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Abstract

Background: Interleukin 4 (IL-4) is a key regulator of the immune system and an important factor in the development of allergic
hypersensitivity. Together with interleukin 13 (IL-13), IL-4 plays an important role in exacerbating allergic and asthmatic
symptoms. For signal transduction, both cytokines can utilise the same receptor, consisting of the IL-4Ra and the IL-13Ral
chain, offering an explanation for their overlapping biological functions. Since both cytokine ligands share only moderate
similarity on the amino acid sequence level, molecular recognition of the ligands by both receptor subunits is of great interest.
IL-4 and IL-13 are interesting targets for allergy and asthma therapies. Knowledge of the binding mechanism will be important
for the generation of either IL-4 or IL-13 specific drugs.

Results: We present a structure/function analysis of the IL-4 ligand-receptor interaction. Structural determination of a number
of IL-4 variants together with in vitro binding studies show that IL-4 and its high-affinity receptor subunit IL-4Ra interact via a
modular protein-protein interface consisting of three independently-acting interaction clusters. For high-affinity binding of wild-
type IL-4 to its receptor IL-4Ra, only two of these clusters (i.e. cluster | centered around Glu9 and cluster 2 around Arg88)
contribute significantly to the free binding energy. Mutating residues Thrl3 or Phe82 located in cluster 3 to aspartate results in
super-agonistic IL-4 variants. All three clusters are fully engaged in these variants, generating a three-fold higher binding affinity
for IL-4Ro.. Mutagenesis studies reveal that IL-13 utilizes the same main binding determinants, i.e. Glul | (cluster |) and Argé4
(cluster 2), suggesting that IL-13 also uses this modular protein interface architecture.

Conclusion: The modular architecture of the IL-4-IL-4Ra. interface suggests a possible mechanism by which proteins might be
able to generate binding affinity and specificity independently. So far, affinity and specificity are often considered to co-vary, ie.
high specificity requires high affinity and vice versa. Although the binding affinities of IL-4 and IL-13 to IL-4Ra differ by a factor
of more than 1000, the specificity remains high because the receptor subunit IL-4Ra binds exclusively to IL-4 and IL-13. An
interface formed by several interaction clusters/binding hot-spots allows for a broad range of affinities by selecting how many of
these interaction clusters will contribute to the overall binding free energy. Understanding how proteins generate affinity and
specificity is essential as more and more growth factor receptor families show promiscuous binding to their respective ligands.
This limited specificity is, however, not accompanied by low binding affinities.

Page 1 of 18

(page number not for citation purposes)



BMC Biology 2006, 4:13

Background

Interleukin 4 (IL-4) is a pleiotropic cytokine that plays a
major regulatory role in the immune system [1]. IL-4
induces the differentiation of T-helper cells to a type 2
(Ty2) cytokine-producing phenotype [2] and the class
switching to IgE and 1gG4 [3,4]. Furthermore, it stimulates
the expression of adhesion molecules such as VCAM-1 [5]
and chemokines such as eotaxin-1, -2 and -3 [6-8]. Acti-
vated T};2 cells play a triggering role in the activation and/
or recruitment of IgE antibody-producing B cells, mast
cells [9] and eosinophils [10], which are all involved in
allergic inflammation [11]. Therefore, IL-4 plays a key role
in the development and progression of allergic hypersen-
sitivity.

Signal transduction of IL-4 is mediated by a sequential
binding process, initiated first by binding of IL-4 to its
high-affinity single membrane spanning receptor chain
IL-4Ra (Fig. 1a). This intermediate ligand receptor com-
plex then recruits one of two possible low-affinity receptor
subunits, the common gamma chain (y.) [12,13] or the
IL-13Ral chain [14,15], into the functional hetero-
trimeric complex to initiate signalling. The y_receptor sub-
unit is shared among the cytokines IL-2, -4, -7, -9, -15 and
-21 [12,13], whereas the IL-13Ra1 subunit is exclusively
used by IL-4 and -13 [16].

IL-13 shares only 25% identity with IL-4 on the amino
acid sequence level [17]. Despite this moderate homol-
ogy, IL-13 and IL-4 utilize an identical cellular receptor
built from the subunits IL-4Ra and IL-13Ral (Fig. 1b)
[16]. However, the order of the binding sequence and
binding affinities to the individual receptor subunits dif-
fer markedly between the two cytokines. In contrast to IL-
4, IL-13 binds first to the IL-13Ral subunit with high
affinity and subsequently recruits the IL-4Ra chain as the
low-affinity receptor subunit into the complex. High-
affinity binding of IL-4 to its cellular receptor is mediated
almost exclusively by the IL4-Ra subunit (Fig. 1a) [18].
The binding of IL-4 to the extracellular domain of IL-4Ra
determined by surface plasmon resonance spectroscopy
yields a dissociation constant K, of approx. 0.1 - 0.2 nM
[19]. In the case of IL-4, the low-affinity receptor subunits
IL-13Ral and v, [20] seem to contribute little to the over-
all binding affinity (Fig. 1a). For IL-13, only binding to its
high-affinity subunit has been determined in vitro so far
(Kp~ 25 -50nM) [21], and this is confirmed by binding
experiments using CHO cells transfected with IL-13Ra1
(Kp~ 4 - 5 nM). Binding to the receptor formed from IL-
13Ral and IL-4Ra leads to a dramatic increase in affinity
(Kp~ 30 - 40 pM), suggesting a strong cooperativity for
binding to both receptor subunits (Fig. 1b) [15].

The structures of both cytokine ligands IL-4 and IL-13
have been determined by x-ray crystallography or by NMR
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[22-27]. Both IL-4 and IL-13 belong to the short-chain 4-
helix bundle cytokines. The four anti-parallel helices A, C,
B and D are connected by two long end-to-end loops AB
and CD and one short loop connecting helices B and C
(Fig. 1c, d). Structure-function analyses of IL-4 have
revealed insights into the architecture and composition of
the binding epitopes involved in the binding to the IL-
4Ra and the y. receptor subunits [18-20], [28-32]. Struc-
ture determination of the ligand-receptor complex of IL-4
bound to its high-affinity receptor subunit IL-4Ra has
shown that the protein-protein interface represents a new
type of modular architecture [33]. Instead of a continuous
binding epitope, three so-called interaction clusters could
be identified, which contribute affinity independently
and might therefore allow for a scalable affinity to differ-
ent cytokine ligands [34]. Interestingly, the location of the
binding sites for the receptor subunits IL-4Ra and IL-
13Ral are conserved in both ligands IL-4 and IL-13, as
shown by mutagenesis studies [35-37] and structural
analyses, suggesting that similar residues might be
involved in the recognition and binding of these receptor
subunits. In this paper we explore the possibility that this
new architecture is the basis of the high specificity of the
IL-4Ra subunit for the two cytokines IL-4 and IL-13 and
its simultaneous variable binding affinity to both ligand
proteins. The results contribute significantly to the under-
standing of how proteins might generate binding affinity
and specificity independently, allowing promiscuous pro-
tein-protein interactions.

Results

Two mutations in helix C convert IL-4 into a super-agonist
By mutational analysis, two IL-4 variants were found with
higher binding affinity to IL-4Ra than wild-type IL-4 [30].
The binding characteristics were analyzed by biosensor-
based experiments. An IL-4Ro variant (extracellular
domain comprising residues 1 to 210), which harbours
the mutations C182A and Q207C (IL-4Rogcp), was used
for BlAcore studies allowing the receptor protein to be
immobilized in an oriented fashion. The receptor protein
was biotinylated via the free thiol group and immobilized
on a streptavidin-coated BIAcore CM5 biosensor chip.
Analysis of the variants T13D and F82D yielded dissocia-
tion constants K, of 0.02 - 0.04 nM and 0.03 - 0.04 nM
respectively (Table 1). These values are 2- to 3-fold lower
than those for the interaction between wild-type IL-4 and
IL-4Ra (Table 1). The increase in affinity is mainly attrib-
utable to the reduced dissociation rates (k) of T13D and
F82D. Wild-type IL-4 dissociates from the immobilized
extracellular domain of IL4Ra (IL-4Rocp) with a rate of
1.3 x 10-3s'!, which is approximately 2-3 times faster than
for T13D or F82D (Fig. 2a; Table 1). The association rates
(k,,) seem not to be affected by these mutations (Table 1).
Therefore, the introduction of an acidic residue does not
alter the electrostatic steering effect observed for the IL-4-
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Sequential binding mechanism in the IL-4/-13 receptor activation. (a) The binding of IL-4 to its cellular receptor fol-
lows a two-step sequential binding mechanism. First, IL-4 is recruited to the membrane by its high-affinity subunit IL-4Ra.; sec-
ond, either one of the two low affinity subunits IL-13Ral (apparent Ky~ | pM) or y. (app. Kp ~ 1.5 — 2 M) is recruited into
the complex. (b) For IL-13 the order of the binding events is reversed. IL-13 binds first to the IL-13Ra.l subunit; the affinity of
IL-13 to IL-4Rat is below detection limit (app. Kp > 100 pM). In the second step the IL-13:IL-13Ra.l complex recruits the IL-
4Ra. subunit into the complex. Values marked Kp* indicate that these interactions are measured by binding of the soluble ecto-
domain to the surface immobilized binary complex of ligand and high-affinity receptor subunits. These apparent binding con-
stants do not reflect the real affinity for a two-dimensional interaction in the membrane. (c, d) The location of the binding sites
for the receptor subunits IL-4Ra and IL-13Ra.l are conserved between the two cytokines IL-4 (c) and IL-13 (d). Site | is used
for the interaction with the IL-4Ra subunit, site 2 is used for the interaction with IL-13Ral (and for binding to y. in the case of
IL-4).
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BlAcore analysis of super-agonistic IL-4 variants. BlAcore sensorgrams of ligand receptor interactions. Solutions of the
indicated IL-4 variants (concentration |0 nM) were perfused over a sensor chip with immobilized IL4Rogp. (@) Compared to
wild-type IL-4 (green) the super-agonistic variants IL4-T 13D (red) and IL4-F82D (cyan) show higher binding-affinities to
IL4Ratzp owing to an approximately 3 times slower dissociation rate kg (b) The double variant IL4-T13D-F82D (purple)
shows no altered binding-affinity to IL4Rolgcp in comparison to wild-type IL-4 (green).

IL-4Ro interaction. Since it is mainly the dissociation
process that is altered in the T13D and F82D variants, it
can be concluded that an acidic residue at either position
13 or 82 leads to a stabilization of the IL-4-1L4-Rotpcp
complex, resulting in IL-4 super-agonists. This indicates
that additional non-covalent interactions between the lig-
and and the receptor ectodomain must be formed.

Table I: BlAcore analysis of IL-4, IL-13 and variants

To determine whether the stabilizing effects of the two
single mutations T13D and F82D might act in a coopera-
tive manner, we generated the IL-4 double variant T13D-
F82D, which we expected to bind IL-4Ra with a K in the
sub-picomolar range. However, interaction analysis
revealed that the apparent K}, of the complex between IL-
4Ra and this IL-4 variant is higher than that observed for

IL-4 variant kon * 107 [s71 M-1] kogx 103 [s71] app. Kp [nM] relative Ky, (Kp(mut)/Kp(IL-

1)

IL4 1.32 £0.27 1.26 +0.16 0.10 £ 0.02 1.0

TI3D 127 £ 0.19 0.46 £ 0.16 0.04 +0.02 0.4

F82D 1.61 £0.15 0.46 +0.15 0.03 + 0.01 0.3

T13D-F82D 1.19£0.18 1.40 £ 0.27 0.12 £ 0.03 1.2

R85A 0.46 +0.22 1.58 +0.17 0.47 £ 0.34 4.7

TI3D-R85A 0.58 +0.19 1.38 +0.22 0.26 + 0.08 26

F82D-R85A 042 £0.12 4.10 = 1.0l 1.08 + 0.50 10.8

T13D-F82D-R85A 0.30 + 0.08 144 +0.19 0.51 +012 5.1

IL-13 Variant

relative Kp (Kp(mut)/Kp(IL-
13))

IL-13 -
EITA -
R64A -

- 1.0 (150 nM)
- 233
- > 1300

Association and dissociation rates of IL-4 variants to immobilized IL4-Rozp were measured on a BIA2000 system. The rate constants represent
mean values of 18 independent measurements with 6 different analyte concentrations. Binding affinities of IL-4Rogcp to the complex of IL-13/IL-
I3variant bound to IL-13Ra.l were measured via the COINJECT command. Dissociation constants were obtained from equilibrium binding analysis,
therefore no rate constants are given. Binding of the IL-13 variants to IL-13Ra| was unaltered compared to wild-type IL-13.
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the individual single mutation variants T13D and F82D
and is similar to that for wild-type IL-4 (Fig. 2b; Table 1).
In addition, the kinetic rate constants, especially the dis-
sociation rate, clearly reflect the binding characteristics of
wild-type IL-4 (Fig. 2b). The two amino acid exchanges
therefore seem not to act cooperatively; the additional
thermodynamic stabilization of T13D and F82D leads to
competition, possibly because both variants have identi-
cal binding mechanisms. To test whether binding specifi-
city is altered by these mutations, binding to other
cytokine receptor subunits was compared with that of
wild-type IL-4. Binding to the low-affinity subunits was
determined by measuring the affinities of IL-4, T13D and
F82D bound to IL-4Ra for IL-13Ral and y.. Direct bind-
ing of IL-4 and the super-agonistic variants to the low-
affinity subunit IL-13Ra1 was also measured (IL-4: K, =
2.5 uM; T13D: Ky = 2.5 uM; F82D: K, = 2.3 pM). The
affinity of direct interaction between IL-4 (and T13D as
well as F82D) and v, is too low (K. 100 puM) to be
detected by BIAcore technology. No differences between
wild-type IL-4 and the super-agonist variants could be
observed; the affinity for IL-13Ra1 is similar for all three
binary ligand receptor complexes (Kp = 1.2 pM IL-4wt:IL-
4Ro; Kp = 1.7 pM T13D:IL-4Ro; Kp = 1.2 pM F82D:IL-
4Ro). Similar observations were made for the interaction
of IL-4 wild-type and super-agonist proteins with the low-
affinity subunit vy, (IL-4:IL-4Ra : K = 1.7 uM; T13D:IL-
4Ra : K = 2 uM; F82D:IL-4Ra : K, = 1.2 uM). This result
indicates that the mutations at positions 13 and 82 in the
IL-4Ra binding site (site 1) of IL-4 do not alter interac-
tions at the binding site for the two low-affinity receptor
subunits IL-13Ral and y, (Fig. 1¢, d). In addition, the
cytokine receptor IL-21R, which shares the highest amino
acid sequence similarity with IL-4Ra in the extracellular
part, was used as a control for specificity. Neither wild-
type IL-4 nor the super-agonistic variants T13D and F82D
showed any binding to this receptor subunit.

Structural analysis of super-agonist variants

To elucidate the molecular mechanism by which the two
mutations might lead to additional stabilizing interac-
tions, we determined the high-resolution structures of the
IL-4 variants T13D and F82D as well as the double variant
T13D-F82D. Improvements in the purification procedure,
especially the use of fractional ammonium sulfate precip-
itation steps, enabled us to obtain highly homogenous
and pure IL-4 protein, giving a single protein band on sil-
ver-stained SDS polyacrylamide gels. The high homogene-
ity of the protein enabled large crystals (approx. 1.2 x 0.3
x 0.3 mm) to be prepared, which diffracted to high reso-
lution. The structures of the IL-4 variants T13D (max. res-
olution 1.65 A), F82D (max. resolution 1.7A) and T13D-
F82D (max. resolution 1.8A) were refined on the basis of
the structure of wild-type IL-4 (max. resolution 1.8A); all
crystals were obtained under identical conditions, allow-
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ing detailed comparison. The overall structure of IL-4
comprises the known four-helical bundle in up-up-down-
down topology (Fig. 1¢) [24,26,27,31,38], which like the
crystal packing is unaffected by these mutations. The
r.m.s. deviation for the protein backbone is less than 0.5A.
The only differences that can be observed between the
structures of I1L-4 (Fig. 3a) and these three variants (Figs.
3b-d) are located in very close proximity to the site of
mutation.

In the variant T13D, the aspartate residue resides in the
middle of the first a-helix a,, and the side chain is ori-
ented towards o-helix C. Both carboxylate oxygens of
Asp13 are involved in a bi-dentate salt bridge to Arg85 on
helix o, thereby tightly fixing the side chain of Arg85 (Fig.
3b). The geometries and distances of the bi-dentate hydro-
gen bonds are close to ideal parameters; the planes
formed by the carboxylate of Asp13 and the guanidinium
group of Arg85 are out of planarity by just 14°; the lengths
of the two hydrogen bonds are 2.7 and 2.8A. For compar-
ison, in the structure of wild-type IL-4, the hydroxyl group
of Thr13 is hydrogen-bonded to the main chain carbonyl
of Glu9; the side chain of Arg85 is moved outward
towards the solvent and fixed to the hydroxyl group of
Thr13 by a water-mediated H-bond. The change in side
chain conformation of Arg85 becomes clear if the side
chain torsion angles of the wild-type and variant are com-
pared. The y, torsion angle of Arg85 is in the trans confor-
mation (174° IL-4, 176° 1L-4 T13D) for both proteins; in
the case of IL-4, y, of Arg85 is slightly off trans (160°),
whereas for T13D, the torsion angle y, of Arg85 is in the
trans conformation (176°). In contrast, the y; torsion
angle differs by 115° between IL-4 (58°, gauche confor-
mation) and T13D (-57°, gauche* conformation). In the
lower resolution structures of IL-4 (PDB entries 1RCB,
1HIK) the temperature factors for the side chain atoms of
Arg85 were elevated compared to the main chain atoms,
indicating greater side chain flexibility. In contrast, in our
current study, the temperature factors for the side chain
atoms of Arg85 are of similar magnitude in the high-reso-
lution structures of wild-type IL-4 (mean 23A2 for side
chain from Cg) and its variant T13D (mean 20A2). These
values are also close to those of the atoms located in the
hydrophobic core (mean 15A2), therefore the side chain
of Arg85 can be considered rigid.

The structure of the super-agonist variant F82D shows a
different picture (Fig. 3¢); the side chain conformation,
i.e. the y, and y, torsion angles, of Asp82 is identical to
that of the wild-type Phe82. As in IL-4 T13D, the only
structural changes are close to the site of mutation. Again
the orientation of the side chain of Arg85 is changed from
that in IL-4, but the side chain conformations of Arg85 are
different in T13D and F82D. Interestingly, the high-reso-
lution structure of variant F82D reveals two alternative
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Figure 3

Small structural changes probably account for super-agonist binding properties. Figures a-d are presented as wall-
eyed stereo images. (a) Magnification (stereo image) of the region around Thr13 and Phe82 of wild type IL-4, a 2F . — F_,. elec-
tron density map is shown at a level of |.56. (b) The same area is shown for the super-agonistic IL-4 variant T13D; the
exchange of Thr3 for an aspartate leads to a change in side chain conformation of Arg85, which exhibits a bi-dentate hydrogen
bond between the carboxylate group of Aspl3 and the guanidinium group of Arg85. (c) Area shown for the super-agonist IL-4
F82D; as in (b) a hydrogen bond between Asp82 and Arg85 leads to a change in side chain conformation of Arg85. However,
two alternative side chain conformations can be observed for Arg85, one that is "bound" to Asp82 and a second where the
Arg85 side chain is oriented towards the solvent. (d) The double variant IL-4 T13D/F82D shows similar side chain orientations
to those in IL-4 F82D, but only a single side chain conformation is observed for Arg85.
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side chain conformations for Arg85. In one, the side chain
is not hydrogen-bonded to the Asp residue introduced at
position 82 (Fig. 3c) and is oriented towards the solvent.
In the second, the side chain interacts with the carboxylate
group of Asp82 via a weak single hydrogen bond, but it is
much less fixed than in the variant T13D (Fig. 3b). The
distance between the amino group of Arg85 and the car-
boxylate group of Asp82 is 3.2A and therefore close to the
exclusion criterion for a hydrogen bond. In addition, the
temperature factors of the Arg85 side chain atoms are ele-
vated compared to those of rigid main chain or side chain
atoms in the variant F82D, indicating that the stabiliza-
tion of a certain side chain conformation is not as rigid as
in variant T13D.

In the case of the double variant, TI3D-F82D, the side
chain of Arg85 also occupies a different side chain confor-
mation from that in wild-type IL-4. Although two "accep-
tor" carboxylate groups are present, Asp13 and Asp82, the

Table 2: Processing and refinement statistics for IL-4 and variants
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side chain of Arg85 exhibits only one defined side chain
conformation in which the guanidinium group is hydro-
gen bonded to the carboxylate group of Asp82 (Fig. 3d).
As in variant F82D, the temperature factors of the side
chain atoms of Arg85 are elevated compared to main
chain atoms. The fixation of the side chain of Arg85 to the
core structure of IL-4 might therefore be not as strong as
observed for T13D. Although only a single defined side
chain conformation for Arg85 is observed in T13D-F82D,
the loss in affinity of the double variant compared to both
super-agonists might result from a competition between
two possible side chain conformations of Arg85.

Interaction analysis using IL-4 receptor variants

The binding behaviour of the super-agonists suggests that
additional interactions are formed between the ligand and
the IL-4 receptor o-chain. To determine whether these
interactions are formed directly between the substituted
side chains of T13D or F82D or result from indirect inter-

Crystal IL-4 WT IL-4T13D IL-4F82D IL-4 TI3DF82D IL-4R85A IL-4 TI3DR85A  IL-4 F82DR85A
Spacegroup P4,2,2
Beamline ESRF ID 14 SLS XS06 SLS XS06 ESRF ID 14 Rigaku MicroMax007, VariMaxCu HighRes
Wavelength 0.9500 09178 0.9183 0.9500 1.5418 1.5418 1.5418
Unit Cell (A) a=b=9054,c a=b=9053,c a=b=9097,c a=b=91.03,c a=b=91.13,c a=b=9133,c a=b=91.20,c

=46.07 =4591 = 46.08 =46.02 =4582 =45.78 =46.00
Resolution (A)  205-1.8(1.9— 10.6—1.65(1.74 287-1.6(1.69 205-18(1.9- 323-235 45.7-2.1 (2.18 26.4-2.0(2.07

1.8) —1.65) - 1.6) 1.8) (2.43 - 2.35) -2.1) -20)
Total 94871 (18941) 152584 (40910) 375353 (34716) 104168 (24465) 36412 (3611) 60477 (6012) 70758 (6893)
Reflections
Completeness 99.0 (98.5) 97.1 (98.1) 100.0 (99.9) 99.6 (100.0) 98.9 (99.6) 99.4 (98.7) 98.9 (98.2)
(%)
Multiplicity 5.2 (3.6) 6.7 (6.4) 14.4 (9.3) 57 4.7) 4.35 (4.32) 5.16 (5.15) 5.26 (5.29)
Rimerge 0.058 (0.230) 0.092 (0.172) 0.080 (0.291) 0.071 (0.211) 0.056 (0.265) 0.055 (0.258) 0.050 (0.278)
Average l/sigma 18.6 (4.6) 17.6 (5.2) 26.6 (5.7) 15.2 (4.9) 17.3 (4.6) 18.2 (5.6) 19.2 (5.2)
Refinement
Resolution 149 —-1.8(1.85 10.0 - 1.65 200-1.7(1.74 148-1.8(1.85 20.0 - 2.50 20.0-2.1 (2.15 20.0-2.0(2.05
(outer shell) (A) - 1.8) (1.69 - 1.65) -1.7) - 1.8) (2.56 — 2.50) -2.1) -2.0)
# of reflections/ 17121/926 21555/1142 20694/1100 17414/942 6654/334 (472/ 11162/555 12767/664
in test set (1225/74) (1533/84) (1492/77) (1248/70) 28) (818/34) (893/55)
R factor 0.211 (0.219) 0.221 (0.253) 0.226 (0.246) 0.218 (0.263) 0.214 (0.224) 0.214 (0.250) 0.205 (0.253)
Free R factor 0.244 (0.272) 0.247 (0.319) 0.248 (0.281) 0.241 (0.303) 0.264 (0.316) 0.249 (0.337) 0.258 (0.308)
Average B 27.2 21.1 348 26.4 345 22.1 288
factor (A2)
R.m.s.d. Bonds 0.017 0.018 0.011 0.011 0.012 0.016 0.014
R.m.s.d. Angles 1.597 1.695 1.322 1.194 1.400 1.661 1.379
Ramachandran
Most favored 89.4 91.9 894 91.9 91.1 92.7 92.7
Additionally 9.8 8.1 10.6 7.3 8.9 7.3 7.3
favored
Generously or 0.8 (I, Thr22) - - 0.8 (I, Lys37) - - -
disallowed
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Table 3: BlAcore analysis of IL-4Ra variants
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IL-4 IL4-T13D
IL4-Ra variant kon X 107 [s" M1 kg% 103 [s7'] app. Kp [nM] kon X 107 [s" M1 kg% 103 [s7] app. Kp [nM]
IL4-Ra 1.79 £ 0.27 1.62 + 0.67 0.09 + 0.04 1.24 £ 0.20 0.25 + 0.20 0.02 + 0.02
YI3T 1.55 + 0.67 23.5 + 4.05 1.76 £ 0.75 1.03 +0.43 5.38 £ 0.51 0.66 + 0.43
Dé67A 0.80 + 0.34 36.5 +7.60 5.60 +3.32 0.52+0.19 1.82 +0.39 0.38+0.10
DI25A 0.89 + 0.31 6.46 + 1.75 0.77 £ 0.23 0.79 £ 0.14 0.65 + 0.29 0.08 + 0.04
Y127F 1.17 £ 0.51 1.99 + 0.65 0.20 + 0.07 0.96 £ 0.15 091 +0.34 0.09 + 0.02

IL4-F82D IL4-T13D-F82D
IL4-Ra variant kon X 107 [s" M1 kg% 103 [s7'] app. Kp [nM] kon X 107 [s" M1 kg% 103 [s7] app. Kp [nM]
IL4-Ro 1.56 +0.93 0.48 + 0.37 0.04 + 0.04 1.06 + 0.26 1.44 + 0.96 0.14 £ 0.11
YI3T 1.20 + 0.36 8.64 + 1.74 0.76 + 0.21 0.68 +0.32 31.8+342 4.22 +0.62
Dé67A 0.68 +0.18 882+ 1.83 1.37 £ 0.47 0.52 +0.11 8.56 + 1.63 1.67 +0.27
DI25A 0.99 £ 0.22 2.02 +0.39 0.21 £ 0.06 0.55 % 0.11 1.34 + 0.40 0.24 + 0.06
Y127F .12+ 021 1.08 + 0.33 0.10 + 0.03 0.40 + 0.24 27.4 + 6.01 6.15 +2.68

Association and dissociation rates of IL-4 variants to immobilized IL4-Ragcp variants were measured on a BIA2000 system. The rate constants
represent mean values of 12 independent measurements with 6 different analyte concentrations.

action, we used variants of IL-4Ra to identify the potential
interaction partners of Asp13 (T13D) and Asp82 (F82D).
Single amino acid variants of IL-4Royp were immobi-
lized on a BIAcore CM5 biosensor chip similar to the one
described above. Four IL-4Ro variants were chosen on the
basis of the location of the respective side chain in the lig-
and-receptor interface. The IL-4Ro. variant Y13F was
selected as a control because the hydroxyl group of Tyr13
is located far from the site of mutation of the two super-
agonists T13D and F82D (distance: Asp13 or Phe82 side
chain of T13D and F82D - IL-4Ra Tyrl3 = 10A). There-
fore, the effect of the IL-4Ra Y13F mutation on the affinity
for ligand should be identical in magnitude for wild-type
IL-4 and both super-agonistic variants T13D and F82D. In
fact, the affinity of IL-4Ra Y13F to wild-type IL-4 is
reduced by a factor of ~ 20 compared to wild-type IL-4Ra.
The affinities for the super-agonists T13D and F82D are
decreased similarly by factors of 33 and 19, respectively
(Table 3).

The other three IL-4Ra variants either carry mutations
close to the interacting site or the substituted residues
interact directly with the side chains of Thr13 or Phe82 in
the ligand. The carboxylate group of IL-4Ra Asp67 forms
a bi-dentate hydrogen bond with the guanidinium group
of IL-4 Arg85, therefore mutation of IL-4Ra Asp67 to Ala
markedly decreases the binding affinity (IL-4Ra. D67A :
IL-4 ~ 60-fold). In comparison, the affinity of IL-4Ra
D67A for the super-agonist T13D is only reduced 19-fold,
compared to 34-fold for F82D. Aspartate 125 of IL-4Ra
interacts with the side chains GIn78 and Arg81 of IL-4 and
is in close proximity to residue Phe82 of IL-4. Mutation of
Asp125 to alanine in IL-4Ra reduces the binding affinity
to IL-4 8-fold, owing to the loss of two hydrogen bonds

formed between the carboxylate group of IL-4Ra Asp125
and the side chain amino group of IL-4 GIn78 and the
guanidinium group of IL-4 Arg81. For the IL-4 variant
T13D, the affinity to IL-4Ra. D125A is decreased by a fac-
tor of 5; for IL-4 F82D, the affinity is reduced 8-fold com-
pared to wild-type IL-4Ro (Table 3). Finally, the IL-4Ra
variant Y127F was tested for binding to 1L-4, T13D and
F82D. The hydroxyl group of Tyr127 is involved in a
hydrogen bond with Thr13 of IL-4. Substitution of IL-4Ra
Tyr127 with a phenylalanine leads to only a small (2-fold)
reduction in binding. A slightly larger reduction in bind-
ing affinity is observed for the IL-4 super-agonists T13D
(4.5-fold) and F82D (2.5-fold).

Interestingly, none of the IL-4Ro variants showed a strong
cooperative change in binding affinity for the IL-4 super-
agonist T13D and F82D when compared to wild-type IL-
4, suggesting that the additional interactions between
T13D-F82D and IL-4Ra. are not formed directly between
Asp13 or Asp82 and any of the IL-4Ra side chains investi-
gated here. The greatest difference in binding characteris-
tics between wild-type IL-4 and the super-agonist T13D
was observed for the IL-4Ra variant D67A. Since the side
chain of I[L-4Ra Asp67 is hydrogen-bonded to IL-4 Arg85,
this suggests that the side chain of Arg85 is involved in dif-
ferent interactions in the ligand-receptor complexes of
wild-type IL-4 and T13D. The differences in side chain ori-
entation of Arg85 between the structures of free 11-4,
T13D and F82D (Fig. 3a-c) might therefore also be present
in the IL-4 ligand-receptor complexes.

Homology modelling of IL-4 ligand-receptor interaction
Unfortunately, we have not succeeded so far in obtaining
diffracting crystals for the ligand-receptor complexes com-
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prising the IL-4 super-agonists T13D and F82D bound to
the extracellular domain of IL-4Ra. In order to obtain
insights into the possible interaction mechanism, we have
modelled the interaction of T13D and F82D with IL-4Ra
on the basis of the crystal structure of wild-type IL-4. The
changes observed in the structures of the free IL-4 super-
agonists T13D and F82D were transferred on to the com-
plex structure by superimposing the free structures of the
ligand on to the IL-4 bound to IL-4Ra. To obtain the
model of the T13D-IL-4Ra complex, the coordinates of
Aspl3 (of T13D) and of Arg85 were used instead of the
coordinates of the original residues Thr13 and Arg85 of
wild-type IL-4. The same procedure was used for the com-
plex of F82D-IL-4Ra. The amino acid exchanges did not
cause bad van der Waals contacts, nor was the packing of
the side chains in the interface impaired.

The structure of the complex of wild-type IL-4 bound to
IL-4Ra. shows that the ligand-receptor interface has a
modular architecture [33], which, from analysis of the
hydrogen bonding, can be described by three independ-
ently interacting clusters (Fig. 4a). Two of these three clus-
ters include the so-called main binding determinants,
Glu9 (IL-4) and Arg88 (IL-4), which contribute about
80% of the total binding energy. Cluster I is centred on
Glu9 of IL-4, which makes several hydrogen bonds with
Tyr13 (hydroxyl group), Ser70 (main chain amide) and
Tyr183 (hydroxyl group) of IL-4Ra (Fig. 4b). Cluster II
involves Arg88 of IL-4, which forms a bi-dentate salt
bridge with Asp72 of IL-4Ra (Fig. 4c). Cluster III consists
of the positively charged residues Arg81 and Arg85 of IL-
4 and the negatively charged residues Asp66, Asp67 and
Asp125 of IL-4Ra (Fig. 4d). Although the charged amino
acids in Cluster I1I of the ligand are distributed in a highly
complementary manner, these residues do not contribute
to the binding affinity, as was shown by mutagenesis and
BIAcore analysis [39]. Arg81 and Arg85 of IL-4 form sev-
eral hydrogen bonds with residues of IL-4Ro; however,
these interactions do not seem productive.

Modelling of the interaction of T13D bound to IL-4Ra
suggests that the guanidinium group of Arg85 (T13D)
now forms bi-dentate hydrogen bonds with the main
chain carbonyl of the receptor Asp125 (Fig. 5b). In con-
trast to the hydrogen-bonding network of Arg85 in wild-
type IL-4 (Fig. 5a), Arg85 in the complex of T13D:IL-4Ra
is probably also fixed to Asp13 (T13D) via a bi-dentate
salt bridge. This internal hydrogen bonding would result
in fixation of the Arg85 side chain prior to complex for-
mation. Therefore, the conformational entropy is not
decreased for Arg85 in the formation of the T13D-IL-4Ra
complex, whereas for wild-type IL-4 the side chain of
Arg85 becomes ordered only upon binding to IL-4Ra.
Consequently, the entropy cost for immobilizing this side

http://www.biomedcentral.com/1741-7007/4/13

chain neutralizes the energy release of its hydrogen bond-
ing interactions.

The model of the F82D:IL-4Ra complex allows us to pro-
pose a stabilizing mechanism similar to that suggested for
the complex of T13D and IL-4Ra (Fig. 5c). Here, too, the
carboxylate group of Asp82 (F82D) forms a bi-dentate salt
bridge with the guanidinium group of Arg85, thereby
immobilizing the side chain of Arg85 in the ligand-recep-
tor interface. The "head groups", i.e. the two imino
groups, form two hydrogen-bonds with the main chain
carbonyl of Asp125 (IL-4Ra), as also observed in the
model of T13D bound to IL-4Ra (Fig. 5b). Hence the two
amino acid changes in T13D and F82D lead to an identi-
cal change in the side chain conformation of Arg85 (lig-
and). This change of Arg85 subsequently transduces the
additional stabilization/interaction observed for the two
super-agonists. Since the additional interaction is medi-
ated in both super-agonists by the same indirect mecha-
nism via Arg85, this also explains why combination of
two super-agonistic mutations did not lead to a further
increase in binding affinity.

A change in side chain conformation of IL-4 Arg85 leads to
an increase in binding affinity

We tested the interaction model proposed above by
mutating Arg85 of IL-4 and the super-agonistic variants to
alanine and measuring the residual binding affinity to IL-
4Ra. If Arg85 is really involved in generating the addi-
tional stability/interaction, then, owing to cooperativity,
mutation of this residue would have a greater effect in the
super-agonistic variants (decrease in binding affinity)
compared to wild-type IL-4. Changing Arg85 of IL-4 to
alanine does not change the binding affinity for IL-4Ra
dramatically (K, (R85A)/Kp (wt IL-4) ~ 4.7-fold, thus
AAG = 1 kcal mol1). This is in line with the observation
that residues in Cluster III do not generally contribute to
the overall binding (Fig. 4a, 6a). In particular, the dissoci-
ation rate constant is only increased by a factor less than
1.3, showing that the hydrogen-bonding network of
Arg85 with IL-4Roa provides no free binding energy. In
contrast, the affinity of the IL-4 variant T13D-R85A is
decreased 6.5-fold and its dissociation rate reflects IL-4
wild-type-like binding kinetics (Fig. 6a). Since the hall-
mark of the super-agonistic variants was a clearly
decreased dissociation rate constant (relative kg (T13D or
F82D) = 0.3 - 0.4 k. (IL-4wt)), this confirms the above
mechanism by which Arg85 is involved in generating the
higher binding affinity. An even bigger effect is observed
for the variant F82D-R85A (Fig. 6b). Here the equilibrium
binding constant is increased almost 36-fold, mainly
because of the increased dissociation rate (k.g (F82D-
R85A)/ky (F82D) ~ 9). To exclude the possibility that
structural changes in addition to the removal of the Arg85
side chain play a role in the changes in binding stability,
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Cluster Il

Figure 4
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Cluster lll

Modular interface of the IL-4 — IL-4 receptor interaction. (a) The interface between IL-4 and IL-4Ra consists of three
clusters that contribute binding free energy independently of each other. Hydrogen bonding only occurs within one particular
cluster but does not extend between two different clusters. Color coding represents the binding free energy that each residue
contributes to the ligand-receptor interaction (red: AG = 3.5 kcal mol-!; orange: 3.5 kcal mol-! > AG = 1.7 kcal mol-!; yellow:
.6 kcal mol-! > AG = 0.5 kcal mol-!; dark grey: 0.5 > AG > 0 kcal mol-!. (b) Cluster | is centred on Glu9 of IL-4, which is one of
the two main binding determinants of the IL-4 — IL-4Ra interaction. (c) IL-4 Arg88 is the central residue in cluster Il forming a
bi-dentate saltbridge with IL-4Ro Asp72. (d) Cluster Ill consists of a hydrogen-bonding network comprising positively charged
residues on the IL-4 interface (Arg8I, Arg85) and negatively charged residues on the IL-4Ra epitope (Asp67, Asp125).

we determined the structures of the IL-4 variants R85A,
T13D-R85A and F82D-R85A. No changes in the local
structure around residues Thr/Asp13, Phe/Asp82 or Arg85
could be observed (data not shown).

IL-13 utilizes the same main binding determinants for
binding to IL-4Rc

IL-13 uses the same cellular receptor for signalling as I11-4,
consisting of the IL-4Ra and IL-13Ra 1 subunits [40,41].

However, the binding mechanism is different and the
order of the binding events is reversed. IL-13 binds first
with moderate to high affinity to its [L-13Ral receptor
chain (Kp ~ 25 nM) as determined from BlAcore experi-
ments [42]. Then the second subunit is recruited into the
complex. In contrast to IL-4, only one "low-affinity"
chain, i.e. IL-4Ra, is able to bind to the complex (Fig.
1b,7). The apparent affinity (K ~ 80 nM) of the extracel-
lular domain of IL-4Ra to the binary complex of 1L-13

Page 10 of 18

(page number not for citation purposes)



BMC Biology 2006, 4:13

Figure 5
Hydrogen bonds network in the IL-4 — IL-4 receptor interface. (a) The hydrogen bond network in cluster Ill (stippled
lines in cyan) between wild type IL-4 and IL-4Ra. is shown. Arg85 of IL-4 is H-bonded to residues of IL-4Ra (Aspé7 side chain,
Asp125 main chain), but several of these H-bonds are mediated via solvent molecules. (b) Model for the interaction of the
super-agonist IL-4 T 13D with IL-4Ra.. The "internal" H-bonds between Asp |3 and Arg85 orient the side chain of Arg85 to yield
intermolecular H-bonds to the IL-4Ra Asp 125 main chain carbonyl. (c) A similar mechanism as in (b) can be drawn for the IL-
4 F82D variant when an intramolecular H-bond between IL-4 Asp82 and Arg85 is assumed.
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bound to IL-13Ra1 (Fig. 7) is rather high compared to the
low apparent binding affinities observed for the interac-
tion of the binary complex of IL-4:IL-4Ra with either y. or
IL-13Ral (Kp~ 2 to 5 uM). The binding sites for IL-13Ra.1
and IL-4Ra on IL-13 have been mapped by mutagenesis
and functional assays [35,37]. The binding epitope for IL-
13Ral is located on the C-terminal end of helix D of IL-
13; the epitope for the IL-4Ra is located on the helices A
and D. The two main binding determinants of IL-4 to IL-
4Ratgcp, i.e. Glu9 and Arg88, map to the residues Glul1
and Arg64 of IL-13 (numbering according to the mature
part of SWISS-PROT entry P35225) when the structures of
IL-4 [24,26,27,31,38] and IL-13 [22,23] are superim-
posed. Both IL-13 variant proteins, E11A and R64A, were
prepared and their binding properties for the ECDs of IL-
13Ral and IL-4Ra were determined by BIAcore analysis.
The binding affinities of both variants to IL-13Ral were
unchanged compared to wild-type IL-13 (data not
shown). Binding to IL-4Ro was measured by binding IL-
13 first to immobilized IL-13Ralgqp and then perfusing
IL-4Rapcp together with IL-13 over this binary complex.
The apparent binding affinities were 35 uM and 200 puM
forIL-13 E11A and IL-13 R64A, respectively. The dramatic
loss in affinity clearly indicates the requirement of both
residues for binding of IL-13 to IL-4Ra, which has also
been shown previously in a more qualitative cell-based
measurement [37]. Compared with the apparent affinity
of wild-type IL-13, the affinity drops by factors of 230 and
1300 for IL-13 E11A and IL-13 R64A, showing that
although the affinity of IL-13 for IL-4Ra is 1000-fold
lower than that of IL-4 for IL-4Ra, both main binding
determinants are conserved. Remarkably, IL-4Rotyqp is

bound with a relatively high affinity (K = 80 nM) to the
binary complex of IL-13 and IL-13Ro1cp compared to
the low-affinity interaction (Kp~ 2 uM) of IL-13Ra. 14¢p
to the binary complex of IL-4 and IL-4Rop. Although
this suggests that the affinities of IL-13 to the two receptor
subunits IL-13Ra 1y (Kp ~ 25 nM) and IL-4Raogp (Kp ~
80 nM to IL-13-IL-13Ra1 g complex) are of similar mag-
nitude, the binding mechanism is still absolutely sequen-
tial, since IL-13 alone does not bind to IL-4Rop (Fig.
1b). This clearly shows that the binding of IL-4Rotp to
the binary complex comprising IL-13 and IL-13Ral ¢ is
highly cooperative and probably involves a large receptor-
receptor interface. The cooperative binding mechanism of
the IL-13 ligand-receptor interaction is quite different
from that of IL-4; here the overall binding affinity is dom-
inated by the interaction of IL-4 with its high-affinity
receptor subunit IL-4Ro; the low-affinity interactions do
not add significantly to the overall binding free energy

(Fig. 1a).

Discussion

In this publication we provide a molecular mechanism by
which the two IL-4 super-agonistic variants T13D and
F82D bind to the extracellular domain of the IL-4Ra
receptor with higher affinities than wild-type 1L-4. The
binding affinity for IL-4Ra of both variants is increased
roughly 3-fold (Table 1). Structural analysis revealed that
changes are limited to the very local environment around
the site of mutation. A homology model of the ligand-
receptor interaction was built, since attempts to crystallize
complexes between the super-agonistic variants and the
extracellular domain of the IL-4 receptor a have not so far
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Arg85 is involved in the binding mechanism of the IL-4 super-agonist T13D and F82D. BlAcore sensorgrams of lig-
and-receptor interactions. Solutions of IL-4 variants (concentration 10 nM) were perfused over a sensor chip with immobilized
IL4R0lgcp- (@) The variant IL4-T13D-R85A (green) shows a similar "fast" dissociation rate (k.g) as wild-type IL-4 (blue); the

binding kinetics of the super-agonist IL4-T 13D are shown in red for comparison. (b) As for TI3DR85A, the variant F82DR85A
(magenta) exhibits a fast dissociation rate compared to the super-agonistic single amino acid variant IL4-F82D (orange). How-

ever, the dissociation is even faster than wild-type IL4 (blue).

been successful. The data clearly suggest that the concept
of a modular protein-protein interface might allow bind-
ing affinity and specificity to be varied independently.

The "key-lock" principle used in the past to describe pro-
tein-protein interactions is based on the assumption that
rigid molecules interact on the basis of surface geometry
complementarities. This strict requirement would very
probably result in monospecific interactions, i.e. only one
molecule binds to another single molecule. However,
cross-reactivity in antibody-antigen interactions showed
early on that molecular recognition is much less specific.
Nowadays many proteins, e.g. growth factors/-receptors,
hormones, etc., or protein domains, have been shown to
have multiple interaction partners that share limited
sequence and possibly structural homology [43-48]. In
the cytokine superfamily, the so-called redundant func-
tions exhibited by many cytokines indicate the sharing of
one or more receptor subunits, although sequence simi-
larity is frequently below 25% within a superfamily [49].
This leads to the question how proteins generate binding
affinity and binding specificity [50]. This question is diffi-
cult to answer, since what makes an interaction epitope is
still largely unknown. Attempts to find common charac-
teristics for protein-protein recognition sites have only
been moderately successful, since the average binding
epitope of a large compilation of protein-protein inter-
faces is almost indistinguishable from a regular protein

surface [51]. It rather seems that there is a clear difference
between the chemical and geometrical composition of a
binding site and the regular surface if the binding versus
non-binding sites are compared on a single protein. Nev-
ertheless, computational analyses of protein-protein com-
plexes have yielded some fruitful insights into the general
characteristics of interaction interfaces. First, the degree of
amino acid sequence conservation is increased within
binding epitopes; secondly, the interfaces on two binding
partners seem to be coupled in evolution, and thus can be
used to predict binding epitopes and partners [52,53].
Furthermore, certain amino acids seem to be enriched in
protein-protein interfaces (i.e. Arg, aromatic residues)
[51]. A mechanism explaining how binding affinity is
modulated on large protein epitopes was introduced by
the concept of a binding hot spot by Cunningham and
Wells [54,55]. Functional studies on human growth hor-
mone showed that only a few residues within a rather
large epitope generate the majority of the binding free
energy; however, residues that are "non-productive” in
terms of the generation of binding affinity might be
important for specificity [56].

The IL-4/IL-13 receptor system represents an extreme
model of ligand-receptor promiscuity, since both ligands,
i.e. IL-4 and IL-13, can bind to the same cellular receptor
consisting of the IL-4Ra and the IL-13Ral receptor subu-
nits. Two further subunits, IL-13Ra2 and y, seem to be
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BlAcore analysis of interaction between IL4-Ro. and
the IL-13/IL13-Ral complex. BlAcore sensorgrams of the
interaction between IL-4Ra and the binary complex of IL-13
and IL13-Rail. IL-13 (I uM) is perfused over a sensor chip
with immobilized IL-13Ral p to form a binary complex.
After saturation of the immobilized ILI3Ral chains with IL-
I3, IL4-Ragp (concentrations |, 2.5, 5, 7.5, 10 pM) is per-
fused over the binary complex to measure the binding of the
IL4-Ra chain to the complex of IL-13 and the ILI13Ral chain.
The apparent dissociation constant K, of approx. 150 nM for
the binding of the IL4Ra chain to the binary complex was cal-
culated by evaluating dose dependency of equilibrium binding.

ligand-specific: the y.subunit binds to IL-4 but not to IL-
13 [40] while IL-13Ra2 binds exclusively to IL-13 [57].
Despite the use of an identical receptor, the binding
mechanisms for the two ligands differ, and the binding
affinities between the individual ligand and receptor pro-
teins vary dramatically (by a factor of 200-1000). One lig-
and usually interacts with one receptor subunit (i.e. IL-4
with IL-4Ra, IL-13 with IL-13Ra1) with high affinity (K
~ 90 - 150pM for IL-4, ~ 20 - 30 nM for IL-13), but the
other subunit is bound with lower affinity, usually in the
high nM to pM range (e.g. IL-13Ral or y. to the binary
complex of IL-4 and IL-4Ra). This requires adjustment of
the binding strength of the receptor subunits over a large
bandwidth, but the specificity must remain high. The v,
receptor subunit is also shared among the cytokines IL-2,
-4,-7,-9,-15 and -21 and can be bound by IL-4 instead of
the IL-13Ral subunit [40,58]. However, this subunit
always interacts as a low-affinity receptor chain with the
binary complexes of the above-listed cytokines with their
respective high-affinity receptor subunits, i.e. IL-2Rp, IL-
4Ro, IL-7Ra. Hence, the low specificity of the y. receptor
subunit might be a direct result of only low-affinity bind-
ing. The specificities of IL-4Ra and IL-13Ra1 for both lig-
ands IL-4 and IL-13 are high; both receptor subunits only
recognize IL-4 and IL-13 despite the low sequence identity
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between the two ligands and highly variable affinities.
One possible mechanism by which different affinities for
binding partners can be provided by a single protein
involves the use of different epitopes or different subsets
of residues within an overlapping epitope. Such mecha-
nisms have been discussed for the binding of the common
signal transducer chain gp130 in the IL-6 system [59].
Also, the y_chain binds to IL-4 and IL-21 via such a mech-
anism [60]. However, these are different from the IL-4/IL-
13 system, as their epitopes do not contain the modular
architecture formed by several independent acting hot
spots. The usage of one, two or all three hot spots in the
IL-4/IL-4Ra interface allows the affinity to be scaled from
high the nM to the pM range. Even if one of the hot spots
is not "used" for binding, i.e. in terms of generating a sig-
nificant contribution to the binding free energy, the non-
contributor might be used to ensure specificity of interac-
tion. According to this mechanism, we assume that all
three hot spots are used for binding of the IL-4 super-ago-
nist proteins, while only hot spots 1 and 2 are used in
optimal form for wild-type IL-4 and hot spot 3 only con-
tributes marginally. For binding of IL-4Ra to the binary
complex of IL-13 and IL-13Ra1, only two hot spots are
probably involved. For the interaction of different colicin
endonucleases (E DNase) and the immunity proteins
(Im), a similar mechanism termed "dual recognition" has
been described [61,62]. Here, two epitopes/hot spots in
close proximity (residing on different secondary structure
elements) are used to generate binding affinity and specif-
icity. One binding hot spot formed by three consecutive
residues is used to generate a "basal" binding affinity, and
the second epitope/hot spot adds additional affinity for
cognate partners or is silent for non-cognate binding part-
ners, as in our observation on the modular IL-4/IL-4Ra
interface. The differences in affinities seem rather large —
1011 to 105-fold - owing to the very high affinities in this
system. Even many non-cognate partners still bind with
high affinity, e.g. K, ~ 1 to 100 nM range, which is com-
parable to the high-affinity interactions in the IL-4/-13
system.

Conclusion

Analyses of the modular architecture of the IL-4 - IL-4Ra
interface yield a possible mechanism by which proteins
might be able to generate binding affinity and specificity
independently. Affinity and specificity were often consid-
ered to be linked, i.e. high specificity requires high affinity
and vice versa. However, the binding affinities of IL-4 and
IL-13 to IL-4Ra differ by a factor of more than 1000, but
binding specificity remains absolutely high since the
receptor subunit IL-4Ra binds exclusively to IL-4 and IL-
13. Such an interface formed by several interaction clus-
ters/hot spots of binding allows for a broad range of affin-
ities by selecting how many of these interaction clusters
contribute to the overall binding free energy. Non-con-
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tributing clusters will, however, still be important for the
specificity of the interaction. Understanding how proteins
generate affinity and specificity is especially important as
more and more growth factor receptor families are found
to show promiscuous binding to their respective ligands.
However, this limited specificity is not always accompa-
nied by low binding affinities. Knowledge of the details of
the recognition mechanism will finally allow highly spe-
cific growth factors to be designed that are able to distin-
guish between different receptor combinations, as shown
for the T-cell specific IL-4 antagonist IL-4R121E [63,64] or
the IL-13 cytotoxin fusion used for treatment of several
cancers [65,66].

Methods

Protein expression and purification

Human IL-4 was cloned into the expression vector pQE-
80L (Qiagen) modified to carry a gene encoding kanamy-
cin resistance; human IL-13 was cloned into the expres-
sion vector pET-28b (Novagen). Mutations in either IL-4
or IL-13 were introduced using the QuikChange (Strata-
gene) method. The expression vector constructs were
transformed into E. coli BL21(DE3)Star (Stratagene) cells.
For purification, cells from 4L cultures were lysed by son-
ication, and inclusion bodies were extracted and purified
by extensive washing steps. Refolding of IL-4 was per-
formed according to published protocols except that PBS
buffer (phosphate buffered saline) pH 7.4 was used for
dialysis [67]. Refolded IL-4 was purified by two cation
exchange chromatography steps utilizing CM-Sepharose
and High-Performance SP-Sepharose (Pharmacia),
employing linear NaCl-gradients at pH 5.0 (25 mM ace-
tate buffer) and pH 7.0 (25 mM phosphate buffer),
respectively. Refolding of IL-13 followed the protocol
published by Eisenmesser et al. [68]. Refolded IL-13 was
purified by cation exchange chromatography using SP-
Sepharose Fast Flow at pH 6.1 (25 mM phosphate buffer,
10 mM NaCl, 1 mM EDTA) and subsequently by RP-
HPLC using a C4 Vydac column employing a linear gradi-
ent of 0-100% acetonitrile. The extracellular domain of
the human IL-4 receptor a was expressed and purified
from baculovirus infected Sf9 insect cell culture as
described previously [19]. The receptor ectodomains of vy,
and IL-21R were prepared as described [20,60].

Proliferation assays

The bioactivities of IL-4 wild-type and variant proteins
and of IL-13 were determined by measuring [3H]thymi-
dine incorporation into the human premyeloid cell line
TF-1 [69,70]. Cells were cultured in RPMI medium sup-
plemented with 10% FBS and 2 ng ml-! recombinant GM-
CSEF. Cells were washed twice with PBS and seeded at a
concentration of 5 x 103 cells/well in 96 well plates in
RPMI medium without GM-CSF. Varying concentrations
of IL-4 or IL-13 proteins (log, dilutions starting at 1 pg ml-
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1 as the highest concentration) were added, and the cells
were cultured for 48 h. Tritiated thymidine (Amersham,
0.25 pCi/well) was added to each well 8 h before the
plates were harvested using a Skatron cell harvester (Ska-
tron Inc., USA). Filter mats were counted in a B plate
counter. All experiments were performed in triplicate.
Half-maximal responses of IL-4 and IL-4 super-agonist
proteins in TF-1 cells were at approx. 10+ 8 pM; for IL-13
the half-maximal response was observed at a concentra-
tion of 600+ 200 pM.

Crystallization of IL-4 and variants

Human IL-4 and variants thereof were further purified for
crystallization by ammonium sulfate precipitation. Solid
(NH,),SO, was added to a concentration of 1.2 M to solu-
tions of approx. 10 - 15 mg ml-! protein. Precipitated
impurities were removed by centrifugation, further
(NH,),SO, was added to a final concentration of 2.5 M,
and the mixture was kept on ice for 15 min. The mixture
was centrifuged at 14.000 x g for 15 min at 4°C and the
precipitated IL-4 was washed twice with 2.5 M
(NH,),SO,. The IL-4 was then dissolved in 1.2 M ammo-
nium sulfate, pH 7.0, at a final protein concentration of
15 mg mlL.

Crystals of IL-4 and variants were obtained by hanging
drop vapor diffusion at room temperature using
(NH,),SO, concentrations ranging from 1.9 to 2.4 M, and
a pH range of 5.0 to 6.5. For measurements at 100 K, 25%
glycerol was used as a cryoprotectant. High quality crystals
grew from 2.2 M (NH,),SO,, 0.1 M sodium acetate pH 5.2
and 25% glycerol using a protein concentration of 12 mg
ml-L.

Data collection

Data for IL-4 or its variants were each obtained from a sin-
gle crystal at 100 K at different beamlines (X06SA PX at the
Swiss Light Source, Switzerland, ID14-1 at the European
Synchrotron Radiation Facility, Grenoble, France) or a
home source (Rigaku MicroMax007 with Osmic VariMax
mirror system). The data were processed and integrated
using the software MOSFLM version 6.2.1, and scaling
was performed using SCALA CCP4 version 4.2.1; a sum-
mary of the processing statistics of the various datasets is
presented in Table 2. To test for possible bias introduced
by the model structure IL-4 (PDB entry 1HIK) used for
data interpretation by the molecular replacement
method, we also collected a dataset of a SeMet-labeled IL-
4 variant F82D at three wavelengths (BW7A, EMBL DESY,
Hamburg, Germany) (see Table 4). Structures of the vari-
ant F82D refined by the MAD approach and molecular
replacement were identical, showing that the model struc-
ture 1HIK used as the start structure for refinement did not
bias the results of the individual variant structures.
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Table 4: MAD data set for IL-4 variant F82D
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Crystal

F82D

Space group Cell constants
Se-Met (A1)
0.9844 A
25.0-2.15A (227 - 2.15 A)
Al (inflection)
51335 (5658)

Wavelength
Resolution (A)!

Number of measured reflections

Number of unique reflections 10758 (1410)
Completeness 97.0 (90.6)
Multiplicity 4.8 (4.0)
Ryym for all reflections? 5.6 (13.8) %
Intensity/c 18.1 (7.4)
Phasing
R iis (@/€)3 0.689/0.533
Kraut4 0.035
Phasing Power (a/c)5 1.60/1.90

Figure of merité 0.55/0.79 (after DM)

P422a=b=91.304A, c=45932 Aa=p=y=90°

Se-Met (A2) Se-Met (A3)
0.9803 A 0.9078 A
25.0-2.15A (227 - 2.15 A) 25.0-2.15A (227 -2.15 A)
A2 (peak) A3 (remote high)
54273 (5689) 50834 (5624)
10721 (1413) 10640 (1384)
97.3 (91.2) 96.5 (89.2)
5.1 (4.0) 48 (4.1)
6.0 (12.1) % 47 (103) %
18.2 (8.0) 20.1 (11.0)
0.725/0.65| -
0.034 0.028
1.42/1.65 0.93/1.09

I 'number in parentheses indicate highest resolution shell.

2Ry = Zhiall = <™ Zha<lh™> where <l ;> is the mean intensity of symmetry-related observations of a unique reflection

3R s = <phase-integrated lack of closure>/<Fp,— Fp>
*Recraue = 2 [(IFp+Fil)-IFoul) 121 Fel

5 Phasing power = (V|F2|)/(V|lack-of-closure?|), (a/c) denote acentric and centric reflections

6 figure of merit is given before and after solvent density modification

Structure analysis

The structures of IL-4 and the variants investigated in this
study were refined using the lower resolution structure
(PDB entry 1HIK) as a start model. To minimize possible
bias through the start model structure, especially for the
ill-defined loop regions, MAD phasing was applied to the
IL-4 variant F82D. IL-4 (as well as the variant F82D) con-
tains a single Met residue. The Seleno-Met site was deter-
mined and refined using the protocols supplied with the
program CNS using a dataset measured at three wave-
lengths (inflection, peak and remote). The resulting elec-
tron density map was used to rebuild the loop regions
between the first a-helix o, and the first short B-strand 3,
(Glu19 to Cys24) as well as the long loops between B-
strand B, and helix o (Lys37 to Glu41) and helix o and
the second f-strand (3, (Ser98 to Glu103). The resulting
"improved" model was then used for interpretation of the
diffraction data of the individual IL-4 proteins. The pro-
gram REFMACS5 was used for subsequent refinement, fol-
lowed by manual rebuilding of the models using the
software QUANTA2000 (Accelrys Inc.). One TLS group
was defined for the complete IL-4 molecule to account for
anisotropy in the data. The progress of refinement was
monitored by cross-validation using a test data set com-
prising 5% of the reflections. In the final refinement, F;
- F_, . difference electron density maps were used to iden-
tify water molecules as well as sulfate ions resulting from
the high concentration of the ammonium sulfate precipi-

tant. The final conventional and free R-factors for each
model are presented in Table 2.

Interaction analysis using BlAcore

Interaction analysis was performed using a BIAcore 2000
system. (Pharmacia Biosensor). All experiments were car-
ried out at 25°C at a flow rate of 50 pl min-!in HBS run-
ning buffer (10 mM Hepes, pH 7.4, 150 mM NacCl, 3.4
mM EDTA, 0.005% surfactant P20). The extracellular
domain of the IL-4 receptor a-chain (IL-4Raycp) and var-
iants thereof were biotinylated and immobilized to a
streptavidin-coated sensor chip CM5 at a density of 50—
120 RU [19,39]. To determine the kinetic rate constants,
sensor chips with a low density of IL4Ro, were used to
minimize rebinding effects. The IL-4 receptor proteins
were prepared and analyzed under conditions as
described [19,39]. Interaction with IL-4 proteins was
measured after regeneration of the chip surface with 4 M
magnesium chloride. The sensorgrams were evaluated
using the software BlAevaluation version 2.0, assuming a
1:1 interaction. Bulk face effects were corrected by sub-
tracting the control flow cell (FC1) from all sensorgrams;
non-specific binding was negligible. The analysis yielded
kinetic rate constants for complex formation (k,,) and
dissociation (k). The latter were evaluated at near satu-
rating concentrations of analyte during the first 10s of
complex dissociation to avoid any effects of the rate con-
stant k ¢ due to rebinding of the dissociating ligand. The
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apparent binding constant of each variant was obtained
using six analyte concentrations (2 - 20 nM). Standard
deviations were deduced from 18 independent measure-
ments. Apparent dissociation constants K, were either cal-
culated as K = k.g/k,, or by evaluating the dose
dependency of equilibrium binding. Mean values
together with the mean standard deviation are presented
in Table 1. Binding of IL-4 and IL-13 ligand proteins to
their low-affinity receptor subunits (IL-13Ra1, y.and IL-
4Ra) were analyzed by a COINJECT experiment [20]. IL-
13 protein (concentration 1 pM) was perfused over a CM5
chip surface coated with the extracellular domain of the
IL-13 receptor a1-chain to saturate any binding sites fully.
Different concentrations (1 - 10 pM in the case of wild-
type IL-13 and 5 - 100 uM in the case of IL13-E11A and
IL13-R64A) of IL-4Ropq were then perfused together
with IL-13 ligand by the COINJECT procedure of the
BIAcore2000 system. A similar setup was used to measure
the low-affinity binding of IL-13Ra1 and y.to IL-4 and its
variants. Binding affinities were deduced from these bind-
ing experiments by evaluating the dose dependency of
equilibrium binding (IL-13 variants) or directly from the
binding kinetics (IL-13 wild-type). Binding constants
derived from analysis of equilibrium binding are pre-
sented in Table 1.
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