
Commentary
Noise in biological systems is endemic and can contribute 
to biological phenotypes. For example, noise can affect 
fate determination in virus-infected cells by randomly 
switching between latency and reactivation, and it can 
also cause Escherichia coli to switch between competency 
and non-competency for DNA uptake. The origin of 
biological noise is attributed to randomness in biological 
reaction events, and leads to cell-to-cell variability in 
genetically identical cell populations. To understand 
noise-induced phenotypes, it is important to have the 
capability to observe behaviors at the single-cell level.

The paper by Birtwistle et al. [1] highlights an interest
ing issue with respect to noise in the mitogen-activated 
protein kinase (MAPK)/extracellular signal-regulated 
kinase (ERK) protein signaling pathway. This pathway 
receives environmental cues, such as changes in epider
mal growth factor (EGF) that leads to an amplified signal 
in the form of activated ERK. The activation of ERK in 
turn results in diverse cellular responses, such as 

proliferation, differentiation, and apoptosis. In their 
study, flow cytometry was used to collect data in the form 
of fluorescence signals emitted from individual single 
cells. The signals indicated the activated ERK levels and 
showed a bimodal histogram in the cell population, 
which might otherwise have been obscured without 
adopting single-cell-level measurement techniques.

Bimodality can be the result of positive feedback 
mechanisms resulting in bistablity, a state very much like 
a light toggle switch. Such systems have been found in a 
number of natural systems so it was an obvious choice for 
Birtwistle et al. to investigate this possibility. However, 
although the ERK activation pathway has been found to 
exhibit bistability in some types of cell, it does not in 
others, and the experimental observations made by Birt
wistle el al. in their cell line were not compatible with the 
mechanisms that used positive feedback. Closer investi
gation reveals something completely different and novel.

The observed bimodal distributions [1] were shown by 
computer modeling to be induced purely by noise 
without being related to positive feedback. There have 
been many theoretical studies to understand the mecha
nisms for such noise-induced bimodality. Many of these 
are related to the close interplay between nonlinearities 
in the system and noise in biological signals. The signal 
noise can be processed via a nonlinear input-output 
response, causing sufficient signal distortion to transform 
unimodal signal distributions into bimodal ones [2]. In 
the case of the signaling pathway studied by Birtwistle et 
al., the EGF signal is transmitted across the membrane to 
generate activated Ras, and the Ras signal, considered 
unimodal in the cell line used, activates the MAPK/ERK 
cascade after passing a threshold. The existence of this 
threshold means that the system is not purely linear, and 
signal distortion due to the system nonlinearity can 
explain the bimodality that emerges. This provides a first 
in vivo example in protein signaling networks that shows 
noise-induced bimodality due to its inherent nonlinear 
signal processing without positive feedback.

To understand the mechanism of bimodality observed 
by Birtwistle et al. [1], we will illustrate graded input-
output response curves of the type that share their 
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observed typical response patterns. Th ese are piecewise-
linear with a smooth connection at the activation thres-
hold, as shown in Figure 1a. First, the response curve was 
assumed to be identical among all cells, that is, without 
cell-to-cell variability in the curve (Figure 1a). Th e input x 
was considered to be a certain type of a random number, 
satisfying a so-called Gamma distribution (Figure  1b). 
Th is distribution has been observed in vivo for E.  coli, 
budding yeast, and mouse embryonic stem cells. It has 

been shown to appear when translation events occur in a 
bursting manner when a short-lived mRNA is transcribed 
[3]. When the distribution of x is suffi  ciently narrow, the 
response signal y can be shown to satisfy a unimodal 
distribution, but as the distribution of x gets wider, bi-
modal (black line in Figure 1c) and even trimodal (green 
line) distributions of y can appear. Th is multi modal 
distribution in y is caused by the fact that the threshold 
activation in the response curve distorts the distribution 

Figure 1. Bimodal dis tribution in an output signal y due to cell-to-cell variability in an input signal x. (a) The input-output response curve is 
piecewise linear with a smooth junction at the activation threshold (between x = 30 and 40; black dots correspond to the case of the ‘black’ line in 
(b)). (b) The input signal x was assumed to satisfy the Gamma distribution. (c) Bimodal and even trimodal distributions in the output signal y appear 
as the cell-to-cell variability in x increases while its mean value is fi xed. The distributions or histograms were obtained after transforming x to log(x). 
(d) Some of the bimodal distributions in (c) still appear in a linear scale. (e-h) A smaller mean value of x was used. Bimodal distributions, observed at 
the log-scale, were highly suppressed or disappeared in a linear scale. The sample size for the distributions was 105.
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The gamma distributions in (b) are                                  with (a,s) = (5, 12), (15, 4),   (40, 1.5), (100, 0.6), 
and (200, 0.3) for the green, black, red, blue, and purple lines, respectively. In (f ), only the value of s 
was changed to 8, 8/3, 1, 0.4, and 0.2. For the smooth transition near the activation threshold,                          

The gamma distributions in (b) are                                  with (a,s) = (5, 12), (15, 4),   (40, 1.5), (100, 0.6), 

 was used.
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of the input signal [2]. This non-linear signal processing 
is the fundamental mechanism that caused the bi
modality observed by Birtwistle et al.

Careful attention is, however, needed when computing 
distributions, more precisely histograms, depending on 
the choice of the scale of the x-axis. As in the case of flow 
cytometry, a signal is often visualized in the log scale to 
show the broad ranges of the signal values. This leads 
researchers to use the histogram of log-transformed signal 
values. One pitfall of this procedure is that it is possible 
to generate transformation artifacts. One example is 
shown in Figure  1, where a unimodal (or very weakly 
bimodal) distribution in a linear scale (Figure  1h) 
becomes a bimodal distribution in a log scale (Figure 1g). 
This is because the log-scale representation causes larger 

values of x to be compressed more visually, so that a 
greater number of samples will be taken at larger x values 
and fewer at smaller x values (Figure  1c,g). Therefore, 
flow cytometry data may need to be treated carefully. 
Birtwistle et al. represented their data in a log scale using 
Kaplan-Meier empirical cumulative distribution func
tions, which may reduce the problem. Although this 
method can visually amplify the bimodal distribution as 
the conventional log scale representation does, it was 
confirmed via personal communication that the bi
modality robustly appears in the wide range of input 
doses (0.5 nM and 1 nM EGF in Figure 1B in Birtwistle et 
al. [1]) and the transformation artifact does not eliminate 
the bimodality except for the case of 0.1 nM EGF in the 
same figure.

Figure 2. Variability in the activation threshold enhances bimodality in the output signal y. (a-c) A fixed input-output response curve was 
considered. (d-f) Variability in the activation threshold was introduced. (g-i) Additional variability in the saturation level of the response curve was 
considered. The simulation details are exactly the same except that the sample size was 104 and, for the Gamma distribution, the value of a was 100 
(refer to Figure 1 legend). The variability in the activation threshold and the saturation level was generated from normal distributions.
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Second, we consider cell-to-cell variability in the 
activation threshold. Figure  2a-c shows that unimodal 
distributions were obtained in a log-scale of x. For the 
same distributions in x, we introduced cell-to-cell varia
bility in the activation threshold following a normal 
distribution (Figure  2d), resulting in bimodal distribu
tions in y (Figure 2f ). When shown in a linear scale, some 
bimodal distributions still persisted (for example, the red 
line in Figure 2f; graph not shown).

From these simulations, we can conclude that the 
variability in the input signal and the activation threshold 
both individually enhanced bimodality in the output 
signal. This is because the value of y is determined by the 
distance between the value of x and the activation 
threshold. Thus, the variability in the threshold has the 
same effect as the input variability by changing the 
distance between the value of x and the threshold. What 
happens if variability appears in both x and the threshold 
simultaneously? If the input signal and the threshold can 
be assumed to fluctuate independently due to the fact 
that they can be processed through sufficiently different 
biological systems, then the presence of the variability in 
both will enhance the bimodality further.

Finally, we can consider the variability in the saturation 
levels of the response curves. This variability smoothed 
the sharp peak appearing at the saturation level (y = 1) for 
the case that the saturation level was fixed (Figure  2f ). 
Thus, the variability in the saturation level did not have 
any significant effect on bimodality.

The lesson from this work, and one that we see more 
and more often, is that the interaction of noise and the 
underlying deterministic dynamics can result in non-
intuitive behavior. We are only beginning to understand 
how noise is exploited by nature [4] and furthermore by 
system designers like synthetic biologists [5], but the 
influence of noise is likely to be subtle and counter-
intuitive to our normal deterministic view of the world.
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