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Abstract

Background: The use of low quality RNA samples in whole-genome gene expression profiling remains controversial.
It is unclear if transcript degradation in low quality RNA samples occurs uniformly, in which case the effects of
degradation can be corrected via data normalization, or whether different transcripts are degraded at different rates,
potentially biasing measurements of expression levels. This concern has rendered the use of low quality RNA
samples in whole-genome expression profiling problematic. Yet, low quality samples (for example, samples
collected in the course of fieldwork) are at times the sole means of addressing specific questions.

Results: We sought to quantify the impact of variation in RNA quality on estimates of gene expression levels
based on RNA-seq data. To do so, we collected expression data from tissue samples that were allowed to decay
for varying amounts of time prior to RNA extraction. The RNA samples we collected spanned the entire range of
RNA Integrity Number (RIN) values (a metric commonly used to assess RNA quality). We observed widespread
effects of RNA quality on measurements of gene expression levels, as well as a slight but significant loss of library
complexity in more degraded samples.

Conclusions: While standard normalizations failed to account for the effects of degradation, we found that by
explicitly controlling for the effects of RIN using a linear model framework we can correct for the majority of these
effects. We conclude that in instances in which RIN and the effect of interest are not associated, this approach can
help recover biologically meaningful signals in data from degraded RNA samples.
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Background
Degradation of RNA transcripts by the cellular machin-
ery is a complex and highly regulated process. In live
cells and tissues, the abundance of mRNA is tightly reg-
ulated, and transcripts are degraded at different rates by
various mechanisms [1], partially in relation to their bio-
logical function [2-5]. In contrast, the fates of RNA tran-
scripts in dying tissue, and the decay of isolated RNA
are not part of normal cellular physiology and, therefore,
are less likely to be tightly regulated. It remains largely
unclear whether most transcript types decay at similar
rates under such conditions or whether rates of RNA
decay in dying tissues are associated with transcript-
specific properties.
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These questions are of great importance for studies
that rely on sample collection in the field or in clinical
settings (both from human populations as well as from
other species), in which tissue samples often cannot im-
mediately be stored in conditions that prevent RNA deg-
radation. In these settings, extracted RNA is often partly
degraded and may not faithfully represent in vivo gene
expression levels. Sample storage in stabilizers like RNA-
Later lessens this problem [6] but is not always feasible.
Differences in RNA quality and sample handling could,
therefore, confound subsequent analyses, especially if
samples subjected to different amounts of degradation
are naïvely compared against each other. The degree to
which this confounder affects estimates of gene expres-
sion levels is not well understood.
There is also no consensus on the level of RNA decay

that renders a sample unusable or on approaches to con-
trol for the effect of ex vivo processes in the analysis of
gene expression data. Thus, while standardized RNA
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quality metrics such as the Degradometer [7] or the
RNA Integrity Number (RIN; [8]), provide well-defined
empirical methods to assess and compare sample qual-
ity, there is no widely accepted criterion for sample in-
clusion. For example, proposed thresholds for sample
inclusion have varied between RIN values as high as 8
[9] and as low as 3.95 [10]. The recent Genotype-Tissue
Expression (GTEx) project [11], for instance, reports
both the number of total RNA samples they collected as
well as the number of RNA samples with RIN scores
higher than 6, presumably as a measure of the number
of high quality samples in the study.
Broadly speaking, three approaches can be adopted to

deal with RNA samples of variable quality. First, RNA
samples with evidence of substantial degradation can be
excluded from further study; this approach relies on es-
tablishing a cut-off value for ‘high quality’ versus ‘low
quality’ samples and suffers from the current lack of
consensus on what this cut-off should be. It also could
exclude the possibility of utilizing unique and difficult to
collect samples from remote locations or historical col-
lections. Second, if investigators are willing to assume
that all transcript types decay at a similar rate, variation
in gene expression estimates due to differences in RNA
integrity could be accounted for by applying standard
normalization procedures. Third, if different transcripts
decay at different rates, and if these rates are consistent
across samples for a given level of RNA degradation –
for example, a given RIN value – a model that explicitly
incorporates measured, sample-specific, degradation levels
could be applied to gene expression data to correct for the
confounding effects of degradation.
To date, most studies apply a combination of the first

two approaches: an application of an arbitrary RNA
quality cutoff (typically based on RIN score), followed by
standard normalization of the data, which assumes that
RNA samples at any RIN value higher than the chosen
cutoff are not subjected to transcript-specific decay
rates. However, current work on the effects of RNA
decay has not yet provided clear guidelines with respect
to these approaches. In addition, nearly all published
work that focuses on RNA stability in tissues following
cell death and/or sample isolation predates, or does not
employ, high throughput sequencing technologies. These
studies broadly suggest that both the quantity and qual-
ity of recovered RNA from tissues can be affected by
acute pre-mortem stressors, such as pyrexia or pro-
longed hypoxia [12-14], and by the time to sample pres-
ervation and RNA extraction. The quantity and quality
of recovered RNA are strongly dependent on the type of
tissue studied [15], even when sampling from the same
individual [16,17]. These differences in yield across tis-
sues have resulted in a wide range of recommendations
for an acceptable post-mortem interval for extracting
usable, high-quality RNA, ranging from as little as 10 mi-
nutes [18] to upwards of 48 hours [19], depending on
tissue source and preservation conditions.
Similarly, studies examining changes in the relative

abundance of specific transcripts as a result of ex vivo
RNA decay have reached somewhat contradictory recom-
mendations. Some of this conflict may be attributable to
methodological differences. Studies that focused on small
numbers of genes assayed through quantitative PCR con-
sistently report little to no effect of variation in RNA qual-
ity on gene expression estimates [6,19-22]. Conversely,
microarray-based studies have repeatedly reported signifi-
cant effects of variation of RNA quality on gene expression
estimates, even after applying standard normalization ap-
proaches. Increasing the time from tissue harvesting to
RNA extraction or cryopreservation from 0 to only 40 or
60 minutes, for example, significantly affected expression
profiles in roughly 70% of surveyed genes in an experiment
on human colon cancer tissues [20]. Likewise, a substantial
fraction of genes in peripheral blood mononuclear cells
(PBMCs) appears to be sensitive to ex vivo incubation
[21]. Other microarray-based studies have reached similar
conclusions, both in samples from humans [15,16,22,23]
and other organisms [24], and have urged caution when
analyzing RNA samples with medium or low RIN scores,
although the definition of an acceptable RNA quality
threshold remains elusive.
To examine the effects of RNA degradation in a set-

ting relevant to field study sample collection, we se-
quenced RNA extracted from PBMC samples that were
stored unprocessed at room temperature for different
time periods, up to 84 hours. We collected RNA decay
time-course data spanning almost the entire RIN quality
scale and examined relative gene-specific degradation
rates through RNA sequencing. Due to the high sensitiv-
ity and resolution of high-throughput RNA sequencing,
our data provide an unprecedentedly detailed picture of
the dynamics of RNA degradation in stressed, ex vivo
cells. Based on our results, we develop specific recom-
mendations for accounting for these effects in gene ex-
pression studies.

Results
We extracted RNA from 32 aliquots of PBMC samples
from four individuals. The PBMC samples were stored
at room temperature for 0 hours, 12 hours, 24 hours,
36 hours, 48 hours, 60 hours, 72 hours and 84 hours prior
to RNA extraction. As expected, time to extraction sig-
nificantly affected the RNA quality (P <10−11), with mean
RIN = 9.3 at 0 hours and 3.8 at 84 hours [see Additional
file 1: Table S1]. Based on the RIN values we chose to focus
on 20 samples from five time points (0 hours, 12 hours,
24 hours, 48 hours and 84 hours) that spanned the entire
scale of RNA quality. We generated poly-A-enriched RNA
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sequencing libraries from the 20 samples using a standard
RNA sequencing library preparation protocol (see [25]).
We added a spike-in of non-human control RNA to each
sample, which allowed us to confirm the effects of RNA
degradation on the RNA sequencing results (see Methods
for more details). Following sequencing, we randomly sub-
sampled all libraries to a depth of 12,129,475 reads, the
lowest number of reads/library observed in the data. We
used BWA 0.6.3 to map reads, calculated reads per kilo-
base transcript per million (RPKM), and normalized the
data using a standard quantile normalization approach (for
example, as in [26]). We observed that sample RIN is
associated with both the number of uniquely mapped
reads (analysis of variance (ANOVA) P <10−3) and the
number of reads mapped to genes (P <10−3; Additional
file 2: Figure S1), with high RIN samples having greater
numbers of both. Furthermore, the proportion of exogen-
ous spike-in reads increases significantly as RIN decreases
(P <10−10), as expected given degradation-driven loss
of intact human transcripts in poor quality samples. Se-
quence reads from individual 2 were poorly mapped, espe-
cially in the later time-points (see Methods and Additional
file 2: Figure S1); we thus excluded the data from all sam-
ples from this individual in subsequent analysis.

The effect of RNA degradation on RNAseq output
Principal component analysis of our data demonstrates
that much of the variation (28.9%) in gene expression
levels in our study is strongly associated with RNA sam-
ple RIN scores (Figure 1A; principal component 1 (PC1)
Figure 1 Broad effects of RNA degradation. A) PCA plot of the 15 samp
least one mapped read in a single individual. Different colors identify differ
the data set. B) Spearman correlation plot of the 15 samples in the study. P
associated with RIN scores P <10−7; no other PCs are
significantly associated with either sample storage time
or RIN score; Additional file 3: Table S2). We also ob-
served a residual presence of inter-individual variation in
the data, in spite of variable RNA quality (PCs 4 and 5;
Additional file 4: Figure S2 and Additional file 3: Table
S2). A correlation matrix based on the gene expression
data (Figure 1B) indicates that while samples of relatively
high quality RNA cluster by individual, data from RNA
samples that experienced high yet similar degradation
levels are more correlated than data from samples from
the same individual across the time-points. This pattern
contrasts with the naïve expectation that gene expres-
sion differences between individuals should be the
strongest signal in the normalized data. Instead, inter-
individual differences only predominate in the early stages
of degradation, at the early time-points of 0 hours (mean
RIN = 9.3) and 12 hours (mean RIN = 7.9). These observa-
tions are robust with respect to the approach used to esti-
mate gene expression levels and – importantly – are not
explained by unequal rates of degradation occurring at dif-
ferent distances from the 3′ poly-A tail. For example, we
found nearly identical patterns when we estimated expres-
sion levels based only on reads that map to the 1,000 bp at
the 3′ end of each gene (Additional file 5: Figure S3). Simi-
larly, these effects are robust to the choice of mapping al-
gorithm. Because BWA does not map reads across exon
splice junctions, we also remapped our data (excluding in-
dividual 2) using TopHat 2.0.8 [27]. As expected, we found
a high correlation between RPKM estimates based on
les included in the study based on data from 29,156 genes with at
ent time-points, while each shape indicates a particular individual in
CA, principal component analysis.
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alignments with both approaches (Spearman’s ρ = 0.82
when we consider all genes with at least one observation
of RPKM> =0.3 in the entire data set; Spearman’s ρ = 0.85
when we only consider genes with at least one observation
of RPKM> =0.3 using data mapped with BWA, Additional
file 6: Figure S4 and Additional file 7: Figure S5). Finally,
we found that the global effects of RNA degradation on
estimated gene expression levels could not be elimi-
nated by globally regressing out RIN scores [see Additional
file 8: Figure S6].
The possibility of reduced sequencing library complexity

is often cited as a reason to exclude RNA samples of low
quality. This concern is primarily based on the observation
that sequencing RNA samples of lower RNA quality results
in relatively decreased proportions of mappable reads, an
observation corroborated in our study [see Additional
file 2: Figure S1]. Yet, it is unclear to what extent this
property affects the ability to estimate gene expression
levels in RNA samples of low quality. To assess the effects
of RIN on sample complexity, we plotted the distribution
Figure 2 Changes in library complexity over time. Dashed lines indicat
among all three individuals at 0 hours and 12 hours. B) as A, but 0 hours a
and 84 hours. RPKM, reads per kilobase transcript per million.
of RPKM values within individuals at different time points.
Our data indicate that mean RPKM increases as sample
RIN decreases (P <10−5, Additional file 9: Figure S7). This
seems counterintuitive, but can be explained by the pres-
ence of a few highly expressed genes in the samples of low
RNA quality. Indeed, relative to 0 hours, low RIN samples
at 48 hours and 84 hours have an excess of low RPKM
genes and a deficit of high RPKM genes, shifting the me-
dian RPKM downwards (P <10−4; Figure 2). We further
found a positive association between the number of genes
with at least one observation of RPKM ≥0.3 and RIN
(P <10−4). Even when we subsampled all samples to the
same number of sequencing reads, we still observed a high
proportion of genes with low RPKM values in RNA sam-
ples of lower quality (P <10−4; Additional file 10: Figure S8).
This suggests that a non-uniform effect of RNA degrad-
ation on gene expression levels results in somewhat lower
complexity of the sequencing library (Figure 2, Additional
file 10: Figure S8). On the other hand, both within a single
individual and across the whole dataset, we found that
e median RPKM at each time-point. A) Density plots of RPKM values
nd 24 hours. C) as A, but 0 hours and 48 hours. D) as A, but 0 hours
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nearly all genes whose expression could be measured at
0 hours are also detected as expressed throughout the en-
tire time-course experiment. Only a few genes (Table 1)
present in all individuals up until a given time point were
completely absent from the data at later time points.

Different transcripts are degraded at different rates
We sought to understand better the nature of transcript
degradation in the RNA samples of lower quality. Given
our time course study design, we were able to estimate
degradation rates for all genes detected as expressed at all
five time-points. To do so, we fit a log-normal transform
of a simple exponential decay function (see Methods) to
quantile-normalized RPKM values for each gene that was
detected as expressed in all individuals at all time-points.
We considered the slope of this function, k, to be a proxy
for the decay rate of the gene. We then compared this
slope to the mean transcript degradation rate across all
genes, which, as a result of our quantile normalization ap-
proach, is equal to 0 (thus, a value of 0 indicates no change
in the relative rank of that transcript’s expression level
across time points). If all genes decay at the same rate, then
no slopes should significantly differ from the mean value.
However, at a false discovery rate (FDR) threshold of 1%,
we found that 7,267 of the 11,923 genes tested (60.95%; see
Methods) were associated with degradation rates that were
significantly different from the mean (Figure 3; Additional
file 11: Table S3). Of these genes, 3,522 had a negative
slope (that is, they were degraded significantly faster than
the mean degradation rate) and 3,745 had a positive
slope (that is, these transcripts were degraded signifi-
cantly slower than the mean degradation rate).
Although we might expect RNA degradation in decaying

cells to be a random process, gene ontology (GO) analysis
identified 118 and 293 significantly overrepresented cat-
egories among slowly and rapidly degraded genes, re-
spectively (FDR = 5%; Additional file 12: Tables S4 and
Additional file 13: Table S5). We present the functional
enrichment results only as an indication that the rate of
transcript decay is not random. These observations are
robust to different normalization approaches, to the in-
clusion of RIN as a covariate in our linear model, and to
fitting slopes using RIN instead of time-points. Limiting
our analyses to the 1,000 bp closest to the 3′ end of
transcripts also yields similar results.
Table 1 Genes observed in all individuals until or after a part

Seen until 0 hours 12 hours

#genes 14 9

Mean RPKM when seen 0.68 0.679

Unseen before 0 hours 12 hours

#genes n/a 4

Mean RPKM when seen n/a 1.078
We asked what properties, beyond GO functional cat-
egories, might be associated with the observed variation
in transcript degradation rates. We found that the cod-
ing DNA sequence (CDS) length (P <10−12), %GC content
(P <10−4), and 3′UTR length (P <10−15) are all significantly
correlated with estimated transcript degradation rate
(Figure 4A-C), with higher %GC content and increased
length of both the 3′ UTR and CDS all associated with fas-
ter degradation. However, we found that total transcript
length (5′ UTR+CDS+ 3′ UTR) is not significantly corre-
lated with degradation rates; instead, targets of both fast and
slow degradation have longer transcripts than those that are
degraded at an average rate (Figure 4D). The correlation
between %GC content and CDS length is high (ρ=−0.19,
P <10−16), but even when we control for the effects of either
variable, the individual effects remain significant predictors
of degradation rates (P <10−7). Our data thus suggest that
both CDS length and %GC content affect degradation rate,
and that observed degradation rates result from complex in-
teractions between multiple forces. We again present these
results as evidence for the non-random nature of the tran-
script degradation rate (yet, we do not presume at this time
to offer mechanistic explanations for these correlations).
We also sought to investigate whether targets of slow,

fast, or average degradation differ meaningfully in terms
of broad biological categories. As expected given our
poly-A enrichment strategy, most transcripts in our data
originate from intact protein-coding genes, but we also
observed four other biotypes represented by more than
100 distinct transcripts. The distribution of these bio-
types across rapidly and slowly degraded transcripts is
not random, with a significant enrichment of pseudo-
genes among transcripts that degrade slowly (P = 0.015),
and an enrichment of intact protein-coding genes among
the rapidly degraded transcripts (P <10−16, Figure 4E).

Controlling for the effect of RNA degradation in analyses
of differential expression
Ultimately, the goal of most RNA sequencing studies is
to estimate variation in gene expression levels or to
identify genes that are differentially expressed between
conditions, individuals or states. We thus considered
the effects of RNA quality on measures of relative gene
expression levels between time-points and on overall es-
timates of inter-individual variation in gene expression.
icular time point

24 hours 48 hours 84 hours

72 52 11,923

1.29 1.09 32.689

24 hours 48 hours 84 hours

2 19 35

2.212 2.769 3.034



Figure 3 Log10 median abundance of genes across all three individuals relative to 0 hours. Plots are separated by slope. A) Transcripts
with significantly slow rates of degradation relative to the mean rate (identified at 1% FDR, n = 3,745). B) Transcripts that are degraded at a rate
close to the mean cellular rate (n = 4,656). C) Transcripts with significantly fast rates of degradation relative to the mean rate (identified at 1%
FDR, n = 3,522). In all plots, the thick dashed line indicates the median degradation rate for all genes in that group, whereas the thin dashed line
denotes no change in degradation rate relative to 0 hours. FDR, false discovery rate.
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As a first step we analyzed the normalized expression
data using a generalized linear model (GLM) approach (see
Methods) to classify genes as differentially expressed be-
tween 0 hours and any other time-point. We only consid-
ered genes with at least one mapped read in all individuals
at all time-points (n = 14,094). At an FDR of 5%, we identi-
fied 608 (4%) genes as differentially expressed by 12 hours.
Both the number of differentially expressed genes and
the magnitude of expression changes increase drastically
along the time-course experiment (Table 2). By 84 hours,
9,998 genes (71%) are differentially expressed (FDR = 5%).
Roughly half of these genes appear to be more highly
expressed in the later time-points than at 0 hours. This
may seem counterintuitive given that the change in expres-
sion is most likely the result of RNA degradation, yet this
apparent increase in expression is due to our normalization
approach (all transcripts in our experiment experience
some level of degradation throughout the time course).
Post normalization of the data, an apparent elevated ex-
pression level in the later time points, therefore, indicates
slow degradation relative to the genome-wide mean rate of
RNA decay.
As expected, when we include RIN as a covariate in the

model the number of differentially expressed genes across
time-points is drastically reduced (fewer than 50 genes are
classified as differentially expressed between 0 hours and
any other time-point; Table 2). These observations confirm
that RIN is a robust indicator of degradation levels. With-
out accounting for RIN, the effect of variation in RNA
quality on our data is overwhelming. To understand these
effects better, we explored whether accounting for variation
in RIN increased the power to detect other sources of (bio-
logically relevant) variation in RNA-seq data, such as the
variation in gene expression between individuals. We also
investigated several alternative approaches for controlling
for variation in RNA quality.



Figure 4 Characteristics of rapidly and slowly degraded transcripts. In all plots, rapidly degraded transcripts are plotted in gold, transcripts
degraded at an average rate are plotted in grey and slowly degraded transcripts are in red. A) By transcript %GC content. B) By coding region
length. C) By 3′UTR length. D) By complete transcript length. E) By ENSEMBL biotype.
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Without accounting for RIN, we classified few genes (48 to
100; Table 2) as differentially expressed between pairs of indi-
viduals. This property of the data is captured by a heat map
of sample pairwise correlation calculated using only the top
10% (1,410) most variable genes across individuals at 0 hours.
As can be seen in Figure 5A, while at the early time-points
inter-individual differences are the predominant source of
variation in the data, degradation overwhelms these differ-
ences in the low quality (low RIN) RNA samples from
Table 2 Number of identified DE genes

GLM: reads approxim

Time point GLM

0 h versus 12 h 608

0 h versus 24 h 3,704

0 h versus 48 h 8,756

0 h versus 84 h 9,998

GLM: reads approxim

Individuals GLM

Ind 1 versus Ind 3 69

Ind 1 versus Ind 4 48

Ind 3 versus Ind 4 100

b, Treating time as technical replicates; DE, Differentially expressed; GLM, generalize
48 hours and 84 hours. Hence, inclusion of these time points
in our GLM, which considers samples from the same indi-
vidual but different time points as ‘technical replicates’, ob-
scures much of the true signal of inter-individual variability.
To recover this signal, we tested two approaches for

explicitly accounting for RIN when estimating differen-
tial gene expression across individuals: (1) incorporating
RIN as a covariate in our GLM; and (2) analyzing the re-
siduals of gene expression levels after first regressing out
ate time point

GLM + RIN Regress RIN, GLM

5 26

5 203

47 5

42 0

ate individual b

GLM + RIN Regress RIN, GLM

553 268

401 190

573 299

d linear model; H, hours; RIN, RNA integrity number.
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RIN from the normalized gene expression data (Table 2).
Both approaches result in the identification of many more
genes as differentially expressed between individuals (401
to 573 when incorporating RIN directly into our GLM,
190 to 299 when testing for differential expression using
residuals; Table 2). We also repeated the pairwise correl-
ation analysis using the same 1,410 most variable genes
identified above, but this time we used the residuals after
regressing the effect of RIN from the data. The residuals
cluster well by individual throughout the entire time
course experiment, regardless of RNA quality (Figure 5B).
Finally, we examined the overlap between the subset

of the 10% of most variable genes across individuals at
0 hours (the 1,410 genes used to generate Figure 5) and
those identified as differentially expressed across individ-
uals as described above (Table 3). Of the two approaches
we employed to account for the effect of RIN, testing for
differential expression after removing the effects of RIN
on the data (method 2) yielded higher concordance be-
tween DE genes and those with high inter-individual
variance at 0 hours, suggesting it may be a better ap-
proach than simply including RIN as a covariate.

Discussion
Our observations indicate that the effects of RNA deg-
radation following death or tissue isolation are pervasive
and can rapidly obscure inter-individual differences in
gene expression. Yet, we also found that by using RNA-
seq nearly all genes observed at our first time-point
could still be detected even in severely degraded RNA
Figure 5 Spearman correlation matrices of the top 10% genes with h
B) After regressing the effects of RIN. RIN, RNA integrity number.
samples, although the estimated relative expression levels
were drastically affected by degradation. Although post-
mortem RNA degradation is considered a non-regulated
process, some of the traditional predictors of regulated
RNA decay rates in the cell are also associated with vari-
ation in RNA quality in our data. For example, longer pro-
tein coding regions and 3′ UTRs are correlated with more
rapid degradation, similar to previously reported trends
[5,28,29]. Total transcript length, however, which is a
significant predictor of regulated RNA decay in the cell,
is not associated with variation in degradation rates in
our data.

The effect of RNA degradation can be accounted for
We confirmed previous observations of decreasing data
quality as time from tissue extraction to RNA isolation in-
creased [see Additional file 2: Figure S1], both with respect
to the number of high quality reads we were able to gener-
ate from our sequencing libraries and library complexity.
While increased time to RNA extraction did not generally
result in the complete loss of transcripts (less than 8% of
transcripts are lost), the relative expression levels of many
transcripts were drastically altered over the time-course
experiment, with 61% of genes classified as differentially
expressed between 0 hours (mean RIN of 9.3) and 84 hours
(mean RIN of 3.78). This proportion of differentially
expressed genes is in line with previous reports of the ef-
fects of warm ischemia on human gene expression in
tumor biopsies, as assessed using microarrays [20,22]. The
potential of RNA degradation to skew measurements of
igh inter-individual variance at 0 hours. A) Before RIN correction.



Table 3 DE genes across pairs of individuals and overlap with top 10% most variable genes at 0 hours

GLM individual GLM, individual + RIN Regress RIN, GLM individual

Test Number DE genes % overlap Number DE genes % overlap Number DE genes % overlap

Ind 1 vs Ind 3 69 86.96% 553 45.39% 268 75.00%

Ind 1 vs Ind 4 48 89.58% 401 50.12% 190 78.95%

Ind 3 vs Ind 4 100 87.00% 573 49.21% 299 73.91%

All individuals 160 85.00% 1053 42.64% 521 71.98%

DE, Differentially expressed; GLM, generalized linear model; RIN, RNA integrity number.
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gene expression levels and obscure biologically meaningful
signals is, therefore, apparent. If there are systematic dif-
ferences in RNA quality between two classes of samples
being compared, we predict that the effect of RNA quality
on relative estimates of gene expression levels would be
responsible for much of the signal in the data. Further-
more, as degradation rate is to some degree associated
with biological function [see Additional file 11: Tables S3
and Additional file 12: Table S4], it has the potential to
confound naïve comparisons of functional annotations
as well.
However, the marked effects of RNA degradation on

the relative expression level of most genes can be cor-
rected, to a large degree, using relatively simple statis-
tical methods. Indeed, we found that the inclusion of
RIN in our model was sufficient to account for much of
the effect of degradation and allowed us to identify a
reasonable number of differentially expressed genes be-
tween pairs of individuals in our data. These were not
spurious signals generated by our approach; they recapit-
ulated observations made at 0 hours (when RNA quality
was excellent), but were originally dwarfed by the mag-
nitude of degradation-driven expression changes in the
uncorrected data. A similar approach – taking into ac-
count variation in RIN – has been previously proposed
for the analysis of RTq-PCR data abundance [30]. Never-
theless, our observations suggest that some of the effects
of transcriptional degradation in ex vivo samples cannot
be corrected. Library complexity decreases somewhat
with lower RNA quality, and some genes (approximately
5%) can no longer be detected at the later time-points.
Based on our data we conclude that these effects cannot
be corrected by simply sequencing more degraded librar-
ies to a greater depth.
In a study similar to our own, Opitz et al. [31] sub-

jected extracted RNA samples from three advanced hu-
man rectal cancer biopsies to degradation through
increasingly longer incubation at 60˚C and then consid-
ered the evidence of time-point/RIN–driven degradation
using microarray data. The RIN values spanned by their
data mirror values in ours, but the results do not. In
contrast to the large RIN-associated effects we observed,
Opitz et al. reported that of 41,000 tested probe-level
2data points only 275 demonstrated significant degrad-
ation effects, with inter-individual differences being the
predominant signal in the data. Assuming that differ-
ences in the platforms used (microarrays and RNAseq)
are not the reason for this discrepancy, one possible ex-
planation for this stark difference between the studies is
that lower RIN scores as a result of degradation of ex-
tracted RNA samples (Opitz et al.) may reflect substan-
tially different properties than lower RIN scores that are
the result of degradation of RNA in decaying cells (our
study). Based on the observations of Opitz et al. we
hypothesize that degradation rates of isolated RNA may
be mostly linear and uniform; thus, the degradation ef-
fects can be accounted for by employing standard
normalization approaches. In contrast, degradation rates of
RNA in a dying tissue sample, a situation that mirrors
more closely conditions likely to be faced by investigators
in clinical or field settings, is not uniform across tran-
scripts. Because these differences cannot be neglected in
downstream analyses, knowledge of the context in which
degradation occurs is, therefore, crucial.
Our observations suggest that actively mediated degrad-

ation of transcripts may occur during necrosis; namely,
degradation of RNA in a dying tissue may not be a com-
pletely random process. Biologically mediated degradation,
whether actively driven by the cell’s decay machinery [1],
or simply the consequence of the leakage of RNases into
cells as membranes are disrupted, is different from the
heat-driven degradation of naked RNA, which in turn is
likely to be different from the degradation caused by con-
tinued freeze-thaw cycles [32]. It is likely that in a dying
tissue, most degradation is initially biologically mediated
and directed towards specific classes of transcripts, but as
the cellular environment continues to deteriorate, the rela-
tive importance of stochastic degradation may increase
such that at later time-points degradation becomes in-
creasingly uncoupled from biological function.
Additionally, the increased resolution of RNA sequen-

cing relative to other platforms used to assay gene ex-
pression levels [25] is both a hindrance and a boon in
this situation, allowing for detection of subtler differ-
ences than ever before, but also warranting greater cau-
tion when analyzing samples of differing quality.
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Recommendation regarding the inclusion of RNA samples
in a study
Previous studies [8-10,23,32-34] have sought to provide
an RNA degradation threshold below which in-depth
analysis of RNA is not recommended. However, these
studies have reached conflicting conclusions. Our data
suggest that if a simple cut-off value is to be used, a con-
servative cut-off in the context of RNA degradation in
dying tissue samples lies between 7.9 and 6.4, the mean
RIN scores associated with 12 hours and 24 hours in our
time course experiment, respectively. We observed few
differences in measurements of gene expression between
0 hours and 12 hours, as evidenced by the low number
of genes identified as differentially expressed between
the two time-points. Thus, it may be tempting to con-
clude that so long as all samples in any particular study
have roughly similar RINs explicit correction is not ne-
cessary. However, when we test for differential expres-
sion between other close time-points we identify 3,020
genes as differentially expressed between 48 hours and
84 hours (difference in mean RIN = 1.3), and 5,293
between 24 hours and 48 hours (difference in mean
RIN = 1). It is clear that measurements of gene expres-
sion are extremely sensitive to starting sample quality.

Conclusions
Our observations indicate that useful data can be col-
lected using RNA sequencing even from highly degraded
samples. As long as RIN scores are not associated with
the effect of interest in the study (namely, different clas-
ses of samples in the study are not associated with dif-
ferent distributions of RIN scores), accounting for RIN
scores explicitly can be an effective approach. In our
study, we were able to identify differently expressed
genes between individuals even when RNA samples with
RIN scores around 4 were included. Excluding the sam-
ples with RIN values lower than 6.4 in our study would
have resulted in a less powerful design than including
these samples and globally correcting for RIN values.
Given these results, we believe that under most circum-
stances, the most effective approach may be to include
all samples regardless of quality, and explicitly model a
measure of RNA quality in the analysis.

Methods
RNA degradation
We obtained Buffy coat samples from four adult Caucasian
males from Research Blood Components LLC (Boston,
MA, USA) and separated PBMCs through a standard
Ficoll gradient purification. Each sample was split into ali-
quots of four million live cells and resuspended in 200 uL
of PBS. Cells were kept at room temperature and aliquots
from each sample lysed every twelve hours by addition of
700 uL of RLT buffer (Qiagen, Valencia, CA, USA) with
beta-mercaptoethanol (Sigma-Aldrich, St Louis, MO,
USA) added at 10 uL BME/1 mL RLT according to the
manufacturer’s instructions. Lysed cells were immediately
frozen and not thawed until RNA extraction.

Extraction and sequencing
RNA was extracted using the Qiagen RNeasy kit. Extracted
RNA quality was assessed with a BioAnalyzer (Agilent
Technologies, Wilmington, DE, USA). From these results
we selected five time-points – 0 hours, 12 hours, 24 hours,
48 hours and 84 hours – that encompassed a large stretch
of the degradation spectrum. We then prepared poly-A-
enriched RNA sequencing libraries for all 20 individual/
time-point combinations according to a previously pub-
lished protocol [25], using 1.5 μg of total RNA per library
in all instances. In all instances, we added 15 ng (1%) of an
exogenous RNA spike-in during library preparation, com-
posed of equal parts Caenorhabditis elegans, Drosophila
melanogaster and Danio rerio total RNA. Samples were
multiplexed and sequenced on four lanes (two per library
preparation strategy) of an Illumina HiSeq2000 using
standard protocols and reagents. Reads were 50 bp in
length. All generated reads have been deposited into the
Sequence Read Archive (SRA) under accession numbers
SAMN02769865-SAMN02769884.

Data mapping and normalization
Data were combined across lanes and data for all libraries
were randomly subsampled to the lowest observed number
of reads, 12,129,475. Reads were independently mapped
to the human (hg19), D. rerio (danRer7), D. melanogaster
(dm3), and C. elegans (ce10) genomes using BWA 0.6.2
[35]. All reference genomes were obtained from the UCSC
Genome Browser [36]. Only reads that mapped exclusively
to a single site in the human genome with one or zero mis-
matches were retained for downstream analyses. Following
mapping, we removed all reads that mapped to more than
one genome. At this point we also discarded one individ-
ual – individual number 2 - due to low mappability and
read quality in the later time points [see Additional file 2:
Figure S1]. We also mapped all reads using TopHat 2.0.8
and the same quality thresholds and filtering steps.
We calculated RPKM [37] for all ENSEMBL v71 [38] hu-

man genes in our data. Genes with multiple transcripts
were collapsed into a single transcript containing all exons
of the gene; where multiple exons of different size over-
lapped the same genomic region, the entire region was
kept. We discarded all exonic regions transcribed as part of
more than one gene. Additionally, we quantile-normalized
both RPKM and read count-level data across individuals
using the lumiN function in the Bioconductor [39] package
lumi [40], which controls for, and dampens, technical
sampling variance in highly expressed genes. Read counts
were log2 transformed prior to quantile normalization to
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generate a normal distribution; analyses were carried out
on subsequently untransformed counts.
All statistical analyses were carried out using R 2.15.2.
Calculation of decay rates
We estimated the decay rate of the 11,923 genes with an
RPKM >0.3 in all individuals at all time-points by fitting
a first order log-normal transform of the classical first-
order decay equation:

ln y tð Þð Þ ¼ B0−kt þ ε

where y(t) is the mRNA abundance of a given gene at
time t (in quantile-normalized RPKM), B0 is the abun-
dance at the initial time-point, and k the decay rate, with
the variance term ε being normally distributed. Data
from all three individuals were considered simultan-
eously; that is, we obtained a single decay constant for
each gene across all three individuals. To control for the
high FDR of expressed genes at low expression levels, all
RPKM observations <0.3 were discarded for all subse-
quent analyses, as in [41].
Length and per-transcript %GC content were calcu-

lated using BEDTools (version 2.16.2 [42]), using the
same gene models described above. Biotype as well as 5′
and 3′ UTR length were retrieved from ENSEMBL v71.
In those instances where there are multiple UTRs asso-
ciated with the same gene, we used the median UTR
length for each gene in all calculations.
Differential expression and gene enrichment
Differentially expressed genes were identified using the
R package edgeR [43], utilizing a GLM framework with
time, individual ID and sample RIN as covariates, as
described above. Only those genes with a minimum ob-
servation of one mapped read across all individuals at
all time-points were included. Instead of quantile nor-
malization as described above, all data were normalized
using trimmed mean of M values normalization (TMM,
[44]), which corrects for the observed differences in
informative reads between sequencing libraries. Inter-
individual variance estimates were generated after variance
stabilization of read counts using the predFC function in
edgeR.
Downstream gene enrichment analyses were carried

out using the R package topGO [45], using the ‘classic’
algorithm and a minimum node size of five. All signifi-
cance values given in the text have been corrected to an
FDR of 5% or 1%, using the qvalue method of [46]. In all
cases, the background data set included all 14,094 genes
with complete observations.
Additional files

Additional file 1: Table S1. Relationship between RIN and time to RNA
extraction.

Additional file 2: Figure S1. Fraction of reads mapped from generated
libraries. All samples were randomly subset to the same depth prior to
mapping.

Additional file 3: Table S2. Correlations between PCs and covariates.

Additional file 4: Figure S2. PCA plot of principal components 4 and
5, the only components significantly associated with inter-individual
variation in the data. Different colors identify different time-points, while
each shape indicates a particular individual in the data set.

Additional file 5: Figure S3. A) PCA plot of the 15 samples included in
the study based on data from 27,856 genes with at least one mapped
read to the 1,000-most 3′ base pairs in a single individual. Different colors
identify different time-points, while each shape indicates a particular
individual in the data set. B) Spearman correlation plot of the 15 samples
in the study, using only data trimmed to the 1,000-most 3′ bp.

Additional file 6: Figure S4. Density plot of RPKM estimates per gene
after mapping with BWA and TopHat. Only genes with an RPKM > =0.3
after mapping with BWA are shown.

Additional file 7: Figure S5. Spearman correlation plot as in Figure 1
using data mapped by TopHat. A) Correlations across 33,438 genes with
at least one instance of one read mapped by TopHat. B) Correlations
across 29,156 genes with at least one instance of one read mapped by
BWA.

Additional file 8: Figure S6. A) PCA plot of the 15 samples included in
the study based on data from 29,156 genes with at least one mapped
read in a single individual, after correcting for the effects of RIN on the
data. Different colors identify different time-points, while each shape
indicates a particular individual in the data set. B) Spearman correlation
plot of the 15 samples in the study, after correcting for the effects of RIN
on the data.

Additional file 9: Figure S7. Mean RPKM as a function of time (h) to
sample collection.

Additional file 10: Figure S8. Effects of sequencing depth on library
complexity. Dashed red lines indicate median RPKM in each subset. (A to
D) Density plots of RPKM values in the 0-hour data when subsampled to
indicated depths. For comparison, the observed distribution of RPKM
values in the 84-hour data is plotted in each figure in blue.

Additional file 11: Table S3. Estimated decay rates for 11,923
tested genes.

Additional file 12: Table S4. Significantly overrepresented GO terms
among slowly degraded genes.

Additional file 13: Table S5. Significantly overrepresented GO terms
among rapidly degraded genes.
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