relative contribution of 
response dynamics to stimulus coding, we analyzed 
available data that measured the activity of all amphid 
neurons in response to a panel of 23 different odor-
ants, spanning six chemical classes, each in several 
concentrations [16]. We first extracted peak activities 
and repeated the analysis with our classifier.

Overall, our classifier performed similarly to the 
one described in the paper, reaching comparable pre-
diction accuracy of ~ 70% when trained on response 
amplitudes alone (Fig. 6E). Training the data using the 
dynamics yielded a lower accuracy of ~ 40% for each 
individual concentration. However, combining ampli-
tudes with response dynamics significantly improved 
the performance of the classifier (for each of the dilu-
tions), thus mirroring the single-neuron classification 
results obtained in our data (Fig. 6A–D).

We then applied the classifier to the entire dataset 
(23 odorants at three concentrations, for a total of 69 
individual stimuli). Due to the similarity of the popu-
lation coding to different concentrations of the same 
stimulus [16], it should be particularly challenging to 
tell them apart. However, even with such a large num-
ber of stimuli, the dynamics significantly added to the 
overall accuracy compared to the performance when 
considering amplitudes alone (Fig. 6F).

Taken together, these findings indicate that com-
bining response amplitudes with response dynam-
ics significantly improves stimulus identification 
by generating unique codes to each stimulus (and 
its concentration), effectively enhancing the coding 
capacity of the chemical space across a wide range of 
concentrations.

Discussion
We studied how a compact chemosensory system, con-
sisting of limited neural resources, encodes a variety of 
chemical cues. Using C. elegans as a model system, we 
found that animals use a small set of neurons to encode 
each of the stimuli, where ~ 2–4 sensory neurons are the 
primary sensors of the stimulus, and a few additional 
sensory neurons are recruited via inter-neuronal signal-
ing. Interestingly, while most neurons show a stereotypic 
response dynamics of sharp increase in calcium lev-
els followed by a slow decay, some neurons show vari-
able dynamics that depend on either stimulus identity 
or inter-neuronal communication. These fine response 
dynamics significantly improve stimulus identification, 
effectively enhancing the coding capacity of the compact 
sensory system.

To analyze a wide space of possible sensory responses, 
we employed a variety of stimuli that represent both 
olfactory and gustatory cues, some of which are attrac-
tive while others are repulsive (Fig.  1). Overall, our 
results agreed with previous works in regard to response 
profiles of the sensory system to various chemical stimuli 
[15–18, 31, 34, 35]. In addition, most symmetric neuron 
pairs showed highly correlated activity, with the only 
exceptions being the AWC and the ASE neuron pairs 
(Fig.  2). However, it is plausible that testing additional 
stimuli will reveal more neurons with differential bilateral 
functionality.

Our results recapitulate a previous report show-
ing that the neurons respond in a hierarchical manner, 
where some are broadly tuned (e.g., AWC) to respond 
to all stimuli, whereas others are more finely tuned and 
respond to specific stimuli only [15]. A similar princi-
ple was also observed when analyzing responses to a 
wide array of olfactory stimuli [16], though some of the 
broadly and narrowly tuned neurons differed between 
this and our study. This difference could be due to the 
nature of the stimuli used in each study. For example, 
the ASI neurons were broadly activated in our study 
mostly in response to gustatory stimuli. This may explain 
why this neuron was not detected as a broad responder 
when assaying responses to volatile cues [16]. Thus, the 
segregation to broadly and narrowly tuned neurons may 
heavily depend on the stimuli used. Nevertheless, in 
both studies, AWC is consistently identified as a broadly 
responding neuron.

While we find a small fraction of the chemosensory 
neurons to respond to each of the stimuli, Lin et  al. 
found that a higher fraction of the sensory neurons is 
activated when presented with volatiles only [16]. The 
lower number of responding neurons in our analy-
ses may be because we separated the responses to ON 
and OFF steps since some of the neurons are classically 
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on-step responders (e.g., AWA) while others are con-
sistently off-step responders (e.g., AWC). Furthermore, 
we considered the two bilateral AWC and ASE neurons 
as distinct entities, analysis that further contributed 
to the sparser coding conclusion. Slight differences in 
imaging protocols between studies could also result in 
different individual responses. Conditions such as feed-
ing state, light adaptation, and ambient temperature 
could all prime the sensory neurons in various ways. 
However, these differences are unlikely to cause dra-
matic changes in the fundamental principles of infor-
mation processing in the network, as evidenced by the 
replication of such principles across studies [15, 16].

Analyses of mutant strains revealed that the encod-
ing ensemble is determined by the expansion of the 
responding subset through recruitment of secondary 
responders, mainly through neurotransmission (Fig. 4, 
Fig.  5C, D). In contrast, neuropeptides play a minor 
role in the encoding process (Fig.  5E, F) and primar-
ily modulate the activity of the responding ensemble 
(Additional file 1: Fig. S5). Therefore, primary/second-
ary assignments were determined based on the influ-
ence of synaptic input on a neuron’s response. Primary 
neurons were defined as neurons that showed a sig-
nificant response to the stimulus and were not sig-
nificantly impacted in the unc-13 mutant. Secondary 
neurons were those that displayed a significant differ-
ence between the WT and mutant responses. Of note, 
these assignments were based on the step where the 
main response occurred. For example, AWA’s direct 
response to DA occurs in the ON step. The change in 
activity observed in the OFF step reflects the return to 
baseline following the removal of the stimulus. There-
fore, only the ON step was used to define AWA as a pri-
mary responder to DA. While many of the effects we 
describe are robust, here, too, the choice of the precise 
protocols and statistical analyses, as well as background 
conditions and experimental variability, might affect 
the assignments of primary/secondary roles to specific 
neurons.

An additional intern-neural signaling route involves 
electrical gap junctions. For example, ASH responses 
are regulated non-cell-autonomously by gap junctions 
[38]. C. elegans contains 25 genes coding for innexins 
[39–41], the invertebrate analogs of the vertebrate con-
nexins that make up electrical gap junctions. This sub-
stantially complicates analysis of their involvement in 
recruitment of secondary responders. Nevertheless, 
if gap junctions also play a role in activating secondary 
neural responders, then the actual number of primary 
neurons might be lower than the 2–4 neurons based on 
our findings (Fig. 4B). This possibility further lowers the 
already limited coding capacity of the sensory system and 

underscores the importance of inter-neural communica-
tion to fine tune response dynamics that improve stimu-
lus identification.

The sparse representation in the chemosensory sys-
tem presents a combinatorial problem for the animal, 
where potentially thousands of different chemical cues 
are encoded by a small subset of the sensory neurons. 
This problem is exacerbated by the further division of 
responding neurons into primary (directly sensing) and 
secondary (network recruited) neurons, as revealed by 
the inter-neuronal signaling mutants. This observation 
bears some resemblance to the “primacy coding” model 
proposed for mammalian olfactory systems, whereby the 
identity of a stimulus is encoded by a small set of early-
responding glomeruli in a concentration-independent 
manner [4, 5]. According to this model, coarse stimulus 
identification occurs first, with fine-tuning of odor iden-
tity and concentration being mediated by higher-latency 
glomeruli. While the relatively slow calcium dynam-
ics does not allow us to resolve response latency, it is an 
intriguing possibility that a similar “primacy code” occurs 
in C. elegans, with the broad categorization of the stimu-
lus being determined by primary responding neurons, 
followed by secondary-responder mediated fine-tuning.

Furthermore, our analyses showed that the relative 
contribution of the response dynamics to stimulus iden-
tification differs between neurons (Fig. 6). It is appealing 
to consider this feature as another variation of a “primacy 
code,” where the initial response amplitude provides the 
coarse stimulus identification, and the longer-scale tem-
poral dynamics of the same neuron assists the secondary 
responders in its fine-tuning. Indeed, one of the three 
“slow” and response-rich neurons (Fig. 3), ASI, performed 
the worst of all responding neurons (excluding ASK and 
ADL, Fig.  6), for encoding stimuli based on response 
amplitude, but was markedly better based on dynamics. 
The two other neurons with variable responses, ASH and 
AWC, generally display fast initial responses, rendering 
the dynamics less informative. Notably, these temporal 
features may be particularly important in C. elegans as 
they can propagate from the sensory neurons across the 
network to direct matching behavioral outputs [24, 42].

Activity of secondary responding sensory neurons 
relies on lateral signaling within the sensory layer or 
through feedback from downstream interneurons. The 
importance of such signaling was demonstrated, for 
example, in the improvement of the signal-to-noise 
ratio to support a more robust chemotaxis [22, 31]. 
Recruitment of unique subsets of secondary neurons 
could also increase coding capacity, potentially allevi-
ating the combinatorial limitations of a small sensory 
system and the limited number of primary responding 
neurons. For example, if two different stimuli activate 
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the same primary responding neurons, the secondary 
recruited neurons may differ. This could be due to the 
fact that each sensory neuron expresses several chemi-
cal receptors [20, 21]. Thus, even if two different stimuli 
elicit a response in the same sensory neurons, distinct 
intracellular signaling paths may lead to two different 
synaptic outputs that will eventually recruit different 
secondary responders. This in turn generates stimulus-
specific codes that allow the animal to discriminate 
between the two stimuli, despite the fact that they are 
sensed by the same sensory neurons.

We propose an additional strategy by which the cod-
ing capacity could be increased. Our results show that 
the sensory neurons exhibit a variety of possible calcium 
dynamics determined by both extrinsic (stimulus) and 
intrinsic (inter-neuronal signaling) factors. Attempt-
ing to predict stimulus identity based on single-neuron 
responses revealed that these dynamics carry additional 
information that may help differentiate between stimuli. 
This may be particularly useful when confronted with a 
large stimulus space composed of many closely related 
compounds or different concentrations of the same stim-
ulus. Indeed, it is possible that neurons employ faster, 
more intricate dynamics than are observable with a rela-
tively slow calcium indicator. C. elegans neurons have 
long been thought to only employ graded potentials. 
However, calcium-mediated action potentials have been 
described in several neurons, including the AWA sensory 
neurons [43]. In AWA, calcium transients correlate with 
spike trains suggesting that different activation frequen-
cies may code for different stimuli, thus possibly further 
increasing the coding capacity.

The encoding ensembles raise several behavioral pre-
dictions that would be interesting to test. For example, 
stimuli with highly similar responding ensembles should 
be harder to distinguish for WT animals. However, the 
more differences in the neurons’ roles (i.e., primary 
responders of one stimulus are secondary responders of 
the other), the easier the stimuli should be to separate 
in the absence of network recruitment. For instance, 
IAA and DA share many of the responding neurons and, 
depending on concentrations, are similarly attractive to 
the worms [29, 44]. Based on our results, as the AWA 
neurons are primary responders for DA, but secondary 
for IAA, we would expect a reduction of network signal-
ing to AWA to shift the preference towards DA. Similarly, 
predictions can be made for neurons with known behav-
ioral roles. For example, ASH is the main nociceptive 
neuron, and its activation causes immediate backward 
movement [45]. We can therefore expect disruptions in 
network signaling to ASH to affect aversion behaviors. 
Our results suggest that the elimination of network input 

to ASH would alter the behavioral response to Gly, but 
not to SDS.

Conclusions
Together, this study reveals the principles by which 
a chemosensory system that is limited in its sensory 
resources may uniquely encode a large repertoire of 
chemical stimuli. Similar strategies may have evolved 
in higher brain systems where a more elaborate sensory 
system is required to uniquely code and discriminate 
between a greater space of different stimuli.

Methods
Strains
ZAS280 In[osm-6::GCaMP3, osm-6::ceNLS-mCherry-
2xSV40NLS] [29].

ZAS325 is a cross between ZAS280 and unc-31(e928) 
[30].

ZAS371 is a cross between ZAS280 and unc-13(s69).

Worm cultivation
All worms were grown on NGM plates seeded with 
OP 50 and kept at 20 °C. Age synchronization was per-
formed by bleaching. All experiments were done 3 days 
post the bleach, using young adult worms.

Imaging the chemosensory system
Worms were starved for 20  min on un-seeded NGM 
plates and then inserted into a microfluidic chip [26] 
where they were partially anesthetized with 10-mM 
levamisole and left to habituate for 10 more min-
utes. Recordings lasted for 2.5  min starting with 30  s 
of light habituation. ON/OFF steps lasted for 1  min 
each, with stimulus presentations occurring at 30 and 
stimulus removal at 90  s. Since ASH, ADL, and ASK 
showed strong responses to light itself, for the ON step 
responses of these neurons, we used recordings col-
lected from a second round of ON steps at 150 s from 
the start of imaging.

Stimuli used were diacetyl  10−4 (DA), isoamyl alcohol 
 10−4 (IAA), NaCl 50  mM (NaCl), glycerol 1  M (Gly), 
SDS 0.1% (SDS), and quinine 5 mM (Quin).

Imaging was performed on a Nikon A1R + confocal 
laser scanning microscope with a water immersion × 40 
(1.15NA) objective at ~ 1.5 volumes/second and with 
Z-axis intervals of 0.5–0.8  μm. To account for slightly 
varying acquisition rates, all traces were interpolated 
to 2 Hz. The system was controlled by the Nikon NIS-
elements software.

Neuron identification and signal extraction
Neurons were detected and tracked based on the 
nuclear mCherry signal using an algorithm developed 
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by [46]. Neuronal identities were determined visu-
ally based on their anatomical positions. Neurons that 
could not be unambiguously identified were removed 
from analysis. The left–right assignment of the AWC 
ON/AWC OFF neurons is random in each worm [47], 
and our reporter strain does not allow to differentiate 
between them. To maintain the functional distinction, 
the AWC pair in each worm was sorted by activation 
strength. Where relevant, the neurons are marked 
AWC s (strong) and AWC w (weak).

Calcium traces were extracted from within 0.9 of the 
radius of the originally segmented neural sphere, in an 
effort to reduce cross-reads from nearby neurons. In 
cases where cross-reads persisted, the signal was read 
from the half of the sphere facing away from the signal 
donor. Signal intensity was normalized by baseline activ-
ity which was defined as the lowest value of a 10-frame 
running average. All data analyses were performed using 
in-house MATLAB, Python, and R scripts.

Time‑trace correlations
To calculate the correlations in neuron dynamics, pair-
wise correlations were calculated for all neurons in each 
worm and then averaged across all worms in a given con-
dition. Overall correlations were determined by averag-
ing all of the worms in all conditions. Each matrix was 
then sorted using agglomerative hierarchical clustering 
with Euclidean distance as the distance metric. Due to 
the strong correlations between bi-laterally symmetrical 
neurons, in the statistical analysis of all neurons (exclud-
ing the AWC and ASE pairs), the left and right sides were 
pooled together, unless specified otherwise. The ASJ neu-
rons were pooled despite displaying relatively low bilat-
eral correlations because their asymmetry stems from a 
tendency to respond with stochastic pulses (Supplemen-
tary Fig. 5), rather than a bilateral distinction. The AWC 
neurons within each worm were sorted by overall activity 
levels and designated AWC s (strong) and AWC w (weak).

Calculating response magnitudes
To determine response magnitudes, average baseline 
activity of 10  s prior to the step was subtracted from 
the maximum activity in the 7  s following the step. To 
account for activity caused by changes in the flow direc-
tion and the fluorescent dye, the respective control 
response was subtracted from the stimulus response. 
Significance of changes in WT amplitudes were tested 
against zero using one-sample t-test, and mutants were 
tested against the WT using two-sample t-test. All p-val-
ues were adjusted for multiple comparisons using FDR.

For classification, missing data was imputed as 
described in [16], using a matrix completion algorithm 
based on minimization of the nuclear norm provided by 

[48]. (https:// github. com/ udell group/ Codes- of- FGSR- 
for- effec ient- low- rank- matrix- recov ery).

Neuron activity dynamics
For trace dynamics analysis, only the neurons that were 
determined to respond (and therefore displayed response 
dynamics to analyze) were used. The response traces of 
each step were aligned to the maximum first derivative 
value around the stimulus presentation and z-normal-
ized. Each trace lasted from 20  s before the stimulus 
presentation to 50  s after. PCA was performed on the 
individual traces, and the mean trace was calculated per 
neuron, per stimulus and projected onto the PC space. 
Clustering was performed using K-means, with the num-
ber of clusters chosen using silhouette scores.

Stimulus identity classification
A random forest classifier (with 100 trees and a depth 
of 4) was used to predict the identity of a stimulus from 
neuronal responses. ON and OFF step responses of 
all neurons from each worm were concatenated into 
26-dimensional vectors, which were then randomly 
divided into training (80%) and test (20%) sets. For sin-
gle-neuron classification, each point consisted of the ON 
and OFF step responses of one neuron. For cross-valida-
tion, the model was trained 10 times on different train-
test sets, and the average F-score across all 10 trials was 
calculated.

The contribution of response amplitudes and trace fea-
tures to classification by neuron or stimulus was calcu-
lated by taking the mean F-score across stimuli/neurons 
respectively. For example, the success of the classification 
of diacetyl was calculated as the mean F-score of diacetyl 
across all individual neurons. Similarly, success of classi-
fication by AWA was calculated as the mean F-score of 
AWA across all stimuli. F-scores were used to evaluate 
the performance of the classifier because of the imbal-
anced sample sizes in the data.

Classification by dynamics
For the purpose of classification, the dimensionality of 
individual step responses was reduced to 22 trace fea-
tures using the Catch22 algorithm [37]. These features 
were then z-normalized and PCA was performed. The 
first 3 principal components were used as additional fea-
tures for the random forest classifier (https:// github. com/ 
Dynam icsAn dNeur alSys tems/ catch 22).

Resampling data
The data provided in [16] contain neuron activity traces 
grouped by the stimulus presented. Our classifier, how-
ever, requires the data to be arranged as “complete” 
worms, where each observation (worm) consists of the 

https://github.com/udellgroup/Codes-of-FGSR-for-effecient-low-rank-matrix-recovery
https://github.com/udellgroup/Codes-of-FGSR-for-effecient-low-rank-matrix-recovery
https://github.com/DynamicsAndNeuralSystems/catch22
https://github.com/DynamicsAndNeuralSystems/catch22


Page 15 of 16Bokman et al. BMC Biology          (2024) 22:173  

activity features of all of the amphid neurons. These “syn-
thetic” worms were constructed by independently and 
randomly sampling each neuron from all of the responses 
of that specific neuron to a specific stimulus, e.g., a syn-
thetic diacetyl-sensing worm was composed of a random 
AWA response to diacetyl, an independently randomly 
chosen AWB response to diacetyl, etc. Where trace fea-
tures were also used, all features of a neuron were sam-
pled from the same response trace (i.e., the amplitude and 
trace feature PCs were taken together, rather than each 
being independently sampled). The model was cross-val-
idated 10 times with different train-test (80%/20%) splits. 
Because the resampling of the data equalized the sample 
sizes between conditions, accuracy was used as the eval-
uation metric.
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