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Abstract 

Background  Mutations occurring in nucleic acids or proteins may affect the binding affinities of protein-nucleic acid 
interactions. Although many efforts have been devoted to the impact of protein mutations, few computational stud-
ies have addressed the effect of nucleic acid mutations and explored whether the identical methodology could be 
applied to the prediction of binding affinity changes caused by these two mutation types.

Results  Here, we developed a generalized algorithm named PNBACE for both DNA and protein mutations. We 
first demonstrated that DNA mutations could induce varying degrees of changes in binding affinity from multiple 
perspectives. We then designed a group of energy-based topological features based on different energy networks, 
which were combined with our previous partition-based energy features to construct individual prediction models 
through feature selections. Furthermore, we created an ensemble model by integrating the outputs of individual 
models using a differential evolution algorithm. In addition to predicting the impact of single-point mutations, 
PNBACE could predict the influence of multiple-point mutations and identify mutations significantly reducing 
binding affinities. Extensive comparisons indicated that PNBACE largely performed better than existing methods 
on both regression and classification tasks.

Conclusions  PNBACE is an effective method for estimating the binding affinity changes of protein-nucleic acid 
complexes induced by DNA or protein mutations, therefore improving our understanding of the interactions 
between proteins and DNA/RNA.
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Background
Protein-nucleic acid interactions (PNIs) play fundamen-
tal roles in transcription and translation processes [1]. 
Interactions between proteins and DNA/RNA molecules 
(PDIs and PRIs, respectively) are mediated and affected 
by various intermolecular forces, including hydrogen 

bonding, van der Waals attractions, and electrostatic 
interactions. Mutations appearing in nucleic acids or 
proteins could alter these factors, therefore leading to 
changes in their binding affinities. Investigating and 
quantifying the effects of residue and base mutations is 
beneficial to our understanding of the underlying mecha-
nisms of PNIs. Although experimental techniques, such 
as surface plasmon resonance [2], isothermal titration 
calorimetry [3], and fluorescence resonance energy trans-
fer [4], have been used to study the effects of mutations 
on PNIs, the process is laborious and time-consuming. 
With the exponential increase in genomic data, these 
traditional experimental methods may be unsuitable for 
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high-throughput studies. Thus, there is a pressing need 
to develop computational tools for predicting protein-
nucleic acid binding affinity changes.

Over the past decade, machine learning techniques 
and free energy calculations have been jointly or indi-
vidually adopted to study the effects induced by dif-
ferent types of mutations in biomacromolecules [5, 6]. 
Especially, a series of algorithms have been developed to 
predict the impact of mutations on PNIs using energy- 
and/or knowledge-based features. Peng et al. established 
SAMPDI, which integrated an enhanced MM/PBSA 
approach with knowledge-based descriptors to esti-
mate the binding affinity change of PDIs in response to 
protein mutations [7]. Developers of PremPDI utilized 
molecular force fields and fast side-chain optimization 
algorithms to assess the effect of protein mutations on 
PDIs and then created a tool called PremPRI that was an 
extension of PremPDI for PRIs [8, 9]. Our group invented 
PEMPNI, which employed an ensemble strategy incor-
porating novel energy- and nonenergy-based character-
istics to estimate the binding affinity changes of PDIs and 
PRIs [10]. Generally, algorithms involving energy calcu-
lations possess higher computational costs than purely 
knowledge-based methods. Regarding the latter, Pires 
et  al. developed mCSM-NA, which predicted the effect 
of protein mutations on PNIs using graph-based signa-
tures in conjunction with pharmacophore modeling [11]. 
Moreover, they proposed an updated method (mmCSM-
NA) capable of predicting the impact of multiple-point 
protein mutations [12]. PrabHot and PrPDH combined 
machine learning methods with structural and sequence 
properties to identify hotspot residues in PNIs [13, 14]. 
Recently, Li et  al. proposed the SAMPDI-3D method, 
an improved version of SAMPDI, which uses gradient-
boosted decision trees and a series of knowledge-based 
terms to assess the energy changes of PDIs caused by 
either DNA or protein mutations [15]. Altogether, the 
aforementioned works significantly advanced the devel-
opment of protein-nucleic acid binding affinity change 
prediction.

Despite remarkable progress gained by the existing 
studies, several problems could be worthy of further 
exploration. First, previous computational studies mainly 
focused on the impact of residue mutations, but less 
attention was given to the effect of base mutations, prob-
ably due to the scarcity of relevant experimental data. 
SAMPDI-3D is the only method that can predict the 
effect of single-point DNA mutations. Second, despite 
the pioneering contribution of SAMPDI-3D, this method 
used physiochemical and structural descriptors to build 
models for DNA mutations and neglected the energy fea-
tures that had been applied to protein mutations. In par-
ticular, the energy network of residues and bases for PNIs 

remains to be fully explored. Third, the developers of 
SAMPDI-3D started with different (specific) features for 
predicting the effects of DNA versus protein mutations. 
It would be interesting to investigate whether the same 
features and even the same computational framework 
could be used for these two types of mutations. Finally, 
our previous study’s results implied that the predic-
tion results could be enhanced by the ensemble strategy, 
but only two component models were used in PEMPNI 
through a weighted combination. If a greater number 
of multifaceted component models are integrated using 
advanced optimization techniques, their interplay would 
be beneficial for improving prediction accuracy.

Motivated by these problems, we first investigated the 
binding affinity changes caused by DNA mutations from 
different viewpoints. Then, we proposed a generalized 
algorithm called PNBACE (protein-nucleic acid bind-
ing affinity change estimator) for predicting the energy 
influence on PNIs triggered by both DNA and protein 
mutations (Fig. 1). To this end, we designed energy-based 
topological features based on different energy networks 
and combined these novel terms with our previous parti-
tion-based energy features to build individual prediction 
models through feature selection. Furthermore, we cre-
ated an ensemble model by integrating individual models 
using a differential evolution (DE) algorithm. In addi-
tion to predicting the impact of single-point mutations, 
PNBACE could predict the influence of multiple-point 
mutations and identify mutations significantly reducing 
binding affinities. Finally, we implemented our algorithm 
as a user-friendly webserver.

Results
Impacts of DNA mutations on PNIs from different aspects
Because the influence of residue mutations was inves-
tigated in our previous study, we mainly focused on the 
impact of base mutations on protein‒DNA complexes in 
the current study. As shown in Additional file 1: Fig. S1, 
there was no significant difference between the binding 
affinity changes induced by DNA versus protein muta-
tions. Among the 504 collected DNA mutations, 15 and 
489 corresponded to single bases and base pairs, respec-
tively. Figure  2A shows that substitutions between GC 
and CG (GC/CG-std) triggered greater changes than 
those between AT and TA (AT/TA-std), probably due 
to the higher number of proton donors in GC/CG base 
pairs, which may result in more stable binding with pro-
tein receptors [16]. Meanwhile, the smaller impact of GC/
CG-ns (the original pair was GC or CG, and the mutant 
pair was any base pair other than GC and CG) compared 
to GC/CG-std may be attributed to the fact that substi-
tutions between GC and CG involve the breakage and 
generation of three hydrogen bonds, leading to a greater 



Page 3 of 15Xiao et al. BMC Biology          (2024) 22:203 	

Fig. 1  PNBACE comprising four basic steps. A Energy calculation. The binding free energy and related energy terms are generated 
and decomposed in this step. B Feature extraction. The newly defined energy-based topological features combined with our previous 
partition-based energy features are extracted in this step. C Model construction. Eighteen individual models are constructed by using XGBoost 
methods and feature selections. D Weight optimization. An ensemble model is built by merging the results of individual models with the DE 
algorithm

Fig. 2  DNA mutations leading to different degrees of protein-nucleic acid binding affinity changes. A Comparison of mutations according to base 
pair types. AT/TA-std: the substitution between AT and TA pairs, GC/CG-std: the substitution between GC and CG pairs, AT/TA-ns: the substitution 
between AT/TA (wide-type) and any pair other than AT/TA (mutant), and GC/CG-ns: the substitution between GC/CG (wide-type) and any pair other 
than GC/CG (mutant). B Comparison of mutations according to geometric locations. IB: interfacial base. C Comparison of mutations according 
to biological functions. D Comparison of mutations according to species. ****: p < 0.0001, ***: 0.0001 ≤ p < 0.001, **: 0.001 ≤ p < 0.01, *: 0.01 ≤ p < 0.05, 
and ns: p ≥ 0.05
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impact on DNA structures and related interactions than 
other substitutions. In Fig. 2B, most base pairs appeared 
at the binding interface. Moreover, mutations having two 
interfacial bases had stronger effects than those having 
only one interfacial base. This result suggests that interfa-
cial bases play a crucial role in maintaining PNIs.

According to the annotations provided by the PDB, we 
categorized the complexes into five functional groups: 
transcription, integrase, replication, hydrolase, and oth-
ers. Figure  2C shows that replication-related complexes 
experienced the greatest changes in binding affinity 
in response to mutations, probably because the highly 
conserved structural basis of DNA binding for these 
complexes was changed [17]. In Fig.  2D, the mutation 
data were divided into three types based on species: 
eukaryotes, prokaryotes, and viruses. Base mutations in 
eukaryotes yielded smaller effects, possibly due to the 
sophisticated mechanisms used by eukaryotes for genetic 
information processing. These mechanisms could facili-
tate the timely repair of mutated regions, thereby reduc-
ing the impact on binding affinity [18]. Furthermore, we 
found that the differences in functional groups may be 
mainly determined by mutant pairs having two interfacial 
bases, while the differences in species may not be influ-
enced by the positional effects of mutations (Additional 
file 1: Fig. S2).

Feature correlation and performance analysis
A total of 44 feature groups were generated for each com-
bination of state and energy type. The correlation coef-
ficients of these feature groups were calculated based on 
the training sets. As displayed in Additional file 1: Fig. S3, 
higher correlations were observed among the relevant 
features, such as the degree-related features (Groups 1, 8, 
11, 18, 21, 28, 31, and 38 in Additional file 1: Table S1). 
However, lower correlations existed among the different 
categories of topological features, such as degree- and 
closeness-related groups. This suggests that the redun-
dancy and complementarity of feature groups should be 
considered when we develop prediction models.

Accordingly, we implemented the SFS for base mod-
els of each mutation type. As shown in Fig.  3A, 70, 93 
and 76 groups were reserved for the T298, MPD276, 
and MPR233 datasets, respectively. Moreover, the three 

datasets showed common and specific preferences for 
energy-based topological features. Regarding T298, 
wild-type state-based models favored degree-related 
features, whereas both the mutant and difference state-
based models preferred betweenness-related features 
(Fig.  3B). For MPD276, the closeness-, betweenness-, 
and harmonic-based groups were most frequently used 
in the wild-type, mutant, and difference states, respec-
tively (Fig.  3C), while betweenness-based features were 
most repeatedly selected across the three states of the 
MPR233 dataset (Fig.  3D). Generally, all three datasets 
commonly preferred betweenness-related attributes, 
suggesting the global importance of nodes in different 
energy networks for the binding affinity of PNIs. From 
the partition viewpoint, the ETFMN groups constituted 
the highest proportion among the reserved features for 
the three datasets, implying that the energy contribu-
tions of mutant residues or bases are good indicators of 
the changes in binding affinity. In terms of energy type, 
most features reserved for T298 and MPR233 were 
related to the electrostatic term, while those for MPD276 
were associated with the nonpolar term. This may be 
because the electrostatic interactions between the posi-
tively charged residues of proteins and the negatively 
charged phosphates of nucleic acids play critical roles 
in determining the interaction strength between pro-
tein and DNA/RNA, and the nonpolar solvation energy 
could model the hydrophobic effect and is a key factor 
driving the binding between protein and DNA [19–21]. 
Additionally, the previous partition-based energy fea-
tures accounted for a greater fraction for MPD276 than 
T298 and MPR233 (15%, 9%, and 6%, respectively). This 
was in line with our earlier work in which partition-based 
energy features were essential for MPD276.

As shown in Fig.  4 and Additional file  1: Fig. S4, the 
performances of all models on the three datasets were 
improved after performing the feature selection process. 
Particularly, the most significant improvements were 
observed for the polar term in the mutant state (polar_
mt) of T298, the electrostatic term in the difference state 
(electro_mt-wt) of MPD276, and the polar term in the 
difference state (polar_mt-wt) of MPR233. The PCCs 
were increased by 0.438, 0.261, and 0.404, respectively. 
Meanwhile, the electrostatic term in the difference state 

Fig. 3  Reserved feature groups of individual models after feature selections (each model corresponds to a combination of state and energy term). 
A Total number of selected feature groups of individual models under the same state based on training sets. B Selected feature groups of each 
model for DNA mutations. C Selected feature groups of each model for protein mutations involved in PDIs. D Selected feature groups of each 
model for protein mutations involved in PRIs. The circle denotes 44 feature groups (Additional file 1: Table S1), circle colors represent different 
categories of features, nodes represent selected features, and node colors represent different energy terms. In the circle, nodes with the same color 
are the selected features of an individual model

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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(electro_mt-wt), the merged energy term in the wild-type 
state (merged_wt), and the polar term in the wild-type 
state (polar_wt) achieved optimal performance on T298, 
MPD276, and MPR233, respectively, with PCCs of 0.544, 
0.663, and 0.611.

Furthermore, we adopted an integrative strategy to 
improve the performance using the interplay among the 
18 models. Initially, we assigned the same weight to each 
model, and the ensemble model yielded higher PCCs of 
0.655, 0.751, and 0.673. However, it should be noted that 
this approach did not fully consider the distinct contribu-
tions of the energy terms. We thus employed the DE algo-
rithm to identify different weights for individual models 
and achieved improved PCCs of 0.704, 0.763, and 0.713. 
In addition to LOCOV, we used 80% of all complexes (or 
mutations) as the training set and the remaining 20% as 
the validation set. This procedure was performed 100 
times. These results suggest that the performance of our 
models is robust (Additional file 1: Table S2).

Performance of PNBACE on different subsets
After obtaining the best performance, we separated the 
T298 dataset into several subsets as described in the first 
section of the “Results”. As shown in Fig. 5A, the ensem-
ble algorithm yielded comparable results for different 

base pair types and geometric locations. In terms of bio-
logical functions, PNBACE obtained excellent measures 
for integrase-related complexes but poor performance 
for hydrolase-related complexes. Moreover, we observed 
better metrics on the eukaryotic subset than the prokar-
yotic subset. Based on our previous work, we divided 
MPD276 and MPR233 into multiple subgroups (Fig.  5B 
and C). Compared with PEMPNI, the current method 
showed superior performance on most subsets. Regard-
ing wild-type residues, our method was most effective 
for N in MPD276 and for E in MPR223. Considering the 
geometric locations, we obtained comparable perfor-
mance on interface cores, interface rims, and surfaces in 
MPD276 but a significant decrease in correlations for the 
interface cores in MPR233. Moreover, PNBACE yielded 
optimal PCCs for mutations involved in minor grooves 
for both datasets. Regarding the major binding modes 
(the right 11 units), PNBACE generally performed well 
on the subsets of MPD276 but obtained relatively worse 
performance on partial subsets of MPR233 (e.g., Contact-
C). These analyses revealed the levels of prediction dif-
ficulty of different subsets from the same dataset as well 
as those of corresponding subsets from different datasets. 
Subsets with high difficulty should receive more attention 
in the future.

Fig. 4  PCC values of individual models without and with feature selections on training sets
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Blind tests on nucleic acid and protein mutation data
Furthermore, we evaluated the performance of indi-
vidual and ensemble models using test sets. Specifically, 
the DNA mutation datasets included T206 and T227, 
and the latter was constructed based on the binding 
score from the HT-SELEX experiments (Additional file 1: 
Table S3). Regarding T206, the PCC of the simple aver-
age method was slightly inferior to the result of the best 
individual model, namely, the van der Waals term in the 
wild-type state (0.487 and 0.494). When using the DE-
based weights, however, the performance was obviously 
improved, with a PCC of 0.535. Regarding T227, the 
two integrative methods achieved the same PCC value 
of 0.473 and surpassed all component models. The pro-
tein mutation datasets comprised the four sets used by 
PEMPNI (MPD48, PDM, PDSI, and MPR79) and one set 
collected by SAMPDI-3D (S200). Note that if the train-
ing and test sets had overlapping complexes, the relevant 
samples were excluded from training. As presented in 
Additional file  1: Table  S4, the best individual models 
achieved PCCs of 0.528, 0.643, 0.545, 0.322, and 0.386 on 
the five test sets. Furthermore, the results were improved 
by the DE-based ensemble model, with PCCs of 0.660, 
0.711, 0.611, 0.395, and 0.417, respectively. Compared 
with the simple average method, the DE approach 
achieved a clearly better performance on mutations 
involved in PRIs and comparable results on mutations 
involved in PDIs. Based on the newly collected MPD248 
and MPR134 datasets, our ensemble model yielded PCCs 

of 0.452 and 0.351, respectively (Additional file 1: Fig. S5). 
Overall, the proposed framework could enhance the pre-
diction of binding free energy changes induced by both 
DNA and protein mutations.

In addition, multiple-point mutation datasets, namely, 
MD37 and MP125, were used to assess our method 
(Fig.  6 and Additional file  1: Table  S5). Despite being 
trained on single-point data, most individual models 
effectively predicted the energy changes in response to 
multiple-point mutations. Meanwhile, the effect of DE-
based optimization was more remarkable on DNA muta-
tions than protein mutations. The PCCs for MD37 and 
MP125 were 0.550 and 0.495, respectively. This indicated 
that PNBACE could transfer the knowledge learned from 
single-point mutation data to the prediction task for mul-
tiple-point mutations. Notably, our method generated 
a narrow prediction range, especially for MD37. This is 
because PNBACE had deficiencies in capturing extreme 
changes in binding affinity. Nevertheless, the connections 
among the experimental values of these mutations could 
be effectively predicted. Details are presented in the first 
limitation of PNBACE (the last section of results).

Comparison of PNBACE and other methods
Based on the test sets, we conducted a thorough com-
parison between PNBACE and the other state-of-the-
art algorithms (Table  1, Additional file  1: Table  S6, and 
S7). Currently, SAMPDI-3D is the only available method 
suitable for DNA mutations and it adopts traditional 

Fig. 5  PCC values of PNBACE on different mutation subsets. A Results on T298. B Results on MPD276. C Results on MPR233. IB: interfacial base, AA: 
amino acid, BB: backbone, NB: nucleobase, and SC: sidechain
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sequence and structural features as the input. We com-
pared our method with this model using T227 and T206. 
PNBACE outperformed SAMPDI-3D in terms of both 
PCC and RMSE, suggesting that energy-related features 
may play a key role in improving model performance. 
Regarding single-point protein mutations in PDIs, 
PNBACE was compared with five existing approaches, 
including mCSM-NA, SAMPDI, PremPDI, SAMPDI-3D, 
and PEMPNI. mCSM-NA employs graph-based features 
to estimate the energy change, while the other methods 
(except SAMPDI-3D) combine energy and structural 
features to predict such changes. For single-point pro-
tein mutations in PRIs, the performance of PNBACE and 
three competing methods (mCSM-NA, PremPRI, and 
PEMPNI) was evaluated based on MPR79, and Prem-
PRI was an extension of PremPDI for PRIs. As shown 
in Table  1, PNBACE surpassed the five methods on 
MPD48 and PDM (PCCs: 0.660 and 0.711) but obtained 
a relatively worse performance compared to PremPDI 
on PDSI and SAMPDI-3D on S200. Regarding MPR79, 
PNBACE performed better than both PEMPNI and 
PremPRI. Although the PCC of our method was infe-
rior to the measure of mCSM-NA, our RMSE measure 

was markedly lower (0.728 versus 2.772). Additionally, 
we submitted the MP125 dataset to the mmCSM-NA 
server, which could predict changes upon multiple-point 
mutations. mmCSM-NA yielded a lower performance 
than our method, with a PCC and RMSE of 0.477 and 
1.191, respectively. Finally, we compared PNBACE with 
the alanine scanning method, which is a purely physics-
based model [22]. The competing method achieved PCCs 
of − 0.290 and − 0.003 on MPD48 and MPR79 (44 and 79 
samples, respectively), compared to 0.662 and 0.417 for 
our method.

From the aforementioned results, we observed that our 
previous method (PEMPNI) achieved promising results 
on partial datasets, but the newly proposed PNBACE 
algorithm extended the application range and further 
boosted the prediction accuracy. The advantages of 
PNBACE over PEMPNI are summarized as follows: (1) 
In addition to the effect of protein mutations, PNBACE 
could be used to predict the impact of DNA mutations; 
(2) In addition to the partition-based energy features 
used by PEMPNI, the newly designed energy-based topo-
logical features based on different energy networks are 
used by PNBACE; and (3) In comparison to the relatively 

Fig. 6  Performance of PNBACE on multiple-point mutation datasets. A Results on MD37. B Results on MP125. The results on training sets are 
also provided and could be considered as the reference

Table 1  Comparison with other methods for regression tasks based on PCC

“–” indicates that the result is unavailable

Dataset mCSM-NA SAMPDI PremPDI PremPRI SAMPDI-3D PEMPNI PNBACE

T206 – – – –  − 0.129 0.193 0.535

T227 – – – – 0.420 0.361 0.473

MPD48  − 0.016 0.424 0.509 – 0.382 0.550 0.660

PDM 0.540 – 0.510 – 0.053 0.584 0.711

PDSI – 0.530 0.740 – 0.251 0.478 0.611

S200 0.280 0.150 0.300 – 0.430 – 0.395

MPR79 0.564 – – 0.279 – 0.407 0.417
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simple ensemble module of PEMPNI, the current ensem-
ble method is established on a greater number of com-
ponent models along with a more advanced optimization 
algorithm (DE).

Prediction of mutations significantly decreasing binding 
affinities
To evaluate the classification performance of the model, 
we defined samples with ΔΔG ≥ 1 kcal/mol as mutations 
significantly reducing binding affinities. We adopted the 
XGBoost classification method instead of the regression 
method in the computational framework. In terms of 
the integrative strategy, overall, the DE method outper-
formed the simple average method on DNA mutations, 
and the two methods obtained comparable results on 
protein mutations (Additional file  1: Table  S8). In addi-
tion, some individual models, such as the total energy 
term in the difference state of T227 and the wild-type 
state of MPR79, even achieved higher AUCs than the 
integrative models. This may be because the ensemble 
framework, together with its parameters, was directly 
transferred from the regression task and might need 
to be further optimized. Even so, PNBACE generated 
AUCs of 0.783, 0.803, and 0.694 for T298, MPD276, and 
MPR233, respectively. As shown in Additional file 1: Fig. 
S6, the subsets that were challenging for the regression 
task were also difficult for the classification task. Fur-
thermore, we compared PNBACE and previous meth-
ods on test sets. As shown in Table  2 and Additional 
file  1: Table  S7, SAMPDI-3D achieved worse results on 
both T227 and T206 than PNBACE. For protein muta-
tions, PNBACE showed advantages over other meth-
ods on PDM and obtained comparable performance to 
PEMPNI on MPD48 and PremPDI on PDSI. For MPR79, 
our algorithm surpassed mCSM-NA and PremPRI but 
yielded lower measures than PEMPNI. Based on the 
newly collected MPD248 and MPR134 datasets, our 
method yielded AUCs of 0.713 and 0.566, respectively 
(Additional file  1: Fig. S5). When applied to multiple-
point mutations, PNBACE demonstrated AUCs of 0.662 
and 0.677 for MD37 and MP125, respectively, suggesting 
a certain transferability of our classification model. Thus, 

the proposed algorithm could identify different types of 
mutations that significantly reduce the binding affinity.

Major limitations of PNBACE
Despite the progress achieved here, there are three major 
limitations of this work. First, the binding affinity change 
values predicted by our model were concentrated within 
a narrow range (e.g., 0 ~ 2 kcal/mol). To investigate this 
issue, we divided the mutations of each dataset into two 
groups based on the actual changes in binding affinity: 
0 ~ 2 kcal/mol and the remainder. The RMSE and PCC 
values of the second group were obviously higher than 
the corresponding measures of the first group (Addi-
tional file  1: Table  S9). This suggests that the predicted 
values may not be accurate enough for mutations lead-
ing to extreme changes, but the relationships of the 
experimental values for these mutations can be effec-
tively captured by our approach. Second, PNBACE could 
underestimate the experimental measures. As shown in 
Additional file 1: Table S9, the slopes of the fitting lines 
were between 0.1 and 0.4 for most datasets, implying 
that the actual energy changes were underestimated by a 
factor of 2.5 to 10. Moreover, the slopes for DNA muta-
tion datasets were generally lower than those for protein 
mutation datasets, probably because the prediction of 
effects triggered by DNA mutations was more challeng-
ing. Third, our method had relatively higher computa-
tional costs (1 ~ 20 h per complex). For each mutation 
type, we chose a group of mutations from complexes 
with different lengths and recorded the running time of 
each sample (Additional file 1: Fig. S7). The higher com-
putational cost of our algorithm was caused by pair-
wise residue energy decomposition and network feature 
extraction. Accordingly, the current model cannot be 
applied to genome-scale investigations. These limitations 
are worthy of further investigation in future work.

Discussion
Mutations occurring in either nucleic acids or proteins 
could impact the binding affinities of PNIs. Compre-
hensive studies have been devoted to understanding 
and predicting the effects induced by protein mutations. 

Table 2  Comparison with other methods for classification tasks based on AUC​

“–” indicates that the result is unavailable

Dataset mCSM-NA SAMPDI PremPDI PremPRI SAMPDI-3D PEMPNI PNBACE

T206 – – – – 0.404 0.634 0.700

T227 – – – – 0.618 0.700 0.718

MPD48 0.477 0.598 0.761 – 0.484 0.841 0.834

PDM 0.690 – 0.770 – 0.531 0.785 0.797

PDSI – 0.790 0.850 – 0.681 0.778 0.849

MPR79 0.567 – – 0.528 – 0.645 0.584
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However, limited attention has been directed toward pre-
dicting the effects of nucleic acid mutations as well as 
conducting a comparison between the methodologies for 
predicting the changes caused by the two types of muta-
tions. In this work, we first showed that DNA mutations 
could cause varying degrees of binding affinity changes in 
terms of their mutation types, geometrical locations, bio-
logical functions, and species. Based on different energy 
networks of residues and bases, we developed a series of 
energy-based topological features, which were then com-
bined with our previous partition-based energy features 
to develop prediction models. Through feature selections 
on single-point mutation datasets, we demonstrated that 
the features associated with betweenness and ETFMN 
played critical roles in predicting energy changes. Moreo-
ver, we compared the results of 18 individual models and 
two integrative models and observed that the DE method 
generally outperformed the simple average method and 
the best individual models for different types of muta-
tions. Moreover, we showed that our method could not 
only estimate the energy influence induced by multiple-
point mutations but also identify mutations significantly 
decreasing binding affinities. Extensive comparisons 
revealed that PNBACE largely performed better than 
existing methods on both regression and classification 
tasks. However, the current algorithm has some limita-
tions, such as a concentrated prediction range, underes-
timating experimental values, and higher computational 
costs.

In addition to the three major limitations mentioned 
above, we could further improve our method from the 
following aspects. First, the settings of energy calcula-
tions were selected based on our experiences and may not 
be the optimal protocol. We also tried the new settings 
(i.e., ff19SB force fields, OPC water model and IGB66 
implicit solvent) in this work [23, 24]. New settings per-
formed worse than original settings for regression tasks 
but achieved better measures on partial datasets for clas-
sification tasks (Additional file  1: Table  S10). The opti-
mal protocol for MM/GBSA calculations is thus worthy 
of further exploration. Second, this method is a purely 
energy-based prediction algorithm that does not consider 
knowledge-based features. In the future, we can incor-
porate complementary structural features or models to 
improve its performance. Third, although there are many 
machine learning methods available, our individual mod-
els were solely dependent on the XGBoost method. It is 
possible to construct more effective ensemble models by 
combining the advantages of different machine learning 
algorithms. Fourth, here, we only adopted a DE algorithm 
and a simple average method to optimize the ensemble 
model. Other nature-inspired optimization algorithms 
could be used to tune the weights of individual models. 

Fifth, the datasets include limited experimental measure-
ments for both DNA and protein mutations. Advanced 
data augmentation techniques may be considered to gen-
erate synthetic data for model construction. In summary, 
PNBACE could be a useful tool for estimating the bind-
ing affinity changes induced by both DNA and protein 
mutations, thus improving our understanding of PDIs 
and PRIs.

Conclusions
Existing computational studies have paid less attention to 
the impact of nucleic acid mutations on PNIs as well as 
a possible unified framework for predicting the changes 
caused by protein mutations and nucleic acid mutations. 
Herein, we developed a generalized algorithm called 
PNBACE to address the above problem. Leveraging dif-
ferent energy networks, we designed novel energy-based 
topological features and combined them with previous 
partition-based energy features to develop component 
prediction models using feature selection techniques. 
Furthermore, we utilized the DE algorithm to optimize 
the weights of component models to achieve more accu-
rate ensemble models. PNBACE could not only predict 
the energy changes triggered by both DNA and protein 
mutations but also identify mutations significantly reduc-
ing binding affinities. Thus, this tool may be helpful in 
studying the influence of different types of mutations on 
PNIs.

Methods
Data collection
In this study, we collected experimentally measured 
binding affinity change data induced by residue and base 
mutations, both of which contained single-point and 
multiple-point entries. In total, we prepared 14 data-
sets for this work, among which six datasets were newly 
coined and the remaining datasets were derived from 
previous works. More details about the datasets are pro-
vided in Additional file 1: Text S1 and Table S11. Nota-
bly, the sequence and structural redundancy between 
the training set and the main test set was relatively low 
(Additional file 1: Text S1 and Fig. S8).

Single‑point DNA mutation data
The single-point DNA mutation data were extracted 
from the D463 dataset collected by SAMPDI-3D and the 
records in the ProNAB database together with related 
literature [25]. From D463, we eliminated the entries 
containing nonstandard atoms, entries missing the coor-
dinate information in the PDB file, and entries involving 
large proteins (over 1000 amino acids). This procedure 
resulted in 426 single-point mutations from 27 com-
plexes. From the ProNAB database, we retrieved a total 
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of 20,090 records that were filtered out using the follow-
ing criteria. We deleted the entries involved in PDIs with-
out structural information, entries with multiple-point 
mutations, RNA mutations or protein mutations, entries 
missing energy measures for wild-type or mutant sites, 
entries involving large proteins, and entries appearing for 
the above 426 mutations. We obtained 69 mutations and 
manually checked the relevant literature, which led to an 
additional 9 mutations. By combining the filtered samples 
from different resources, we obtained 37 protein‒DNA 
complexes, including 504 single-point DNA mutations. 
Subsequently, we built the training set (T298) based on 
30 (80%) complexes and the test set (T206) based on 7 
(20%) complexes. In addition, the T227 dataset prepared 
by SAMPDI-3D was also used for independent testing in 
this work.

Single‑point protein mutation data
To evaluate whether our method could be applied to the 
binding affinity changes induced by protein mutations, 
we adopted the single-point mutation datasets used 
by our previous method (PEMPNI) [10]. For the PDIs, 
MPD276 was used as the training set, while MPD48, 
PDM, and PDSI were used as the test sets. Additionally, 
the other two datasets for the PRIs, namely, MPR233 and 
MPR79, were used for training and testing, respectively. 
We also built another two test sets based on the nonre-
dundant datasets in the Nabe database [26]. By com-
paring against the training sets (MPD276/MPR233), we 
removed the complexes with sequence identities greater 
than 40% (for protein chains) and those with TM-scores 
generated by US-align [27] greater than 0.5 (for whole 
complexes). Moreover, we deleted the complexes with-
out nucleic acid chains and the entries without struc-
tural information by checking the PDB files. Finally, we 
obtained 248 mutations (MPD248) from 80 protein‒
DNA complexes and 134 mutations (MPR134) from 36 
protein‒RNA complexes.

Multiple‑point mutation data
The multiple-point DNA mutation dataset was con-
structed by manually checking entries in ProNAB. Based 
on the criteria mentioned above, 37 multiple-point muta-
tion entries (MD37) from 7 protein‒DNA complexes 
could be acquired as a test set. The multiple-point protein 
mutation data were selected from the dataset prepared by 
mmCSM-NA, which included 125 entries from 21 pro-
tein‒DNA complexes and 16 entries from 7 protein‒RNA 
complexes. Because of the very limited samples for PRIs, 
we only focused on multiple-point mutations in PDIs. 
Accordingly, 125 entries (MP125) were used as a test set 
in this work.

Overview of PNBACE
As shown in Fig.  1, the PNBACE algorithm is divided 
into four steps. First, the binding free energy and asso-
ciated energy terms of protein-nucleic acid complexes 
were calculated and decomposed into pairwise energies 
between residues/bases using the MM/GBSA approach. 
Second, networks with pairwise energies as the weight 
were built for each complex according to different energy 
terms, and a series of features indicating the energy-
based properties of different regions within the complex 
were designed based on the topological attributes of 
nodes in the energy network. Third, the extreme gradient 
boosting (XGBoost) algorithm combined with the feature 
selection procedure was used to construct specific energy 
term-based prediction models under three states (wild-
type, mutant, and differences between them). Finally, an 
ensemble model that integrated the results of the compo-
nent models was developed using a differential evolution 
algorithm.

Structure optimization and energy calculation
To generate mutant structures, we replaced the original 
residues and bases with mutant counterparts in wild-type 
structures using Modeller and 3DNA, respectively [28, 
29]. Structure optimization and energy calculation were 
conducted with the ff14SB and parmbsc1 force fields in 
Amber18 [30, 31]. Each complex was embedded into 
a TIP3P water box 10 Å from the solute using the tleap 
module. Counter ions (Na + and Cl −) were then added to 
neutralize the total charge. Following our previous work, 
a three-step energy minimization strategy was applied 
to each complex (Fig.  1A). This process involved 200 
iterations with an elastic constant of 50 kcal mol−1Å−2, 
another 200 iterations with an elastic constant of 10 kcal 
mol−1Å−2, and a final 200 iterations without any con-
straints. In each phase, there were 100 iterations of steep-
est descent minimization and 100 iterations of conjugate 
gradient minimization. Subsequently, the binding free 
energies of wild-type and mutant complexes could be cal-
culated using the MM/GBSA approach implemented in 
the MMPBSA.py program based on the minimized struc-
ture as follows [32]:

where �G denotes the total energy and includes the gas-
phase interaction energy and the desolvation energy. 
The former contains electrostatic  (�Eele)  and van der 
Waals (�Evdw) interactions, which were calculated using 
the sander program. The latter contains polar (�GGB) and 
nonpolar (�GSA) components. The GB model developed 
by Hawkins et  al. (GBHCT) was selected to estimate the 
polar part based on our previous experience [33]. The 

(1)△G ≈ △Eele +△Evdw +△GGB +△GSA
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nonpolar energy was computed using the LCPO algo-
rithm [34]. The total energy and each energy term were 
decomposed into residue/base pairwise energies by the 
MMPBSA program.

Novel features derived from energy networks
As illustrated in Fig.  1B, we built five energy networks 
for each complex based on the binding free energy and 
four energy terms. For each energy type, a complex was 
represented by a weighted network, where nodes denote 
residues and bases, and the weight of an edge denotes the 
decomposed energy value at the residue/base pair level. 
For each node, we then calculated 10 topological fea-
tures, including weighted node degree, weighted close-
ness centrality, weighted eigenvector centrality, weighted 
betweenness centrality, weighted current flow between-
ness centrality, weighted harmonic centrality, weighted 
clustering, weighted average neighbor degree, weighted  
approximate current flow betweenness centrality, and 
weighted current flow closeness centrality. The definitions 
of these attributes are given in Additional file 1:Text S2.

Based on each attribute, we designed four groups of 
novel energy descriptors to reflect the energy contribu-
tions of different partitions within each complex. First, 
we focused on the mutant nodes in the network. Regard-
ing a specific topological feature, the average and sum of 
attribute values of mutant residues/bases in the complex 
were calculated. If the mutant section included only one 
residue/base, the average was equal to the sum; otherwise 
(e.g., a base pair or multiple points), these two measures 
were different. These descriptors were termed energy-
based topological features of mutant nodes (ETFMN). 
Second, we separated each complex into two parti-
tions, namely, the interface and noninterface regions. 
A residue-nucleotide contact was generated if at least 
one pair of nonhydrogen atoms was within a distance 
of 5 Å. We computed the average and sum of the topo-
logical features of nodes in the two regions. They were 
termed energy-based topological features of the interface 
and noninterface (ETFIN). Third, nodes involved in the 
interface regions could be further classified into interfa-
cial residues and bases. Thus, the average and sum of the 
topological features were computed for both partitions. 
These descriptors were termed energy-based topological 
features of the partitioned interface (ETFPI). Fourth, we 
decomposed a complex into different regions in terms of 
the distances between the mutant nodes and other nodes, 
including 0 ~ 3 Å, 3 ~ 4 Å, 4 ~ 5 Å, 5 ~ 6 Å, and > 6 Å, and 
yielded the average and sum of topological features of  
each partition. They were termed energy-based topologi-
cal features of the partitioned complex (ETFPC). Generally, 
these feature groups can be defined as follows:

where i represents the index of a partition (PT) and j 
represents the index of a given topological feature (topo_
feature). n denotes nodes in a PT, and num(n) denotes 
the number of nodes.

Our previous study applied partition-based energy fea-
tures to predict the binding affinity changes that arise 
from protein mutations [10]. Herein, we also utilized 
these energy descriptors, including the energies between 
the target and other residues (ETOR), the energies of the 
partitioned complex (EPC), the energies of the interface 
and noninterface (EINI), and the energies of the parti-
tioned interface (EPI), to complement the new features. 
Collectively, 44 energy-based feature groups were gen-
erated for each complex in this work (Additional file  1: 
Table S1).

Feature selection and individual model construction
We not only computed the aforementioned features of 
each energy type under the wild-type and mutant states 
but also calculated the differences in the measures of the 
two states. Due to the three states and five energy types, 
we adopted the XGBoost method to build 15 regression 
models, each of which corresponds to a combination of 
states and energy types (Fig.  1C). Default parameters 
were used for the XGBoost algorithm. From the 44 fea-
ture groups, the sequential forward selection (SFS) algo-
rithm was utilized to choose the most effective features 
according to the Pearson correlation coefficient (PCC) 
measure. We started with the feature group that dis-
played the best performance in the first round and iter-
atively selected a new group from the remaining ones 
so that the combination of this group and the reserved 
groups in the preceding round could improve its per-
formance to the greatest extent. This process was halted 
when the PCC started to decrease. In addition, to explore 
the complementarity between different energy terms, 
we built a novel feature pool by combining the feature 
groups of five energy types under each state. After the 
initial screening, the feature groups with a PCC higher 
than 0.15 were retained for the SFS process. We there-
fore generated another three regression models tailored 
to different states. For the classification task, the regres-
sion models were replaced by XGBoost classification 
algorithms, and the selected feature groups remained 
unchanged.

(2)Sij =

n∈PTi

topo−featurenj

(3)Aij =
Sij

num (n)
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Ensemble model construction using a differential 
evolution algorithm
To make use of the complementarity between the out-
puts of the above 18 models, we constructed an ensem-
ble model using a differential evolution (DE) algorithm 
[35], which iteratively used the mutation, crossover, and 
selection operations to achieve the weight for individual 
models (Additional file  1: Fig. S9). Specifically, we ran-
domly initialized a population P = {P1,P2, · · · ,Pn} con-
sisting of 18-dimensional vectors, where each vector is an 
individual and denotes the weights of 18 models. Here, n 
was empirically set to 50. Subsequently, we mutated the 
individuals to keep the population evolving. In detail, 
three individuals were randomly selected from the ini-
tial population P , and a mutant individual Pm was gener-
ated by calculating the difference vector between any two 
individuals and adding it to the third individual (Formula 
4). Additionally, a crossover operation was performed on 
the mutant individual Pm and the parent individual Pi to 
generate an offspring individual Pn′ . As shown in Addi-
tional file 1: Fig. S10, a random number was assigned to 
the elements in the paired vectors. If the random num-
ber was less than or equal to the crossover probability, 
the element of the mutant individual was selected; other-
wise, the element of the original individual was adopted 
(Formula 5). To select high-quality individuals, we com-
pared offspring individuals with their parents in terms 
of fitness, which was the PCC measure. During the evo-
lutionary process, individuals with a high fitness score 
were used as candidates for the next generation (For-
mula 6). The DE procedure was halted if the maximum 
number of iterations was reached (10 iterations assigned 
empirically), and the individual with the highest fitness 
score was chosen as the optimal weight. To enhance the 
robustness, we performed the DE procedure 5 times, and 
the averages of the optimal weights were finally used:

where Pm is a mutant individual, and Pr1 , Pr2 , and Pr3 
are individuals in population P . F  , the weight of the dif-
ference vector, is set to 0.5. P′

n,j is the element of an off-
spring individual, Pm,j and Pi,j are the elements of mutant 
and parent individuals, respectively, and j is the index of 
an element. rand(0,1) is a random number, and CR , the 
crossover rate, is set to 0.5. Pc is a candidate individual 

(4)Pm = Pr1 + F(Pr2 − Pr3)

(5)P′
n,j =

{

Pm,j , if r and (0, 1) ≤ CR
Pi,j , else

(6)Pc =

{

P′
n, if fit(P

′
n) ≥ fit(Pi)

Pi, else

with a high fitness score, and fit(x) is the fitness function. 
Finally, the ensemble score generated by PNBACE can be 
presented as follows:

where Score is the prediction value of each component 
model, and w is the weight assigned by the DE method. 
More details can be found in Additional file 1: Table S12.

Performance evaluation
We used leave-one-complex-out validation (LOCOV) 
to assess the model on the training sets. The data-
set was divided into n folds (n is the number of com-
plexes). Then, mutations from one complex were used 
for testing, whereas the other (n-1) folds were merged 
for training. This process was iterated n times to ensure 
that all complexes were tested. Independent test sets 
were also adopted to validate the model. The PCC and 
root mean squared error (RMSE) were used for the 
regression task. The Matthews correlation coefficient 
(MCC) and area under the curve (AUC) were used for 
classification. Statistical tests were used to evaluate 
significant differences in performance between differ-
ent methods. For a given dataset, we randomly chose 
70% of complexes 10 times and calculated the PCC (or 
AUC) value in each iteration. The Anderson‒Darling 
test was then used to assess whether these values obey 
a normal distribution. Based on the normality assump-
tion, the paired t-test or Wilcoxon rank-sum test was 
selected for statistical testing.
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