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Abstract

Background: Excessive sequential stereotypy of behavioral patterns (sequential super-stereotypy) in Tourette's
syndrome and obsessive compulsive disorder (OCD) is thought to involve dysfunction in nigrostriatal dopamine
systems. In sequential super-stereotypy, patients become trapped in overly rigid sequential patterns of action,
language, or thought. Some instinctive behavioral patterns of animals, such as the syntactic grooming chain pattern
of rodents, have sufficiently complex and stereotyped serial structure to detect potential production of overly-
rigid sequential patterns. A syntactic grooming chain is a fixed action pattern that serially links up to 25 grooming
movements into 4 predictable phases that follow | syntactic rule. New mutant mouse models allow gene-based
manipulation of brain function relevant to sequential patterns, but no current animal model of spontaneous OCD-
like behaviors has so far been reported to exhibit sequential super-stereotypy in the sense of a whole complex
serial pattern that becomes stronger and excessively rigid. Here we used a hyper-dopaminergic mutant mouse to
examine whether an OCD-like behavioral sequence in animals shows sequential super-stereotypy. Knockdown
mutation of the dopamine transporter gene (DAT) causes extracellular dopamine levels in the neostriatum of
these adult mutant mice to rise to 170% of wild-type control levels.

Results: We found that the serial pattern of this instinctive behavioral sequence becomes strengthened as an
entire entity in hyper-dopaminergic mutants, and more resistant to interruption. Hyper-dopaminergic mutant
mice have stronger and more rigid syntactic grooming chain patterns than wild-type control mice. Mutants
showed sequential super-stereotypy in the sense of having more stereotyped and predictable syntactic grooming
sequences, and were also more likely to resist disruption of the pattern en route, by returning after a disruption
to complete the pattern from the appropriate point in the sequence. By contrast, wild-type mice exhibited weaker
forms of the fixed action pattern, and often failed to complete the full sequence.

Conclusions: Sequential super-stereotypy occurs in the complex fixed action patterns of hyper-dopaminergic
mutant mice. Elucidation of the basis for sequential super-stereotypy of instinctive behavior in DAT knockdown
mutant mice may offer insights into neural mechanisms of overly-rigid sequences of action or thought in human
patients with disorders such as Tourette's or OCD.
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Background

Overly rigid sequential patterns of movement and
thought characterize several human brain disorders
involving dysfunction in basal ganglia systems (i.e.
dopamine nigrostriatal projections to the neostriatum
and related brain structures). For example, pathological
repetitions of spoken words in Tourette's syndrome, and
the tormenting habits and thoughts of obsessive-compul-
sive disorder (OCD), involve overly rigid sequential pat-
terns of action, language or thought [1-9], which in part
may be influenced by genetic factors [10-13].

Normal sequential patterns of action, language and
thought also have been suggested to depend on proper
basal ganglia function [14,15]. For example, Marsden pro-
posed that "The sequencing of motor action and the
sequencing of thought could be a uniform function car-
ried out by the basal ganglia" [15], and a variety of com-
putational models have been proposed to carry out the
general sequencing functions of basal ganglia [16-19].
According to this view, basal ganglia systems evolved orig-
inally to coordinate syntactic patterns of instinctive move-
ments, and were extended subsequently by natural
selection to participate in sequencing cognitive and lin-
guistic functions as well.

Almost all behavior is sequential, so what do we mean by
'syntactic sequence'? In the simplest terms, a syntactic
sequence is one that follows normative rules that deter-
mine the temporal progression of its elements and impart
a lawful predictability to the sequence as a whole
[14,20,21]. Human language has real syntax, as the proto-
typical example, complete with recursive generative rules
[14,21,22]. But other behavior can be described as having
properties of syntax too, if the behavioral flow is governed
by lawful sequential patterns that follow normative rules
to produce a complex serial order [14,20,23-26].

Neuroethological studies of natural behavior in animals
have shown that neostriatum, substantia nigra, and their
connecting dopamine projections are critical to sequential
stereotypy for complex serial patterns of instinctive behav-
ior [26-35]. In particular, a complex fixed action pattern
displayed spontaneously by rodents during grooming
behavior, called a syntactic grooming chain, has been
exploited by neuroethological studies that point to basal
ganglia systems as the controlling neural mechanisms for
the stereotypy of complex sequential patterns [27,28,36].
A syntactic chain is a 4-phase series of up to 25 elements,
each phase containing recursive iterations of its character-
istic element (Figure 1; see Additional movie file 1). This
syntactic sequence occurs spontaneously during groom-
ing behavior of most rodents. Mice, rats, gerbils, hamsters,
guinea pigs, ground squirrels and other species all have
their own signature patterns of syntactic chains, with dif-
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ferent details, but all follow the syntactic 4-phase rule
[37]. In one squirrel species (Spermophilus beecheyi), syn-
tactic chains have been even further ritualized into a ster-
eotyped display, and adapted for territorial
communicative use [38]. As is typical of fixed action pat-
terns, no two syntactic chains may be absolutely identical,
but they are highly similar, stereotyped, and easily recog-
nized, and always follow the same serial patterning rule
[39,40]. Thus syntactic grooming chains are complex
multi-component patterns that are sequentially stereo-
typed, and capable of interacting with evolutionary selec-
tion pressures that alter the genotype to modulate
behavioral patterns. They represent precisely the sort of
sequencing function that ancestral basal ganglia systems
might  originally have evolved to  perform
[2,9,14,15,24,29-31].

The firing of some basal ganglia neurons in neostriatum
and in substantia nigra codes the serial pattern of syntactic
grooming chains as an entire sequence in rats [27,28]. In
addition, the integrity of basal ganglia neurons is neces-
sary for normal sequential stereotypy of the instinctive
pattern. For example, after lesions of neostriatum, rats
lose the ability to complete the 4-phase pattern properly
(especially after lesions of anterior dorsolateral neostria-
tum, which contains the neurons that particularly code
the syntactic pattern), even though the lesions do not
impair constituent grooming movements [27,36]. Similar
deficits in grooming syntax are caused by disruption of
dopamine neurotransmission in mice lacking dopamine
D1 receptors [41], and in normal rats with neostriatal
dopamine depletion caused by 6-hydroxydopamine
lesions of nigrostriatal projections [42].

Brain lesions that disrupt behavioral sequences indicate a
potential sequencing function for the targeted structures.
However, factors besides sequencing loss may contribute
to disrupted serial patterns after lesions. An alternative
and stronger proof for dopamine mediation of action syn-
tax would be to demonstrate enhanced stereotypy of
behavioral sequences, by boosting nigrostriatal dopamine
neurotransmission. Enhanced sequential stereotypy
would be reflected if the complex serial pattern as a whole
entity became more sequentially rigid or persistent.
Indeed, in rats, pharmacological boosting by dopamine
D1 agonists administered systemically or into brain ven-
tricles produces sequential super-stereotypy of syntactic
grooming chains [43-45]. In a state of sequential super-
stereotypy, the stereotyped pattern becomes even more
predictable than normal, which is evident as an increase
in the probability that all four phases will be completed in
syntactic order [43,44]. Such rigidity of complex multiple-
phase sequences contrasts with simpler repetition stereo-
typies (e.g., associated with D2 receptor activation), in

Page 2 of 16

(page number not for citation purposes)



BMC Biology 2005, 3:4

http://www.biomedcentral.com/1741-7007/3/4

Time (seconds)

I I I
1 2 3

N

Right 0
(\ rEar
~Eye
d ~Vibrissae
“F—=—>  Midline
& I-Vibrissae
Eye
U LEar

Phase Il

Mice make Phase Il strokes with one
paw at a time (then alternating to the

Phase |

Mice make some Phase |
ellipse strokes asymmetrically,
(with a major paw and a minor paw)
often in left/right alternation.

in hybrid Phase |/Phase Il combinations).

Figure |
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Star denotes which left/right
flank is target for Phase IV
body licking (in this case, right flank).
Strong completion of Phase IV requires
moving the head down and backward to
permit licking of body flank.

Mice make extremely
symmetrical Phase Il strokes
with both paws simultaneously.

Prototypical syntactic grooming chain pattern. Choreograph shows mouse movements of the left/right paws over the face
(time proceeds from left to right). Lines deviating above/below the horizontal axis show the trajectory height of left/right paws.
Large black box denotes bout of body licking, and placement of asterisk in box shows which left/right side flank was chosen by
the mouse to initiate body licking. Phase I: series of ellipse-shaped strokes tightly around the nose. Left and right paws often
take alternating turns as the major/minor trajectory. Phase II: series of unilateral strokes, each made by one paw, that reach up
the mystacial vibrissae to below the eye. Mice often make hybrid Phase I/ll strokes, in that one paw makes a Phase Il unilateral
stroke while the remaining paw makes a smaller Phase | type ellipse. Phase lll: series of bilateral strokes made by both paws
simultaneously. Paws reach back and upwards, ascending usually high enough to pass over the ears, before descending together
over the front of the face. Phase IV (strong or classic form): sustained bout of body licking, preceded by postural cephalocaudal
transition to move mouth and tongue from facial and paw grooming to body grooming. Mouse-typical pattern modified from
Berridge (1990). See Additional movie file | for examples of syntactic grooming chains by DAT-KD mutant mice.

which the same movement is repeated over and over again
[46-50].

In human pathologies such as Tourette's or OCD, com-
plex sequential super-stereotypy often occurs spontane-
ously in human patients. If sequential super-stereotypy of
complex instinctive behavior sequences is to serve as a
model of human disorders involving sequential super-
stereotypy, it ought to be able to occur spontaneously in
some individual animals too. In addition, it should pos-
sess features of compulsive behavioral sequences.

Compulsive behavior may have several features, including
both perseverative tendencies and more rigid sequences of
entire serial patterns. To date, prior genetically-modified
mouse models of spontaneous compulsive behavior have
successfully captured the perseverative feature, but it is not
yet clear whether these animal models also share the exag-
gerated serial pattern feature of compulsive behavior. For
example, the Hoxb8x mutant model has been reported to
exhibit OCD-like increased persistence of self-directed
grooming and body-licking, and even mutual grooming
of other mice [13,51,52]. Similarly, the DICT mutant
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mouse, caused by transgenic potentiation of D1-associ-
ated brain circuits, shows OCD-like persistence of
grooming, as well as persistence of other behaviors such as
digging, climbing, and tics [3,53-57]. However, it is
unknown whether these or any other animal models also
show excessively rigid sequences, in the sense of a stronger
multi-element and rule-governed sequence that becomes
more rigid as a single complex pattern. For modeling the
serial rigidity feature of OCD or Tourette's, an animal
model is needed that spontaneously produces an overly-
rigid and serially-complex sequence of behavior, such as a
syntactic grooming chain.

Here we show that this serial pattern feature of sequential
super-stereotypy indeed appears spontaneously without
drugs in DAT-KD mutant mice with genetic knockdown of
the dopamine transporter (DAT) [58]. DAT-KD mutant
mice have 10% normal DAT expression in dopamine neu-
rons [58], which impairs synaptic re-uptake of dopamine,
resulting in elevated (170%) levels of extracellular
dopamine in neostriatum (wild-type mice = 100%) [58].
DAT-KD mutant mice show other behavioral evidence for
high levels of dopamine activation. They tend to be hyper-
active, to walk in perseverative straight paths, and to over-
pursue certain incentive stimuli [58-60]. The question
asked in the present study was whether these mutant mice
would also show sequential super-stereotypy in their syn-
tactic chains - that is, do they have excessively rigid serial
patterns of instinctive grooming behavior?

Results

Syntactic chains

Hyper-dopaminergic mutant mice and wild-type control
mice each generated syntactic chains of grooming as
described above (Figures 1, 2 &3). Syntactic grooming
chains by DAT-KD mice had virtually all the typical fea-
tures of wild-type chains and of syntactic chains previ-
ously reported for outbred mice and D1 receptor
knockout mice [37,41] (Figures 1 &3; see Additional
movie file 1).

Syntactic grooming chains

The sequential pattern of a syntactic grooming chain con-
tains up to 25 movements serially combined into 4 syn-
tactic or rule-governed phases that form one chain pattern
[61] (Figure 1; see Additional movie file 1). Each of the 4
phases contains recursive repetitions of its particular com-
ponent movement.

Phase I consists of 5-10 rapid elliptical forepaw strokes
made with both paws simultaneously over the nose and
mystacial vibrissae. In mice, Phase I ellipses are often
slightly asymmetrical and alternating, in the sense that the
'major paw' makes a slightly larger stroke than the 'minor
paw' [37]. Typically, the major/minor role alternates over
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successive Phase I strokes between left and right paws. The
entire Phase I lasts for about one second.

Phase II is short (0.25 s) and consists of 1-4 unilateral or
highly asymmetrical strokes made by one forepaw. The
unilateral stroke is typically of small or medium ampli-
tude ascending to about the level of the eye. In mice, the
other paw not participating in the Phase II stroke often
makes a smaller Phase-I ellipse-type stroke simultane-
ously [37,41]. Thus, Phase II in mice typically contains
several hybrid Phase I-1I strokes, in contrast to rats, which
move only a single forepaw [37]. Mice generally alternate
between left and right paws in making Phase II strokes
(though sometimes the same paw repeats a short series of
Phase II strokes).

Phase III is highly visually distinctive, and consists of 1-5
large bilateral strokes with both paws. Both paws move
very symmetrically almost as mirror images of the other,
typically ascending together high up the side of the face,
and passing forward synchronously over the ears. Phase
III strokes are extremely stereotyped, usually all of the
same height, and with both paws traveling back down to
the nose between successive Phase III strokes [37]. The
entire Phase III lasts 1-3 s.

Phase IV concludes the prototypical chain, and consists of
a postural turn to the side and caudally, and lowering of
the head to bring the tongue towards the flank or side of
the body, followed immediately by a 2-5 s bout of body
licking directed to the flank.

Syntactic Initiation: rate of starting chains

In terms of the number of syntactic chains started during a
grooming bout, DAT-KD mutant mice initiated margin-
ally more syntactic chains overall than wild-type mice
(F(1,86) = 3-592, p = 0.061; Figure 4). The difference in
chain initiation was context dependent. All mice were
twice as likely to initiate syntactic chains in the laboratory
than at home (F(1, 82) = 85.73, p < 0.001), and mutant
mice in particular initiated approximately 25% more
chains than wild-type mice in the laboratory environment
(F1,86)= 17.315, p < 0.001; Figure 4), compared to only
5% more in the home environment. If the laboratory con-
text was considered more stressful than the home cage
environment, then stress dramatically promoted the ten-
dency to begin a highly stereotyped sequence, especially
for mutants.

The nature of the context-dependence of the difference
was further clarified by a closer look at the time course of
exactly when syntactic chains were begun by mice during
a grooming bout. The overwhelming majority of syntactic
chains tended to be initiated early in a grooming bout by
all mice (Figure 4). Mutants initiated up to twice as many
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Sequential super-stereotypy of syntactic pattern. Cumulative rates of full pattern completion by DAT-KD mutant (dark sym-
bols) and wild-type mice (open symbols) for each type of syntactic chain (Perfect, Insertion of unpredicted component, Phase
Reversal, Phase Skip, Substitution of paw lick for Terminal Phase IV component). Choreographs at bottom show example for
each type of syntactic chain. Mutant mice have higher rates of syntactic completion for all forms of the chain that terminate in
the strong form of Phase IV, body licking, which characterizes the prototypical Phase IV for all rodents. Wild-type mice use a
weak form of Phase IV (paw lick substitution) to terminate a substantial proportion of their syntactic chains. All mice show less
pattern completion when grooming in the laboratory (top) than when grooming in their home cage (bottom), but mutant mice
show more rigid sequential patterns than wild-type mice while grooming in both environments. * p < 0.05; ** p < 0.01.
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Sample choreographs of actual syntactic chains. Both mutant mice and wild-type mice emit every type of syntactic chain
described in the text (Perfect, Insertion of unpredicted component, Phase Reversal, Phase Skip, and Substitution of paw lick for
Terminal Phase IV).
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Initiation of stereotyped syntactic chain pattern. Rates of initiation of syntactic chains are slightly higher for mutant mice,
especially while grooming in the laboratory, measured cumulatively across the entire observation period (top). In more detail,
initiation rates are broken down as occurring either early versus late in grooming bouts (bottom). All mice tend to start the
stereotyped sequential pattern more often early in a grooming bout. Mutant mice are even more likely than wild-type mice to
start the pattern in an early grooming bout, both in home and laboratory environments. ** p < 0.01.
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chains as wild-type mice per minute of grooming in the
first quarter of a bout, whereas by the last quarter of their
grooming bouts mutant and wildtype initiation rates no
longer differed significantly (Figure 4). Mutants tended to
begin more grooming bouts than wild-type mice espe-
cially in the laboratory (described below), which may
have facilitated the mutants' greater tendency to initiate
the syntactic chain pattern in the laboratory (Figure 4). In
short, syntactic chains were initiated early in a grooming
bout by all mice, but mutant mice were even more likely
than wild-type mice to initiate chains during those early
portions of a grooming bout, and the mutant advantage
was greatest in the laboratory environment (which might
be the most stressful environment).

Syntactic completion

In mice and rats, once a syntactic chain pattern begins
with Phase I, each remaining action can be predicted with
roughly 80-90% accuracy. The entire syntactic chain
occurs with a frequency over ten thousand times greater
than could be expected by chance (based upon the relative
probabilities of the component actions). However, several
types or degrees of chain completion are possible.

Types of syntactic chains

A prototypical or perfect syntactic chain requires Phases I,
I, III and IV in order, with no deviations, additions or
omissions. Perfect chains were occasionally performed by
both mutant and wildtype mice. After performing Phase I,
I1 and III strokes over the face, a mouse performs Phase IV
by transitioning to body grooming. For this transition to
body licking, the mouse must bend down and backward
to bring its mouth toward a side flank, and then begin a
vigorous bout of body licking that continues for 1-4 s.

In addition, several types of imperfect syntactic chains were
observed in both mutant and wildtype mice. Imperfect
sequences proceed from Phase I to IV with some minor
deviation from the prototypical pattern along the way. In
this study, we recognized three forms of imperfect com-
pletion. All involved a minor imperfection, which was
either an insertion, reversal or replacement of a compo-
nent action within the syntactic chain. Imperfect comple-
tion forms were: (i) Reversal of Phases II-III, where Phase
IT unilateral strokes were emitted after Phase III bilateral
strokes (instead of before them), but the chain was other-
wise syntactically correct; (ii) Insertion of an unexpected
movement component in between phases, usually a quick
paw lick or several paw licks inserted between Phases III
and IV; (iii) Skip or omission of one phase en route to com-
pletion, where a chain lacked either any Phase II unilateral
face stroke, or any Phase III face strokes (never both), but
was otherwise syntactically correct (e.g. an observed order
of I-III-1V). Finally, a fourth type of syntactic chain was
observed that failed to be completed in the prototypical
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sense, but where the mice substituted paw licking in the
terminal place of Phase IV (which might provisionally be
regarded as an "attempt" to complete syntactically). We
called this Terminal substitution: the final Phase IV compo-
nent (body licking) was completely replaced with a differ-
ent type of licking movement (paw licking), and the chain
was otherwise syntactically correct (e.g. I-II-IlI-paw lick
bout).

Terminal substitution never attains a prototypical Phase
IV, and so is not really a form of syntactic completion by
criteria used in earlier studies. However, the terminal sub-
stitution of paw licking might be viewed as an attempt to
complete syntactically with a transition from paw strokes
to licking, compared to other forms of incompletion such
as either simply stopping or immediately launching into a
sequentially flexible series of grooming strokes. Thus for
the purpose of analysis, we examined the consequences of
allowing terminal substitution to count provisionally as a
form of "weak" completion.

At the completion of Phase IV (strong or weak), over 93%
of syntactic chains led to continued grooming of body or
face in sequentially flexible and much less predictable pat-
terns compared to syntactic chains. After 7% of chains, the
end of Phase IV terminated the entire grooming bout, and
the mouse rested quietly afterwards or began to explore
the chamber.

Syntactic rigidity: strength of pattern completion
DAT-KD mutant mice not only started more syntactic
chain patterns, they were also more likely than wild-type
mice to complete the syntactic chain patterns they started
- in both laboratory and home environments (Figures 2
&3). Sequential super-stereotypy (i.e. more predictable
and stereotyped completion of entire sequence) of DAT-
KD mutant mice was the most consistent and robust find-
ing of our study (F(; ;5)= 12.33, p < 0.001; Figure 2).

The higher syntactic rigidity of mutants was visible quali-
tatively and verified quantitatively (Figures 2 &3), and it
interacted with the various types of syntactic completion
described above (interaction between mutant/wildtype x
perfect/imperfect types: F(4 154 = 5.96, p < 0.001). Hyper-
dopaminergic mutant mice nearly always completed their
syntactic chains with the strong form of Phase IV (body
licking), whereas wild-type mice completed roughly half
their chains with only the weaker form of Phase IV (paw
licking). Mutant mice completed a higher percentage of
insertion, reversal and omission types of syntactic chains
than wild-type mice (F(4, 184) = 129.01, p < 0.001; each
subtype; Figures 2 &3). These stronger or more rigid
chains of mutant mice more closely corresponded to the
prototypical 4-phase syntax pattern (including the proto-
typical terminal Phase IV component: body licking).
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In other words, mutant mice were better than wild-type
mice at resisting disruption of the pattern by minor flaws
that occurred along the way, and mutants more often
returned to the full-blown pattern after any distraction.
For example, insertion chains included 1 or 2 extraneous
movements, such as a nonsyntactic paw lick action
inserted between Phases III and IV. After an insertion,
mutants were nearly 50% more likely than wild-type mice
to reach a strong form of Phase IV completion (mutant vs.
wildtype, p < 0.01, Bonferroni). Similarly, a reversal error
reversed the serial order of Phases II and III, or followed a
Phase II stroke with a late Phase I ellipse stroke, and after
a reversal mutant mice were nearly 50% more likely than
wild-type mice to go on to complete a strong form of
Phase IV. Finally, in an omission chain, a mouse would
omit either Phase II or Phase III (never both), and after an
omission mutants were again roughly 50% more likely
than wild-type mice to successfully return to the full pat-
tern and reach a strong form of terminal Phase IV comple-
tion (each p < 0.01, Bonferroni).

In contrast, wild-type mice had a greater proportion of ter-
minal substitution chains that never achieved a full syn-
tactic transition to body grooming. Wild-type mice
instead substituted a weaker paw-lick form of Phase IV as
terminal component. In terminal substitution, a mouse
completely omitted the normal Phase IV shift to body
licking, and instead simply continued to lick its paws,
never changing posture or moving its head caudally out of
the normal facial grooming position (the complete failure
of transition to body licking after paw licking marked the
difference between Insertion and Terminal Substitution
chains). Wild-type mice had nearly twice the proportion
of terminal substitutions as mutant mice (F(1,78)=11.47,
p <0.001).

If terminal substitution is regarded as failure to complete
the pattern, then wild-type mice simply failed to complete
over half the syntactic chains they began. More leniently,
wild-type mice could approach an 80% - 90% rate of syn-
tactic completion - if we took the unprecedented step of
allowing Phase IV terminal substitution to count as weak
completion (Figure 2). Allowing this weaker criterion was
the only way to consider wild-type mice able to achieve
the 80%-90% syntactic completion level that mutant
mice successfully achieved through the stronger prototyp-
ical form of Phase V.

In summary, DAT-KD mutant mice had more rigid
sequential patterns than wild-type controls in several
ways. Mutant mice were more likely than wild-type mice
to proceed syntactically through Phases I, II and/or III to
reach the syntactic final Phase IV (body licking). Even
after encountering minor imperfections along the way,
mutants persevered in the sequential pattern. Wild-type
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mice introduced the same imperfections in their syntactic
pattern, but did not return to the full pattern or complete
Phase IV as strongly, ending their chains without ever
reaching the full-blown transition to body grooming that
normally terminates a syntactic chain pattern.

Finally, syntactic completion was highest in home envi-
ronment grooming for all mice (even though more syn-
tactic chains were begun in laboratory) (F(1,78)14.31, p<
0.001). This difference suggests that stress may promote
the initiation of stereotyped sequences, but impede their
lawful completion, and is consistent with reports that
stress disrupts completion of syntactic chain sequences
[62]. However, mutant mice were equally more likely
than wild-type mice to complete strong patterns in both
laboratory and home environments.

Motor control for movement capacity

In order to reject motor confounds that might have pro-
vided an alternative explanation of some results, we
assessed whether wild-type mice were simply less able to
perform body licking movements than mutant mice. If
wild-type mice had motor deficits that impaired their abil-
ity to perform body-lick posture/movements, then wild-
types might have had weakened syntactic chains simply
because of their motor incapacity to perform Phase IV
movements, rather than because mutants had stronger
sequencing tendencies. Therefore we analyzed whether
wild-type mice spent a lower proportion of their total
grooming behavior time making body licking movements
compared to mutant mice. However, wild-type mice did
not have significantly lower total cumulative duration
scores for body licking overall than mutant mice (F(1,78)
=0.56, n.s.), indicating there was no motor impairment of
Phase IV movements. That suggests the difference in ten-
dency to complete syntactic chains represents a true
difference in sequence rigidity or pattern strength, and not
in simple motor capacity.

Overall grooming behavior: amount, bout number, and
bout duration

All mice groomed twice as much in their home cages than
in the laboratory environment, suggesting that the rela-
tively novel laboratory environment might have acted to
suppress spontaneous grooming behavior (F; g,)= 1.773,
p <0.001; Figure 5). Grooming behavior in the laboratory
was less than half that of the home cage for both mutants
and wildtypes (in terms of cumulative grooming duration
per hour of observation). DAT-KD mutant mice spent
10%-50% more time than wild-type control mice in
grooming behavior overall (F(; g5)=3.949, p < 0.05), and
the mutant propensity to groom more was most visible in
the home environment (p < 0.1).
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Figure 5

General amount and bout features of grooming behav-
ior. Cumulative time spent in grooming behavior during
observation (total duration), Duration of individual bouts of
grooming, and the Number of bouts of grooming emitted
during observation session. Mutant mice tend to spend more
time in grooming than wild-type mice, and to have longer
grooming bouts, in the home environment. Mutant mice tend
to emit a greater number of fragmented bouts when groom-
ing in the laboratory environment. These general features of
grooming enhancement in mutant mice are flexible and con-
text-dependent, in contrast to the greater mutant rigidity of
sequential pattern that is constant across both environments
(shown in Figure 2). * p < 0.05; ** p < 0.01.
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Closer analysis of grooming compared the relative contri-
butions to increased grooming time of greater bout num-
bers versus longer bout durations (Figure 2). The
increased time spent grooming by mutant mice in the
home cage was due to longer grooming bouts (but not to
a greater number of bouts) compared to wild-type mice.
In their home cages, grooming bouts in mutant mice were
80% longer than in wild-type mice (F(; ¢ = 4.083, p =
0.008), while bout numbers did not differ.

Although mutants emitted only marginally more body
licking than wild-type mice in an analysis that combined
data from both home and laboratory environments
(F(1,60)= 3-403, p < 0.07), a separate analysis of grooming
specifically in the home cage showed that mutants at
home had longer cumulative durations of body licking (p
< 0.05, Bonferroni), consistent with prolongation of the
later components of cephalocaudal grooming bouts in
that home environment [63]. However, as a percentage of
total grooming, the proportion of mutant body licking to
facial stroke components was not higher than for wild-
type mice, either overall (F(1,60) = 0.58, n.s.), or even in
the home cage (p = 0.32), which suggests that the
mutants' longer grooming bouts in the home cage may
also have included more facial strokes than wild-type
mice. Thus, longer mutant grooming bouts in the home
cage likely involved expansion of several components of
grooming, including longer body licking bouts and facial
strokes. These perseverative features of DAT-KD mutant
grooming in the home cage therefore may overlap with
perseverative body grooming tendencies reported for
other genetic animal models of compulsive behavior,
such as Hoxb8/"* and D1CT mutant mice [13,51-53,55,57].

Conversely, in the laboratory environment, DAT-KD
mutants' higher grooming was chiefly due to a greater
number of grooming bouts (but not longer bouts). In the
laboratory environment, mutants began more grooming
bouts than wild-type mice (F(1,86) = 3.478, p = 0.026),
but their duration of bouts did not differ. Thus, different
features of grooming bouts (length versus number) were
enhanced in mutant mice depending on their environ-
mental context of the moment. However, as described
above, in both home and laboratory the hyper-dopamin-
ergic mutants were always more likely than wild-type
mice to perform more rigid and strongly stereotyped syn-
tactic chain sequences.

Discussion

Sequential super-stereotypy: pattern completion

Our results reveal that hyper-dopaminergic mutant mice
show excessively strong and rigid manifestations of a
complex fixed action pattern compared to wild-type mice.
Their sequential super-stereotypy was produced by DAT
knockdown mutation, which reduces DAT to 10% of
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wild-type levels and causes extracellular dopamine eleva-
tion to 170% in neostriatum [58]. Mutant mice showed
more stereotyped and predictable syntactic grooming
chains, the instinctive fixed action pattern that serially
links up to 25 movements into 4 predictable phases that
follow 1 syntactic rule. That entire pattern became even
more stereotyped and resistant to disruption in hyper-
dopaminergic mutant mice.

The stronger pattern was evident in several ways. First,
DAT-KD mutant mice were more likely to begin a syntac-
tic chain pattern than wild-type mice, especially during
the early minutes of a grooming bout (when the highly
stereotyped serial pattern is most likely to be produced),
and especially in the novel laboratory environment (a
potential stressor). Further, once the complex sequence
began, DAT-KD mutant mice went on to execute chains
that were more stereotyped and rigid, both qualitatively
and quantitatively. Qualitatively, mutant mice almost
always achieved the strongest form of the terminal phase
(Phase 1V), successfully making a transition from head
grooming to body grooming. By comparison, wild-type
mice ended far more of their chains with a weaker termi-
nal substitution for Phase IV, which left them stuck in
head grooming without ever making a transition to body
grooming. Quantitatively, DAT-KD mutant mice returned
more often to the prototypical pattern after minor mis-
takes, whereas wild-type mice failed to reach full Phase IV
after such mistakes. Mutant mice returned more often to
the full pattern after extraneous component insertion,
phase omission, or serial reversal of phases. The mutants'
elevated pattern strength for this complex sequence was
evident in both home and laboratory environmental
contexts.

If the less-stereotyped sequential patterns of wild-type
mice are viewed as the norm (and not as a sequential def-
icit), then the mutant tendency to complete stronger syn-
tactic patterns must be viewed as sequential super-stereotypy,
representing the exaggerated serial rigidity feature of com-
pulsive behavior. Here sequential super-stereotypy is
manifest in a complex behavioral sequence that is
instinctive and naturally stereotyped to begin with, but
becomes even more stereotyped or excessively rigid as a
consequence of the DAT mutation.

It may be important that the mutant pattern strength is
revealed not as an elimination of errors, but rather
primarily as a resistance to disruption by errors. In other
words, mutants did not have more frequent perfect chains
than wild-types: both generated similar moderate rates of
minor errors (e.g., inserting extra actions, omitting one
syntactic phase from where it ought to be, or reversing the
order of 2 phases in the 4-phase pattern). Instead, the
mutants' stronger syntactic pattern was like a tightened
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elastic band, pulling them back after such errors to finish
the prototypical pattern. Stronger return to the pattern
could only be possible if DAT knockdown strengthened
the entire pattern as a global whole, facilitating the
mutants' ability to maintain a neural representation of the
pattern during an error and to resume the remaining pat-
tern after the error. That suggests that neural mechanisms
of pattern coordination were better able to persist in rule
maintenance in the face of disruption, and to successfully
compete to re-establish control of the behavioral stream
after the disruption.

Thus, stronger patterns were not simply the results of
strengthened Markov sequential transitions among indi-
vidual pairs of actions, producing a stimulus-response (S-
R) reflex chain. If sequence composition was simply a
probabilistic construction based only on the frequency of
transitions between individual pairs of actions, then
stronger perfect completion might have been expected in
mutants, but not stronger return after an error. Errors
would still terminate or weaken the pattern. Instead, we
observed the opposite result: mutants kept errors but
recovered better after them, and took the full pattern up
again where it had left off.

Relation to other nigrostriatal manipulations and
behaviors

These results are the first demonstration to our knowledge
of sequential super-stereotypy of a complex behavioral
pattern, occurring spontaneously without drugs. In previ-
ous studies, dopamine D1 agonists were needed to cause
sequential super-stereotypy of syntactic grooming chains,
whereas D2 agonists in contrast reduced initiation and
completion of syntactic grooming chains (even though
D2 agonists can cause simple repetitive movement stereo-
typies) [43-45,64]. Future studies will be needed to con-
firm whether the sequential super-stereotypy of DAT
knockdown mutant mice depends specifically on
increased D1 receptor activation. However, it is notable
that there is a consistent trend of D1 circuit-activation
inducing OCD-like behavioral persistence in D1 agonist-
treated rodents, D1-circuit potentiated DICT mice, and
hyperdopaminergic DAT-KD mice [43-45,53,55,57,64].
This suggests that the D1 circuit may play an important
role in features of compulsive behavior related to perse-
veration and sequential rigidity. It also would be of inter-
est for future studies to examine if other animal models of
perseverant grooming behavior, such as Hoxb8* and
DICT mutant mice, also show any exaggerated serial
rigidity features in their fixed action patterns similar to
those found here [13,51,53-55,57,65]. Finally, it would
clearly be of interest to examine whether any other
instinctive fixed action patterns belonging to those of
DAT-KD mutant mice show sequential super-stereotypy
similar to syntactic grooming chains.
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We should note that although our study is the first to pro-
duce spontaneous sequential super-stereotypy, several
previous studies reported weakening of the syntactic chain
pattern by other genetic manipulations. For example, the
ability to complete syntactic grooming chains is impaired
in several types of mutant mouse, caused by either a
knockout of D1 dopamine receptors [41], or by a Weaver
gene mutation that alters the nigrostriatal dopamine sys-
tem [65,66]. In the D1 knockout study, mutant D1 mice
were less able than wild-type mice to complete the full
grooming pattern of syntactic chains they started [41].
Our DAT-KD findings provide an opposite demonstration
to complement that D1 knockout study: DAT knockdown
strengthens the same pattern presumably by elevating
extra-cellular dopamine. Both results might therefore
reflect essentially linear effects on the sequential stere-
otypy of this complex behavior pattern, mirroring up or
down changes in basal ganglia dopamine
neurotransmission.

Evolution co-opts sequential super-stereotypy

We acknowledge that there is one other known form of
genetically-related sequential super-stereotypy for syntac-
tic grooming chains. However, that sequential super-ster-
eotypy is not caused by a single targeted gene mutation
but rather is a naturally evolved adaptation of the fixed
action pattern in a species of ground squirrel, Spermophilus
beecheyi [38], which is probably polygenic in origin. Cali-
fornia ground squirrels defend their individual mating
territories in the Sierra mountains against other same-sex
ground squirrels (especially males against other males).
One of their behavioral territory displays is a specialized
exapted form of the syntactic grooming chain [38].

Display forms of Spermophilus beecheyi syntactic chains are
ritualized, more sequentially rigid and predictable than
normal self-grooming chains, and occur as a single
grooming chain with no other grooming before or after
[38]. Phase III elements are amplified and made more vis-
ually distinctive, and an extra Phase V component is
appended to the end of the pattern (the squirrel seizes and
licks its tail, which is also visually distinctive). Syntactic
grooming chains are usually performed at the boundary
where two adjacent territories meet. Syntactic grooming
chain displays appear to be communicative, in that they
are emitted in conjunction with other territorial displays,
such as scent-marking of objects, and have the social con-
sequence of subsequently reducing the likelihood of a
physical fight between the two adversaries [38].

Thus the evolution of Spermophilus beecheyi ground squir-
rels appears to have exapted the pre-existing pattern of a
syntactic grooming chain, which likely evolved in ances-
tral rodents over 60 million years ago, and co-opted it into
a sequentially super-stereotyped form for specific
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communicative use [38]. It may have been selected
because of the same feature that led us to study syntactic
chains, namely its recognizable sequential stereotypy.
Also, the sequential pattern appears highly sensitive to the
underlying genotype; for example, the detailed 'signature
patterns' of the syntactic grooming chains that distinguish
mice from squirrels, rats, guinea pigs and other rodents
can be used to construct taxonomic trees of relatedness for
them (similar to taxonomies based on differences in skull
structure or in DNA sequences) [37]. The genetic sensitiv-
ity of the pattern may explain why evolutionary selection
exploited it for use by California ground squirrels, and
also explain why knockdown of a single gene can change
the strength of the entire complex sequential pattern in
studies such as ours [41,65,66].

Neural systems and clinical implications of sequential
super-stereotypy

Altered neurochemical signaling within basal ganglia neu-
ral circuits may be the mechanism by which DAT knock-
down produces sequential super-stereotypy of grooming
syntax. Electrophysiological studies have shown that neu-
rons in neostriatum and in substantia nigra pars reticulata
code the sequential pattern of syntactic grooming chains
and other natural sequences of behavior [24,27,28]. For
example, 40% of neostriatal neurons in rats code sequen-
tial aspects of the syntactic chain pattern, especially in
anterior dorsolateral neostriatum [24,27]. Neurochemical
boosting of dopamine signalling from substantia nigra
pars compacta on to neostriatal neurons might be one
candidate mechanism to modulate sequential super-stere-
otypy of the pattern in DAT-KD mutants. Similarly, neu-
rons in the substantia nigra pars reticulata appear
especially to code initiations of the complex behavioral
sequence, and so modulated input to them might be more
relevant to the elevated mutant tendency to begin the syn-
tactic pattern [24,28].

Nigrostriatal mechanisms for sequencing instinctive
action may have been co-opted in subsequent mamma-
lian and human evolution into use in sequencing learned
and cognitive psychological elements [67-69]. In that
way, the same basal ganglia mechanisms used for move-
ment syntax may participate in sequential habits that
result from learning [20,29,70-72]. A view of basal ganglia
as a general purpose sequencing mechanism is compati-
ble also with computational sequencing models of basal
ganglia [16-19]. Beyond the basal ganglia, DAT-KD
mutant mice might also have elevated extra-cellular
dopamine concentrations in other target structures,
including prefrontal cortex and amygdala. Such systems
might also contribute to OCD and Tourette's syndromes
in humans and to some aspects of compulsive-like behav-
ior in mutant mice. Elaborated applications of dopamine-
related circuits for sequencing may thus extend from
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instinctive animal behavior to abstract human cognition
and behavior, including syntactic sequencing of action
plans, linguistic syntax, and the serial order of streams of
thought [14,73].

A clinical implication of the embeddedness of basal gan-
glia in sequencing function may be a vulnerability to
sequential dysfunction in some human disorders involv-
ing nigrostriatal systems [74,75]. Both Tourette's syn-
drome and obsessive-compulsive disorder show
symptoms of sequential super-stereotypy, in the form of
overly rigid patterns of action, language or thought
[76,77]. Basal ganglia are believed to be involved in gen-
erating such pathologically-strong and complex sequen-
tial stereotypies [1,2,8,9,74,78-85]. Hyper-dopaminergic
function in nigrostriatal and related neural systems might
thus play a role in causing the excessive rigidity of behav-
ioral tics, repetitive language utterances, and obsessive
chains of thought [2,74,79,81,86,87].

Finally, while highly speculative, it is at least conceivable
that an evolutionary specialization of dopamine-related
neural mechanisms for self-grooming sequences, sug-
gested by our current results, might also influence the
theme or content, as well as the syntactic stereotypy, of
some human super-stereotypies involving washing or
purifying compulsions [74].

Pathologically-intense rituals of cleanliness, security
behavior, or concerns with contamination, all share a
focus that might relate to grooming of oneself [74]. Con-
ceivably, excessive activation in brain circuits linked by
evolution to self-grooming behavior might tip the the-
matic focus of some human stereotyped sequences toward
rituals of cleanliness or reaction to perceived contamina-
tion, in addition to strengthening their syntactic rigidity.
Whether or not such a direct overlap exists between
human pathology and animal instinctive behavior, our
results indicate that DAT-KD mutant mice show sequen-
tial super-stereotypy in a complex instinctive fixed action
pattern.

Methods

Subjects

DAT-KD mutant mice (n = 12 male) and wild-type control
mice (n = 12 male) were generated at the University of
Chicago by breeding heterozygous mutants on a 129 Sv/]
genetic background as described earlier [58]. Such a
design minimizes any contribution to behavioral pheno-
type by genetic background difference or by differences in
genetic modifiers that are linked to the Slc6a3 locus. DAT
knockdown was achieved by insertion of the tetracycline
regulatable system into the 5' untranslated region in the
second exon of the DAT gene (Slc6a3). Such an insertion
reduced the DAT promoter strength without affecting its
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expression pattern. It also allows regulation of DAT
expression by dietary tetracycline, although that feature
was not used in this study. DAT knockdown reduces adult
DAT expression to 10% of wild-type levels and raises
extracellular dopamine levels in neostriatum to 170%
(wild-type control = 100%) [58]. Once housed at the Uni-
versity of Michigan, mutant and wild-type mice (age 2-4
months) were allowed to habituate to their new surround-
ings for two weeks before any behavioral testing. Mice
were housed at ~21°C on a 12 h light/dark cycle with
lights on at 7 a.m., in groups of two to three same-type
individuals during the laboratory environment testing
phase. During the home cage testing phase of the experi-
ments, mice were housed individually to facilitate video-
taping. Food (Purina Rat Chow; St. Louis, MO) and water
(tap water) were always available.

Behavioral testing

It was important to determine whether any sequential
stereotypy difference between mutant and wild-type mice
in grooming behavior was a stable difference in action
syntax strength, and not merely an artifact of testing con-
ditions. Grooming behavior of rodents is sensitive to envi-
ronmental contexts, both in quantity and in fine structure,
and stressors in particular can either suppress or increase
grooming behavior depending on type [88]. All mice were
therefore tested for grooming behavior in 2 environmen-
tal contexts: 1) a standard behavioral neuroscience
laboratory chamber, and 2) their own home cages (a rela-
tively stress-free environment).

Laboratory environment

Immediately prior to testing, mice were transported in
their home cage on a cart down a 30 m hallway to a labo-
ratory testing room with standard white fluorescent light-
ing, and placed individually in a test chamber (light
intensity 550-650 lux; sound intensity 65-70 decibels
measured within chamber). The laboratory test chamber
consisted of a transparent cylinder (19 cm high, 12.5 cm
diameter) suspended over a tilted mirror. A camera lens
focused on this mirror gave a close-up view of the mouse's
face, forepaws, and upper body. For behavioral testing,
each mouse was placed individually in a test chamber and
videotaped for 30 minutes. Each mouse received 3 habit-
uation days in the laboratory test procedure before
grooming behavior data were collected over the next 2
consecutive days in 30 min sessions.

Home environment

Testing in the home environment took place during the
dark phase under dim red light conditions. Mice were
housed singly in transparent rectangular cages (12 cm
high x 19 cm long x 10 cm wide). Videotaping of groom-
ing sequences took place from the side of the transparent
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home cage, for 30 min each day on 2 consecutive days,
with the camera focused closely on the mouse.

Behavioral video analysis

Videotaped grooming behavior was scored in slow
motion (frame-by-frame to 1/10% actual speed; scorer
blind to genotype) for grooming amount (cumulative
durations), grooming bout number and bout length, and
occurrence of syntactic chains. Syntactic grooming chains
were identified and classified in frame-by-frame analysis
as either Perfect, Imperfect but completed by full Phase IV
(omission, insertion, or reversal types), Terminal substitu-
tion of paw lick for Phase IV body licking, or Incomplete
(grooming stops before Phase IV, or reverts to sequentially
flexible facial grooming and paw strokes) [37,41],
[43,44]. We also made choreograph diagrams of syntactic
chains from each mouse to compare details of their form
and sequential pattern [61]. Behavioral data were statisti-
cally analyzed by 3-factor, 2-factor, or 1-factor ANOVA as
indicated above. When significant results were obtained,
post hoc paired comparisons were subsequently per-
formed using Bonferroni or Tukey tests (alpha set equal to
original 0.05 level).

Authors’ contributions

KCB conceived and supervised the study and drafted the
manuscript; JWA co-conceived the study and participated
in interpretation and writing; KRH carried out behavioral
testing, videoanalysis, and statistics; XZ developed and
generated the mutant mice, and participated in writing the
manuscript.

Additional material

Additional File 1

Movie: Sequential super-stereotypy of an instinctive fixed action
pattern in hyper-dopaminergic mutant mice. Windows Media
Player movie file (.avi): DAT Knockdown grooming fixed action pat-
tern.aviExamples of syntactic grooming chains performed by three hyper-
dopaminergic mutant mice are shown in the accompanying movie file.
Choreograph diagrams of component movements' form and sequence are
displayed for each syntactic chain, and strokes are illuminated sequen-
tially in synchrony with their corresponding movements. Note that the first
two syntactic chains contain insertion or reversal errors (Mutant mouse 1:
paw lick insertions in Phase 11, between Phases 1l and 111, and between
Phases III and IV; also reversal insertion of a Phase I ellipse stroke within
Phase II. Mutant mouse 2: paw lick insertions within Phase I, within
Phase I11, and between Phases 111 and IV). However, the syntactic chains
are not disrupted by these errors, and the mutants continue on with the
sequential pattern to successfully complete Phase IV (body licking).
Mutant mouse 3 also shows the ventral view that permits the viewer to see
both forepaws simultaneously, which was used to score all syntactic chains
in the laboratory.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1741-
7007-3-4-S1.avi]
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