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Background: PCI/MPN domain protein complexes comprise the 19S proteasome lid, the COP9
signalosome (CSN), and eukaryotic translation initiation factor 3 (elF3). The elF3 complex is
thought to be composed of essential core subunits required for global protein synthesis and non-
essential subunits that may modulate mRNA specificity. Interactions of unclear significance were
reported between elF3 subunits and PCI proteins contained in the CSN.

Results: Here, we report the unexpected finding that fission yeast has two distinct elF3 complexes
sharing common core subunits, but distinguished by the PCIl proteins elF3e and the novel elF3m,
which was previously annotated as a putative CSN subunit. Whereas neither elF3e nor elF3m
contribute to the non-essential activities of CSN in cullin-RING ubiquitin ligase control, eif3m,
unlike eif3e, is an essential gene required for global cellular protein synthesis and polysome
formation. Using a ribonomic approach, this phenotypic distinction was correlated with a different
set of mRNAs associated with the elF3e and elF3m complexes. Whereas the elF3m complex
appears to associate with the bulk of cellular mRNAs, the elF3e complex associates with a far more
restricted set. The microarray findings were independently corroborated for a random set of 14
mRNAs by RT-PCR analysis.

Conclusion: We propose that the PCI proteins elF3e and elF3m define distinct elF3 complexes
that may assist in the translation of different sets of mRNAs.

Background CSN/elF3) domains [1]. The proteasome 20S catalytic
Three protein complexes that are conserved from yeast to  particle and the 19S regulatory subunit cooperate in
humans, the 19§ proteasome lid, the CSN, and elF3, con-  degrading polyubiquitylated proteins (reviewed in [2]).
tain subunits characterized by two protein motifs: the = The 19S proteasome can be separated into the base com-
MPN (Mpr1/ Pad1l N-terminal) and the PCI (proteasome/  plex, which binds and unfolds substrates [3], and the
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eight subunit lid complex, which cleaves ubiquitin from
substrates, thus apparently facilitating the entry of sub-
strates into the catalytic proteasome barrel [4,5].

In higher eukaryotes, the subunits of the 19S lid show
pair-wise similarity to the eight subunits of the CSN [6-9].
In vivo, CSN promotes the activity of cullin-RING ubiqui-
tin ligases [10-16], multiprotein complexes containing
cullins, the RING protein RBX1, and one of several hun-
dred substrate-specific adaptors [17-22]. The MPN
domain containing CSN subunit 5 harbors a protease
motif [23] that cleaves the ubiquitin-related peptide
NEDDS from cullins [24,25]. This activity, acting in con-
cert with the CSN-associated deubiquitylation enzyme
Ubp12, was proposed to promote cullin function by facil-
itating the recruitment of labile substrate adaptors
[11,16,26,27].

The third PCI/MPN complex, elF3, is more distantly
related to CSN and the 19S lid (reviewed in [28]).
Whereas human elF3 consists of up to 13 subunits, con-
secutively named elF3a - 1 and GA17 [29,30], budding
yeast contains only six to eight subunits (depending on
purification conditions). Five of these subunits are
orthologs of human elF3a, b, ¢, g, and elF3i [31,32] and
appear to constitute a conserved core complex [31,33].
Fission yeast contains the same five core subunits, in addi-
tion to the non-core subunits el[F3d/Moelp, elF3e/Int6p,
and elF3h [34-36]. A putative elF3f ortholog was also
identified, but biochemical evidence confirming it as an
authentic elF3 subunit functioning in protein synthesis is
still outstanding [34,35,37,38].

elF3 is the most complex translation initiation factor and
plays at least two important roles in protein synthesis.
First, eIF3 binds to the 40S ribosome and facilitates load-
ing of the Met-tRNA/elF2 - GTP ternary complex to form
the 43S preinitiation complex. Subsequently, elF3 appar-
ently assists elF4 in recruiting mRNAs to the 43S complex.
A critical in vivo function of eIF3 core subunits in these
processes was indicated by the lethality of the respective
budding yeast deletion strains [31]. In contrast, in fission
yeast, the non-core subunits elF3d and elF3e are not
essential for wviability or global protein synthesis
[34,36,38,39]. It was therefore proposed that distinct sub-
classes of elF3 complexes, containing different combina-
tions of core and non-core subunits, may regulate specific
subsets of mRNAs in fission yeast [34,36,38,39]. Our
study provides the first experimental evidence substantiat-
ing this hypothesis by demonstrating that biochemically
distinct elF3 complexes defined by the PCI domain pro-
teins elF3e and elF3m (a novel elF3 protein) associate
with different sets of mRNAs.

http://www.biomedcentral.com/1741-7007/3/14

Results

Both csné and csn7b are essential genes

CSN complexes of higher eukaryotes typically contain
eight distinct subunits (two MPN and six PCI proteins).
However, in fission yeast only six subunits are known
(Csnlp, 2p, 3p, 4p, 5p, 7Ap; Ref. [13]), none of which are
essential for viability [40-42]. We noticed two genes in the
Schizosaccharomyces pombe genome database, originally
annotated as c¢sn6  (SPBC4C3.07) and c¢sn7b
(SPAC1751.03), which encode MPN and PCI domain
containing proteins with considerable similarity to meta-
zoan CSN6 and CSN7B, respectively (data not shown). In
order to determine whether these genes might function in
the known biochemical pathways regulated by CSN, cul-
lin deneddylation and Ubp1l2p-mediated deubiquityla-
tion [24,26], we deleted c¢sn6 and csn7b in wild-type
diploid cells. Upon sporulation and tetrad analysis, only
two viable spores could be recovered in each case, both of
which were uracil auxotroph (Fig. 1A, and data not
shown). Thus, unlike the genes encoding the six known
subunits of the fission yeast CSN [41,42], csn6 and csn7b
are essential.

Csnép and Csn7Bp associate with elF3 components

To elucidate the essential functions of Csn6p and Csn7Bp,
we sought to identify their interacting proteins. To this
end, we attempted to modify csn6 and csn7b at their
endogenous genomic loci with five consecutive protein A
epitope tags (proA). The C-terminal tag also contained a
cleavage site for Tobacco Etch Virus (TEV) protease
upstream of the protein A moieties. Diploid analysis indi-
cated that C-terminal tagging destroyed the essential func-
tion of ¢sn6 (data not shown). In contrast, a csn7b-proA
haploid strain was viable and did not display any obvious
phenotypes (data not shown). This indicated that the
tagged allele was functional. Total protein lysate from the
csn7b-proA haploid strain was absorbed to Immunoglobu-
lin G (IgG) resin and specifically retained proteins were
eluted with sodium dodecyl sulfate (SDS) or by cleavage
with TEV protease. The two eluates were resolved by gel
electrophoresis and Csn7Bp-proA interacting proteins
were identified by peptide mass fingerprinting using
matrix-assisted laser desorption/ionization-time-of-flight
(MALDI-TOF) mass spectrometry.

Both eluates contained an identical set of proteins. In
addition to Csn6p, the Csn7Bp complex contained the
elF3 core subunits elF3a, b, ¢, and i, as well as the non-
core subunit elF3h (Fig. 1B, Table 1). The elF3g core sub-
unit was not detected using MALDI-TOF in this purifica-
tion, but was detected in an independent purification of
the Csn7Bp complex using the more sensitive method of
nano-liquid chromatography and tandem mass spectrom-
etry (LC-MS/MS, see Fig. 5A). However, elF3e and elF3d,
two previously described components of S. pombe elF3
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Analysis of csné and csn7b genes and proteins. (A) The csné and csn7b genes were disrupted in diploid S. pombe cells by
inserting the ura4 marker. Diploids were sporulated and spore viability was examined by tetrad analysis. Only two spores were
viable, indicating that csné and csn7b are essential. (B) Cell lysate from a strain carrying csn7b modified with five C-terminal
pro-A tags and a TEV cleavage site at the endogenous genomic locus was absorbed to IgG resin, followed by elution of bound
proteins with TEV protease (left panel) or SDS (right panel). Gels were stained with Coomassie Brilliant Blue, and proteins
were identified by MALDI-TOF mass spectrometry. The asterisks denote degradation products of elF3c.

Table I: Summary of elF3 subunits in various eukaryotes

Unified Domain Human S. cerevisiae S.pombe Csn7Bp  S. pombe Intép S. pombe elF3b
Nomenclature (Core subunits) complex complex complex
elF3a PCI pl70 Tif32p pl0o7 pl0o7 plo7
elF3b RRM pllé Prtlp p84 p84 p84
elF3c PCI pllo Niplp plo4 plo4 plo4
elF3d - p66 - - Moelp Moelp
elF3e PCI p48 - - Intép Intép
elF3f MPN p47 - Csnép Csnép Csnép
elF3g RRM/Zn finger p44 Tif35p Tif35p Tif35p Tif35p
elF3h MPN p40 - p40 - p40
elF3i WD repeat p36 Tif34p Sumlp Sumlp Sumlp
elF3j - p35 - - - -
elF3k PCI p28 - - - -
elF3l PCI p67 - - - -
elF3m PCI GAI7 () - Csn7Bp - Csn7Bp
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[34,36,38,39] were consistently absent from the Csn7Bp
complex when analyzed either by MALDI-TOF or by LC-
MS/MS (Fig. 1B and 5A).

Notably, no authentic CSN subunits were found in the
Csn7Bp complex, consistent with the previous demon-
stration that S. pombe CSN contains only six non-essential
subunits [13]. Structural analysis indicated that Csn6p is
not only related to human CSN6, but shows a slightly
greater overall similarity to human eIF3f (data not
shown). Based on the functional characterization
described below (Fig. 2), fission yeast Csn6p therefore
appears to be the ortholog of human elF3f.

A Csn7Bp ortholog is not known in the human elF3,
although the recently identified subunit GA17 [30] shows
considerable similarity to Csn7Bp (K. Hofmann, personal
communication). In addition, interactions of metazoan
CSN7 with elF3 subunits have previously been observed
[43,44]. With regards to the unified nomenclature of elF3
subunits [29], we propose elF3m as a more appropriate
name for the novel fission yeast elF3 subunit encoded by
csn7b (see Table 1). Throughout this manuscript, we will
use the proposed new names for the eif3f and eif3m genes
and their products. The original annotations have recently
been revised by the curator of the S. pombe genome data-
base, in order to reflect the findings presented here.

The elF3f and elF3m proteins are primarily cytoplasmic

The evidence presented above suggested that elF3f and
elF3m are essential subunits of S. pombe elF3. To substan-
tiate this possibility, we determined the subcellular local-
ization of eIF3f and eIF3m. If these proteins were
authentic elF3 subunits involved in protein synthesis,
they should assume a subcellular localization similar to
known elF3 subunits. We therefore prepared three strains
with green fluorescent protein (GFP) tagged alleles of
elF3b, elF3e, and elF3m integrated into their respective
genomic loci. In addition, since C-terminal GFP-tagging
destroyed the essential function of the small elF3f protein,
we prepared a strain mildly overexpressing N-terminally
GFP-tagged elF3f from a pREP81 plasmid. Fluorescence
microscopy of live cells revealed that all four proteins
were primarily localized in the cytoplasm (Fig. 2A), which
would be consistent with a function in protein transla-
tion. In contrast, CSN subunits are largely nuclear in fis-
sion yeast ([41], and our own unpublished observation).

elF3f and elF3m are required for global protein synthesis

To directly assess the potential role of elF3f and elF3m in
protein synthesis, we prepared haploid eif3f and eif3m
deletion strains maintained viable by plasmids driving the
regulated expression of eif3f and eif3m, respectively.
Expression from these plasmids could be turned off by the
addition of thiamin to the growth media, resulting in a

http://www.biomedcentral.com/1741-7007/3/14

strong reduction in protein levels within 20 to 32 hours
(Fig. 2B). Coincident with shut-off of elF3f and elF3m
expression, global cellular protein synthesis was dimin-
ished by ~80%, as determined by metabolic labeling with
35S-methionine (Fig. 2C).

Further biochemical analysis by sucrose gradient velocity
centrifugation revealed a strong reduction in the forma-
tion of polysomes in eif3f and eif3m mutants following
promoter shut-off (Fig. 2D). In contrast, as described pre-
viously [34,36,38,39], eif3e mutants showed only a minor
reduction in total protein synthesis (data not shown) and
essentially normal polysomes (Fig. 2D).

The conserved cullin deneddylation function of CSN was
not impaired either in eif3f and eif3m mutants or in eif3e
mutants, since cullin 1 (Cullp) did not accumulate exclu-
sively in the neddylated form as it does in csn5 deletion
strains (Fig. 2E). Similarly, unlike in csn5 mutants (Fig. 2E;
[26]), CSN/Ubp12p-mediated inhibition of Cullp in
vitro ubiquitin ligase activity was not impaired upon shut-
off of either eif3f or eif3m expression. Cullp neddylation
and activity were also unaffected in eif3e mutants (Fig.
2E). These data suggested that elF3f and elF3m are bona
fide subunits of fission yeast elF3 but not CSN, perform-
ing essential functions in protein synthesis similar to elF3
core subunits.

The elF3m and elF3e proteins define distinct elF3
complexes

Although the purification of the el[F3m complex robustly
retrieved roughly stoichiometric amounts of known elF3
subunits, two subunits, elF3d and elF3e, were conspicu-
ously absent (Fig. 1B, Table 1). To exclude the possibility
that we had overlooked these subunits because they were
obscured by the IgG bands, we affinity-purified elF3e-
associated proteins from an eif3e-proA strain. The retrieved
proteins were identified using MALDI-TOF mass spec-
trometry as before.

Like the elF3m complex, the elF3e complex contained
roughly stoichiometric amounts of the elF3 core subunits
a, b, ¢, g and i (Fig. 3A, Table 1). In addition, eIF3f was
present while, unexpectedly, elF3m and elF3h were miss-
ing. We did not detect the proteasome lid subunit Rpn5p,
which previously had been shown to associate with elF3e
and elF3d [45]. This observation indicated that the
described elF3d/elF3e/Rpn5p interaction is either unsta-
ble under our purification conditions or contains only a
minor fraction of the total elF3e engaged in protein
interactions.

These results raised the intriguing possibility that fission
yeast contains two distinct elF3 complexes that comprise
an overlapping set of core subunits, but are distinguished
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Figure 2

Roles of eif3e and eif3min protein synthesis. (A) Subcellular localization. Live cells expressing GFP-tagged alleles of eif3b,
eif3e, and eif3m at the endogenous genomic loci were examined by fluorescence microscopy. N-terminally GFP-tagged eif3f
was expressed at low levels from the pREP81 plasmid. (B) Shut-off strains. Diploid heterozygous eif3f and eif3m deletion
strains were transformed with pREP8I plasmids driving the thiamin-repressible expression of Myc-tagged elF3f and elF3m,
respectively. Diploids were sporulated and homozygous disruptants carrying the eif3f and eif3m plasmids were selected. Cells
were grown in liquid medium to an ODsgy; of 0.3 in the absence of thiamin, followed by promoter shut-off by the addition of
thiamin. Samples were taken at the indicated time points after promoter shut-off and analyzed for the expression of plasmid
borne elF3f and elF3m by immunoblotting with anti-Myc antibodies. (C) Effect on total protein synthesis. The eif3f and eif3m
shut-off strains were maintained in the absence or presence of thiamin as indicated. Strains transformed with empty pREP8I
plasmid were included as control. Cells were metabolically labeled with 33S-methionine, and aliquots of total cellular proteins
were separated by SDS-PAGE and analyzed by autoradiography. The Coomassie Blue stained gel is shown to document equal
protein loading. Data were quantified by Phosphorlmager analysis and results are displayed in a bar graph. (D) Effect on polys-
omes. Polysome profiles were determined for the indicated strains as described in the Methods section. An eif3e deletion
strain is shown for reference. (E) Effect on CSN-mediated regulation of cullin-RING ubiquitin ligases. Cullp complexes were
immunopurified from the indicated strains and employed in substrate-independent in vitro ubiquitylation reactions with puri-
fied El, the E2 Cdc34p, ubiquitin, and ATP [26]. Polyubiquitin chains formed in the reaction are indicated (top panel). In con-
trast to csn5 mutants, derepression of Cullp activity is not observed in cells lacking eif3f, eif3m, or eif3e. The neddylation state
of Cullp was determined by immunoblotting (middle panel). Hyperneddylated Cullp only accumulates in csn5 mutants. Shut-
off of eif3f and eif3m expression was verified by immunoblotting with anti-Myc antibodies (lower panel).
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Distinct elF3 complexes. (A) elF3 complexes associated with elF3e and elF3m were affinity-purified by absorption of the
respective pro-A-tagged proteins to IgG beads. Bound proteins were eluted by cleavage with SDS (elF3e) or TEV protease
(elF3m). (B) The eluates described in (A) were analyzed by immunoblotting with elF3d antibodies. The asterisk refers to cross-
reactivity of the secondary antibody with Ig light chains. (C) Lysates from cells expressing Myc-tagged Csn5p, elF3e, and elF3m
from their endogenous genomic loci were immunoprecipitated with anti-elF3d antisera. Coprecipitated proteins were identi-
fied by immunoblotting as indicated. Total cell lysates are shown to document expression levels of the endogenously tagged
proteins. (D) Protein lysate from cells expressing protein A-tagged elF3b from the endogenous promoter was absorbed to IgG
beads, and specifically retained proteins were identified by LC-MS/MS.
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by the presence of either the essential PCI protein e[F3m
and the MPN domain protein elF3h or the non-essential
PCI protein elF3e and its binding partner elF3d. To
exclude the possibility that our mass spectrometry analy-
sis missed substoichiometric amounts of elF3d in the
elF3m complex, we analyzed elF3m complexes by immu-
noblotting with elF3d antisera. Whereas elF3d was readily
detectable in the elF3e complex, it was undetectable in the
elF3m complex (Fig. 3B). In the reciprocal experiment,
elF3d antibodies co-immunoprecipitated elF3e-13Myc,
but not elF3m-13Myc or Csn5p-13Myc (Fig. 3C).

To exclude the possibility that our cell lysis or affinity
purification conditions led to uncontrolled release of elF3
subunits, thus mimicking the existence of distinct sub-
complexes, we performed a purification using the protein
A-tagged elF3b core subunit as bait. As determined by LC-
MS/MS performed on excised bands detected in the com-
plex upon PAGE separation, the elF3b complex contained
all known elF3 core components as well as elF3f and
elF3m (Fig. 3D). The elF3e and elF3d proteins were also
present, albeit in clearly substoichiometric amounts.
These findings indicate that purification of elF3b resulted
in the copurification of the distinct elF3m- and elF3e-con-
taining complexes. Taken together, these data strongly
suggested the existence of two distinct elF3 complexes
defined by the PCI proteins elF3m and elF3e.

The elF3m and elF3e proteins associate with distinct sets
of mRNAs

The finding that eif3m is essential, whereas eif3e is dispen-
sable, suggested the possibility that the different elF3
complexes they define regulate different subsets of
mRNAs. To approach this, we sought to identify mRNAs
specifically associated with the elF3m and elF3e com-
plexes. The complexes were affinity-purified as described
above in the presence of RNAse inhibitors, and the associ-
ated RNA was extracted, amplified, and converted to Cy3-
labeled cDNA as described in the Methods section. The
Cy3-labeled cDNA was hybridized competitively with
Cy5-labeled cDNA prepared from total RNA onto micro-
arrays representing all 4988 predicted S. pombe open read-
ing frames (ORFs) and RNAs. Based on the background
subtracted hybridization signals, elF3-associated mRNAs
were ranked according to their factor of enrichment in the
elF3m and elF3e complexes over a mock purified sample
([see additional file 1]).

The microarray analysis suggested a global role for e[F3m
and a more restricted function of elF3e in translation.
Using an arbitrary cut-off value of three-fold enrichment
over mock, el[F3m associated with 2464 different mRNAs,
whereas elF3e associated with only 520 distinct species
(Fig. 4A). We observed 414 mRNAs enriched more than
three-fold in both samples. (Fig. 4A). In addition, our

http://www.biomedcentral.com/1741-7007/3/14

analysis revealed 106 mRNAs uniquely enriched in the
elF3e complex, whereas 2050 transcripts were uniquely
enriched in the eI[F3m complex (Fig. 4A,C).

A ranked list of all 106 mRNAs that were uniquely
enriched more than three-fold in the elF3e complex was
assembled ([see additional file 2]). Approximately 75% of
these mRNAs fell into one of three categories: mRNAs
encoding proteins involved in intermediary metabolism
(25.5%), those encoding proteins involved in protein
metabolism (14.2%), and those encoding proteins with
unknown functions (35.8%; Fig. 4B). The remainder was
distributed roughly equally among four categories:
mRNAs encoding proteins involved in nucleic acid metab-
olism, those encoding proteins involved in transcription,
those encoding transporter proteins, and those encoding
unclassified proteins.

A corresponding list of the 106 most highly enriched
mRNAs exclusively present in the e[F3m complex (out of
a total of 2050 enriched by a factor greater than three)
revealed that ~58% also fell into three categories: mRNAs
encoding proteins involved in nucleic acid metabolism
(9.4%), those encoding transporter proteins (18.9%), and
those encoding proteins of unknown function (20.8%).
The remainder was roughly equally distributed among
four categories: mRNAs encoding proteins involved in
intermediary metabolism, those mRNAs encoding pro-
teins involved in protein metabolism, those encoding
proteins involved in transcription, and those encoding
unclassified proteins (Fig. 4B, [see additional file 2]).

To exclude the possibility that our affinity purification
protocol unspecifically enriched highly expressed mRNAs,
we averaged the data from the three competively hybrid-
ized samples of total S. pombe cDNA to determine the rel-
ative expression rank of each mRNA (rank 1 = most
abundant mRNA, rank 5407 = least abundant mRNA; see
legend to Fig. 4C for detail). A plot of expression rank vs.
factor of enrichment of the 106 mRNAs most enriched in
the elF3e and elF3m complexes revealed that the elF3m
complex contained mRNAs that were distributed equally
over the entire range of expression levels. In contrast, the
elF3e complex was enriched for rare mRNAs (~65 % of
elF3e-associated mRNAs had an expression rank > 4000;
see Fig. 4C). The lack of a linear correlation between
mRNA expression level and enrichment in the elF3e and
elF3m complexes argues against unspecific copurification
of abundant mRNAs.

Specific association of mMRNAs with elF3m and elF3e
complexes

To validate the results from the microarray hybridizations,
we chose several mRNAs at random from each list of 106
and used RT-PCR to confirm their interactions with the
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Figure 4

Association of mMRNAs with elF3 complexes. (A) Messenger RNAs associated with elF3e and elF3m complexes were
identified by microarray hybridization as described in the Methods section. The graph indicates the numbers of mRNAs
enriched more than three-fold over mock in both complexes. (B) Classification into functional groups of the 106 mRNAs most
highly and uniquely enriched in complexes with elF3e or elF3m. (C) The relative expression ranks of the 106 most highly and
uniquely enriched mRNAs in the elF3e and elF3m complexeswere determined using the relative hybridization signals obtained
with total S. pombe cDNA ([see additional file 1]). The expression ranks were blotted against the factor of enrichment of each
mRNA in the elF3 complexes. No correlation between expression rank and enrichment is apparent, indicating that highly
expressed mRNAs were not unspecifically enriched in elF3 complexes. The 5407 individual features on the microarray slides
represent the 4988 ORFs and transcripts predicted in the Sanger Centre S. pombe genome database and various controls. To
simplify the analysis, expression ranks were also assigned to these control spots, thus resulting in expression ranks for some
ORFs higher than the theoretically possible number of 4988.
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complexes. (A) The elF3 complexes shown were affinity-

purified as described in the Methods section, and separated by SDS-PAGE followed by staining with Coomassie Brilliant Blue.
The labeled bands were identified by LC-MS/MS. elF3f* refers to a band in the elF3m complex that was not identified by mass

spectrometry in this experiment, and is therefore assigned based

on its comigration with elF3f identified in the elF3e complex

(right lane). elF3f was positively identified by MALDI-TOF mass spectrometry as a subunit of the elF3m complex in Fig. IB. (B)
The indicated elF3e- and elF3m-associated mMRNAs were extracted from the purified complexes and employed in RT-PCR
reactions using primers specific for each mRNA (see Table 3). PCR products obtained with total S. pombe RNA are shown for
reference in the left panel. The factor of enrichment of each mRNA in the respective elF3 complex and the enrichment rank

(out of all 106 mRNAs enriched in either complex) are indicated

below the gels.

respective elF3 complexes. elF3e-proA- and elF3m-proA-
associated complexes were affinity-purified as before and
separated by PAGE. Both complexes showed the same dif-
ferential subunit composition as described above (Fig.
5A). The associated RNA was purified, split into equal
portions, and employed in RT-PCR reactions with gene-
specific primer pairs.

The RT-PCR analysis of a total of fourteen mRNAs
included eight mRNAs identified in the elF3e complex,
five mRNAs identified in the elF3m complex, and one
mRNA found to be associated with both complexes with
similar enrichment factors. These mRNAs varied widely in
their factors of enrichment and their enrichment ranks as
indicated in Fig. 5B. Without exception, all eight mRNAs

found to be enriched in the elF3e complex by microarray
analysis were also found preferentially associated with
this complex by RT-PCR (Fig. 5B). Based on this result, we
calculate a false positive rate of less than 0.11 with a 95%
confidence interval of 0.00 - 0.31. Whereas mRNAs with
a high enrichment factor (>10, [see additional file 2])
appeared to be exclusively associated with elF3e-proA
(within the limit of detection), those with a lower enrich-
ment factor (<10) also displayed a low amount of associ-
ation with the elF3m complex (Fig. 5B). Conversely, all
five mRNAs highly enriched in the elF3m complex as
determined by microarray analysis ([see additional file 2])
were almost exclusively bound to this complex when ana-
lyzed by RT-PCR (Fig. 5B).
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Notably, the mRNA encoding the proteasome subunit
Rpn5p, which was found in both complexes by
microarray analysis with similar enrichment factors
(elF3e = 5.1; elF3m = 8.1) was also confirmed as being
associated with both elF3 complexes by RT-PCR (Fig. 5B).
These results strongly suggest that the elF3m and elF3e
complexes specifically associate with distinct sets of
mRNAs.

Discussion

PCI proteins define distinct elF3 complexes

Our results show that Csn6p and Csn7Bp are subunits of
fission yeast elF3. Csn6p was shown to be the eIF3f subu-
nit conserved in all eukaryotes except budding yeast. Con-
sistent with this finding, eIF3f has previously been found
to be associated with elF3g, although the role of elF3f in
protein synthesis had not been examined [34]. Our study
further identified two distinct elF3 complexes defined by
the PCI proteins elF3e and elF3m (Fig. 3A). No direct
equivalent of eIF3m is apparent in elF3 preparations from
other eukaryotes. Considering the essential function of
elF3m in protein synthesis in fission yeast, it is possible
that other PCI proteins substitute for elF3m in other
organisms.

Consistent with this idea is the finding that the PCI
domain containing GA17, a recently identified protein
copurifying with human elF3 [30], shows more similarity
to elF3m than to any other PCI protein (K. Hofmann, per-
sonal communication). In addition, the PCI domain con-
taining CSN subunits 1, 3, 7, and 8 were found to interact
with elF3 subunits in Arabidopsis thaliana and in human
cells [43,44,46]. In addition, Pci8p/Csn11p, a non-essen-
tial PCI subunit of the budding yeast CSN [47,48], copu-
rifies with essential elF3 core subunits [49]. Although the
functional significance of these interactions is still
unclear, our findings raise the intriguing possibility that
they define multiple subclasses of distinct e[F3 complexes.
Whereas fission yeast appears to rely on an essential elF3
complex classified by el[F3m and a non-essential complex
specified by elF3e, higher eukaryotes may divide the task
of mRNA translation among a multitude of elF3 com-
plexes. Since the individual PCI proteins defining these
subcomplexes are expected to be present in substoichio-
metric amounts relative to core components, as is e[F3e in
the S. pombe core complex, they may have escaped detec-
tion in bulk elF3 preparations from higher eukaryotes.

Distinct elF3 complexes and translational specificity

Although our finding of distinct eIF3 complexes that asso-
ciate with different sets of mRNAs was surprising, circum-
stantial evidence pointing to their existence was provided
in previous studies. For example, fission yeast elF3e copu-
rifies with elF3 core subunits, and yet, unlike core subu-
nits, elF3e is not required for global protein synthesis or
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viability. Two competing models were proposed to
explain the pleiotropic phenotype of eif3e deletion
mutants, which includes slow growth in minimal media
and meiotic defects [34,36,38,39,50,51]. In the first
model, elF3e regulates the translation of all transcripts,
but rare mRNAs may be more affected by a fractional
reduction in translation efficiency and thus give rise to
distinct phenotypes. In the second model, elF3e regulates
the translation of a specific subset of mRNAs encoding
proteins whose depletion leads to distinct phenotypes but
not lethality. The findings presented here strongly favor
the second model.

Our microarray analysis revealed 106 mRNAs uniquely
enriched in the elF3e complex, many being rare, whereas
2050 transcripts were uniquely enriched in the elF3m
complex. The latter finding is consistent with the severe
protein synthesis defect and lethality of eif3m deletion
mutants. Whereas these mRNA lists were based on an
arbitrary cut-off value of three-fold enrichment over
mock, this criterion proved stringent enough to confirm
specific association with their respective elF3 complexes
of all 14 mRNAs retested by RT-PCR. Thus, since we calcu-
late the false positive rate to be less than 0.11 with 95%
confidence interval 0.00 - 0.31, the maximum number of
mRNAs listed potentially false positively as enriched in
the elF3e complex would be 33 out of 106 (with 95%
confidence).

However, we consider it unlikely that all mRNAs found
enriched in the elF3e complex are exclusive translational
targets of this complex, because the cellular phenotypes of
eif3e mutants are rather discrete. Although many of the
elF3e-associated mRNAs encode essential proteins, viabil-
ity, global protein synthesis, and polysome formation are
not affected in these mutants when they are grown in rich
media (Fig. 2D, and data not shown). It is therefore likely
that e[F3m or other PCI domain proteins can deputize for
elF3e in many cases. In fact, our microarray study revealed
that a substantial portion of elF3e-associated mRNAs was
also recovered in the elF3m complex (Fig. 4A). Nonethe-
less, we strongly suspect that inefficient translation of a
limited set of elF3e-associated mRNAs contributes to dis-
tinct cellular phenotypes found in eif3e mutants (see
below).

The elF3e protein and translational control during stress
response

The eif3e mutants display marked sensitivity to a wide
variety of cellular stresses, such as osmotic stress, nutrient
starvation, and low temperature [34,38,39,50,52] In addi-
tion, eif3e mutants show synthetic lethality with proteas-
ome mutants, which are presumed to accumulate a large
load of misfolded proteins [45]. Conversely, overexpres-
sion of eif3e confers resistance to a broad spectrum of
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unrelated drugs, whose only commonality appears to be
that they induce cellular stress [38]. Overexpression of
elF3e also activates genes involved in stress defense, such
as thioredoxin [38]. Interestingly, the mRNA encoding
thioredoxin was also identified as a putative translational
target of elF3e ([see additional file 2]). Finally, elF3e
undergoes relocalization into cytoplasmic foci in
response to heat and osmotic stress, thus implicating it in
stress regulation [35].

Global protein synthesis is actively switched off in
response to cellular stress and nutrient deprivation
(reviewed in Refs. [53,54]). This shut-off protects cells
from proteotoxicity by relieving chaperones of their load
of unfolded client proteins, conserving amino acids for
other essential functions, and attenuating the metabolic
consequences of protein synthesis. However, long-term
adaptation to stress conditions, repair and recovery
require synthesis of new stress-induced proteins. During
the stress response, some mRNAs must be translated in
the presence of a repressed general translation machinery,
suggesting that select elFs can escape the global repres-
sion. Our studies raise the intriguing possibility that the
elF3e complex has such a specialized function during
stress response. Lack of eif3e may prevent stress-induced
synthesis of its critical translational targets, thus leading to
the known stress sensitivity of the mutant. Substantial
additional work will be required to address this
possibility.

Potential mechanisms underlying mRNA discrimination by
elF3 complexes

Several lines of evidence have begun to implicate other
general translation factors, including elF2 and elF4, in
translational specificity [55]. Importantly, these factors
are downstream of important signaling cascades, includ-
ing the nutrient-sensing TOR pathway and a variety of
stress-induced kinases (reviewed in Refs. [55,56]).
Although the details of these regulatory mechanisms are
beginning to emerge, it is still unclear exactly how elF2
and elF4 contribute to mRNA specificity.

Since elF3 cooperates with the cap-binding elF4 complex
in directing the 5' end of mRNAs to the 40S ribosome, and
several elF3 subunits contain RNA binding motifs, our
data is consistent with a model in which elF3 complexes
defined by distinct PCI proteins recognize determining
features of mRNAs presented to the 40S subunit in concert
with elF4. In agreement with this idea is the recent finding
that the human PCI protein elF3a specifically facilitates
the translation of the mRNA encoding ribonucleotide
reductase M2 [57]. In addition, A. thaliana elF3h, a non-
core subunit, was recently shown to be specifically
required for efficient translation of the transcription factor
ATB2 [46].
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While we have so far been unsuccessful in identifying
common sequence elements within the upstream regions
of mRNAs enriched in the elF3e complex (data not
shown), this analysis was severely hampered by the fact
that 5'UTRs are poorly defined in S. pombe. It is therefore
still possible that critical features, including secondary
structure determinants, lie within the 5'UTR or other
regions of elF3e-associated mRNAs. Substantial addi-
tional work will be required to delineate the exact mecha-
nism of how elF3e may contribute to the translation of
specific mRNAs and the potential impact of this mecha-
nism on human cancers defective in INT6/elF3e [58,59].

Conclusion

We provide biochemical evidence for the existence of two
distinct elF3 complexes in fission yeast. These complexes
contain an overlapping set of subunits, but are distin-
guished by the PCI proteins elF3e and elF3m. Based on
the finding that the distinct eIF3 complexes associate with
different mRNAs, we propose that they have different
translational specificities.

Methods

Fission yeast techniques

Preparation of fission yeast cultures, cDNA cloning, yeast
transformation, PCR-based genomic epitope tagging and
gene deletion, mating, and tetrad analysis were carried out
using standard methods as described [26]. The strains
used in this study are listed in Table 2.

Affinity purification and mass spectrometry

Epitope-tagged strains (eif3m-proA and eif3e-proA strains)
were grown in 12 L yeast extract and supplements (YES)
medium to 1.5 optical density (OD) at 595nm
wavelength and harvested by centrifugation. Cell lysates
were prepared by bead lysis in a lysis buffer containing 50
mM Tris-HCI pH 8.0, 150 mM NaCl, 0.5% Triton X-100,
1 mM dithiothreitol, supplemented with protease inhibi-
tors (10 ug/ml leupeptin, 10 ug/ml pepstatin, 5 ug/ml
aprotinin and 1mM phenylmethylsulfonylfluoride).
Upon centrifugation at 17,000 rpm for 50 min at 4°C,
300 mg total protein in a volume of 50 ml was absorbed
to 100 ul Dyna beads (Dynal Biotech, Oslo, Norway) cou-
pled to whole rabbit IgG (Jackson Immunochemicals,
West Grove, Pennsylvania, USA). Mock purifications were
performed in parallel by absorbing lysate from cells lack-
ing any tagged proteins to IgG beads. Beads were collected
by a magnetic device and washed five times in 5 ml lysis
buffer. TEV protease (Invitrogen, Carlsbad, California,
USA) cleavage or elution in 5% SDS solution were used to
collect bound proteins. Eluted proteins were separated on
trycine gels or by conventional SDS-polyacrylamide gel
electrophoresis (SDS-PAGE), and visualized by Coomas-
sie G250 staining. Protein bands were excised from gels,
digested with trypsin (Promega Corporation, Madison,

Page 11 of 16

(page number not for citation purposes)



BMC Biology 2005, 3:14

Table 2: Strains used in this study
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Name Genotype Source

DS448/1 leul-32 ura4-d18 ade6-704 h+ Lab stock
DS448/2 leul-32 ura4-d|18 ade6-704 h- Lab stock
C399/3 leul-32 ura4-d18 ade6-704 csn5. 13myc kan h- Lab stock
C485/3 leul-32 ura4-d18 ade6-704 eif3m.13myc kan h- Lab stock
Cel7/1 leul-32 ura4-d18 adeé-704 eif3m.CBP.tev.5proA kan h- Lab stock
Cé642/1 leul-32 ura4-d18 diploid, eif3fleif3f:ura4 This study
Cé642/2 leul-32 ura4-d18 diploid, eif3fleif3f:ura4 This study
C648 leul-32 ura4-d18 ade6-704 eif3e.cbp.tev.5proA kan h+ This study
C650/1 leul-32 ura4-d|1 8 ade6-704 eif3f:ura4 pRep81.6xhis.myc.eif3f h- This study
C650/2 leul-32 ura4-d18 ade6-704 eif3m:ura4 pRep81.6xhis.myc.eif3m h- This study
C652/1 leul-32 ura4-d18 ade6-704 eif3e:ura4 h+ This study
Ce63/1 leul-32 ura4-d18 adeé-704 eif3m.gfp kan h- This study
C663/2 leul-32 ura4-d|18 ade6-704 eif3e.gfp kan h- This study
C665 leul-32 ura4-d1 8 ade6-704 eif3e.13myc kan h- This study
C701 leul-32 ura4-d18 ade6-704 eif3b.gfp kan, h- This study
C702 leul-32 ura4-d|18 ade6-704 eif3b.cbp.tev.5proA kan h- This study

Wisconsin, USA), and subjected to mass spectrometry.
The eIF3 complexes were analyzed by MALDI-TOF, and by
LC-MS/MS at the Harvard NIEHS Center Proteomics Facil-
ity, according to standard procedures.

Protein synthesis and polysome analysis

The eif3f and eif3m conditional shut-off strains were inoc-
ulated in 10 ml Edinburgh Minimal Media (EMM) with or
without thiamin and cultured at 30°C for 30 hrs. 100 uCi
35S-methionine were added to the cells, which were
labeled for 30 min and then harvested by centrifugation.
Cell lysates were prepared by bead disruption and equal
amounts of the lysates were analyzed by SDS-PAGE. 35S-
methionine incorporation was determined by autoradiog-
raphy and quantified by Phosphorlmager analysis (Bio-
Rad, Hercules, California, USA).

Polysome analysis was performed exactly as described in
Ref. [60]. Briefly, cells were grown in EMM with or with-
out thiamin for 30 hrs. Cycloheximide (100 ug/ml) was
added to each culture for 20 min. Cells were harvested
and lysed in breaking buffer (20 mM Tris/HCI pH 7.4, 50
mM NacCl, 30 mM MgCl,, 1 mM DTT, 50 ug/ml cyclohex-
imide, 0.2 mg/heparin, 50 U/ml SuperRNasein, and pro-
tease inhibitors), followed by centrifugation at 13,000 x g
for 5 min. 20 A,4, ,m» Units of each supernatant in a vol-
ume of 500 ul were fractionated on 5-45 % sucrose gradi-
ents for 3 hrs at 30,000 rpm using a SW40-Ti rotor in a
Beckman L70 centrifuge. Polysome profiles were obtained
by monitoring the absorbance at 254 nm along the gradi-
ent using a Bio-Rad fractionator, and the output was
recorded using a Bio-Rad UV detector.

RT-PCR

RNAs associated with the elF3e and elF3m complexes
were purified as described above. Primer design and RT-
PCR conditions were according to the manual supplied
with the Platinum Quantitative RT-PCR Thermoscript kit
(Invitrogen). Primers used for RT-PCR are listed in Table
3. The primer concentration for actin amplification was
0.25 uM. Other primers were used at 1 uM. Total RNA was
obtained as described [19].

Immunological techniques

Immunoprecipitation, immunoblotting, and in vitro
ubiquitination assays were carried out exactly as described
previously [26]. Antibodies against protein A and ubiqui-
tin were purchased from Sigma and Genzyme (Cam-
bridge, Massachusetts, USA), respectively. Anti-elF3d/
Moelp polyclonal antibody was provided by E. Chang
(Baylor College of Medicine, Houston, Texas, USA)

Microarray analysis

The eIF3 complexes were affinity-purified as described
above, except that 50 U/ml SuperRNasein (Ambion, Aus-
tin, Texas, USA) and 5 mM ribonucleoside vanadyl com-
plex (New England Biolab, Beverly, Massachusetts, USA)
were added to the lysis buffer. A mock purification was
performed under identical conditions with lysate from
cells lacking any tagged proteins. The methods for extrac-
tion of RNA, ¢cDNA synthesis, RNA amplification, and
aminoallyl labeling were adopted from previous publica-
tions [61,62]. Briefly, after binding and washing, beads
were treated with 3 U/ul DNase I, followed by elution
with 5 % SDS, extraction with phenol/chloroform and
then ethanol precipitation. The associated RNA was
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Table 3: RT-PCR primers

Gene Name Sequence Product
Size (bp)
actinF GAGCTTCCTGATGGTCAAGT 200
actinR GGATACATAGTGGTACCACC
cdcl 6F AAGTTAGCGCCCAAATCACC 150
cdcl 6R TTTTGAATGCCCCCCCACGG
gar2F GGTGCCATTGAGAAACCTTC 150
gar2R CCGAACCTTCAAAGAAATCA
pof6F TCTGATCGGCCTAAGCTGTC 150
pof6R CAATCTTGCAAATTCAACTC
rpn5F TGAGAAGCAAGTTCGTCAGG 160
rpn5R TGAAACAATCGATGACAAGT
rps8-1F AAGCGTATTCACGAGGTCCG 150
rps8-1R CAACTCGTTGTTAGAAGGGT
scdIF TCAGAGTTGGCTGCTTTCTT 150
scdIR ATCCATTGTGTGCCCTGTTC
SPAC|1348.05F CTTAGTGAACAGTTTGGAAG 150
SPACI1348.05R TGATAAACCAACGGATCCGA
SPAC2IEI1.04F GAGACATCACCTGCTCCAGA 150
SPAC2IEI1.04R  TTTGCTCCGGTGACTAGGTG
SPBC12C2.06F TCTGTTCCCAAACCTCAAGC 150
SPBCI12C2.06R ATCGATTTTTGCACCTTTAG
SPBC1683.01F GGCCGTAAATTTGTCTACGG 150
SPBC1683.01R ACCACCAATACCAACACCAA
SPBC36B7.03F CTCTCAATTAAATTTCACCC 150
SPBC36B7.03R AGGAGTACCGTATAAAGCAT
SPCC70.05¢F GTACCTGGAAATAACTCTCC 150
SPCC70.05cR CATAGCCTTTTCTAAGAGAT
tf2-12F AAGCATGTACCAGAGATAGG 150
tf2-12R TGAATCACCTAGAAGAATTA
unglF ACTTTGGAGAGTTCTTGGTT 150
unglIR TGGAGTATGATGTGACCATG

F = Forward; R = Reverse

reversely transcribed using Superscript II reverse tran-
scriptase (Gibco-BRL Division of Invitrogen) with 1 uM
oligo-dT(15)-T7 primer (5'-AAA CGA CGG CCA GTG AAT
TGT AAT ACG ACT CACTAT AGG CGC-3") and 1 uM tem-
plate switch primer (5'-AAG CAG TGG TAT CAA CGC
AGA GTA CGC GGG-3'"). Full-length double stranded
(ds)-cDNA was synthesized using Advantage Polymerase
(Clontech, BD Biosciences, Mountain View, California,
USA). Newly synthesized ds-cDNA was passed through
Bio-6 columns (Bio-Rad) and dried. RNA amplification
was performed with the T7 megascript kit (Ambion).
Amplified RNA was purified using the RNeasy kit (Qia-
gen, Hilden, Germany) and reversely transcribed with
Superscript II reverse transcriptase in the presence of ami-
noallyl-dUTP in reactions primed with oligo-dT (Invitro-
gen). After RNAse H digestion and purification on
QIAquick columns (Qiagen), the aminoallyl-cDNA was
labeled with Cy3, and purified on QIAquick columns.
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Control Cy5-labeled aminoallyl-cDNA was made by oligo
dT primed reverse transcription of total S. pombe RNA.

Labeled cDNAs were hybridized onto glass slide microar-
rays. Microarrays were made by spotting purified ds-PCR
products 500 to 1200 bp in length onto glass slides coated
with aminopropylsilane (Erie Scientific, Portsmouth,
New Hampshire, USA). The PCR products used repre-
sented 4988 predicted ORFs and transcripts as annotated
by the Sanger Centre [63] and are located at the 3' end of
predicted genes to maximize sensitivity in detecting oligo-
dT primed reverse transcription products. Descriptions of
primer pairs and the features on the microarrays are avail-
able at the Longhorn Array Database [64].

Median pixel intensities for each spot obtained from
hybridizations of elF3-associated RNA ([see additional
file 1, sheet 1]) were corrected by local background sub-
traction and divided by the corresponding values
obtained from a mock purification. This resulted in the
factor of enrichment of mRNAs bound to elF3 complexes
over mock. The mRNAs were ranked according to their
factor of enrichment ([see additional file 1, sheet 2]). An
enrichment factor of three was chosen as an arbitrary
threshold. We found 2464 mRNAs were enriched greater
than three-fold over mock in the el[F3m complex, while
we observed 520 mRNAs enriched in the elF3e complex
([see additional file 1, sheet 3]). Comparison of the data
sets revealed 414 mRNAs that occurred in both com-
plexes, 2050 mRNAs uniquely enriched in the elF3m
complex and 106 mRNAs that were exclusively enriched
in the elF3e complex ([see additional file 1, sheet 4; addi-
tional file 2]). A corresponding list of the 106 mRNAs
most highly and uniquely enriched in the elF3m complex
was assembled ([see additional file 2]) and used to select
specific mRNAs for RT-PCR analysis.

The competitive Cy5-labeled total cDNA provided clear
microarray feature identification and a guide to relative
sequence abundance in the pre-purification sample from
which the relative expression rank of each mRNA was
determined ([see additional file 1, sheet 2]). In this study,
data were not adjusted by ratio normalization to total
RNA signals or local area normalization functions. The
microarray data were deposited with the public ArrayEx-
press (E-MEXP-208) [65] and GEO [66] databases.

List of abbreviations
CSN COP9 signalosome

Cul Cullin
elF Eukaryotic initiation factor
EMM Edinburgh Minimal Media

Page 13 of 16

(page number not for citation purposes)



BMC Biology 2005, 3:14

GFP Green fluorescent protein
IgG Immunoglobulin G

LC MS/MS Liquid
spectrometry

chromatography tandem mass
MALDI-TOF Matrix-assisted laser desorption ionization
time-of-flight

MPN Mpr1/Padl N-terminal

OD Optical density

PAGE Polyacrylamide gel electrophoresis

PCI Proteasome, COP9 Signalosome, elF3

ProA Protein A

RT-PCR Reverse transcription-polymerase chain reaction
TEV Tobacco etch virus

YES Yeast extract and supplements (growth media)
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