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Abstract

Background: Prions are self-perpetuating, infectious, aggregated proteins that are associated with
several neurodegenerative diseases in mammals and heritable traits in yeast. Sup35p, the protein
determinant of the yeast prion [PSI*], has a conserved C terminal domain that performs the Sup35p
function and a prion domain that is highly divergent. Prions formed by chimeras of the prion domain
of various species fused to the C domain of Saccharomyces cerevisiae exhibit a 'species barrier’, a
phenomenon first observed in mammals, and often fail to transmit the prion state to chimeras with
prion domains of other species.

Results: We focus on the chimera containing the prion domain of Pichia methanolica and examine
how tight the 'species barrier' is between the chimera and S. cerevisige. Although either of two Q/
N-rich prions, [PSI*] or [PIN*], enhances the formation of the chimeric prion, [CHI*p\y], neither a
non-Q/N-rich prion nor a non-prion Q-rich aggregate promotes the formation of [CHI*py].
[CHI*py] has many features characteristic of yeast prions: aggregation, cytoplasmic transmission and
a two-level protein structure. [CHI*py] formed in the presence of [PSI*] can propagate
independently of [PSI*] and forms at least two different variants of the prion, suggesting the
generation and not transmission of new prion seeds.

Conclusion: Although the sequence similarity between the S. cerevisiae Q/N-rich prion
determinants and the P. methanolica prion domain is low, we find that the chimera containing the
prion domain of P. methanolica can occasionally be cross-seeded by [PS[*] to mimic crossing the
species barrier, to form the [CHI*py] prion. Our data suggests that crossing the barrier occurs by
a de novo formation of the foreign chimeric prion. Thus, the species barrier appears to be crossed
by a heterologous seeding mechanism, wherein the infected prion protein uses the pre-existing
seed as an inefficient template.

Background

The idea that only nucleic acid elements could transfer
genetic information was challenged by the discovery of
prions [1]. Prions are the causative agents of several neu-
rodegenerative diseases such as Creutzfeldt-Jakob disease
(CJD) in humans, scrapie in sheep and bovine spongi-

form encephalopathy in cattle [2]. Once the prion protein
(PrP) converts to its prion PrPS¢form, which is in a largely
B-sheet-rich, aggregated, amyloid state, it induces the con-
version of normally folded, soluble, mainly a-helical PrPC
into the PrPS¢ form [3]. Thus, the protein structure is
passed at the protein, and not at the nucleic acid level.
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Although PrPSc converts PrPC€ into the prion form, the
propagation of the PrPSc amyloid is highly specific. PrPS¢
from one species can rarely convert PrPC from another
species into the prion form. This phenomenon, known as
the species barrier, has been used to explain the lack of
transfer of the disease from scrapie-infected sheep to
humans [4]. However, a novel form of CJD is believed to
have emerged from the conversion of human PrP to its
prion form by ingested bovine prions [5]. Studies of labo-
ratory PrPSchave shown that the some species barriers can
be crossed whereas others are more rigid [4]. The barrier
has been attributed not just to the difference in the pri-
mary sequence of PrP between species, but more impor-
tantly to the protein conformations that primary sequence
is capable of adopting [6,7]. This difference in conforma-
tion of PrPs¢is believed to give rise to different phenotypes
of prion diseases, known as strains, that vary in character-
istics such as time of incubation and patterns of neuropa-
thology [8,9]. An in vitro study of mammalian proteins
suggests that the barrier is crossed when the PrP primary
sequence of a certain species is capable of adopting the
conformation of a PrPS¢strain of another species [7].

The phenomenon of information transfer through a pro-
tein-only process is not limited to mammals. Indeed, sev-
eral prions have been studied in yeast [10]. Unlike
mammals, where only one prion protein of unknown
function has been described, yeast contain several prion
protein determinants [11,12]. They share no homology
with the primary sequence of PrP, but share common fea-
tures such as high pB-sheet content, infectivity and amyloid
characteristics [13]. In addition, yeast prions also exist as
different strains, called variants, that appear to differ in
their amyloid conformations, which leads to phenotypic
and biochemical variations [14-22].

Two extensively studied yeast prions [PSI*] and [PIN*] are
altered, aggregated forms of Sup35p and Rnqlp, respec-
tively [11,23,24]. Sup35p is a translation termination fac-
tor and the function of Rnqlp is unknown [23,25]. [PSI*]
cells have reduced translation termination efficiency, as
Sup35p is mainly in the aggregated form, whereas [psi|
cells that have non-prion Sup35p terminate efficiently
[26]. Mendelian mutants of SUP35 also have reduced effi-
ciency of translation termination, not because of aggre-
gated Sup35p, but due to the mutation [27]. However,
[PSI¥] can be distinguished from sup35 mutants, as
Sup35p is aggregated only in [PSI*] strains [28,29].
Sup35p has three distinct domains: a C-terminal domain
(C) that performs the function of translation termination,
and a N-terminal (N) and middle (M) domain that are
required for the induction and faithful propagation of
[PSI+] [14,29-32].
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The [PIN*] prion is not a loss-of-function prion, but rather
[PIN*] cells have the ability to induce [PSI*] more effi-
ciently than [pin-] cells [33]. A cross-seeding model has
been proposed to explain this phenomenon where the
[PIN+*] prion acts as an inefficient seed for the de novo for-
mation of the [PSI*] prion [24,34]. Furthermore, different
variants of [PSI*], analogous to mammalian PrPScstrains,
are induced in [PIN*] cells by the overexpression of either
the full length Sup35p or more efficiently by the
Sup35NMp [14,29,35].

Like mammalian prions, yeast prions exhibit barriers
across species [36-41]. [PSI*] formed by Sup35p from one
species rarely passes the prion conformation to Sup35p
from other species. Sup35p itself has retained its modular
architecture in many species. Various species of yeast have
the N, M and C domains where the sequence of the C
domain is highly conserved between species, in contrast
to the NM domains, which are often highly divergent
[38]. However, the N domains of various species share the
common features of having a high Q/N-rich content and
oligopeptide repeats [38].

Chimeras of the NM from various species fused to the C
domain of Saccharomyces cerevisiae, although able to form
and propagate as prions in S. cerevisiae, fail to transmit the
prion state to S. cerevisiae Sup35p or other chimeras
[36,38,39]. This failure to pass the prion state is attributed
to the highly divergent sequence of the NM domains.
However, a certain variant of S. cerevisiae [PSI*] is able to
transmit the prion state to the chimera of the NM of Can-
dida albicans and C domain of S. cerevisiae (NM,-Cyc) [6]
even though S. cerevisiae and C. albicans share only around
40% similarity in their NM domains. Thus, the variant of
the prion is important for determining transmission
across a species barrier. Other studies have shown that
prion domains of other species, such as S. bayanus and S.
paradoxus, which are much more similar to NMg, and that
co-aggregate with S. cerevisiae [PSI*] ([PSI*]sc), still exhibit
low transmission of the prion state to these foreign species
[39].

In this study we focus on the chimera of the NM of Pichia
methanolica and C domain of S. cerevisiae (NMpy-Cgc).
NMp,-Cyc as the sole copy of Sup35p can be induced and
propagated in its prion state, [CHI*p,| (for chimeric
[PSI*], PM for P. methanolica), in S. cerevisiae [36,37]. Like
other chimeras it does not transmit its prion state en masse
to S. cerevisiae Sup35p, although overexpression of NMy,,
can induce the formation of S. cerevisiae [PSI*], albeit at a
lower frequency than by the overexpression of NMg.
However, overexpression of NMg fails to induce NMp,,-
Cqc into a prion. Prion conversion by overexpressed
NM,,, is specific to S. cerevisiae Sup35p as it fails to induce
the prion form of chimeras from other species [38].
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When NM,-Cg or NM,-Cg( are expressed at the same
level as S. cerevisiae Sup35p, neither the NM,-Cynor the
NM¢,-Cg chimeras are frequently infected by [PSI*]g to
become [CHI*,,,] [38]. We examine how tight the barrier
is and find that NMp,,-Cg but not NM,-Cg occasionally
converts into [CHI*p),] in the presence of either of at least
two Q/N-rich prions, [PSI*] or [PIN*]. We propose that
the species barrier can be crossed by a heterologous seed-
ing mechanism similar to that of the cross-seeding
between the [PIN*] prion and Sup35p.
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Results

NMpp-Cscbut not NM,-Cyis inactivated in the presence
of [PSI*] at a frequency of 10-*to 10-3

As previously observed, chimeras of the prion domains of
either P. methanolica (NMp,,) or C. albicans (NM,) fused
to the C domain of S. cerevisiae (Cg) were functional in
the presence of [PSI*| aggregates [38] (Figure 1A). This is
phenotypically monitored using a yeast strain that has the
adel-14 allele with a suppressible nonsense mutation
[26,42]. When the foreign fusions (containing an HA tag
between NM and C) were ectopically expressed from a
plasmid in [PSI*][pin] adel-14 cells at a moderate, consti-
tutive level, the fusions remained functional and these
cells were red on low adenine media (see Methods) and
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Figure |

NMpy-Csc but not NMc,-Cg is inactivated in the presence of [PSI*]. A. NMpy-Cs and NM4-Cqc provide transla-
tion termination function. [PSI*] or sup35 cells ectopically expressing prion domains of either Pichia methanolica (NMpy) or Can-
dida albicans (NMc,) fused to the C domain of Saccharomyces cerevisiae (NMsc) expressed on a URA3 plasmid on media
containing low adenine-Ura and -Ade-Ura. -Ura is used to maintain the plasmid. B. NMpy-Csc is inactivated in [PSI*] cells and
not in a sup35 mutant. Around 107 [PSI*] cells expressing either NMpy-Cs or NM2-Cqc, or sup35 mutant yeast expressing

NMpy-Csc were plated on -Ade-Ura media.
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could not grow on -Ade (Figure 1A). To determine
whether the fusions get inactivated occasionally, [PSI*]
cells containing the fusions were plated onto plasmid
selective -Ade media. The formation of Ade* colonies
showed that the NMp,,-Cq fusion was inactivated in
[PSI#] cells at a frequency of about 104 to 10-3 (Figure 1B,
Table 1). In contrast, the NM,-Cq fusion was not inacti-
vated in [PSI+] cells (Figure 1B). As a control these fusions
were expressed in the presence of a sup35 mutant strain
that, like [PSI*], can grow on -Ade, but unlike [PSI*] does
not cause Sup35p to aggregate. The NMy,,-Cq fusion was
not inactivated in the sup35 mutant yeast (Figure 1A and
1B).

NM_pp-Cs Ade* colonies have prion properties

To determine if the inactivation of NMp,,-Cs was due to
its prionization, we tested for features characteristic of pri-
ons: aggregation and cytoplasmic inheritance. We denote
NMpy-Cye in its active form as [chipy,] and in its inactive
form as [CHI*py,].

If NM,,,-Cy were in its prion form, most of the protein
would be expected to be aggregated. The aggregation state
was tested both biochemically and visually. When [PSI+]
or [PIN*] cells are subjected to high-speed centrifugation
most of the protein is in the pellet fraction, whereas in
cells lacking the prion most of the protein is in the super-
natant fraction [17,28,29]. Similarly, NMp,,-Csc in
[CHI*p,,] lysates subjected to high-speed centrifugation
was present in the pellet fraction and absent from the
supernatant fraction (Figure 2A). In contrast, lysates from
[chi-py] cells had most of the NM,,,,-Cg( in the supernatant
fraction (Figure 2A).

The [PSI*] and [PIN*] prions are not dissolved into mon-
omers when treated with sodium dodecyl sulfate (SDS) in
the absence of boiling, but break into SDS-stable sub-par-
ticles that can be resolved on agarose gels [43,44]. Like-
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wise, NMpy-Cgc in [CHI*py, | lysates was not dissolved into
monomers when treated with unheated 2% SDS, whereas
NMp-Cqc from [chivpy,] lysates remain as monomers (Fig-
ure 2B).

In vivo, transiently overexpressed green fluorescent protein
(GFP)-tagged prion domains are observed as distinct
puncta in prion-containing cells, whereas cells lacking the
prion show diffuse fluorescence [23,29,45]. Similarly,
when NM;p,,-GFP was overexpressed transiently [CHI*p,,]
cells showed punctuate dots, whereas the fluorescence in
[chipy] cells was diffuse (Figure 2C). Thus the chimeric
protein (NMpy-Cgc) is in an aggregated state in the Ade+
colonies.

One of the characteristic features of prions is that they are
passed from cell to cell through cytoplasmic mixing with-
out a nuclear contribution. This is achieved by cytoduc-
tion, which involves mating donor and recipient yeast in
the presence of a karl mutation that inhibits efficient
nuclear fusion. Daughter cells with the recipient haploid
nucleus and a mixture of the parental cytoplasms can be
selected (cytoductants) [46]. When [CHI*py|[PSI*] adel-
14 (Ade+) cells were used as donors to cytoduce into a [chi-
pmllpsi-] adel-14 recipient (Ade) which, like the donors,
was ectopically expressing NMp,,-Cgc, around 23% of the
cytoductants displayed an Ade+ phenotype (Table 2),
whereas using [chip,,|[PSI*] as donor cells produced no
Ade+ cytoductants (Table 2). Thus, the [CHI*p,,| pheno-
type is transferred via cytoplasm. Taken together, it is clear
that NMpy-Cq in the Ade* colonies obtained in the pres-
ence of [PSI*] was prionized.

[CHI*pp,] can propagate independently of [PSI*]

Since [CHI*p),] aggregates exist in the presence of [PSI*]
aggregates, we first asked whether NMp,,-Cy could be
incorporated into [PSI*] sub-particles. [CHI*p,,][PSI*] and
[chipy ][ PSI*] lysates were analyzed on an agarose gel and

Table I: Frequency of NMpy-Cg- Ade* colonies in different yeast strains

Yeast Strain

Average frequency of Ade* colonies

95% confidence limit

Strong [PSI*] 6.1 x 104 (3-9.2) x 104
sup35 + medium [PIN*] 1.5 % 104 (1-2) x 104
sup35 + low [PIN*] 6.9 x 105 (5.2-8.7) x 105
sup35 + HtQ103 <107 N/A
sup35 + [Het-s], <107 N/A
sup35 <107 N/A

Frequency of Ade* colonies in different yeast strains was determined as described in Methods. N/A: Not applicable. Average and confidence limits

were calculated using six independent transformants.
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Ade* colonies have prion properties. A. NMpy-Cs- is mainly in the pellet fraction in Ade* colonies. [CHI*pp] and [chivpp]
lysates subjected to high-speed centrifugation and probed for the chimeric protein using an anti-HA tag antibody. T: total; S:
supernatant; P: pellet. B. [CHI*py] colonies have SDS-stable sub-particles. [CHI*py] and [chipy] lysates analyzed on an agarose
gel and probed for the chimeric protein (anti-HA tag). €. NMpy-GFP forms puncta in [CHI*py] colonies. NMpy-GFP under a
copper-inducible promoter overexpressed in [CHI*py] or [chipy] cells for 4 hours and examined under a fluorescence micro-
scope. The two kinds of NMpy-GFP puncta are sometimes observable in the same [CHI*py] culture and are not representative

of different [CHI*p\] colonies.

probed for the chimeric protein and re-probed for [PSI*]
aggregates (Figure 3). The size distribution of [PSI*] and
[CHI*py,] particles was distinct and the distribution of the
[PSI*] particles was unchanged in the presence or absence
of the [CHI*p,,| sub-particles. This suggests that NMp,,-Cgc
is not incorporated into [PSI*] sub-particles and forms
independent sub-particles in the same cell. However, it
does not rule out the possibility that a small number of
NMpy-Csc protein molecules are incorporated in the
[PSI+] sub-particles.

To check if [CHI*py| propagation was dependent on the
presence of [PSI*], cytoplasm from [CHI*py|[PSI*] and

[chi-pp][PSI*] yeast was transferred (via cytoduction) into
a strain lacking native S. cerevisiae Sup35p and being kept
alive by a plasmid expressing NMy,,-Cg¢. This strain can-
not maintain [PSI+#], as there is no source of S. cerevisiae
Sup35p. When [CHI*py,|[PSI*] yeast was used as the
donor, around 12% of cytoductants were capable of grow-
ing on -Ade where as no Ade* cytoductants were obtained
when [chipy,|[PSI*] donors were used (Table 2). All Ade*
cytoductants that were tested had SDS-stable sub-particles
and were cured by low amounts of guanidine hydrochlo-
ride (data not shown). Thus, [CHI*p,,] formed in the pres-
ence of [PSI*] can propagate in the absence of [PSI*].

Page 5 of 14

(page number not for citation purposes)



BMC Biology 2009, 7:26

Table 2: Frequency of Ade* cytoductants
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RECIPIENTS DONORS
[CHI* oy ][PSI*] ade-14 (Ade®) [chiop][PSI*] adel-14 (Ade’)

[chiop][psi] adel-14 (Ade) 236+ 16 0

[chi-p] Asup35 adel-14 (Ade’) 1246 0

Cytoduction was performed as described in Methods. Five [CHI*p][PSI*] donors and three [chipy][PSI*] donors were randomly chosen and
approximately 50 cytoductants for each mating reaction were tested for the Ade* phenotype. Donors were isolated independently for each

recipient. Standard deviation is shown.

[CHI* pp,] forms variants in the presence of [PSI*]

When Sup35p from S. cerevisiae is ectopically expressed in
a [PSI] strain, it efficiently joins the pre-existing [PSI*]
aggregate and maintains that particular variant [38]. How-
ever, when [PSI+] is formed de novo in the presence of the
heterologous prion [PIN*], it forms many different vari-
ants that can be distinguished phenotypically [14]. Strong
[PSI*] variants suppress adel-14 mutation better than
weak [PSI+] variants, causing the former to be white and
the latter pink on complete media. In the presence of
[PSI*] at least two variants of [CHI*py| could be distin-
guished phenotypically, by the different colors on media
containing low amounts of adenine (Figure 4). These var-
iants, as in the case of [PSI*], could sometimes be differ-
entiated biochemically by the size of their sub-particles
[43] (Figure 4B). Unlike [PSI*] variants but like at least
one strong hybrid [CHI+p,| variant (where NMy,,-Cqc is
the sole copy of Sup35p in the cell), the strong chimeric
variant was associated with the larger sub-particles
whereas the small sub-particles were associated with the
weaker variant (Figure 4B) [43]. Some strong and weak
[CHI*py| variants distinguished on the basis of color
could not be differentiated by a change in the size of sub-
particles, but did differ in the amount of sub-particles
present (Figure 4A).

[CHI* pp,] formation is enhanced by the [PIN*] prion but
not by poly Q aggregates or the non-QN-rich prion [Het-
s]

A;’ the formation of [CHI*p| resembled the de novo for-
mation of [PSI*] in the presence of [PIN*], we asked if
[PIN*] could enhance the formation of [CHI*p,,]. Variants
of [PIN*] were cytoduced into a sup35 mutant, as the
change from the [chipy] to the [CHI*p,,] state cannot be
monitored in wild type [PIN*][psi-] yeast as native Sup35p
is functional in these strains. Similar to its expression in
[PSI+] strains, the chimeric protein was functional in the
presence of all the [PIN+] variants (Figure 5A and data not
shown). To determine if NMp,,-Cgy was inactivated occa-
sionally, sup35 mutants with [PIN*] variants (or [pin‘])
expressing NM,,,-Cq were plated on plasmid selective -
Ade media. NMp,,-Cgin sup35 mutants containing [PIN*]

variants was inactivated at a frequency of approximately
10> to 104, whereas NMy,,-Csc in sup35 [pin] yeast
remained functional (Figure 5B, Table 1). Ade* colonies
contained SDS-stable aggregates of NM,,,-Cq., indicating
that the chimeric protein converted to its prion form in
the presence of [PIN*] (data not shown).

As two Q/N-rich prions, [PSI*] and [PIN*], enhanced the
formation of [CHI*py|, we tested whether an aggregated,
non-prion protein could enhance the formation of
[CHI*p,,]- The N-terminal region of the Huntingtin pro-
tein with expanded polyglutamine repeats (either 72 or
103 repeats: HtQ72, HtQ103), which is associated with
Huntington's disease, fused to GFP was expressed in a
sup35 mutant strain along with NMp,-Cg. HtQ72-GFP
and HtQ103-GFP, shown to aggregate in wild type strains
[47], also aggregated in the sup35 mutant, but failed to
enhance the conversion of NMpy-Cqc from a [chipy] to a
[CHI*p,,] state (Table 1). We also tested whether a non-Q/
N-rich prion, [Het-s],, a prion from Podospora anserine that
can propagate as a prion in yeast [48], could enhance the
formation of [CHI*py,]. The prion domain of HET-s fused
to GFP (the protein determinant of [Het-s|,), was induced
into the prion form ([48] and see Methods) in a sup35
mutant expressing NMp,,-Cgc, but failed to enhance the
formation of [CHI*p,,] (Table 1).

Discussion

Although the degree of similarity is not high between the
prion domains of S. cerevisiae and either P. methanolica
(approximately 32%) or C. albicans (approximately 40%),
we show here that in vivo the chimeric protein NMp,,-Cg,
but not NM,-Cg occasionally prionizes in the presence
of [PSI*] (104 to 10-3). We show that NM,,,-Cs does not
spontaneously prionize in the absence of the [PSI*] seed,
as it does not form a prion in a sup35 mutant. We deter-
mine that NMp,-Cs; does indeed prionize (called
[CHI*py]) in [PSI*] cells by showing that [CHI*py] cells
possess characteristic features of yeast prions. NMp,-Cy¢
in [CHI*py| cells is aggregated as NMp,,-GFP formed
puncta in [CHI*py| and not [chipy,| cells. Furthermore,
biochemically [CHI*p,| also shares the two-level struc-
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anti-HA

anti-NMg¢

Figure 3

NMpy-Csc is not incorporated into [PSI*] sub-parti-
cles. [chi-pq][PSI*] and [CHI*p][PSI*] lysates resolved on an
agarose gel and probed for the chimeric protein (anti-HA)
and reprobed for endogenous Sup35p (anti-NMgc).

tural organization of the [PIN*] and [PSI*] yeast prions
[43,44]: NMyp,-Cy appears to be assembled into large
aggregates (resolved by high-speed centrifugation) that
can be broken into SDS-stable sub-particles. Additionally,
we show the [CHI*p,,] phenotype can be transferred via
cytoplasm, which is common to all known yeast prions
[11,23,24,42,49]. Thus, we show that although the trans-
mission of the prion state across species barriers is not
very efficient, the prion state can be transferred occasion-
ally to give rise to a foreign prion.
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When two prions exist in the same cell, it is possible for
them to form tight interactions or propagate as separate
entities. Since [CHI*py,| was formed in the presence of
[PSI*] we asked whether NM,,,-Cg. molecules are incor-
porated into [PSI*] sub-particles. If this were the case, then
the mixed sub-particles might have a size distribution dis-
tinct from that of [PSI*] in the absence of [CHI*p,,]. As the
size distribution of the [PSI*] sub-particles is unchanged,
and [CHI*py| sub-particles are a different size distribu-
tion, this suggests that NMp,,-Cg( is not incorporated into
[PSI¥] sub-particles. However, this shift would be observ-
able only if the number of NM,,,-Cg molecules incorpo-
rated into [PSI*] sub-particles is fairly large, thus not
excluding the possibility that a small number of NMp,,-
Cgc molecules might be incorporated. This independence
of sub-particles is similar to [PIN*] and [PSI*] that were
shown to form independent sub-particles in the same cell
[44]. While the de novo formation of [PSI*], by the overex-
pression of Sup35 or Sup35NM, is dependent on the pres-
ence of [PIN*], the propagation of [ PSI*] is independent of
[PIN*] [33,50]. Similarly, the formation of [CHI*p,,] is
dependent on [PSI*], but [PSI*] does not incorporate
NMpy-Cyc into its sub-particles and [CHI*p,,] can indeed
propagate independently of [PSI*]. However, unlike de
novo formation of [PSI*|, [CHI*p,] is formed in the
absence of overexpression of NMp,,-Cgc-.

During the de novo formation of [PSI*] by the overexpres-
sion of Sup35p or Sup35NMp in [PIN*] cells, several var-
iants of [PSI*], distinguished by phenotypic differences,
are formed [14]. Analogously, variants of [CHI*},,] differ-
ing in phenotype and biochemically are formed in the
presence of [PSI*], although NMp,-Cy: is not overex-
pressed. We suggest that [PSI*] cross-seeds [CHI*p,,], sim-
ilar to [PIN*] cross-seeding the formation of [PSI*]. Since
[PSI*] forms separate sub-particles from those of
[CHI*py, ], this suggests that S. cerevisiae Sup35p and
NMpy-Cgc do not form tight interactions within the cell.
Furthermore, overexpressed NMp,,-GFP and Sup35NMg-
GFP do not co-aggregate in the cell [39], suggesting that
interaction between endogenous Sup35p and the chi-
meric protein is limited. Species that have NM domains
that are much more similar to S. cerevisiae, such as S. bay-
anus and S. paradoxus, have been shown to co-aggregate
but there is no transmission of the prion state [39]. This
suggests that tight interactions might actually hamper the
formation of the heterologous prion and that heterolo-
gous prion formation might be mediated by transient
interactions between the seed and the prionizing protein.
Indeed, in vitro PrP in the non-fiber form from one species
is capable of binding PrP in the fiber form of another spe-
cies, but there is no conversion of the non-fiber form to
the fiber form [51]. Thus, stable interactions might actu-
ally be inhibitory to the process of heterologous prion
conversion.
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A Low Ade B
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200—

anti-HA anti-HA

Figure 4

More than one variant of [CHI*p\] forms in the presence of [PSI*]. A. Some [CHI*py] variants have differing amounts
of SDS-stable sub-particles. Lysates from [CHI*py] colonies differing in color on low adenine media were resolved on an agar-
ose gel and probed with an anti-HA tag antibody that detects NMpy-Csc. Stained chicken pectoralis muscle extract provided
molecular weight markers. The difference in amount of SDS-stable sub-particles was reproducible for this and another pair
(not shown) isolated on the basis of color difference. B. Some [CHI*py] variants have different sized SDS-stable sub-particles.
Colonies formed on -Ade-Ura could be distinguished phenotypically on low adenine media by differences in color. Lysates from
these variants were resolved on an agarose gel and probed with anti-HA tag antibody, which detects NMpy-Csc. The difference
in size of SDS-stable sub-particles was reproducible for this and another pair (not shown) isolated on the basis of color differ-

ence.
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sup35[P!N’] + NM,,M-CS,,c sup35[pin] + NMpy,-Cge

Figure 5

[PIN*] enhances [CHI*pp] formation. A. NMpy-Cs- provides translation termination function to a sup35 mutant contain-
ing the medium [PIN*] variant. sup35 medium [PIN*] or [pin-] yeast ectopically expressing NMpy-Cs on media containing low
or no adenine without uracil (to maintain the plasmid). Cells with the medium [PIN*] variant are shown here. NMpy-Cs is also
functional in sup35 mutant yeast with the low [PIN*] variant. B. NMpy-Csc is inactivated in sup35 mutant cells containing the
medium or low [PIN*] variant and not in a [pin] sup35 mutant Around 107 sup35 mutant cells containing either medium [PIN*]
or [pin-] expressing NMpy-Cs were plated onto -Ade-Ura. The frequency of Ade* colonies was estimated in sup35 yeast with
medium and low [PIN*] variants. The Ade* frequency in sup35 yeast with high and very high [PIN*] variants was not determined
as suppression in these strains is enhanced compared with sup35 [pin-] yeast.
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As [CHI*py,] seems to be cross-seeded by [PSI*] we deter-
mined whether [CHI*p,| could be seeded by [PIN%],
another Q/N-rich prion. Surprisingly, the prion domain
of Rnqlp, that has even less similarity than S. cerevisiae
Sup35p to NMy,,(15%), is able to seed NM,,,-Cg to give
rise to [CHI*py,], albeit at a lower frequency than in the
presence of [PSI*] (approximately 10-> to 10-4). Impor-
tantly, unlike the [PIN*]-promoted induction of [PSI*]
which requires overexpression of Sup35p or at least its
prion domain, the appearance of [CHI*p] in the presence
of either [PIN*] or [PSI*] occurs in the absence of NMp,,-
Cy overexpression. Interestingly, the property of enhanc-
ing |CHI*py| formation seems limited to the two Q/N-
rich prions that we tested. Aggregates of GFP fused to
HtQ103p, the mutated first exon of the Huntingtin pro-
tein (HtQ103), whose aggregation is associated with
Huntington's disease [52] and enhances de novo forma-
tion of [PSI*] [34], fail to enhance the formation of
[CHI*py]. Furthermore, a non-Q/N-rich prion [Het-s],, a
prion from P. anserine that can propagate in yeast, that is
induced twofold higher in [PIN*] cells [48], also failed to
enhance [CHI*p,,| formation, suggesting that although Q/
N-rich prions can enhance the formation of non-Q/N-rich
prions, non-Q/N-rich prions do not always enhance the
formation of Q/N-rich prions in vivo. In fact, in vivo non-
Q/N-rich amyloids failed to enhance the de novo forma-
tion of [PSI*] [34], suggesting that cross talk between Q/
N-rich and non-Q/N-rich prions might occur only in one
direction.

Two models have been proposed to explain the ability of
heterologous prions to enhance the de novo formation of
other prions: titration of inhibitory factors by the heterol-
ogous prion, and direct cross-seeding by the heterologous
prion [24,34,53]. One or both of these mechanisms could
be playing a role in the cross-seeding activity. In vitro evi-
dence supports the direct cross-seeding model, as many
Q/N-rich and non-Q/N-rich amyloids have been shown
to stimulate the aggregation of Sup35p [34]. Since
[CHI*py, ] formation is specific to Q/N-rich prions, we sug-
gest that de novo formation of this prion requires interac-
tions between Q/N-rich domains. Several studies have
shown that Q and N residues play an important role in the
initial step of amyloid formation [54], which might be
essential for the formation of [CHI*},,]. Since we see no
increase in [CHI*p,, ] formation in the presence of the non-
prion Q/N-rich HtQ103 amyloid, we propose that inter-
action of resident prion propagating/enhancing factors
that associate with the prion cross-seed might help stabi-
lize the newly forming [CHI*p,]| seed. For example
Hsp104, a chaperone required for the propagation of all
known yeast prions [12,26,33,55], binds preferentially to
[PSI*] aggregates wversus non-prion Sup35p [56]. As
[CHI*p,,] seeds are probably first formed by an interaction
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with the [PSI*] seed, Hsp104 bound to [PSI*] might play
arole in propagating newly formed [CHI*p,] seeds.

Although prion variants play an important role in the
transmission of the prion state across a species barrier,
two studies show that variants cause slightly differing
results. In the case of mammalian in vitro-made fibers, Syr-
ian hamster PrP (23-144) fibers were able to cross-seed
mouse PrP (23-144) protein but not vice versa. However,
Syrian hamster-seeded mouse fibers had properties of the
Syrian hamster seed and not that of spontaneously
formed mouse fiber [7]. In the case of yeast, one specific
variant of [PSI*[¢- was able to cross the barrier and infect
the NM domain of C. albicans (NM,) to give rise to a
novel variant of the prion form of NMg,-Cq [6]. We see
that although NM,,,, and NM have very little similarity,
NMp,-Cyc is infected by [PSI*]4 to give rise to not one but
at least two variants of [CHI*py|. We suggest that the chi-
meric foreign protein NMp,,-Cqc is heterologously cross-
seeded to form [CHI*p,,] de novo, giving rise to different
variants. In the case of homologous seeding of Sup35p to
form [PSI*], studies have shown that short peptide
sequences mediate initial nucleation to give rise to amy-
loid fibers [57]. We propose that the variant of the infect-
ing prion is important as different peptide sequences may
be exposed that allow different foreign protein sequences
to interact to lead to prionization. Thus the [PIN*] prion,
that has such low similarity with NMy,,, might have short
stretches of peptides that can interact with NM,,, giving
rise to [CHI*p,,]. Our data suggest that heterologous seed-
ing events between proteins from different species might
mimic a crossing of the species barrier.

Conclusion

We show here that in spite of low sequence similarity
between the P. methanolica prion domain and the S. cere-
visiae Q/N-rich prion determinants, the chimera can con-
vert to its prion form, [CHI*,,,], in the presence of [PSI*]
and [PIN*]. [ CHI*py | has many characteristics of yeast pri-
ons such as aggregation and transmission by cytoplasmic
mixing. Interestingly, more than one variant of [CHI*p),]
was isolated in the presence of [PSI*]. These results suggest
that [CHI*py| is formed anew, similar to the de novo for-
mation of [PSI*] in the presence of [PIN*] by the overex-
pression of Sup35p. Thus, heterologous seeding events
leading to newly formed chimeric prion variants might
mimic the crossing of the species barrier.

Methods

Plasmids

Centromeric plasmids pNMp,,-Cg (p1180) and pNM,-
Cgc (p1072) (kindly provided by Jonathan Weissman)
have NM domains of the following species — PM: P. meth-
anolica, CA: C. albicans, fused to the C domain of S. cerevi-
siaze (Cgc), with an HA tag between the NM and C
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domains, under the SUP35 promoter, in pRS316 (URA3)
[58]. The control vector used was pRS316 [58].

PNMy,,-GFP (p1680) is a centromeric (URA3) plasmid in
which the copper-inducible promoter controls the expres-
sion of NM;,,-GFP (kindly provided by Yury Chernoff).
NM,,,-GFP was induced using 50 uM copper for 4 hours
and observed using a Zeiss AxioScope2.

HtQ72-GFP (p1292) and HtQI103-GFP (p1293) were
expressed from the constitutive GPD promoter in the high
copy pRS425 plasmid [58] (LEU2, 2 n) (kindly provided
by Susan Lindquist). The control vector for these con-
structs was pRS425 [58].

pHET-s(PrD)-GFP (p1393) contains the HET-s prion
domain (PrD) fused to GFP under a galactose-inducible
promoter in a centromeric TRP1 vector [48].

Yeast strains and media

The following yeast strains are derivatives of 74-D694
(MATa adel-14 leu2-3,112 his3-4200 trp1-289 ura3-52)
[35]: L1763 contains strong [PSI*] and is [pin] [33];
L2333 is a sup35 mutant containing two point mutations
in the C terminus [59]; L2802 is a canlR, [rho] version of
L2333, where caniRis a recessive marker. L2598, used for
cytoduction, is a GuHCl-cured, [rho-], kar1-15 version of
12176 (MATa adel-14 leu2-3,112 his3-4200 trp1-289
ura3-52) [17]. L2802 was cytoduced with different vari-
ants of [PIN*] to give rise to: L2937, low [PIN*]; L2938,
medium [PIN*]; L2939, very high [PIN*]; L2940, high
[PIN*]; 12941, [pin]. L2958 (MATa adel-14 leu2-3,112
his3-4200 trp1-289 ura3-52 sup35:: TRP1 karl cyhR) is a
sup35A4 strain being kept alive by pNM,,-Cqc.

Standard yeast media and cultivation procedures were
used [60]. Transformants were grown on synthetic dex-
trose (SD) lacking the appropriate amino acid. To moni-
tor the efficiency of translational read through of adel-14
transformants containing SUP35 fusion proteins, the
color of cells grown on plasmid-selective, low adenine
media with 0.13% yeast nitrogen base, 0.5% ammonium
sulfate, 1% casamino acids, and 2% glucose, tryptophan,
one quarter the required amount of adenine and no uracil
was determined. This same media but with additional
adenine and 5 mM guanidine hydrochloride (GuHCl)
was used to cure the [CHI*p,,] prion. Synthetic glycerol
(SG) -Ura containing 3 mg/liter cyclohexamide was used
to select for cytoductants.

To isolate can1R mutants, cells were plated on SD-Arg con-
taining 60 mg/liter canavanine and resistant colonies were
picked. To make the strain [rho], cells were grown on
complex glucose media (YPD) containing 0.05 mg/ml
ethidium bromide [61]. To select for sup35 mutant cyto-

http://www.biomedcentral.com/1741-7007/7/26

ductants with different [PIN*] variants, SG-Arg + cana-
vanine was used.

Scoring for the formation of [CHI* p,]

Previously described suppression assays were used to
score for the formation of [CHI*p,,] [26]. Briefly, in [PSI¥]
strains the premature stop codon in the adel-14 allele is
read through, allowing adel-14 cells to grow on -Ade and
causing them to be white on YPD. This is because most of
the Sup35p is inactivated in [PSI*] cells because it is
sequestered into the prion aggregate. In [psi] cells,
Sup35p is available for efficient translation termination
and thus [psi-] adel-14 cells do not grow on -Ade and are
red on YPD. A sup35 mutant (L2333) is also able to read
through the ade1-14 premature stop codon, due to a Men-
delian mutation in the SUP35 gene that impairs the activ-
ity of the Sup35p protein, and thus can grow on -Ade.
L1763 (strong [PSI*][pin-]), L2333 (sup35 mutant) or
L2333 with [PIN*| variants were transformed with plas-
mids (pNMpy-Csc, PNM4-Cger and control vector) and
transformants were dissolved in water and spotted onto
SD-Ura (to maintain the plasmid), low adenine (to mon-
itor read through via color) or SD-Ura-Ade media (to
monitor read through with growth on -Ade). This deter-
mined the functionality of NMp,,-Cg in the [PSI*] yeast.
However, if a few NM,,,-C molecules were inactivated,
it would be difficult to monitor this in the above spot test.
To test if NMp,,-Cgc was occasionally inactivated, cells
taken from SD-Ura were dissolved in water and serially
diluted. Larger numbers of cells (104 to 107) were plated
onto SD-Ade-Ura and lower dilutions (10! to 103) were
plated onto SD-Ura. Viability was determined by the
number of cells on SD-Ura and the frequency of forma-
tion of [CHI*p,| was determined by comparing the
number of colonies on SD-Ura-Ade to the number on SD-
Ura.

Effect of [Het—s]y on [CHI* p\,] formation

[Het-s]|, was essentially induced and maintained as previ-
ously reported [48]. Briefly, pHET-s(PrD)-GFP was trans-
formed into a sup35 mutant and transformants were
grown on synthetic raffinose (SR)-Trp + 2% galactose to
maintain the plasmid and induce HET-s(PrD)-GFP. This
was then transferred to SR-Ura-Trp + 0.05% galactose to
maintain [Het-s], as dots. Either dot or diffuse HET-
s(PrD)-GFP cells were micromanipulated and propagated
on SR-Ura-Trp + 0.05% galactose. NMp,-Cg or a control
vector were transformed into [Het-s| -containing strains
and plated on SR-Ura-Trp + 0.05% galactose with or with-
out adenine to monitor the formation of [CHI*p,,]. Cells
with Het-s(PrD)-GFP dots retained dots in 70 to 90% of
the cells whereas diffuse cells remained diffuse.
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Cytoduction

Donor [PSI*][CHI*py,] or [PSI*][chipy] strains were mated
to L2598, a cyhR strain defective in nuclear fusion (karl).
Both the donor and recipient strains contained pNMp,,-
Cye expressing NM,,,-Cq . Mating was done on SD-Ura to
maintain pNMp,-Cgc. Cytoductants were selected on SG-
Ura + 3 mg/liter cyclohexamide. This media selects against
the donor and diploids, as they cannot grow in the pres-
ence of cyclohexamide. Recipient cells cannot grow on SG
as they lack mitochondria ([rho]). Only cytoductants,
recipient cells that have acquired mitochondria (and
therefore cytoplasm) from the donor, can grow. To test
whether [CHI*py| can be maintained independently of
[PSI#], [PSI*][CHI*py,] or [PSI*][chip,,] donor strains were
cytoduced into L2958. Cytoductants were selected on SG-
Ura + 3 mg/liter cyclohexamide.

Protein analysis

To prepare cell lysates, strains were grown in appropriate
media and harvested at an optical density of 1.5 to 2.0
(Agpo)- Crude cell lysates were prepared by physical dis-
ruption using glass beads (0.5 mm, Biospec, Bartlesville,
OK, USA) in 750 ul of lysis buffer containing 50 mMTris/
HCI, pH 7.5, 50 mM KCl, 10 mM MgCl, and 5% (w/v)
glycerol with protease inhibitor cocktail (P8215, 1:50,
Sigma, St. Louis, MO, USA) and 5 mM PMSF. Cells were
lysed by vortexing (Vortex-Genie 2) at high speed three
times for 2 min each with 1 min in between in ice at 4°C.
Crude lysates were pre-cleared by centrifuging at 3000 g
for 5 min at 4°C to remove unlysed cells. The aqueous
layer was used for further analysis.

To perform high-speed centrifugation analysis, approxi-
mately 600 to 800 ug of crude cell lysate in 300 pl was
spun at 100,000 g for 30 min at 4 °C. The supernatant was
separated from the pellet fraction and the pellet fraction
was dissolved in 300 pl of lysis buffer with protease inhib-
itor cocktail (Sigma, St. Louis, MO, USA) supplemented
with 5 mM PMSF. Approximately 30 pl of the superna-
tant, the pellet and total protein each were mixed with 4x
sample buffer (final concentration 62.5 mM Tris pH 6.8,
5% glycerol, 2% SDS and 0.2% bromophenol blue) and
2% B-mercaptoethanol and boiled for 5 min. This was
then subjected to polyacrylamide gel electrophoresis
using BioRad 10% Tris-HCl ready gels and transferred to a
PVDF membrane. The NMp,,-Cs; was detected using a
monoclonal mouse anti-HA tag antibody (1:10,000,
Sigma Aldrich, St. Louis, MO, USA).

To perform semi-denaturing detergent agarose gel electro-
phoresis (SDD-Age) analysis, crude lysate (40 to 80 pg of
total protein) was treated with 2% SDS in sample buffer
for 7 min at room temperature. The lysates were subjected
to agarose electrophoresis on a 1.5% agarose gel in run-
ning buffer to resolve the [CHI*p,,,] sub-particles, and were
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transferred to a PVDF membrane using a wider mini-gel
cassette or a semi-dry blot. Native Sup35p was detected by
rabbit anti-NMy. antibody (kindly provided by S.
Lindquist). The PVDF membrane was stripped prior to
probing for the native Sup35p using the Applied Biosys-
tems protocol. A preparation of chicken pectoralis extract
(a kind gift from T. Keller) was used to estimate molecular
weight [62]. When stained with Coomassie, chicken pec-
toralis extract reveals several abundant muscular proteins:
titin (3,000 kDa), nebulin (750 kDa), and myosin heavy
chain (200 kDa). Although this ladder cannot be used for
precise determination of molecular mass, it does provide
an estimate.
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