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Abstract

Background: Long terminal repeat (LTR) retrotransposons are a class of mobile genetic element
capable of autonomous transposition via an RNA intermediate. Their large size and proliferative
ability make them important contributors to genome size evolution, especially in plants, where they
can reach exceptionally high copy numbers and contribute substantially to variation in genome size
even among closely related taxa. Using a phylogenetic approach, we characterize dynamics of
proliferation events of Ty3/gypsy-like LTR retrotransposons that led to massive genomic expansion
in three Helianthus (sunflower) species of ancient hybrid origin. The three hybrid species are
independently derived from the same two parental species, offering a unique opportunity to
explore patterns of retrotransposon proliferation in light of reticulate evolutionary events in this
species group.

Results: We demonstrate that Ty3/gypsy-like retrotransposons exist as multiple well supported
sublineages in both the parental and hybrid derivative species and that the same element sublineage
served as the source lineage of proliferation in each hybrid species' genome. This inference is based
on patterns of species-specific element numerical abundance within different phylogenetic
sublineages as well as through signals of proliferation events present in the distributions of element
divergence values. Employing methods to date paralogous sequences within a genome, proliferation
events in the hybrid species' genomes are estimated to have occurred approximately 0.5 to |
million years ago.

Conclusion: Proliferation of the same retrotransposon major sublineage in each hybrid species
indicates that similar dynamics of element derepression and amplification likely occurred in each
hybrid taxon during their formation. Temporal estimates of these proliferation events suggest an
earlier origin for these hybrid species than previously supposed.

Background variability, differential accumulation (and loss) of mobile
The genomes of flowering plants are remarkably variable  genetic elements, especially the class I transposable ele-
in nuclear DNA content, with >1,000-fold differences = ments known as long terminal repeat (LTR) retrotrans-
among some taxa [1,2]. While differences in ploidy and  posons, represents an additional and important process
large-scale segmental duplication account for some of this ~ through which genome size can vary between individual
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plant species [3,4]. Plant LTR retrotransposons represent
ancient lineages that are ubiquitous in plant genomes
[5,6] and can account for >70% of the nuclear DNA of
some plant species [4]. Transposition of these elements is
via an RNA intermediate, which enables new copies to be
synthesized, reverse transcribed and subsequently inte-
grated into host chromosomal DNA. This mode of trans-
position can result in large-scale genome expansion
because each intact and functional element can poten-
tially give rise to numerous daughter copies.

Recent years have witnessed considerable advances in our
understanding of LTR retrotransposons. For example, we
now know that these elements are tremendously diverse
at the sequence level (in plants) with many subgroup lin-
eages existing within the superfamily types Ty1/copia-like
(Pseudoviridae) and Ty3/gypsy-like (Metaviridae) [7-12],
that proliferation of these elements can rapidly restructure
host genomes [13-16], and that their distribution along
chromosome arms can be either dispersed or localized
[9,17-19]. Recent work also suggests that LTR retrotrans-
posons (and other major classes of transposable ele-
ments) may not exclusively represent selfish or junk DNA
as previously supposed [20,21] but that, on occasion,
transposable elements may have indeed played a more
substantial role in generating evolutionary novelty [22-
33].

Despite recent advances, we still know surprisingly little
regarding how and when these elements become active
and proliferate in natural populations; the vast majority
of elements remain transcriptionally and transposition-
ally quiescent during normal growth and development.
Various forms of environmental and/or genomic stress
have been hypothesized to influence activation. For exam-
ple, hybridization between genetically differentiated pop-
ulations and/or species is one means through which these
elements are thought to become active [34-38] although
activation and proliferation following hybridization is
not observed universally [39,40]. Exposure of plants to
biotic and abiotic stresses such as bacterial and viral path-
ogens, phytophathogenic fungal extracts, wounding, pro-
toplast isolation, and cell culture also has been shown to
activate some LTR retrotransposons [41,42]. While biotic
and abiotic stressors may represent more universal agents
of activation, much of the data supporting this conclusion
comes from experiments conducted under unnatural lab-
oratory conditions; the extent to which these same stresses
(especially those that occur naturally) have led to activa-
tion and proliferation in natural populations remains
unknown.

An especially fascinating case of LTR retrotransposon pro-
liferation in plants involves three annual sunflower spe-
cies of ancient hybrid origin. These species (Helianthus
anomalus, Helianthus deserticola, and Helianthus paradoxus)
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have arisen independently via ancient hybridization
events between the same two parental taxa (Helianthus
annuus and Helianthus petiolaris) (Figure 1) [43-45].
Whereas both parental taxa have extensive natural ranges
in North America, the three hybrid species are restricted to
western and southwestern regions of the United States
where they are locally adapted to abiotically extreme envi-
ronments. The genomes of all three hybrid taxa have expe-
rienced spectacular proliferations of Ty3/gypsy-like LTR
retrotransposons [15,46], resulting in large-scale increases
in nuclear DNA content [47]. The evolutionary history of
the hybrid species is especially noteworthy given that both
hybridization and abiotic stress have been hypothesized
to facilitate the activation and proliferation of LTR retro-
transposons.

In the current report, we demonstrate that Ty3/gypsy-like
LTR retrotransposons in sunflower are considerably heter-
ogeneous at the sequence level but yet the same element
sublineage has proliferated independently in each hybrid
sunflower species. We demonstrate further that the ages of
these proliferation events (and thus a lower bound on the
hybrid species' origins) can be estimated by examining
particular signatures of proliferation found in the hybrid
species. Estimates by this method suggest that the hybrid
species may be older than previously suggested.

Results

Sequence variability of Ty3I/gypsy-like retrotransposons in

Helianthus hybrid and parental species

The diploid hybrid species possess composite genomes as
a result of their hybrid origins [44,48]. The elements that
proliferated in the hybrid species' genomes are therefore
derived from retrotransposon lineages originally present
in the genomes of the parental species H. annuus and/or
Helianthus petiolaris. We surveyed sequence diversity in the
two parental and three hybrid Helianthus species by
amplifying a 520-bp region of the Ty3/gypsy-like rt
domain-encoding region with degenerate primers fol-
lowed by cloning and sequencing 92 to 108 amplification
products per species. Analysis of these sequences revealed
considerable diversity in each of the five Helianthus spe-
cies, with pairwise sequence divergences ranging from 0%
to 48.7% (H. annuus), 0% to 40.5% (H. petiolaris), 0% to
39.6% (H. anomalus), 0% to 59.9% (H. deserticola), and
0% to 36.4% (H. paradoxus). Proper reading frames were
determined and all sequences translated to assess the fre-
quency of potentially functional copies. Between approx-
imately 20% (H. petiolaris) and 42% (H. deserticola) of
sequences were found to possess indels and/or premature
stop codons (Table 1), indicating that a sizable fraction of
these elements are no longer likely to be capable of auton-
omous transposition. These percentages are likely to be
underestimates given that we have sequenced only a frac-
tion of the total interior coding region.
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Evolutionary relationships among annual Helianthus species. Hybrid species are indicated with asterisks. Figure is
redrawn from [74] and based on combined nuclear ribosomal and chloroplast DNA data reported in [43].

Phylogenetic analyses and sublineage-specific element
numerical abundance

A phylogenetic analysis of elements derived from both
parental species (H. annuus and H. petiolaris) identified
multiple, well supported lineages, with sequences from
both H. annuus and H. petiolaris present in each major lin-
eage (Figure 2). The presence of elements from both

parental species in each major lineage indicates that the
origins of these Ty3/gypsy-like lineages predate the origins
of the major clades in which H. annuus and H. petiolaris
reside (see Figure 1). We propose the name Surge, (for
'sunflower repetitive gypsy-like elements') for these Ty3/
gypsy-like retrotransposons in Helianthus. In accordance
with criteria put forth in [49] addressing family identifica-

Table I: Source of plant material and summary information for sequences of the rt domain-encoding region (520 bp) of Ty3/Gypsy-like

elements

Species Accession no.2  Original collection

No. of sequences with

No. of full length Total no. of sequences

location indels or stop codons sequences without stop  (no. of sequences in
codons lineage E')

Helianthus annuus Pl 468607 Utah: N37.239, W 33 66 99 (29)
(-113.358)

Helianthus petiolaris Pl 468815 Utah: N37.047, W 21 82 103 (30)
(-112.530)

Helianthus anomalus ~ Ames 26095 Utah: N39.744, W 37 71 108 (49)
(-112.316)

Helianthus deserticola Ames 26094 Utah: N37.254, W 41 57 98 (47)
(-113.343)

Helianthus paradoxus Pl 468802 Texas: N30.883, W 19 73 92 (41)
(-102.983)

aUnited States Department of Agriculture (USDA) National Plant Germplasm System [76].

Page 3 of 13

(page number not for citation purposes)



BMC Biology 2009, 7:40 http://www.biomedcentral.com/1741-7007/7/40

100

A c \§
~ : 100 57 e T00

00

— 0.01 substitutions/site

Figure 2

Unrooted phylogenetic tree of Ty3/gypsy-like rt sequences (520 bp) isolated from Helianthus annuus (blue ter-
minal branches) and Helianthus petiolaris (yellow terminal branches). Capital letters indicate major lineages (A =
Surgel, B = Surge2, C = Surge3, D = Surge4, and E = Surge5). Bootstrap values (>50%) are shown for branches defining major
lineages as well as for deeper internal branches and are based on 1,000 replications. Phylogenetic analysis was conducted using
neighbor joining [75].
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tion and naming of transposable elements, we assign the
names Surgel to Surge5 for lineages A to E in Figure 2,
respectively.

Phylogenetic analyses on data sets including sequences
from both parental species and a single hybrid species
(that is, H. annuus +H. petiolaris + H. anomalus; H. annuus
+ H. petiolaris + H. deserticola; and H. annuus + H. petiolaris
+ H. paradoxus; Figure 3a-c, respectively), yielded similar
results with respect to the distribution of sequences across
major identified sublineages and additionally revealed
that a single sublineage (shaded gray in Figure 3a-¢; line-
age E' in Figure 4; Table 1) consistently harbored a higher
abundance of sequences derived from the hybrid species'
genomes than from the parental species' genomes. This
sublineage lies within a larger, well supported major line-
age (designated as lineage E, or Surge5). This pattern of
consistent differential abundance between parental and
hybrid species of sequences in lineage E' presumably
emerges because elements that are more common (that is
to say, have proliferated) in the hybrid species' genomes
are more frequently amplified by degenerate polymerase
chain reaction (PCR) and have a higher likelihood of
being cloned and sequenced. In phylogenetic analyses,
these sequences group most closely with related
sequences in the parental species' genomes from which
they are likely derived. This pattern of consistent differen-
tial abundance between hybrid and parental taxa in sub-
lineage E' was not observed for any other Ty3/gypsy-like
lineage (Figure 4).

Figure 3

http://www.biomedcentral.com/1741-7007/7/40

Proliferation events inferred from frequency distributions
of divergence values

Signatures of transposable element proliferation in spe-
cies' genomes also can be characterized through analysis
of the distribution of divergence values between pairwise
combinations of element sequences [50,51]. This form of
analysis relies on the fact that all daughter copies of trans-
positionally active elements are identical at the time of
insertion but subsequently accumulate mutations inde-
pendently. Peaks in the distribution of divergence values
correspond to episodes of transposable element prolifera-
tion, with peaks associated with greater divergence repre-
senting more ancient proliferation events and peaks
associated with lesser divergence representing more recent
events.

Phylogenetic analyses implicate a single Ty3/gypsy-like
sublineage (sublineage E') as a candidate proliferative
source lineage of Ty3/gypsy-like retrotransposon amplifica-
tion in the hybrid species. Distributions of pairwise diver-
gence values for sequences from within this sublineage are
depicted in Figure 5a-e for the two parental and three
hybrid Helianthus species. The program siZer [52] was
employed to evaluate these distributions for evidence of
significant features (peaks) (see Methods). Analyses of
these distributions indicate strong support for a single
large peak in the range 0.1 to 0.13 for H. annuus, H. petio-
laris, H. anomalus, and H. deserticola and at approximately
0.07 for H. paradoxus. Strong support for smaller second-
ary peaks at lower divergence values (0.02 to 0.03) was

Unrooted phylogenetic trees of Ty3/gypsy-like rt sequences (520 bp) isolated from Helianthus annuus (blue ter-
minal branches), Helianthus petiolaris (yellow terminal branches), and hybrid derivative species Helianthus
anomalus (a), Helianthus deserticola (b), and Helianthus paradoxus (c) (sequences from hybrid species are indi-
cated by red terminal branches). Capital letters indicate the same reconstructed lineages as defined in Figure 2. The line-
age defined by gray shading (lineage E') represents a candidate source lineage for proliferative retrotransposons. Phylogenetic
analysis was conducted using neighbor joining [75]. Bootstrap values (>50%) are shown for major identified lineages.
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Figure 4

Lineage-specific (see Figures 2 and 3) frequency of
Ty3Igypsy-like sequences from the five Helianthus spe-
cies under investigation.

Lineage A (Surge?)

Lineage B (Swge2)

Lineage C (Surge3)

Frequency

Lineage D (Swge4)

Lineage E' (Swrges)

additionally found for H. anomalus, and H. deserticola, and
strong support for two such additional secondary peaks
(at 0.02 and 0.04) was detected for H. paradoxus. There
was some (albeit much weaker) support of secondary fea-
tures in the distribution of H. petiolaris values, though
these were only detected over a very narrow range of bin-
widths. There was no support for secondary peaks in H.
annuus. Peaks at lower divergence values suggest recent
retrotransposon proliferation events and support our
assertion (based on phylogenetic data) that sublineage E'
is indeed a proliferative source lineage.

Timeframes for proliferation events indicated by these sec-
ondary peaks can be explored given that genome-level
mutation rates for Helianthus have been estimated. In wild
sunflowers, a silent site mutation rate has been estimated
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at 1.0 x 108 substitutions/site/year based on sequence
comparisons in a large EST database coupled with fossil
calibrations (M. Barker and L. Rieseberg, University of
British Columbia, personal communication). It has been
suggested, however, that mutation rates for LTR retro-
transposons may be approximately twofold higher than
silent site mutation rates for protein coding genes [53].
Thus, utilizing a mutation rate of 2.0 x 108 to account for
elevated sequence evolution of Ty3/gypsy-like retrotrans-
posons, proliferation events indicated by peaks at 0.02 to
0.04 divergence are roughly estimated to have occurred
some 0.5 to 1 million years ago. Timeframes for prolifer-
ation events indicated by more prominent primary peaks
were not estimated because these features were found in
both the hybrid and parental species. It is thus inferred
that proliferations associated with these features predate
the origins of the hybrid taxa.

Phylogenetic relationship of Surgel to Surge5 elements to
other plant Ty3/gypsy-like retrotransposons

Evolutionary relationships of Surgel to Surge5 elements to
other plant Ty3/gypsy-like retrotransposons were evaluated
by phylogenetic analysis of aligned amino acid sequences
of the rt domain. A single, full length sequence was ran-
domly selected from each major lineage identified in Fig-
ure 2 and included in a phylogenetic analysis with Ty3/
gypsy-like LTR retrotransposons isolated from the
genomes of other plants. Figure 6 depicts one of three
most parsimonious trees that differ only in the placement
of the RIRE1/Athila clade relative to two other well sup-
ported clades (the first designated as 'class B' and the sec-
ond consisting of Gorge2, RetroSor1, Cinful, and Wallabi).
The Surge elements form a well supported monophyletic
group within the class B Ty3/gypsy-like retrotransposons
and were most closely related to elements isolated from
Arabidopsis thaliana.

Discussion and conclusion

Ty3Igypsy-like retrotransposon proliferation in Helianthus
hybrid taxa

Despite the ubiquity and abundance of LTR retrotrans-
posons in plant genomes, our understanding of the
dynamics of their proliferation and the consequences of
proliferation events on host species evolution is surpris-
ingly limited. Sunflower species in the genus Helianthus
provide an excellent group for investigating the possible
causes and potential consequences of LTR retrotranspo-
son proliferation in an ecological and evolutionary con-
text. In a previous report [15], we demonstrated that three
ancient hybrid sunflower species have independently
experienced massive proliferation of Ty3/gypsy-like LTR
retrotransposons following their origins. The current
study examines the dynamics of these proliferation events
in light of the known relationships among the sunflower
species investigated and the requisite condition that pro-
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Distributions of pairwise sequence divergence values demonstrating episodes of retrotransposon proliferation
in sublineage E'. The x axis represents sequence divergence; y axis represents the frequency of values. (a) Helianthus annuus;
(b) Helianthus petiolaris; (c) Helianthus anomalus; (d) Helianthus deserticola; (e) Helianthus paradoxus. Below each distribution is
a siZer [52] map indicating the strength of support for features (peaks) in the distribution. At a given binwidth, features are
detected as significant increases in the slope (indicated by blue) followed by significant decreases in the slope (indicated by red).
Purple indicates that the confidence interval for the derivative contains zero. Gray indicates insufficient data for analyses.
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Figure 6

Phylogenetic relationship of Surge elements to other plant Ty3/Gypsy-like retrotransposons based on 118 parsi-
mony-informative residues of the rt domain. The Tnt/ Copia-like element from Nicotiana was used as a phylogenetic out-
group. The alignment of ingroup and outgroup sequences was conducted manually with the aid of retroelement alignments
reported in [76]; phylogenetic analysis was conducted using the heuristic search option of maximum parsimony. One of the
three most parsimonious trees is reported. Bootstrap values (>50%) are indicated above branches and are based on 5,000 rep-
licates. Class A and class B designations follow those reported in [12]. GenBank accession numbers and/or citations for
sequences are: Legolas (AC007730), Tmal-1 (AAD22339), Gorge3 (EU098898), IRRE| (consensus sequence reported in [39]),
IRRE2 (consensus sequence reported in [39]), RIRE3 (AB014738), Kangourou (DQ365821), Dell (X13886), Deal (Y12432),
Gorge2 (DX404795), RetroSor! (AAD19359), Cinful (AAD11615), Wallabi (DQ365824), RIRE! (BAA22288), Athila (AB005248),
Copia Tntl (P10978).
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liferative elements in the hybrid species are necessarily
derived from lineages present in one or both parental spe-
cies.

As is commonly observed in plant genomes, we found
Ty3/gypsy-like retrotransposons to be considerably diverse
at the sequence level, with multiple well supported phyl-
ogenetic lineages identified. Particular elements that
undergo proliferation, however, are expected to be more
abundant in a species' genome, and thus more frequently
amplified, cloned, and sequenced via the degenerate PCR
methodology employed in this study. Consistent with this
expectation, element sequences in the same single sublin-
eage were consistently more abundant numerically in
each of the three hybrid species' genomes relative to the
genomes of the parental species. This pattern is unlikely to
have emerged stochastically via PCR drift given that the
same pattern was observed for all hybrid taxa. Moreover,
the cloning of degenerate PCR amplification products was
conducted on pools of five independent PCR reactions per
species, further reducing the likelihood of observing this
pattern by chance. This pattern also cannot be attributed
to variation in primer sequence specificity across the sun-
flower species because the degenerate primers used in this
study were based on aligned amino acid sequences of sev-
eral plant species (see Methods), with H. annuus (a paren-
tal species) as the sunflower representative. Additionally,
our interpretation of this phylogenetic signal is corrobo-
rated through independent analyses of the frequency
spectra of pairwise sequence divergences (Figure 5a-e).

That proliferation of the same sublineage of Ty3/gypsy-like
retrotransposon has occurred independently in each of
the three hybrid sunflower species is of considerable inter-
est, and future work will examine this lineage in greater
detail to determine whether transcriptional and/or trans-
positional activation can be detected in natural and/or
greenhouse synthesized hybrids between the parental spe-
cies H. annuus and H. petiolaris. It is noteworthy that ele-
ments within this sublineage also are fairly abundant in
the parental species, indicating past amplification in the
parental species as well. Based on limited sampling, how-
ever, these elements do not appear to be currently active
transcriptionally in either the parental or hybrid taxa (RT-
PCR data not shown), a result that lies in contrast to
another study examining diversity and abundance of Ty3/
gypsy-like elements in wild Iris species and their early gen-
eration hybrids [39].

Another potentially relevant factor in these proliferation
events may be the demographic history of these sunflower
hybrid species. Recent work [54] has demonstrated that
several categories of transposable elements display differ-
ential patterns of distributional abundance and presumed
activity among natural populations of Arabidopsis lyrata
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that have and have not experienced historical bottlenecks
during postglacial recolonization into new geographical
regions. Following arguments put forth previously [55,56]
the authors invoke weaker selection against transposable
element activity in bottlenecked populations resulting
from reductions in effective population sizes and the
accompanying increased strength of genetic drift. It is con-
ceivable that similar demographic forces may have acted
in the Helianthus hybrid species given differences in habi-
tat preferences between the hybrid and parental sunflower
species and the founder event-like population structures
that may have been associated with the hybrid species' ori-
gins.

While this study indicates clear patterns of retrotranspo-
son proliferation events in the genomes of these sun-
flower hybrid species, some caveats need mention. First, it
is unlikely that we have sampled the total Ty3/gypsy-like
diversity in these Helianthus genomes. The sequence vari-
ability reported here is limited by the degeneracy of the
primers employed. More comprehensive methods for
uncovering the full range of retrotransposon subfamily
diversity would require genome-level sequencing efforts.
For example, by analyzing whole genome shotgun (WGS)
libraries, Hawkins et al. identified three major subfamilies
of Ty3/gypsy-like elements in Gossypium species, naming
them Gorgel, 2, and 3. Similarly, utilizing available large
sequence datasets for Oryza australiensis, Piegu et al. also
characterized three major subfamilies of Ty3/gypsy-like
elements. The sunflower Ty3/gypsy-like elements described
in the current study are most closely related to the Gorge3
and Kangourou subfamilies of elements identified by
Hawkins et al. and Piegu et al., respectively (Figure 6); this
suggests that additional Ty3/gypsy diversity in Helianthus
remains uncharacterized. A second caveat of this study,
and related to the first, is that we have surveyed sequence
variability of the more conserved reverse transcriptase
domain-encoding region in the current study whereas our
earlier report of proliferation in the hybrid species [15]
was based on comparisons among parental and hybrid
species of relative abundance (Southern blot) and abso-
lute abundance (quantitative PCR) of the integrase
domain-encoding region. Thus, while we assume we have
documented proliferation of the same Ty3/gypsy-like sub-
family in the current and earlier report, we cannot rule out
the possibility that we have identified different sub-
families in these two studies and we currently lack the res-
olution to detect this possibility. This matter can be
resolved through additional surveys of sequence variabil-
ity and by isolating and sequencing the entire protein-
coding interior regions for a diversity of these elements. A
third caveat is that although the parental taxa that gave
rise to the hybrid species are still extant, certain retrotrans-
poson lineages could have been lost from the genomes of
one or both parental species over evolutionary time; thus,
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the genomic composition of modern day H. annuus and
H. petiolaris may differ in some fashion from that of the H.
annuus and H. petiolaris individuals/populations that orig-
inally gave rise to the hybrid species.

Distributions of element divergence values and temporal
estimates of proliferation events in the Helianthus diploid
hybrid species

Distributions of divergence values for sequences within
the candidate proliferative source lineage E' revealed
strong evidence of secondary features (peaks) associated
with lower values of divergence (Figure 5a-e) in the
hybrid species, with no evidence of such peaks in H.
annuus and only limited evidence of such peaks in H. pet-
iolaris. This pattern is exactly that predicted under a sce-
nario of element derepression and proliferation in the
diploid hybrid taxa following or associated with their ori-
gins. The specific sets of sequences that give rise to these
secondary features appear to differ among the three
hybrid taxa (data not shown), providing further evidence
of independent proliferation events in the three hybrid
species. Evidence of peaks associated with lower diver-
gence values in H. petiolaris was weak and observed only
under a very narrow range of binwidths in analyses with
the program siZer [52]. Nonetheless, we cannot rule out
recent activity of a lesser scale in this parental species.

Ty3/gypsy-like proliferation events in the hybrid species'
genomes offer a unique opportunity to explore the tem-
poral origins of these species given that proliferation
events occurring in the hybrid taxa place a lower bound
on their birth. Using methods for dating the ages of paral-
ogous sequences within genomes [50,51,57], these prolif-
eration events in the hybrid species are estimated to have
occurred between approximately 0.5 to 1 million years
ago. These estimates suggest an earlier origin for the
hybrid taxa than has been previously suggested based on
microsatellite divergence data [58-60], but are largely con-
sistent with more recent revised estimates based on EST
sequence divergence data (L. Rieseberg, University of Brit-
ish Columbia, personal communication).

Retrotransposon proliferation and species evolution

An outstanding question remains how, if at all, transpos-
able element proliferation may have contributed to evolu-
tionary events that took place in this group of sunflowers.
Might this represent an example of new species arising via
hybridization and concomitant 'reassortments of repeti-
tious DNAs', as envisioned originally by McClintock [61]?
Earlier views by other prominent researchers suggested
that transposable elements likely represent 'selfish' or
'parasitic’' DNA sequences only, and that a major role in
evolutionary processes of the host need not be invoked in
order to explain their existence [20,21]. More recently,
however, several researchers have argued that transposa-
ble elements may indeed play a more prominent role in

http://www.biomedcentral.com/1741-7007/7/40

generating evolutionary novelty with potential effects on
adaptive evolutionary change [22,23,27,28,30,62-65].
The vast amounts of sequence data now available for sev-
eral species appear to be supportive of this more recent
view, especially with regard to the LTR retrotransposons.
For example, genomic sequence data for several model
species including Mus musculus, Caenorhabditis elegans,
and Drosophila melanogaster indicate that LTR retrotrans-
posons sequences (and fragments thereof) show a higher
than expected prevalence of association with certain cate-
gories of genes, and that novel gene configurations can
arise via new exons or spliced additions to existing exons
[24-26]. In addition to generating evolutionary novelty
via new (or modified) protein sequences, recent studies
also suggest that LTR retrotransposons as well as other
types of transposable elements may influence regulatory
aspects of host genes [31-33].

Notwithstanding any contribution to evolutionary nov-
elty in this group, it is also intriguing to ponder how these
sunflower genomes simply have accommodated massive
genomic expansions given the highly mutagenic nature of
such large-scale proliferation events [15]. Interestingly, in
phylogenetic analyses with other plant Ty3/gypsy-like ret-
rotransposons, Surge elements group within the 'class B'
elements (as described by Martin and Llorens [12]. Ele-
ments in this group possess an additional domain (a chro-
modomain) in their interior coding region that is
involved in site-directed integration of elements into het-
erochromatin [66]. The spatial scale of proliferation in the
hybrid species conforms with expectations of site-directed
insertion, as fluorescence in situ hybridization (FISH)
experiments reveal that the vast majority of retrotranspo-
son proliferation in the sunflower hybrid taxa has
occurred in pericentromeric regions of chromosomes
[67]. The amenable nature of this group of sunflowers to
experimental study and the excellent genomic resources
now emerging for Helianthus should greatly facilitate
future work on the likely causes and evolutionary conse-
quences of retrotransposon proliferation in these species.

Methods

Seeds of all species under investigation were obtained
from the United States Department of Agriculture (USDA)
National Plant Germplasm System (Table 1). Seeds were
germinated in the dark on moist filter paper in Petri dishes
and germinated seedlings were then transferred to 10 cm
pots and grown in the Kansas State University green-
houses until suitable size for harvesting of plant tissue.
DNA was extracted using a DNeasy Plant Mini Kit (Qia-
gen, Valencia, CA, USA) following the manufacturer's
instructions.

Degenerate  primers  (forward, 5'-GGACCTGCT-
GGACAAGGGNTWYATHMG-3' and reverse, 5'-CAG-
GAAGCCCACCTCCCKNWRCCARAA-3') were developed
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and used to amplify a 520 bp fragment of the Ty3/gypsy-
like rt domain-encoding region from a single plant of each
species. Degenerate primers were developed with the web-
based program CODEHOP [68] and were based on
aligned Ty3/gypsy-like reverse transcriptase (rt) amino acid
sequences from sunflower [69] and the following addi-
tional elements: Deal, Ananas; Dell, Lilium; and Legolas,
Arabidopsis. PCR was performed on an MJ] Research
(Watertown, MA, USA) PTC-100 thermal cycler under the
following conditions: 3 min at 94°C, followed by 31
cyclesof 30 sat 94°C, 30 sat45°C, and 60 s at 72°C, and
a final extension of 3 min at 72°C. Individual PCR reac-
tions each contained 5 ng DNA, 50 pmol of each primer,
1 unit of Taq polymerase, and a final concentration of 30
mM tricine, 50 mM KCI, 2 mM MgCl,, and 100 uM of
each dinucleotide triphosphate (dNTP). For each sun-
flower species, five individual 25 pl PCR reactions were
performed and pooled for further processing in order to
reduce potential effects of PCR drift [70]. Pooled products
were gel purified using a QIAquick Gel Extraction Kit
(Qiagen, Valencia, CA, USA) and cloned using the pGEM-
T Vector System I (Promega, Madison, WI, USA). For each
species, between 96 and 109 positive clones were
sequenced using the M13 universal sequencing primer on
an ABI 3730xl Genetic Analyzer. In a small number of
instances two or more sequences obtained from the same
species demonstrated 100% identity. Because of the ina-
bility to distinguish between a single amplicon variant
having been cloned more than two times versus inde-
pendent amplification of identical elements with different
chromosomal insertion points, only a single representa-
tive of identical sequences was retained so as not to bias
interpretation in subsequent analyses (see Results). Thus,
for each species, between 92 and 108 unique sequences
were retained for further analysis (Table 1). Sequence
alignments were conducted with ClustalW [71] with sub-
sequent manual adjustments. Phylogenetic analyses were
conducted in PAUP* v.4.0b10 [72] using the Kimura two-
parameter model of sequence evolution. Sequences used
in this study have been deposited in GenBank under
accession numbers GQ366796-GQ367295.

Evidence of recent retrotransposon proliferation events in
the hybrid species was evaluated by examining distribu-
tions of pairwise divergence values for sequences derived
from a candidate proliferative source lineage as suggested
by our phylogenetic analyses. Peaks in the frequency dis-
tribution are interpreted as episodic events of transposi-
tion, with peaks associated with lower values of
divergence representing more recent proliferation events.
Pairwise divergence values among sequences were deter-
mined using MEGA version 4 [73] under the Kimura two-
parameter model of sequence evolution. In order to iden-
tify significant features (peaks) in these distributions, we
utilized the program siZer [52]. This program evaluates
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data over a wide range of binwidths and determines statis-
tical support for features (peaks) in a distribution based
upon regions of significant slope increase and decrease.
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