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Abstract
Background: Clostridium botulinum is a taxonomic designation for at least four diverse species that are
defined by the expression of one (monovalent) or two (bivalent) of seven different C. botulinum neurotoxins
(BoNTs, A-G). The four species have been classified as C. botulinum Groups I-IV. The presence of bont
genes in strains representing the different Groups is probably the result of horizontal transfer of the toxin
operons between the species.

Results: Chromosome and plasmid sequences of several C. botulinum strains representing A, B, E and F
serotypes and a C. butyricum type E strain were compared to examine their genomic organization, or
synteny, and the location of the botulinum toxin complex genes. These comparisons identified synteny
among proteolytic (Group I) strains or nonproteolytic (Group II) strains but not between the two Groups.
The bont complex genes within the strains examined were not randomly located but found within three
regions of the chromosome or in two specific sites within plasmids. A comparison of sequences from a Bf
strain revealed homology to the plasmid pCLJ with similar locations for the bont/bv b genes but with the
bont/a4 gene replaced by the bont/f gene. An analysis of the toxin cluster genes showed that many
recombination events have occurred, including several events within the ntnh gene. One such
recombination event resulted in the integration of the bont/a1 gene into the serotype toxin B ha cluster,
resulting in a successful lineage commonly associated with food borne botulism outbreaks. In C. botulinum
type E and C. butyricum type E strains the location of the bont/e gene cluster appears to be the result of
insertion events that split a rarA, recombination-associated gene, independently at the same location in
both species.

Conclusion: The analysis of the genomic sequences representing different strains reveals the presence of
insertion sequence (IS) elements and other transposon-associated proteins such as recombinases that
could facilitate the horizontal transfer of the bonts; these events, in addition to recombination among the
toxin complex genes, have led to the lineages observed today within the neurotoxin-producing clostridia.
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Background
Clostridium botulinum is a taxonomic designation for at
least four diverse groups of Gram positive spore-forming
anaerobic bacteria that produce the most potent naturally
occurring toxin known, botulinum neurotoxin (BoNT).
Production of BoNT has been the single criterion for
inclusion within the C. botulinum species and was adopted
in order to prevent scientific and medical confusion
regarding the intoxication known as botulism. However,
this single criterion has resulted in a species designation
that encompasses clades of strains that should be consid-
ered as four separate species. Phylogenetic analysis of 16S
rrn genes of C. botulinum strains clearly separates them
into four Groups (I-IV) and supports this historical classi-
fication scheme based upon biochemical and biophysical
parameters [1]. Group I contains proteolytic serotype A, B
and F strains, as well as bivalent (bv) Ab, Ba, Af, and Bf
strains; Group II consists of nonproteolytic (np) and sac-
charolytic serotype B, E and F strains; Group III consists of
serotype C and D strains; and Group IV consists solely of
serotype G strains [2]. Group IV has been recognized as a
distinct species and its members have been given the addi-
tional name of C. argentinense [3]. Further Group designa-
tions (V and VI) have been proposed for other clostridial
species found to express BoNT, such as the BoNT/F-pro-
ducing C. baratii strains and the BoNT/E-producing C.
butyricum strains [4].

Figure 1 and previously published 16S rrn dendrograms
show the relationship of the bont-containing strains to
each other and to other clostridial species [5,6]. Group I
shares a recent common ancestor with nontoxic C. sporo-
genes. Group II is a subset of a more diverse clade that
includes other saccharolytic clostridia, such as C. aceto-
butylicum, C. beijerinckii, and toxic and nontoxic Group V
C. baratii and Group VI C. butyricum. Group III strains pro-
duce BoNT/C, D and mosaic C/D and D/C toxins which
share a recent common ancestor with nontoxic C. novyi.
Group IV, producing BoNT/G, shares a clade with C. sub-
terminale and C. proteolyticus. Recent microarray analyses
of Group I strains confirm the close relationship of the
strains with C. sporogenes and the disparity in gene content
between Groups I and II strains [7].

The 16S rrn dendrogram also shows that the tetanus toxin-
producing Clostridia, C. tetani, occupies a distinct clade
when compared to the other clostridial species. This spe-
cies was one of the first clostridial genomes to be
sequenced revealing the presence of the tetanus toxin
within a 74 kb plasmid [8]. Recent genomic sequences of
different C. botulinum strains have revealed single or biva-
lent bonts are located within plasmids as often as within
the chromosome [9-11]. Unlike tetanus toxin, which
appears uniform from strain to strain, bont gene sequence
comparisons have identified multiple variants that are rec-
ognized as serotypes and subtypes.

Comparisons of the BoNT/A-G protein sequences in
strains representing the different Groups show that BoNT
protein identities range from 34%-64% among the seven
serotypes [9]. In addition, the variation observed in BoNT
protein sequences within the serotypes, except in type G,
has resulted in designations of BoNT subtypes within a
serotype (for example subtypes A1-A5 within BoNT/A).

The discordant phylogeny of the serological classification
of the toxins with the 16S rrn analyses and Group desig-
nations indicates that the bont genes have been horizon-
tally transferred between various clostridial lineages.
Horizontal gene transfer events are observed within other
bacterial species and contribute to bacterial evolution
[12]. Although the exact transfer mechanisms active
within the clostridia remain unclear, the regions flanking
the bont and toxin complex genes include partial and com-
plete insertion sequence (IS) elements and gene duplica-
tion events indicative of mobile element activity. In
addition, the genes of several bonts are located within plas-
mids or phage [9-11]. These findings suggest possible
mechanisms that could enable the horizontal transfer of
bont [13]. Recombination events within the bont genes
(mosaic bont/c/d and bont/a1/a3 for example) and within
the ntnh gene that precedes the bont gene have been
observed and contribute significantly to BoNT diversity
[5,6,13,14]. Although the three plasmids that contain
bont/a3, bont/a4, bont/bv b or bont/b1 genes are largely
homologous, each shows regions of inversions and dele-
tions [9].

Because the toxin complex genes appear to move among
the clostridia, they cannot be used to infer the phyloge-
netic relationships of the host bacteria. However, the
sequences and the locations of the bont gene clusters pro-
vide clues to earlier gene transfer and recombination
events. In order to better understand these events, we
compared the available genomic sequences of several
strains within the Group I, II and VI designations. Chro-
mosome and plasmid synteny were analysed and the spe-
cific locations and sequences flanking the bont complex
genes were examined within C. botulinum types A, B, E and
F strains and a C. butyricum type E strain. Plasmid loca-
tions for the bont/np b gene within the Eklund 17 B strain
and for the bont/bv b and bont/f genes within the bivalent
Bf strain were identified. A detailed examination of the
toxin complex genes and their flanking regions revealed
recombination and insertion events that have contributed
to the diversity observed today.

Results
Chromosomal and plasmid synteny
The chromosomal and plasmid sequences from strains
representing multiple C. botulinum serotypes and subtypes
of A, B, E and F, two bivalent strains (BoNT/Ba4, BoNT/
Bf), a BoNT/E-expressing C. butyricum, a C. tetani and a C.
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A 16S rrn dendrogram of clostridial speciesFigure 1
A 16S rrn dendrogram of clostridial species. The 16S rrn genes from the 15 strains examined in this study (13 C. botulinum 
indicated in red, one BoNT/E-producing C. butyricum in red and one C. sporogenes in blue) were aligned to the 16S rrn genes of 
different Clostridium species identified within Genbank via BLAST searches. A maximum likelihood tree using 78 sequences with 
four outgroup sequences from the Alkaliphilus genus (removed) was generated from 1,208 nucleotides. The scale bar of 0.03 
represents three point mutations per 100 bases or 3% diversity between sequences. Two 16S rrn gene sequences from C. spo-
rogenes ATCC 15579 are included. The 16S rrn dendrogram illustrates the genetic diversity within the Clostridium genus and 
among strains within the Group I-VI designations.
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sporogenes strain (Table 1) were compared in order to
investigate their overall organization or synteny. Compar-
isons of the completed chromosomal sequences of the
three BoNT/A1 strains (ATCC 3502, ATCC 19397, Hall)
revealed that these strains are nearly identical in genomic
organization (data not shown). The history of the three
strains is not clear, however, they appear to be different
strains isolated from foodborne outbreaks of botulism
[15]. The serotype A Hall strain is distinctive in that it pro-
duces a high concentration of toxin in culture [16].
Unique to the ATCC 3502 strain is the presence of a 16 kb
plasmid [17]. Neither this intact plasmid nor its plasmid
sequences were found within the chromosomes of the
other two BoNT/A1 strains.

Figure 2 (panel 1a) compares the genomic synteny of the
Hall BoNT/A1 strain to other C. botulinum Group I strains
representing serotypes A, B and F. The plot shows that the
chromosomes of strains representing four BoNT/A sub-
types (BoNT/A1-A4), BoNT/B1 or BoNT/F share similar
organization. In contrast, there is little chromosomal syn-
teny between the Group II C. botulinum serotype E strains
and the Group I Hall strain or the C. butyricum type E
strain (Figure 2, panel 1b, 1c). The two BoNT/E-producing
C. botulinum strains (Alaska E43 and Beluga) were similar
to each other and also to the npBoNT/B Eklund 17B strain
(data not shown). These comparisons revealed a large
(404 kb) inversion within the Eklund 17B chromosome
relative to the C. botulinum serotype E strains that is not in

a region containing the bont/e gene cluster. No chromo-
somal synteny was observed when the C. botulinum Group
I and Group II strain sequences were compared to the C.
tetani E88 strain (data not shown). A comparison of the
four contigs of C. sporogenes ATCC 15579 to the Hall
BoNT/A1 strain (Figure 2, panel 1d) revealed genomic
synteny and a large 701 kb inversion between the two spe-
cies. The four panels (1a-d) contrast the genomic organi-
zation among Group I, II and VI strains and show that
Group I strains share a similar gross chromosomal organ-
ization to each other and to C. sporogenes, which differs
from Group II and VI strains.

Plasmid synteny was also examined by comparing the
bont-containing plasmids (pCLK with bont/a3, pCLJ with
bont/a4 and bont/bv b, pCLD with bont/b1) from Group I to
each other and to the Group II pCLL with bont/np b and
pE88 in C. tetani. These plasmids each contain genes
encoding: 329 proteins (pCLK); 195 proteins (pCLD);
305 proteins (pCLJ); 54 proteins (pCLL); and 59 proteins
(pE88). Although the plasmids containing bont/a3, bont/
a4 and bont/b1 vary in size (148 kb - 270 kb), Figure 2
panel 2a shows large regions of conserved organization
among these plasmids and a small inversion (16.7 kb)
that contains the bont/a3 relative to the bont/a4.

The genomic sequence of the Group II B strain, Eklund
17B, revealed the location of the bont/np b within a small
(47.6 kb) plasmid, pCLL, that was unique when com-

Table 1: List of analyzed genomes.

Species Subtype1 Strain Group Locus tag ID2 Genbank accession3 Toxin complex BoNT location5

C. botulinum A1 ATCC 3502 I CBO AM412317/AM412318 HA-A1 chr/oppA
C. botulinum A1 ATCC 19397 I CLB CP000726 HA-A1 chr/oppA
C. botulinum A1 Hall I CLC CP000727 HA-A1 chr/opp
C. botulinum A1(B) NCTC 2916 I CBN ABDO02000001-49 orfX-A1, HA-(B) chr/arsC, chr/oppA
C. botulinum A2 Kyoto-F I CLM CP001581 orfX-A2 chr/arsC
C. botulinum A3 Loch Maree I CLK CP000962/CP000963 orfX-A3 plasmid
C. botulinum Ba4 Strain 657 I CLJ CP001083/CP001081/CP001082 orfX-A4, HA-bvB plasmid
C. botulinum B1 Okra I CLD CP000939/CP000940 HA-B1 plasmid
C. botulinum Bf ----- I CBB ABDP01000001-70 HA-bvB, orfX-F plasmid
C. botulinum prot F Langeland I CLI CP000728/CP000729 orfX-F chr/arsC

C. botulinum npB Eklund 17B II CLL CP001056/CP001057 HA-npB plasmid6

C. botulinum E1 Beluga II CLO ACSC01000001-16 orfX-E1 chr/rarA
C. botulinum E3 Alaska E43 II CLH CP001078 orfX-E3 chr/rarA
C. butyricum E4 BL 5262 II CLP ACOM01000001-13 orfX-E4 chr/rarA

C. tetani tetanus E88 - CTC NC 004557/NC 004565 p21-NT Plasmid

C. sporogenes N/A ATCC 15579 I CLOSPO ABKW02000001-4 N/A N/A

1Subtype designations as listed in Hill et al, 2007
2Locus tag ID designations listed in GenBank and Hill et al, 2007
3Accessions listed as chromosome/plasmid
4orfX = orfX1, orfX2, orfX3; HA = HA17, HA33, HA70 accessory proteins
5Location: chr = chromosome, oppA = oppA/brnQ operon, arsC = arsC operon, rarA = rarA operon; plasmid = plasmid
6Plasmid does not share homology with Group I plasmids
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pared to other bont-containing plasmids. Synteny plots
show that pCLL differs from pCLK (Figure 2 panel 2b) and
pE88, the plasmid within C. tetani that contains tetanus
toxin (Figure 2 panel 2c). None of the C. botulinum plas-
mids (pCLK, pCLJ or pCLD) shared synteny to C. tetani
pE88 (data not shown).

Although the sequence data for the Bf strain is incom-
plete, four Bf contigs share synteny to the bivalent pCLJ
that contains bont/a4 and bont/bv b (Figure 2 panel 2d).
The same inversion (16.7 kb) identified in panel 2a is
observed when the contigs are compared to pCLJ. The evi-
dence for the plasmid location of bont/bv b and bont/f is
supported by the sequence homology of the four contigs
to pCLJ and a detailed examination of the location of the
bont/bv b and bont/f is described later.

These results show that the Group I C. botulinum A, B and
F strains share a similar chromosome organization to each

other and to C. sporogenes but not to the Group II nonpro-
teolytic B strain or serotype E strains, the Group VI BoNT/
E-producing C. butyricum or C. tetani. The plasmids con-
taining bont/a3, bont/a4, bont/bv b, bont/b1 or bont/f gene
clusters also show similarity to each other but not to the
C. tetani pE88 or pCLL containing bont/np b. Comparisons
between the Group II C. botulinum BoNT/E or npBoNT/B-
producing strains revealed that their chromosomal back-
grounds share synteny with each other but not with the
Group VI C. butyricum type E strain. These relationships
confirm the different genomic backgrounds within C. bot-
ulinum and C. tetani and support the 16S rrn analyses and
historical C. botulinum Group designations.

Components of the BoNT gene clusters
The arrangement and composition of the toxin gene clus-
ters in strains representing the different serotypes and sub-
types of C. botulinum and BoNT/E-producing C. butyricum
are shown in Figure 3. A comparison of these regions

Chromosomal and plasmid synteny plotsFigure 2
Chromosomal and plasmid synteny plots. Panels 1a-d or 2 a-d show four synteny plots of either chromosomal or plas-
mid sequence alignments, respectively. The reference sequence listed on the x-axis was queried with the strain sequence listed 
on the y-axis. The red dots indicate forward matches of the sequence comparisons: the blue dots indicate reverse compliment 
matches. The continuous diagonal line in the plot in panel 1a illustrates the overall chromosomal organization or synteny 
shared between the proteolytic strains of Hall and either the Kyoto-F, Loch Maree, 657, Okra or Langeland strains. Panel 1b 
and 1c plots compare Hall and C. butyricum BL 5262 to the BoNT/E-producing Alaska E43 strain, where little synteny is 
observed. In panel 1d four contigs of C. sporogenes ATCC 15579 are compared to the Hall strain and reveal genomic synteny 
and a 701 kb inversion between the two species. Panels 2a-d examine plasmid synteny. The diagonal lines in panel 2a illustrate 
that the Loch Maree pCLK has a similar organization to pCLJ with a small 16.7 kb inversion that includes the bont/a3 relative to 
the bont/a4. Panels 2b and 2c show that pCLL within Eklund 17B does not share synteny either to pCLK or pE88 that contains 
the tetanus toxin. In panel 2d four contigs of the Bf strain show synteny to pCLJ and the 16.7 kb inversion of bont/a4 relative to 
the bont/f.
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shows, in general, that the BoNT gene is located in either
of two conserved toxin gene cluster arrangements, com-
posed of either the ha70-ha17-ha33-botR-ntnh-bont com-
plex genes (abbreviated ha cluster) or the orfX3-orfX2-
orfX1-(botR)- p47-ntnh-bont complex genes (abbreviated
orfX cluster). The characteristics of the different proteins
and their arrangements have been previously reported for
strains representing the different serotypes [5,6]. The toxin
complex proteins, with the exception of the regulatory
protein BotR (P21), are thought to provide a protective
role for the BoNT in the gastrointestinal tract [18]. There
is evidence that the hemaagglutinin (HA) proteins may
also help facilitate the absorption of BoNT from the intes-
tines into the bloodstream [19]. While all of the genes
within the ha cluster express proteins that are part of the
toxin complex, the expression and function of the orfX
proteins within the orfX cluster remain unknown. The

presence of genes that encode the complex proteins in
each of the different serotypes suggests that these proteins
must play a role in expression, stability and/or transport
of the BoNT.

Figure 3 shows that the ha gene cluster is found within
serotype A subtype BoNT/A1 strains and all of the sero-
type B strains, including the gene cluster harboring the
silent bont/(b) gene within BoNT/A1(B) strains. The orfX
gene cluster is found within all of the other strains exam-
ined here, including BoNT/A2, BoNT/A3, BoNT/A4
strains and the bont/a1 gene cluster within the BoNT/
A1(B) strain. It is also found within the proteolytic BoNT/
F Langeland strain, the bont/f gene cluster in the bivalent
Bf strain, the BoNT/E1 and BoNT/E3 strains and the
BoNT/E-producing C. butyricum strain.

BoNT complex and flanking regions in different strainsFigure 3
BoNT complex and flanking regions in different strains. The bont gene cluster, flanking regions and location (chromo-
some or plasmid) are indicated for the different strains. The orfX cluster (orfX3-orfX2-orfX1-(botR)-p47-ntnh-bont complex 
genes) is present in the BoNT/E-producing strains (C. botulinum and C. butyricum), the BoNT/A1 of the A1(B) strain, serotype F 
(BoNT/F and BoNT/bvF) and the BoNT/A2-A4 subtypes. The ha cluster (ha70-ha17-ha33-botR-ntnh-bont complex genes) is 
present in the serotype B strains containing BoNT/bvB, BoNT/B1, npBoNT/B, BoNT/(B) and BoNT/A1 of the Hall strain. The 
flanking regions consist of IS elements, flagellin (fla), lycA and hypothetical (hypo) proteins. The prime symbol indicates a partial 
gene.
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The bont/a1 gene appears to be the only bont so far identi-
fied within either of the two types of toxin complexes. The
bont/a1 gene in strains ATCC 3502, ATCC 19397 and Hall
is located within the ha cluster and the bont/a1 within the
BoNT/A1(B) strain, as well as several other BoNT/A1
strains, is located within the orfX cluster [20]. It appears
that the location of the bont/a1 gene within the ha cluster
resulted from a recombination event in the middle of the
serotype B ntnh gene that has been previously reported
[21]. The first half of the ntnh gene in the BoNT/A1 strain
is 99.7% identical to the ntnh within serotype B strains.
After a recombination event occurring at approximately
1,965 nucleotides from the start codon of the 3,594 bp
gene, the second half of the ntnh gene is equally similar to
the ntnh gene in serotypes A2, A3 and A4 (90 to 95% iden-
tity) strains. This event has resulted in a bont/a1 gene resid-
ing within an ha cluster that contains a hybrid or
recombinant B/A ntnh gene.

The ntnh recombination event locating the bont/a1 gene
within the ha cluster has resulted in a very successful line-
age that is frequently identified in botulism cases. The
many strains representing this event, such as ATCC 3502,
ATCC 19397 and Hall, contribute to the acceptance of the
ha cluster in association with the bont/a1 gene. However,
the orfX cluster is more likely to be the ancestral toxin gene
cluster containing the bont/a1 gene, as indicated by the
location of the other bont/a subtype genes (bont/a2 bont/a3
and bont/a4) and the bont/a1 gene of the silent B strains
within the orfX cluster. In addition, the bont/a1 genes
within the ha cluster are located in a different region of the
chromosome from the bont/a1 genes in the orfX cluster, as
described below.

Location of the BoNTs within the chromosome
Because the strains within each C. botulinum Group
showed genomic synteny when compared to each other,
the chromosomal or plasmid location of each bont gene
was examined to determine if the regions containing the
different bont genes had similar features. This analysis
revealed that the bont genes in these strains are not ran-
domly distributed but rather are found within three spe-
cific sites within the chromosome: (1) the arsC operon
that contains either the bont/a2, bont/f or the orfX-bont/a1
of the silent BoNT/A(B) strains; (2) the oppA/brnQ operon
that contains either the ntnh-recombinant (ha) bont/a1 or
bont/(b); and (3) the rarA operon which contains the bont/
e within the C. botulinum and C. butyricum type E strains.
Figure 4 shows the location of these sites in relation to the
ATCC 3502 or Beluga chromosome: the arsC operon at
approximately 847 kb, the oppA/brnQ operon at approxi-
mately 895 kb and the rarA operon at approximately
2,704 kb.

The arsC gene is part of a group of genes (arsA, arsB, arsC,
arsD, and arsR) that encodes for proteins involved in

arsenic reduction. BoNT/A1, BoNT/A1(B), BoNT/A2, and
BoNT/F strains contain all five genes, but BoNT/A3,
BoNT/Ba4 and BoNT/B1 strains lack genes for arsA, arsB
and arsD. Recently, it has been shown that certain BoNT/
B2 strains lacking the full gene complement are sensitive
to arsenic, while BoNT/B2 strains containing all five genes
are relatively resistant to arsenic [22].

An expanded view of the arsC operon in Figure 5 shows
the different constituents within this location in the differ-
ent strains. Within this approximately 20 kb region three
bont genes can be found: the orfX-bont/a1 of BoNT/A(B)
strains; the proteolytic bont/f; and the bont/a2. A striking
similarity is seen between the region surrounding the
bont/a1 cluster and that surrounding the bont/f cluster.
These two different serotypes contain many of the same
genes in the same order in this location. The bont/a2 gene
cluster is also located here, but this region is not as similar
to the region within the BoNT/A1 or BoNT/F strains as
they are to each other. As has previously been reported,
the bont/a2 is located in between two copies of the arsC
[23]. Other strains, such as those containing bont/a3, bont/
a4, bont/bv b or bont/b1 genes, have no bont genes within
this region.

Since some of these strains contain multiple arsC genes, a
dendrogram of the various copies was created to compare
genes within and among the strains (Figure 6). The arsC
dendrogram shows that the sequences of the arsC genes
are not identical within a strain or between the strains. It
also shows that the three copies within the BoNT/A2
strain differ from each other, as do the two copies found
within BoNT/A1(B) and BoNT/F strain. The single arsC
gene within C. sporogenes is more closely related to one of
the copies within the Group I strains. The copy within the
Eklund 17B and Alaska E43 strains are nearly identical but
differ from the arsC within C. butyricum.

About 25 kb downstream from the arsC operon in the
ATCC 3502 strain is the oppA/brnQ operon where the bont/
(b) gene, or the ha cluster BoNT/A strains, are located (Fig-
ure 7). This site is named for the oppA, extracellular solute
binding protein, and brnQ, branched chain amino acid
transport protein, located here. This is the only site where
a bont/(b) gene, although silent due to a mutation, was
identified within the chromosome; the bont/b1 and bont/
bv b genes in strains analyzed as part of this study were
located within plasmids. This site does not contain the
bont genes in the BoNT/A2, BoNT/A3, BoNT/A4 or BoNT/
B1-producing strains. The oppA/brnQ operon was not
present within the serotype E strains, the BoNT/E-produc-
ing C. butyricum, or the npBoNT/B strain.

At approximately 2704 kb within the ATCC 3502 chromo-
some (1.102 Mb in Eklund 17B) is the location of the rarA
operon. No bont genes are located here in the Group I pro-
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teolytic strains. However, in the BoNT/E-producing C. bot-
ulinum (Beluga and Alaska E43) and C. butyricum (BL
5262) strains, the rarA gene is split and the bont/e gene
cluster and other genes are inserted. Figure 8(a) shows the
similarity of the rarA region in the npBoNT/B strain and
the two BoNT/E-producing species (C. botulinum and C.
butyricum) and also the gene organization of the inserted
sequence. Although these regions appear similar, the bonts
in the strains are in different locations - the bont/np b is
located within a small plasmid whereas the bont/e genes
are located within the chromosome.

The gene sequence of the split rarA in the serotype E
strains can be spliced together to encode an intact fully
functional protein. The location of the split (codon 102)
is in the same site in both the C. botulinum and C. butyri-

cum strains. Interestingly, the inserted sequences not only
contain the bont/e gene cluster, but also contain another
rarA gene that is intact. Therefore, these strains retain an
intact copy of rarA in addition to the one that is split.

Figure 8(b) compares the nucleotide sequences of the
spliced and intact rarA gene in these strains and other spe-
cies. The dendrogram shows that the intact (inserted) rarA
are almost identical to each other in the BoNT/E-produc-
ing C. botulinum and C. butyricum strains, suggesting a
common source. However, the sequences of the spliced
rarA genes within these C. botulinum and C. butyricum
strains are not identical. The spliced rarA within the Bel-
uga and Alaska E43 strains are almost identical to each
other and very similar to the Eklund 17B strain rarA
sequence. The different sequences of the rarA genes that

Relative locations of the different bonts within the chromosome or plasmidFigure 4
Relative locations of the different bonts within the chromosome or plasmid. Three operons (designated arsC, oppA/
brnQ and rarA) within the chromosome of the ATCC 3502 or Beluga strain show where the various bonts are located within 
the different strains. The bont/a1 of the A1(B) strain, bont/a2 of the Kyoto-F and the bont/f of the Langeland strain are located 
within the arsC operon. The bont/(b) within the A1(B) strain and the bont/a1 within the Hall strain is located within the oppA/
brnQ operon. The rarA operon contains the bont/e complex within the Beluga, Alaska E43 or C. butyricum BL 5262 strains. The 
relative locations of the bonts in the Group I plasmids are indicated in pCLJ. One site contains either the bont/a3 in the Loch 
Maree strain, the bont/a4 in the bivalent 657 or the bont/f in the Bf strain. Another site contains either the bont/b1 in the Okra 
strain, the bont/bv b in 657 or bont/bv b in the Bf strain. The bont/np b location within pCLL within the Eklund 17B strain is indi-
cated. This figure shows the common sites of the bonts in different strains providing evidence that the bonts are not randomly 
located within the chromosome or plasmid.

 

operon

 

   operon

  bont/a1 in A1(B)

  bont/a2 in Kyoto-F

  bont/f in Langeland

        orfX cluster 

 bont/(b) in A1(B)

 bont/a1 in Hall

      ha cluster

bont/a3 in Loch Maree

bont/a4 in 657

bont/f in pBf

   orfX cluster

bont/b1 in Okra

bontT/bv b in 657

bont/bv b in pBf

     ha cluster

847,403 868,034 895,528 915,784
____________________________________________________________________________________________________//

________________________________________________________
pCLJ

270 kb

ATCC 3502

3.8 Mb

1,924 41,653 118,100 137,034

C
h

ro
m

o
so

m
e

P
la

sm
id  

bont/f

 

bont/b

//

2,707,028 2,708,278

bont/e1 in Beluga

bont/e3 in Alaska E43

bont/e4 in BL 5262

       orfX cluster

____________________________________________________________________________________________________//
    Beluga 

3.9 Mb

C
h

ro
m

o
so

m
e

Group I

    np bont/b

     ha cluster

________________________________________________________
pCLL

47.6 kb1,924 41,653

P
la

sm
id

 

np bont/b

 

operon
arsC oppA/brnQ rarA

 

operon
rarA

Group II

732,356 758,935

 

bont/a  

or
Page 8 of 18
(page number not for citation purposes)



BMC Biology 2009, 7:66 http://www.biomedcentral.com/1741-7007/7/66
are split by the bont/e insertion in C. botulinum and C.
butyricum show that these were separate events occurring
in different bacterial backgrounds.

The mechanism of the insertion event likely involves the
rarA protein, which is a resolvase involved in recombina-
tion or insertion events of transposons. Transposon activ-
ities within Gram positive bacteria are not well
characterized but are known to be responsible for genetic
exchange of antibiotic resistance genes and/or genomic
islands in other bacteria such as Staphylococcus aureus
methicillin resistance, for example [24]. The rarA inser-
tion site was likely targeted by the presence of a rarA gene
within the inserted region. The presence of an IS element
and a transposon resolvase involved in horizontal gene
transfer suggests that either or both could have played a
role in the insertion of the bont/e gene cluster into the
chromosome.

Location of the BoNTs within plasmids
The plasmid location of the bont/a3, bont/a4, bont/bv b and
bont/b1 genes from the analysed strains has been previously
described [9,10]. The bont/np b gene was recently identified
by pulsed field gel electrophoresis to be located within a
small plasmid [11]. The genomic sequence data for the

Eklund 17B strain verified the presence of bont/np b within a
unique 47.6 kb plasmid. In addition, the location of the bont/
bv b and bont/f within a plasmid (pBf) in the Bf strain was
identified based upon synteny results and the high sequence
homology of four Bf strain contigs (ABDP01000018.1,
ABDP01000023.1, ABDP01000034.1 and ABDP010000
69.1) with pCLJ, pCLD and pCLK. The comparisons of pCLJ
to the Bf contig sequences yielded the following results: 99%
identity, 89% coverage to contig ABDP01000023.1 (68.4
kb) that contains bont/f; 99% identity, 81% coverage to con-
tig ABDP01000018.1 (84.3 kb) that contains bont/bv b; 96%
identity, 52% coverage to contig ABDP01000034.1 (16.8
kb); and 98% identity, 65% coverage to contig
ABDP01000069.1 (0.8 kb).

These results are depicted in Figure 9 where the sequences
of the four plasmids, bivalent pCLJ, pCLK, pCLD and the
four pBf contigs, are compared. Regions of homology
among these plasmids are indicated in red and the toxin
regions of bont/a3, bont/a4, bont/b1, bont/bv b and bont/f are
indicated in yellow or blue. The figure cannot accurately
depict pBf because the sequence data is incomplete (170
kb), however, it does appear that the bont/f and bont/bv b
are located within a plasmid that is very similar to the
bivalent pCLJ. It is interesting to note the similar locations

Comparison of the arsC operon in different strainsFigure 5
Comparison of the arsC operon in different strains. The region of the arsC operon within the ATCC 3502 strain was 
compared to the arsC region in other strains. The horizontal arrows indicate coding sequences (CDSs). Gene designations are 
labelled above the arrow. GenBank locus IDs are labelled below the arrow. The first CDS was given the full GenBank locus ID 
followed by an abbreviated ID that uses only the last 2-3 digits. At this site (847 kb - 868 kb) there is no toxin gene cluster 
within ATCC 3502; however, this site contains the bont/a1 of the A1(B) strain and the bont/f within the Langeland strain. The 
components in this region are depicted in the Kyoto-F, Loch Maree, 657 and Okra strains. The regions flanking the arsC 
operon are similar upstream and downstream in each of these strains.
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of the bonts in the two plasmids, where it appears the bont/
a4 is replaced with bont/f.

An examination of the bont locations within the plasmids
shows that, as with the chromosome, there are specific
sites within the plasmid where the bonts are located (Fig-
ure 4, 10). The two plasmid sites contain either: (1) the
bont/a3 gene cluster, the bont/f gene cluster from the Bf
strain or the bont/a4 gene cluster from the 657 strain; or
(2) the bont/b1 gene cluster, the bont/bv b gene cluster from
the 657 strain or the bont/bv b gene cluster from the Bf
strain. Interestingly, the location of bont/a1 or bont/f genes

at the same site within the plasmid was also observed
within the chromosome.

The second plasmid site within the Group I strains con-
tains either the bont/bv b or the bont/b1 gene. However, the
bont/np b is located within a very different plasmid and
host background from the proteolytic strains. Examina-
tion of the regions flanking the bont/np b reveals that
downstream is an IS element, a transposon-associated
resolvase and site-specific recombinase. Like bont/e, the
bont/np b is another example where a bont is in proximity
to a transposon-associated protein involved in recombi-
nation and insertion events within a Group II back-
ground.

Recombination within the ntnh gene
The ntnh gene has been consistently located within the
toxin complexes in strains representing each of the seven
serotypes (A-G) and has been identified as a region of
recombination among strains of different serotypes [21].
The ntnh dendrogram (Figure 11) illustrates the variation
observed among the different serotypes. The ntnh within
the A2-A4 subtypes (orfX cluster) is very different from the
A1 subtypes (ha cluster) represented by the ATCC 3502 or
the A1(B) strains. A recombination event has occurred
approximately midway within the ntnh gene between a
serotype B ntnh and a serotype A ntnh resulting in a hybrid
or recombinant B/A ntnh; this recombination event has
placed the bont/a1 within the ha cluster usually associated
with bont/b.

Another recombination event was observed in the BoNT/
A2-producing 7I03-H strain associated with an infant bot-
ulism case in Japan, evident from its location within the
dendrogram. The first 2000 bases in this recombinant
ntnh are almost identical with a BoNT/C1 ntnh (99.6%
identity) and the final 1582 bases are 99.1% identical to
the ntnh of the BoNT/A2 Kyoto-F strain (designated C/A
ntnh) [25]. The site of this recombination event is in the
same region, but not in the same site, as the hybrid B/A
ntnh described above.

The dendrogram also illustrates that the ntnh gene of the
BoNT/A2-4 subtypes and the serotype F Langeland strain
are very similar to each other, yet their bonts differ. A com-
parison of the ntnh genes for BoNT/A2 Kyoto-F and BoNT/
F Langland shows them to be 97.0% identical for the first
3,443 nucleotides, but the identity decreases to 51.0% in
the final 58 nucleotides. This finding indicates that a pos-
sible recombination event has occurred either in the 3' ter-
minus of the ntnh gene and/or in the intergenic region
between the ntnh and bont genes. The occurrence of this
recombination event is also supported by the location of
the serotype F Langeland ntnh gene with the ntnh genes of
BoNT/A2,/A3, and/A4 strains in the dendrogram, and not
with the ntnh genes of other serotype F strains.

Dendrogram of arsC geneFigure 6
Dendrogram of arsC gene. The 392 nucleotides of arsC 
(arenate reductase) were compared among C. botulinum 
strains and other clostridial species. Where multiple copies 
of the arsC were present within a strain, the copies are desig-
nated as C-1, C-2 or C-3 based upon their location within 
the operon shown in Figure 5. The dendrogram illustrates 
that the arsC copies within the same strain are different from 
each other and that the arsC sequences from Groups I, II and 
VI strains differ.
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These examples show the ability of the ntnh gene from the
toxin complex of serotypes A and C, B and A and the 3' ter-
minus or the intergenic region between an A ntnh and the
bont/f genes to recombine; such recombination events
have contributed to the variation observed. These events
also illustrate the proximity of bacteria containing these
genes to each other within an anaerobic environment that
allows exchange and recombination.

Discussion
Comparisons of the complete and shotgun sequence data
from strains representing the Group I and II strains of C.
botulinum and a C. butyricum type E strain were performed
in order to further understand the variation observed
among the BoNT-producing clostridia and to examine the
unusual attributes observed within the species. These
include the presence of similar bonts in different genomic
backgrounds (bont/e in C. botulinum and C. butyricum for

example), the presence of different bonts in similar back-
grounds (serotype A proteolytic B and F C. botulinum
strains) and the existence of bivalent strains. New technol-
ogies have made genomic sequencing more affordable
and rapidly provide a wealth of sequence information
that molecularly describes an organism. This study uti-
lized the clostridial genomic sequence data and generated
comparisons of: the 16S rrn genes from various clostridial
species; the genomic synteny among strains; the locations
of bont toxin clusters; and the components in their flank-
ing regions. The data ties previous historical research with
molecular results and increases our understanding of the
species.

The molecular data supports the historical species Group
I-IV classification system for C. botulinum based upon bio-
chemical and physical properties. Comparisons of the
organization of the genomic sequences in synteny plots

Comparison of the oppA/brnQ operon in different strainsFigure 7
Comparison of the oppA/brnQ operon in different strains. The region of the oppA/brnQ operon within the ATCC 3502 
strain was compared in the different strains. The horizontal arrows indicate coding sequences (CDSs). Gene designations are 
labelled above the arrow. GenBank locus IDs are labelled below the arrow. The first CDS was given the full GenBank locus ID 
followed by an abbreviated ID that uses only the last two to three digits. In this region (895 - 915 kb) the bont/a1 within the 
ATCC 3502 strain and the bont/(b) of the A1(B) strain are located. No bont genes within the other strains of Langeland, Kyoto-
F, 657, Okra and Loch Maree are located here. The regions flanking the oppA/brnQ operon are similar upstream and down-
stream in each of these strains.
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(a) Location of the RarA operon within C. botulinum and C. butyricum strains and (b) dendrogram of rarA genes from different clostridial speciesFigure 8
(a) Location of the RarA operon within C. botulinum and C. butyricum strains and (b) dendrogram of rarA genes 
from different clostridial species. The rarA operon in the ATCC 3502 strain is compared to the rarA operon in the Group 
II and VI strains. In the Eklund 17B strain the rarA gene is intact. However, in the Alaska 43, Beluga and C. butyricum BL 5262 
strains, the rarA gene is split and a bont/e gene cluster has been inserted. Note the similarity of the components within the 
inserted sequence and that it also contains an intact rarA gene. The regions flanking the rarA operon are similar upstream and 
downstream in the Group II strains. (b) The dendrogram of rarA genes shows that some strains contain two copies of rarA, one 
that is intact and one that is split from the insertion of the bont/e complex genes. The 1,195 nucleotides of rarA from both 
intact and split genes were compared; the sequences of split rarA genes were spliced together to make full-length genes. The 
dendrogram shows that the sequences of the spliced rarA in C. botulinum Alaska E43 and Beluga type E strains are similar to 
each other but are different from the spliced rarA in C. butyricum BL 5262. This difference indicates that the insertion of the 
toxin gene cluster occurred as two separate events in each species. The inserted/intact rarA sequences in both of these species 
are similar indicating a common source.
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presented here confirm that serotype A, B, and F of prote-
olytic Group I strains share a similar C. sporogenes genetic
background. Likewise, the genomic organization within
the Group II nonproteolytic strains that express B, E and F
toxins share similarity to each other. The 16S rrn dendro-
gram shows that the different Groups I-IV within the C.
botulinum species designation are clearly as distinct as
other clades of clostridia that have been classified or
named as separate species.

The location of the bont gene in these strains revealed that
the sites are not randomly distributed in the host
genomes. The bont and associated cluster genes are located
within plasmids of varying sizes (47.6 - 270 kb) as well as
within the chromosome. Franciosa et al. recently exam-
ined the location of the toxin cluster in 63 BoNT/B-pro-
ducing C. botulinum strains using pulsed field gel

electrophoresis; they discovered that each of the toxin
gene clusters were located within plasmids ranging in size
from ~55 to ~245 kb [11].

The presence of the toxin cluster within either plasmids,
or within the chromosome in strains of the same or differ-
ent serotypes, is consistent with horizontal transfer events
mediated by plasmids or phage and recombination events
mediated by mobile genetic elements such as trans-
posons. These events result in the integration of the bont
genes into different locations (plasmids, chromosome)
and different host backgrounds (Group I-VI), as is
observed within the BoNT-producing clostridia. The
detailed examination of the bont locations reveals that
these events occur with a greater frequency by homolo-
gous or targeted transposition rather than random or
novel integration events.

Plasmid synteny among pCLK, pCLJ, pCLD and pBfFigure 9
Plasmid synteny among pCLK, pCLJ, pCLD and pBf. Three fully sequenced plasmids (pCLK, pCLJ and pCLD) are com-
pared to four contigs of the Bf strain that showed identity to pCLJ by BLASTN analysis. Regions of homology among the biva-
lent pCLJ, pCLK, pCLD and four pBf contigs is indicated in red and the toxin regions containing of bont/a3, bont/a4 or bont/f are 
coloured in blue or the bont/bv b and bont/b1 in yellow. The comparisons show the similar location of the bont/bv b and bont/
b1among the 3 plasmids. The bont/f and bont/a3 also have similar locations but are inverted in relation to bont/a4. The four Bf 
contigs include ABDP01000018.1 (84.3 kb), ABDP01000023.1 (68.4 kb), ABDP01000034.1 (16.8 kb), ABDP01000069.1 (0.8 
kb) and were ordered according to pCLJ. The coloured symbols are expanded in Figure 10 to detail the genes located in these 
regions.
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Plasmid regions containing bontsFigure 10
Plasmid regions containing bonts. This is an expanded image of the regions between the symbols in Figure 9 and provides 
details of the genes located within the different plasmids in these areas. The horizontal arrows indicate coding sequences 
(CDSs). Gene designations are labelled above the arrow. GenBank locus IDs are labelled below the arrow. The first CDS was 
given the full GenBank locus ID followed by an abbreviated ID that uses only the last two to three digits. The figure shows that 
the bonts within the plasmids in these Group I strains are located in either of two sites. One location (between the yellow and 
blue symbols) contains either the bont/f of the Bf strain, the bont/a4 of the 657 strain or the bont/a3 of the Loch Maree strain. 
The numbers in parentheses, such as 23,742 bp in the pBf panel, indicate additional sequence in that region that is not detailed 
but is shown in Figure 9. The other plasmid site that contains the bont/b in several plasmids is depicted between the green and 
purple symbols. This region contains the bont/bv b or bont/b1 in the Bf strain, 657 strain or the Okra strain. The bottom panel 
depicts the region containing the bont/np b within the Eklund 17B strain. This region shares no similarity to the Group I plas-
mids.
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The species also appears to undergo active recombination
within the toxin complex genes, particularly at multiple
sites within the ntnh gene. Examples of recombination
include: (1) ntnh - the hybrid B/A ntnh placing the bont/a1
within the ha cluster of serotype B and the hybrid C/A ntnh
placing the bont/a2 following a C/A ntnh hybrid; (2) bont -
the hybrid bont/a2 gene consisting of bont/a1 and bont/a3;
bont/c/d and bont/d/c hybrids; and (3) ntnh/bont - the site

between the ntnh and bont genes placing a bont/f following
a bont/a2 ntnh gene. These recombination events com-
pound the confusion of the taxonomy of the species and
make it difficult to clearly describe the strains with the cur-
rent nomenclature. Clearly, from the examples listed
above, the multiple recombination events have signifi-
cantly contributed to the genetic diversity observed in the
bonts.

This study provides the first molecular information to
explain the unusual observation of a bont/e within both C.
botulinum and C. butyricum type E strains. By examining
the bont/e location within the two species, an insertion
event was identified which targeted the same rarA gene.
The rarA is a transposon-associated gene with recombi-
nase activity that could explain the precise excision and
integration of the bont/e in the two species. Interestingly,
the comparison of sequences of the spliced and intact rarA
genes revealed that this insertion event occurred sepa-
rately in the two species, yet the inserted region contain-
ing the bont/e gene was from a common source.

Other transposon-associated proteins were identified
downstream from the bont/np b where an IS element,
resolvase and site-specific recombinase are located.
Unfortunately, Gram positive transposons are not well
characterized and elude detection because they lack per-
fect inverted repeats flanking the transposed region or are
not replicated in the process [26]. Although specific trans-
posons were not identified near the toxin complex genes,
transposon-associated proteins were found. The identifi-
cation of these proteins, the presence of the toxin complex
in different host backgrounds, its location within the
chromosome as often as within plasmids and the identifi-
cation of specific targeted insertion sites in the same or
different species implicate transposon activity as at least
one mechanism for bont movement.

The genomic analyses also discovered the location of two
bont genes within plasmids, the bont/np b in the Eklund
17B strain and the bont/bv b and bont/f within the Bf strain.
The bont/np b-containing plasmid could have been hori-
zontally transferred to a Group II bacterial background, or
it could have been the result of a transposon-mediated
insertion into a unique plasmid. Likewise the bont/bv b
and bont/f location within a plasmid homologous to the
bivalent pCLJ with the bont/a4 replaced with bont/f shows
that the two sequenced bivalent strains contain bonts in
similar locations and that the bonts are distant to each
other. It is interesting that, within the two sequenced biva-
lent strains, the bonts are within either an ha cluster or an
orfX cluster. These different clusters could provide differ-
ing protection or expression of the bont.

The finding that the ntnh gene has recombined to place
the bont/a1 within the ha cluster associated with BoNT/B

Dendrogram of the ntnh gene in different BoNT-producing strainsFigure 11
Dendrogram of the ntnh gene in different BoNT-pro-
ducing strains. The dendrogram of 3,471 nucleotides of the 
ntnh gene shows the variation within this gene. Some of the 
ntnh sequence variation in the strains is due to recombina-
tion events. The location of the ntnh in ATCC 3502, ATCC 
19397 and Hall strain close to the ntnh within the serotype B 
strains resulted from a recombination event midway within 
the ntnh gene resulting in a recombinant B/A ntnh, that is a 
partial B ntnh and partial A ntnh. Another similar recombina-
tion event in ntnh of the 7I03-H strain has resulted in a 
recombinant C/A ntnh, that is a partial C ntnh and a partial A 
ntnh. The Langeland F ntnh location in the dendrogram near 
the serotype A strains of Kyoto-F, Loch Maree and 657 
resulted from a recombination event near the 3' end or fol-
lowing the ntnh gene where a bont/f was inserted. The den-
drogram illustrates the variation in the ntnh genes from 
multiple serotypes and the location of recombinant ntnh 
genes.
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strains helps resolve the perception of the 'normal' toxin
cluster associated with bont/a1 strains. The success of the
ha toxin cluster strains, as evidenced by their widespread
isolation in conjunction with human botulism cases,
indicates that the ha components must confer some cul-
tural or toxicity advantage that is not yet clearly under-
stood.

Conclusion
This study, which compares 15 clostridial genomic
sequences, was undertaken in order to identify the under-
lying events that result in the genetic diversity within the
C. botulinum species. As more genomic sequences become
available, additional clues to understanding this complex
species and its many toxin types and subtypes will be
uncovered. This molecular analysis provided: (1) a 16S rrn
dendrogram of the clostridial species that included
recently sequenced members; (2) synteny plots that visu-
alize chromosomal and plasmid gene organization; (3)
the identification of common locations of the bonts within
the chromosome and plasmid; (4) the components of the
bont-containing regions that identify common features:
(5) a description of an insertion event mediated by a
transposon-associated resolvase placing bont/e in both C.
botulinum and C. butyricum type E strains; (6) plasmid
analyses which show that the bonts within the Bf strain
and npBoNT/B strain are located within a plasmid; and
(7) the identification and examples of recombination
within the ntnh gene, bont gene and the region between
these two genes.

The findings illustrate that the bonts within the clostridia
insert, recombine and are exchanged both within a species
and among species. The presence of bont genes within sta-
ble plasmids that are not lost suggests the genes confer
some survival advantage to the host bacteria. Whether the
bont gene is within a plasmid or chromosome, a single or
bivalent arrangement or within the orfX or ha toxin gene
cluster, the toxin has been both retained in, and spread
among, a variety of different clostridial species termed
Groups. The toxin complex genes have undergone recom-
bination, insertion and horizontal gene transfer events
that have yielded many variations of the bont gene,
thereby producing the toxin serotypes and subtypes. Hor-
izontal gene transfer events and genomic rearrangements
are important mechanisms for bacterial survival and evo-
lution. Within the clostridia these attributes have enabled
the bont genes to continue to survive in different clostrid-
ial host backgrounds and environments.

Methods
Strains
Table 1 lists the strains examined in this study. They rep-
resent C. botulinum A, B, E and F serotypes and subtypes,
including two bivalent strains (BoNT/Ba4, BoNT/Bf), a

strain containing both bont/a1 and bont/b gene clusters
where the bont/b gene is not expressed (BoNT A1(B)) and
a BoNT/E4-expressing C. butyricum; a C. tetani and a C.
sporogenes strain was included for comparison [8]. Some
genomic sequences were complete or in several large con-
tigs and others were whole genome shotgun sequences.

Genomic annotation
Annotation of the assembled genome sequence was car-
ried out with the genome annotation system GenDB [27]
and RAST server [28]. A combined gene prediction strat-
egy was applied by means of the GLIMMER 2.0 system
and the CRITICA program suite [29] along with post-
processing by the RBSfinder tool [30]. tRNA genes were
identified with tRNAscan-SE [31]. The deduced proteins
were functionally characterized by automated searches in
public databases, including SWISS-PROT and TrEMBL
[32], Pfam [33], TIGRFAM [34], InterPro [35], and KEGG
[36]. Additionally, SignalP [37], helix-turn-helix [38] and
TMHMM [39] were applied. Finally, each gene was func-
tionally classified by assigning clusters of orthologous
groups (COG) number and corresponding COG category
[40] and gene ontology numbers [41].

Genome and plasmid comparisons
Homology searches were conducted at the nucleotide and
amino acid sequence level using BLAST [42]. In order to
obtain a list of orthologs from bacteroidete genomes, a
Perl script that determines bidirectional best hits was writ-
ten; for example, genes g and h were considered orthologs
if h was the best BLASTP hit for g and vice versa. E values
of 10-15 were acceptable. A gene was considered strain spe-
cific if it had no hits with an E value of 10-5 or less. Addi-
tional genomic comparisons and dotplot analyses were
performed with genome alignment tools, such as
MUMmer2 [43], NUCmer [44] and the web interface
Artemis Comparison Tool (ACT) http://
www.webact.org[45].

The comparison of toxin gene island insertion patterns
was identified using the ACT alignment program at the
default settings. Predicted toxin gene island insertion sites
were identified from sequence alignments and breakpoint
sites were further manually curated. Gene definition was
manually annotated by inspecting BLASTP results and
sequence alignments. The gene name and locus ID were
assigned based on the NCBI Reference Sequence file.
Insertion sequence (IS) elements were identified and clas-
sified by using the IS Finder database [46].

Plasmid analysis of the Bf contigs was performed by using
BLASTN with the pCLJ sequence and 70 Bf contigs. All
sequences scoring above the E value cutoff at 1e-20 were
extracted for further comparison using the PROmer pro-
gram from MUMmer package. Four putative pBf
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sequences from contigs ABDP01000018.1,
ABDP01000023.1, ABDP01000034.1 and ABDP0100
0069.1 were aligned to pCLJ sequences. MUMmerplot
was used to display the four contigs (pBf) that were
ordered according to pCLJ reference coordinates.

Dendrograms
DNA alignments were created with a combination of
Sequencer software http://www.genecodes.com/, PAUP
http://paup.csit.fsu.edu/, MUSCLE http://
www.drive5.com/muscle/, CLUSTAL-W http://
www.ebi.ac.uk/clustalw/ and hand editing with BioEdit
http://www.mbio.ncsu.edu/BioEdit/bioedit.html soft-
ware and were gap stripped then analysed using PHYLIP
http://evolution.genetics.washington.edu/phylip.html
with dnadist with the F84 model of evolution and a tran-
sition to transversion ratio of 2.0 (default) and neighbor
joining algorithms. Dendrograms were rendered with
FigTree http://tree.bio.ed.ac.uk/software/figtree/. Intra-
and inter-serotype BoNT gene recombination was
explored with SimPlot http://sray.med.som.jhmi.edu/
SCRoftware/simplot/[47] and BioEdit.
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