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Plastid phylogenomics and green plant
phylogeny: almost full circle but not quite there
Charles C Davis*, Zhenxiang Xi and Sarah Mathews
Abstract

A study in BMC Evolutionary Biology represents the
most comprehensive effort to clarify the phylogeny
of green plants using sequences from the plastid
genome. This study highlights the strengths and
limitations of plastome data for resolving the green
plant phylogeny, and points toward an exciting future
for plant phylogenetics, during which the vast and
largely untapped territory of nuclear genomes will
be explored.
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lack a well developed vascular system and have simi-
Commentary
The plastid genome, or plastome, has so far been the
most important source of data for plant phylogenetics in
the era of comparative DNA sequencing. Its utility re-
sults from its relatively small size (between 75 and 250
kilobases), largely uniparental inheritance, conservation
of gene content and order, and its high copy number in
green plant cells. From the early use of a single plastid
gene to infer the phylogeny of a broad sampling of
seed plants [1], to the now common use of around 80
plastid genes to address finer-scale phylogenetic ques-
tions, this circular genome has been a mainstay for
evolutionary botanists.
Efforts to understand green plant phylogeny from

plastome data have now come full circle. In this issue,
Ruhfel et al. [2] report results from their analyses of
78 plastid genes from 360 species, from green algae to
angiosperms. Their results provide insights into this
ongoing effort, adding support for some relationships
and highlighting phylogenetic questions that require
more data, especially from nuclear genomes.
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Congruence and conflict in plastid phylogenomics
Ruhfel et al. present a phylogeny that is well resolved at
most nodes, and largely in agreement with previous
studies, including at nodes that have been difficult to
resolve (Figure 1). These include the splits between
land plants and their algal sister clade [3,4], and be-
tween vascular plants and their non-vascular sister
clade [5]. Here, Zygnematophyceae, a large clade of
mostly freshwater algal species, is identified as sister to
land plants. This suggests that shared components of
auxin signaling and chloroplast movement likely were
present in their common ancestor [3]. Their analyses
also support the non-monophyly of bryophytes, or
liverworts, mosses and hornworts. These land plants

lar ecologies. Hornworts are sister to vascular plants in
the plastid tree, consistent with evidence that their spo-
rophytes may be at least partially free-living, unlike
those of liverworts and mosses [5].
So how much closer does this new phylogeny bring us

to a robust understanding of green plant evolution? This
study, like many others, has difficulty resolving key rela-
tionships within green plants. This is most evident in
the lack of resolution deep in the angiosperm phylogeny
among the mesangiosperm clades, Ceratophyllum,
Chloranthaceae, eudicots, magnoliids, and monocots.
Branching order among non-vascular plants, especially
involving liverworts and mosses, remains contentious.
These problems persist due, in part, to the challenge of
placing lineages that are species-poor and divergent in
molecular trees, and due to the difficulty of assessing
homologies among organisms with very diverse or
reduced morphologies.
Despite these few persistent problems, the Rhufel et

al. tree appears to address many if not all remaining
questions. In some cases, however, high support for rela-
tionships should be interpreted cautiously because con-
flicting topologies are supported by other data. Key
examples include the previously mentioned sister groups
of land plants and vascular plants, but also relationships
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Figure 1. Simplified green plant phylogeny inferred by Ruhfel et al. [2]. Dashed line branches indicate phylogenetic placements that remain
unresolved by the plastome. Relationships that are well resolved in the plastome tree but contentious are highlighted in red. The green algal
lineage Klebsormidiophyceae was not included in the plastome study, and thus was not included in the figure.
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among major seed plant clades. The latter involves the
position of gnetophytes, and the close relationship of cy-
cads and Ginkgo biloba. The gnetophytes especially rep-
resent a vexing problem in seed plant phylogenetics [6].
They form a small clade of approximately 90 species that
are highly divergent from other seed plants in both
morphology and molecules. Although plastid phylo-
genomic studies are converging on the ‘Gnecup’ topology,
in which gnetophytes are united with cupressophyte coni-
fers, recent nuclear phylogenomic analyses yield the alter-
native ‘Gnepine’ topology in which gnetophytes are united
with Pinaceae conifers [7]. Even within individual plastid
loci, different nucleotide sites have been shown to favor
rival gnetophyte placements [6]. A similarly strong conflict
in seed plants concerns the positions of cycads and Ginkgo
biloba, where their plastid trees strongly unite the two,
but other studies place cycads alone as sister to extant
gymnosperms.

Where do we go next?
It is well known that biases within molecular data may
be exacerbated in large phylogenomic data sets, leading
to erroneous but well supported results, especially when
trying to resolve ancient splits. Biases may result from
phenomena such as pattern heterogeneity and uneven
base frequencies, and their exploration will help us to
understand cases of incongruent relationships. For ex-
ample, when Ruhfel et al. accounted for biased GC con-
tent, their data placed lycophytes as sister to ferns and
seed plants, rather than as the lone sister to seed plants,
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as in their total evidence tree. Additional approaches for
mitigating biases in molecular data sets include increas-
ing taxon sampling and better modeling of nucleotide
evolution. Traditional data partitioning schemes try to
account for variation in evolutionary rates by partition-
ing nucleotide sites based on their rate of evolution,
most commonly, by gene or codon position. The ap-
proach developed by Xi et al. [8], in contrast, requires
no a priori assumptions about evolutionary rates. In-
stead, the optimal number of partitions, and their con-
tents, are identified using a Bayesian mixture model
analysis, which is not influenced by preconceptions
about nucleotide evolution. This approach improved
resolution over analyses using traditional partitioning
strategies and also reduced model complexity because
the optimal number of partitions identified in the
search was smaller than in commonly used schemes.
Ruhfel et al. found this scheme to be computationally
difficult to implement with their data, but improve-
ments in the efficiency of Bayesian mixture model
searches will help. Finally, despite the promise of these
improvements to molecular phylogenetic studies, the
evolution of green plants cannot be understood from
molecular data alone. For example, 70% of seed plant
lineages cannot be sampled for molecular datasets be-
cause they are extinct. Better integration of morpho-
logical evidence from living and fossil taxa are
especially needed to reconstruct the evolutionary his-
tory of green plants [9].
The largest leap, however, is still ahead of us. Within

the green plant species tree there is a ‘cloud’ of gene
trees [10], of which the plastid genes comprise only a
small fraction. An obvious next step is to understand the
species tree more thoroughly by incorporating mito-
chondrial and nuclear data. Mitochondrial data have
previously been neglected, but increasingly are being
sampled for large-scale phylogenomic studies. However,
their informativeness may be limited by slow nucleotide
evolution and species relationships may be obscured by
potentially rampant horizontal gene transfer involving
mitochondrial DNA [11]. Nuclear genomic data, in con-
trast, have tremendous potential to improve phylo-
genetic resolution and illuminate the species tree. This
source of data will likely reveal surprises when juxta-
posed against our current understanding of relationships
inferred from plastid data alone. Conflicts between plas-
tid and species trees may result from introgression of
the plastid from one species into another, and this may
have gone undetected due to heavy reliance on phylo-
genetic data from uniparentally inherited plastomes. Re-
combination and gene conversion, which can occur in
the plastome, as well as differential selective pressures
acting on plastid genes, may also introduce biases and
lead to incongruent gene and species trees. Along these
lines, recent analyses already indicate that potential
plastid-nuclear genome conflicts involve the gneto-
phytes, early diverging flowering plants, and the
large flowering plant orders Lamiales, Malpighiales,
and Myrtales. Evaluating the extent to which these
incongruent placements demonstrate divergent ge-
nome histories requires further exploration, for
which the nuclear genome will be a particularly
valuable resource.
In addition to providing a wealth of new data for clari-

fying species trees, the nuclear genome will greatly im-
prove our understanding of important innovations across
green plants. Whole genome duplications (WGDs), for
example, potentially enhance an organism’s success. Con-
sistent with this, recent analyses of transcriptomes from
seed plants indicate that at least three major WGDs
occurred very near to the origin of clades characte-
rized by putative key innovations [12,13]. These in-
clude the origins of seeds, flowers, and pentamorous
floral symmetry - the last of which characterizes more
than approximately 70% of all angiosperms (the eudi-
cots) and may be related to their coevolution with
bees [14].
Nuclear genomic data also more directly facilitate our

ability to connect unique phenotypes with their under-
lying genetic architectures. In an exemplar study of fun-
gal relationships, Floudas et al. [15] investigated the
origin of lignin decomposition in fungi - the ability of
organisms to degrade lignin synthesized by green plants
is a rare feature across the tree of life. This is especially
relevant because the absence of lignin decomposition
prior to the end of the Carboniferous era (approximately
300 million years ago) accounts for Earth’s extensive
stores of fossil fuels. The origin of lignin decomposition
by fungi was implicated in the sharp decline in burial of
organic carbon around this time. The authors tested this
idea by investigating genes implicated in lignin deg-
radation, thus discovering an association between key
expansions of these genes coincident with the origins of
fungal clades that can degrade lignin. These expansions
broadly correspond with the disappearance of fossilized
forests from the geological record. Such exemplar
studies likely represent the tip of the iceberg, and
highlight the tantalizing future research opportunities
in plant nuclear genomics.
We are entering into a new and exciting era in plant

phylogenetics. Plastid phylogenomics will continue to be
a fast and inexpensive way to flesh out the green plant
clade, but the next wave is to explore the uncharted ter-
rain of the nuclear genome. It is already on the way, as
evidenced by large-scale comparative transcriptome
projects (for example [16]) and the growing number of
genome sequencing projects focused on phylogeneti-
cally key species.
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