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Abstract

that can reduce this NOs to nitrite (NOy).

regulated by plaque pH.

Background: Microbial denitrification is not considered important in human-associated microbial communities.
Accordingly, metabolic investigations of the microbial biofilm communities of human dental plaque have focused
on aerobic respiration and acid fermentation of carbohydrates, even though it is known that the oral habitat is
constantly exposed to nitrate (NO3) concentrations in the millimolar range and that dental plague houses bacteria

Results: We show that dental plaque mediates denitrification of NOs to nitric oxide (NO), nitrous oxide (N,0), and
dinitrogen (N,) using microsensor measurements, >N isotopic labelling and molecular detection of denitrification
genes. In vivo N,O accumulation rates in the mouth depended on the presence of dental plaque and on salivary
NO;™ concentrations. NO and N,O production by denitrification occurred under aerobic conditions and was

Conclusions: Increases of NO concentrations were in the range of effective concentrations for NO signalling to
human host cells and, thus, may locally affect blood flow, signalling between nerves and inflammatory processes in
the gum. This is specifically significant for the understanding of periodontal diseases, where NO has been shown
to play a key role, but where gingival cells are believed to be the only source of NO. More generally, this study
establishes denitrification by human-associated microbial communities as a significant metabolic pathway which,
due to concurrent NO formation, provides a basis for symbiotic interactions.

Background

The human body is naturally colonised by a diverse
array of micro-organisms whose metabolic activity is
important for human physiology and health [1]. Most
studies that assess the functional potentials and controls
of these complex communities rely on: (i) the character-
isation of individual isolates or enrichments, (ii) quanti-
fication of micro-organisms that are thought to mediate
a certain process, or (iii) metagenomic analysis of a cer-
tain body region. Established methods of microbial ecol-
ogy that allow the direct measurement of metabolic
conversions in natural microbial samples from humans
under different experimental conditions, such as incuba-
tion with isotopically-labelled substrates, dye probes for
specific compounds combined with microscopy or elec-
trochemical microsensors, are rarely reported. However,
different microbial pathways, including fermentation,
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sulfate reduction, methanogenesis and acetogenesis
[2-5], have been proposed to occur in humans. Surpris-
ingly, denitrification (the respiratory reduction of nitrate
(NO3") or nitrite (NOy") via nitric oxide (NO) to nitrous
oxide (N,O) or dinitrogen (N,) [6]) is believed to be
insignificant in human-associated microbial commu-
nities [7], even though NO3;™ and NO,™ co-occur in sig-
nificant concentrations with micro-organisms in various
body regions, such as the human oral cavity [8].
Denitrification is performed by facultative anaerobic
micro-organisms and is coupled to the oxidation of
reduced organic carbon or reduced inorganic com-
pounds, such as ferrous iron, hydrogen sulfide or hydro-
gen [6,9]. The reductive sequence (NO3” > NO,” > NO
> N,O > N,) of denitrification is mediated by periplas-
mic and membrane-bound enzymes specific for each
step. The most important genes for the detection of
denitrification in complex microbial samples are narG
for NOj™ reductase, nirS and nirK for NO,™ reductases,
gnorB or cnorB for NO reductases, and nosZ for N,O
reductase. Denitrifying bacteria release NO or N,O as
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intermediates during metabolic activity in pure culture
[10,11] and in complex microbial communities, such as
soils [12], nitrogen cycling biofilms [13] and ingested
bacteria within different invertebrates guts [14,15].

Notably, human saliva contains NO3~ concentrations
in the millimolar range, because dietary NOj is concen-
trated in salivary glands after it is absorbed from the
intestine into the blood [8]. Thus, the human-associated
microbial biofilm community of dental plaque and bac-
teria that cover other oral surfaces are exposed to NOj".
However, investigations of plaque metabolism have
focused on aerobic respiration and acid fermentation of
carbohydrates [16]. Experiments with rat tongues as well
as tooth and other surfaces in the human mouth have
shown that salivary NO3™ can be converted by oral
micro-organisms to NO,", explaining the presence of
NO, in addition to NOj in saliva [17,18]. Detection of
NO in air incubated in the human mouth has led to the
hypothesis that bacterially-derived salivary NO,™ is che-
mically reduced to NO in acidic microenvironments in
the oral cavity [18,19]. The underlying processes have
never been directly demonstrated because NO could not
be measured in dental biofilms over relevant spatial
scales. Therefore, other investigators considered NO,™ in
human saliva a stable oxidation product of NO synthase-
derived NO that is produced by gingival cells to regulate
the gum immune and vascular systems [20,21].

Due to the possible formation of NO, plaque nitrogen
metabolism might be important to dental health. Dental
plaque causes periodontal diseases and dental caries,
affecting almost every human being [22,23]. As an
inflammatory disorder of gum tissue surrounding the
teeth, periodontal diseases might be especially affected
by nitrogen metabolism of dental plaque, if NO is gen-
erated as a side product at the gum-plaque interface.
NO plays a complex, but not well understood role in
periodontal diseases [24,25]. NO, at low concentrations,
is an important signalling molecule that coordinates
functions of immune system cells that are involved in
inflammatory processes [26]. Bacterial lipopolysacchar-
ides stimulate production of proinflammatory cytokines,
which induce production of high, cytotoxic NO concen-
trations by certain immune system cells. Furthermore,
high NO levels during inflammation induce expression
of matrix metalloproteinases in neutrophiles, which
mediate soft tissue degradation [27].

Besides its potential importance to dental health, oral
nitrogen metabolism is important for human physiology
[8]. The formation of NO,™ as a denitrification inter-
mediate by oral micro-organisms leads to chemical con-
version of NO,™ to NO in the acidic stomach, acting as
an antimicrobial agent against pathogenic bacteria and
stimulating gastric blood flow. Moreover, NO," is
absorbed into plasma, where it serves as a NO source

Page 2 of 11

for the regulation of vasodilatation under hypoxic condi-
tions [8]. It is still unclear whether microbial nitrogen
metabolism in human dental plaque is significant in
comparison to other oral surfaces.

In the present study, we hypothesise that dental pla-
que represents a habitat for microbial denitrification in
humans, driving the biological conversion of salivary
NOs;" to the denitrification intermediates NO and N,O,
and to the final product N,. We use direct microbial
ecology methods, including a recently developed NO
microsensor [28], to demonstrate in situ NO formation
during denitrification in dental plaque and to show that
NO is formed at concentrations that are significant for
signalling to host tissue. In addition, we aim to show
the in vivo significance of plaque denitrification for the
formation of denitrification intermediates by correlating
the oral accumulation of N,O in humans to salivary
NO;3; /NO," concentrations and to the presence of
plaque.

Results

Dental plaque mediates aerobic denitrification

Dental plaque converted NO3™ to N, by denitrification.
This was shown by **N, formation from '*NOj;" during
incubation of dispersed dental plaque (Figure 1a). The
occurrence of complete denitrification in dental biofilms
was corroborated by polymerase chain reaction (PCR)
detection of all genes (NO3™ reductase, NO,™ reductase,
NO reductase, N,O reductase) that are necessary for the
respiratory reduction of NO3™ to N, (Table 1). Genes for
respiratory NO reductases were restricted to the pre-
sence of the quinol-dependent type (gnorB), but not of
the cytochrome c-dependent type (cnorB).

Two lines of evidence suggested that denitrification in
dental biofilms occurred under aerobic conditions. First,
we observed *°N, production from plaque that was sus-
pended in air-saturated medium amended with 50 uM
">NOj;" (Figure 1a). O, measurements in this medium
showed that aerobic heterotrophic respiration did not
lead to anoxic conditions during the incubation period
(Figure 1b). Second, microsensor measurements showed
that NO3;™ was consumed in the presence of O, and that
also the denitrification intermediates NO and N,O were
formed in the presence of O, (Figure 2a-d). At this low
NO;3™ concentration it is conceivable that all NO3™ was
used for assimilation into biomass, and was thus not
available for respiratory denitrification. However, in this
plaque sample NO3™ was not completely consumed (that
is, NO3™ was not limiting) when present at a concentra-
tion of 50 pM NOj3™ (Figure 2a). Thus, NO3™ assimila-
tion and denitrification must have been already present
at their maximum capacity at 50 pM NOj3". Further
increases of the NO3™ concentration to 760 pM will
most likely not change the contribution of both
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Figure 1 Denitrification in dental plaque. Dental plaque of three
individuals was suspended in aerobic mineral medium buffered at
pH 7.2 containing 2% sucrose and 50 uM NawsNO} Formation of (a)
N, (in uM/mg protein) and (b) apparent O, concentrations (in
pM) were measured in a time series experiment. Each symbol type
represents *°N, and O, measurements of dental plaque incubations
from one individual. Control measurements were done in the
absence of Na'°>NOs (open symbols).

pathways to the total NO3™ uptake. In turn, the biofilm
remained oxic when subjected to 760 uM NOj3™ and
produced the denitrification intermediates NO and N,O
(Figure 2f-h) indicating that aerobic denitrification was
also active at high NO3™ concentrations.

Chemical and biological NO and N,O formation during
plaque denitrification is pH dependent

NOj;™ was the source for NO and N,O in dental bio-
films. This was shown by NO and N,O formation being
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Table 1 Denitrification genes in dental biofilms of five
volunteers

Volunteer NO3” NO,” NO N,O
reductase reductase reductase reductase
narG nirS nirK cnorB qnorB nosZ

A + + + - + +

B + + + - + +

C + + + - + +

D + - + - + +

E + NA  NA - + NA

Results are based on detection of a PCR product with the expected size or on
the additional analysis of the sequence of the PCR product.

NA = not analysed.

restricted to the presence of NOj3™ (Figure 2g, h). NO
formation in dental biofilms was mediated by both bio-
logical NO,™ reduction and presumably acidic decompo-
sition of NO, . Biological NO,™ reduction was the sole
process that produced NO when the medium was buf-
fered at approximately pH 7. In non-buffered medium,
bacterial activity decreased biofilm pH < 5 (Figure 2e)
and depth-averaged NO concentrations increased from
0.08 to 0.15 pM (Figure 2g). Titration of 50 pM NO," to
a buffer at pH 4.7 showed that acidic decomposition of
NO,™ caused chemical formation of approximately 0.05
uM NO (Figure 3), which is in the same range than the
observed increase in the biofilm at pH < 5. It is already
known that plaque can form NO, by NOj™ reduction
[17]. NO5™ can also naturally accumulate in saliva to
concentrations of 50 uM and higher (data not shown,
and [18]). Taken together, this suggests that acidic
decomposition of NO,™ contributes to NO formation at
low plaque pH levels, while biological NO formation
may still occur in parallel.

The absolute increase of NO due to acidic conditions
was small from the perspective of the metabolic home-
ostasis of denitrification. This was evident because
depth-averaged increases of N,O, the product of NO
reduction, were approximately two orders of magnitude
higher than those of NO concentrations under acidic
conditions. This suggests that biofilm bacteria efficiently
convert most NO to N,O and thereby keep the steady-
state concentration of cytotoxic NO low, as has been
also observed in environmental biofilms [13].

NO formation decreases O, uptake of dental plaque

Oxygen uptake in the presence of NO3~ was higher at
neutral pH than under acidic conditions (Figure 2e, f).
The O, profiles showed that the flux of O, decreased by
50%, namely from -105 nmol/cm*/h under buffered con-
ditions to -43 nmol/cm?/h under non-buffered condi-
tions. Acidic pH alone did not lead to reduced O,
uptake when NOj3;  was absent, as the O, flux was
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Figure 2 In situ detection of metabolic activity and microenvironmental conditions in a dental biofilm outside the mouth. Microsensors
were used to measure concentration profiles of NOs', O,, NO, N,O and pH in dental plaque. The medium contained a non-buffered mineral mix
and 2% sucrose. The upper panels (a-d) show measurements with 50 pM NaNOs (open red symbols) in the overlying medium. The lower panels
(e-h) show measurements in the absence of NaNOs (black symbols) and in the presence of 760 uM NaNOs (red and green symbols).
Measurements depicted by the green symbols were performed in the presence of phosphate-buffered saline (pH 7.2) and 760 pM NaNOs. The

horizontal line represents the biofilm surface. Measurements were done in the same sample spot and thus are directly comparable.
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Figure 3 Chemical formation of NO by acidic decomposition of
NO,". NO formation was measured with a NO microsensor during
titration of increasing NO,™ concentrations in different solutions of

phosphate-buffered saline at varying pH.
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-143 nmol/cm?/h. Decreased bacterial O, consumption
might result from direct toxic effects of the highest NO
concentration (0.15 to 0.2 uM), such as binding of NO
to terminal, respiratory O, reductases [29]. However,
the absolute increase from 0.08 to 0.2 pM may not
affect respiration as concentrations above 0.8 uM were
previously shown to be necessary to inhibit O, reduc-
tion in Escherichia coli [30]. In addition, instead of facil-
itating O, reduction, a small fraction of electrons might
be used preferentially for detoxification of NO by reduc-
tion to N,O, contributing to increased N,O concentra-
tions and inhibited O, uptake (Figure 2f, h).

N,O production in the human mouth is dependent on
salivary NO3™ and on the presence of dental plaque

We incubated air in the human mouth ('mouth air’) and
measured the rate of N,O accumulation to quantify the
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in vivo significance of denitrification in the oral habitat.
We related N,O accumulation in mouth air to the pre-
sence of dental biofilms and salivary NO3;/NO,™ concen-
trations (Figure 4). N,O accumulation in the presence of
dental plaque varied strongly between the subjects and
ranged from 11 to 443 nmol/h. N,O accumulation
between subjects increased with increasing salivary
NO3;/NO;™ concentrations (Figure 4a). Drinking 200 ml
beetroot juice that contained 12 mmol/l NOj™ increased
the salivary NO3/NO,~ concentrations, which led to an
increase of between 3.8 and 9.1 fold in the rate of oral
N,O accumulation.

Dental biofilms were the main sites of N,O produc-
tion in the human mouth. This was evident because the
combined application of ordinary tooth brushing with
an antiseptic mouthwash decreased oral N,O accumula-
tion rate by 82%, while tooth brushing alone decreased
the rate of oral N,O accumulation by 62% (Figure 4b).

Discussion
Our data show unambiguously that denitrification is a
relevant process in a human associated microbial com-
munity. Until now, it was assumed that complete NOj”
reduction in humans is restricted to the dissimilatory
nitrate reduction to ammonium (DNRA), because most
bacterial isolates from humans are able to perform this
reaction [7,31]. DNRA is known to be a strictly anaero-
bic process that is favoured over denitrification in anae-
robic, reduced environments [32]. Accordingly, DNRA
might prevail in the reduced, anaerobic environment of
the human gut, while denitrification is present in the
more oxidised dental plaque. In turn, it is conceivable
that DNRA is present in plaque that is recalcitrant to
removal and thus, constantly anoxic and more reduced.
Theoretically, in such biofilms NO,™ reduction might be
coupled to the anaerobic oxidation of ammonium (ana-
mmox) (Figure 5, black dotted lines), especially if pro-
tein degradation of host tissue or DNRA could provide
a source for ammonium, as has been reported in marine
open water habitats [33]. Denitrification, however, might
be present in other oxidised environments in humans
where bacteria and NOj™ co-occur. For example, NO3~
is also present in other body fluids than saliva that may
provide a rather oxidised environment (for example,
blood 20 to 40 puM and urine approximately 500 uM)
[8]. Thus, denitrification might be relevant in microbial
biofilms that are associated to other diseased or healthy
sites, such as cystic fibrosis lungs, otitis media ears,
implants, catheters and vaginal mucosa [34].
Denitrification and DNRA are fundamentally different
with respect to their final products, metabolic controls
and released intermediates resulting in different effects
on host physiology. Ammonium, the final product of
DNRA, is available to host cells and associated microbes
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as a form of fixed nitrogen. Moreover, DNRA in
humans may accumulate ammonium to detrimental
concentrations [35]. In contrast, N,, the final product of
denitrification, represents a loss of fixed nitrogen from
the host and does not affect human cells. Furthermore,
production of the signalling molecule NO by microbial
denitrification might shape the interactions between the
host cells and their associated microbial community.

Interestingly, denitrification in dental biofilms
occurred under aerobic conditions. This shows that den-
tal plaque does not necessarily have to display anoxic
microsites for denitrification to occur. The ability to
denitrify in the presence of O, has been observed for
isolated bacterial strains and occasionally for microbial
communities [36,37]. Aerobic denitrification guarantees
a stable electron accepting process in a NOj3 -rich habi-
tat exposed to frequent fluctuations in O, concentration
without energy-demanding expression of new enzyme
systems [38]. This may perfectly apply to the oral habi-
tat that is characterised by high salivary NO3™ and
potentially fluctuating O, concentrations in the mouth.

Despite the microbial diversity of dental biofilms [16],
we could only detect genes for respiratory NO reduc-
tases of the quinol-dependent type (gnorB), but not of
the cytochrome c-dependent type (cnorB). Interestingly,
genes that code for qNorB are also found in non-deni-
trifying, pathogenic bacteria, where it contributes to NO
detoxification, instead of respiratory electron transport
[39]. Apparently, respiratory NO reduction is exclusively
mediated by qNorB in the investigated dental biofilms.
Additionally, qNorB might be used as a protective
enzyme against toxic NO derived from host cells, acidic
decomposition of NO,™ and other biofilm bacteria.

Our results allowed us to formulate a mechanistic
model for nitrogen conversions in dental plaque (Figure
5). First, reduction of salivary NOj3™ leads to the forma-
tion of NO,™ [17], which is further denitrified to form
the intermediates NO and N,O and finally N, (Figure 5,
green lines). The mechanistic model involves a pH-con-
trolled chemical conversion step from NO,™ to NO in
addition to the biological conversion step (Figure 5, red
line). The chemical conversion of NO,™ to NO occurs if
acid fermentation decreases plaque pH < 5. High turn-
over of NO under acidic conditions leads to decreased
O, uptake in dental biofilms. This argues toward an
NO-mediated metabolic coupling of different microbial
activities in dental plaque. Moreover, bacteria respond
to NO as a signalling molecule. Specifically, NO is
involved in the dispersal of bacteria from biofilms [40].
Together this makes NO a possible bacterially-derived
factor that balances the development of a natural dental
plaque community. Thus, NO might be an important
factor from the perspective of the ‘ecological plaque
hypothesis’, which states that environmental factors (for
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Figure 4 N,O formation in the human mouth is dependent on salivary NO,/NO3™ concentrations and the presence of dental plaque.
(a) Correlation of oral N,O production and salivary NO,/NOs™ concentration in 15 volunteers with unbrushed teeth. Each data point represents
the rate of oral N,O accumulation of one individual on a certain day (black circles). Some volunteers were sampled on more than 1 day
resulting in 19 data points in total. Four volunteers were additionally sampled before and after drinking NOs-rich beetroot juice to increase
salivary NO,/NOs™ concentration and oral N,O accumulation (white circles connected by dotted line). (b) Effect of oral hygiene on N,O
accumulation rate in the mouth. Oral N,O accumulation rate of individuals before tooth brushing plotted against the N,O accumulation rate
after tooth brushing (closed circles). In six individuals an antiseptic mouth rinse that affects bacteria in the entire oral cavity was applied after
tooth brushing (open circles, each of the six individuals is represented by a unique colour). For example, an individual (dark green) with an oral
N,O accumulation rate of 500 nmol/h reduced the rate to 290 nmol/h by tooth brushing. Subsequent application of a mouth rinse resulted in a
rate of 110 nmol/h. The dashed line corresponds to the absence of an effect of oral hygiene on the oral N,O accumulation. The error bars
indicate the standard error of five replicate measurements of the oral N,O accumulation rate.

example, pH and salivary NOj3") in the mouth determine
if the dental plaque microbial community is dominated
by either health-sustaining or disease-causing micro-
organisms [41].

Human cells can produce NO from arginine by NO
synthase activity and respond to NO as a signal

molecule produced by other cells [26]. In gingival tissue,
NO is known to be involved in blood pressure regula-
tion and in inflammatory processes, such as those in
periodontal diseases [24,27]. Under acidic conditions,
the depth-averaged NO concentration in dental plaque
increased from 0.08 to 0.15 uM (Figure 2g), which is in
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a physiological effective range [42,43] for local blood
pressure regulation, neurosignalling events and immune
system modulation in tissues close to plaque. Hence, we
hypothesise that pH fluctuations and plaque denitrifica-
tion may locally affect blood flow, signalling between
nerves, and inflammatory processes in the gum by mod-
ulating the concentration of NO (Figure 5, green line).
NO-mediated interactions will be different in cariogenic
as compared to periodontal plaque, because both are
characterised by distinct pH regimes [41]. While low pH
levels in cariogenic plaque may induce chemical NO for-
mation leading to high NO concentrations, NO forma-
tion in periodontal plaque will be restricted to microbial
processes, because it is characterised by pH levels > 7.
As discussed above, microbial denitrification might be
relevant in other healthy and diseased sites of the body.
Thus more generally, microbial denitrification might be
considered an alternative route for NO formation in
humans and provides a basis for symbiotic interactions

between human-associated microbes and adjacent host
cells.

The presence of dental plaque caused accumulation of
N,O, as an intermediate of denitrification, in mouth air
depending on salivary NOj~ concentrations. This
demonstrates that denitrification occurs in vivo and that
dietary NOj3 -uptake influences plaque denitrification.
The average rate of oral N,O emission from 15 volun-
teers with unbrushed teeth and non-manipulated sali-
vary NO3/NO," concentrations was 80 nmol/h. While
earlier investigations of the breath air of human beings
revealed N,O concentrations above the ambient atmo-
spheric level [44-46], our study presents the first oral-
associated emission rates of this greenhouse gas [47] by
humans. Extrapolating our data to the world population
of currently 6.7 billion people, oral-associated N,O
emission by humans is 0.00013 Tg N/a, representing an
insignificant amount of 0.0008% of the total, annual
N,O emission of 16.4 Tg N/a to the atmosphere [48].
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Dental biofilms were the main sites of N,O produc-
tion in the human mouth. This result and the microsen-
sor data strongly suggest that dental plaque is also the
main site for oral formation of the other denitrification
intermediates NO,™ and NO. Thus, NO,  measurements
in saliva [20,21] are not an adequate proxy for NO for-
mation by human host cells in the mouth (Figure 5).
Moreover, plaque denitrification needs to be considered
when using NO and NO,™ measurements in breath and
saliva to diagnose systemic diseases, such as renal failure
[49,50] and cystic fibrosis [51]. More generally, the
importance of dental plaque for the formation of deni-
trification intermediates as compared to other oral sur-
faces indicates that plaque bacteria are as important for
oral nitrogen conversions than bacteria located on other
oral surfaces [17]. Consequently, dental biofilms and
salivary NOj3™ concentrations play a crucial role in the
regulation of body NO,™ concentration and affect NO, -
related physiological functions in the human body, such
as hypoxic vasodilatation and antimicrobial activity in
the acidic stomach (Figure 5, grey lines) [8].

Numerous anatomical sites, including the skin, mouth,
stomach, colon, and vagina, are inhabited by distinct
microbial communities, which are characterised by a
large diversity. This suggests a versatile potential of dif-
ferent metabolic pathways mediated by micro-organisms
that affect human physiology. However, activities or the
functional potentials of complex human-associated
microbial communities have rarely been investigated [1].
Thus, we anticipate that investigations of human-asso-
ciated microbial communities with techniques that mea-
sure their in situ activities will lead to the discovery of
unexpected functions and interactions between microbes
and humans if expanded to elemental cycles of carbon,
sulfur, iron and others. The microbial ecology toolbox
available for these experiments comprises techniques,
such as microsensors, and isotopic or radioactive label-
ling with detection in bulk medium and on a single cell
level, all of which can be combined with phylogenetic
identification [52-55]. This ecophysiological approach
will allow the direct testing of hypotheses that emerge
from metagenomic data that is generated in the context
of the human microbiome project [56].

Conclusions

Human dental plaque mediates denitrification based on
salivary NOj3". Plaque denitrification is performed under
aerobic conditions and leads to biological and chemical
NO and N,O formation in a pH-dependent manner.
Plaque O, uptake is inhibited by NO. Thus, formation
of NO mediates metabolic interactions between plaque
bacteria. Moreover, NO is produced at concentration
levels that allow signalling to human host cells, pointing
toward a significant role in the regulation of
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inflammatory disorders of gum tissue (that is, periodon-
tal diseases). Microbial denitrification is, besides NO
synthase activity and acidic decomposition of NO,", an
alternative pathway of NO formation in humans. Deni-
trification in dental plaque is a relevant site for produc-
tion of intermediates of nitrogen cycling in the human
mouth and is dependent on salivary NO;3™. Thus, breath
analysis for the detection of systemic diseases should
consider plaque activity, and denitrification in dental
plaque may affect the physiology of the whole human
body.

Methods

Samples

Samples of natural, dental plaque were obtained with
toothpicks or dental floss from male and female volun-
teers (25 to 52 years in age), who had not taken antibio-
tics, and not being diagnosed as having periodontitis
and/or other severe diseases. Experiments involving
human samples were approved by the Federal Dentists
Chamber Bremen (Landeszahnirztekammer Bremen,
Germany) and all volunteers gave their written consent.

N2 production from isotopically-labelled NO5

Dental biofilms were collected with a toothpick from
dental surfaces and interproximal (IP) spaces of three
volunteers and were washed twice in phosphate-buffered
saline (PBS; pH 7.2). The protein content of the sample
was determined after Lowry [57]. Biofilms were homo-
genised by vortexing, the material of each individual was
equally distributed to three exetainers (3.8 ml) and filled
with air saturated incubation medium (phosphate buf-
fered saline and 2% sucrose). The incubation was imme-
diately started by adding 50 pM Na'°NO; and was
performed under continuous mixing at 37°C. Dissolved
O, concentration was measured with an O, microsen-
sor, directly before biological reactions were stopped by
adding ZnCl, to a final concentration of 0.5% at three
time points (to = 0 h; t; = 3.5 h; t, = 5 h). A quadrupole
mass spectrometer (GAM 200, IP Instruments, Bremen,
Germany) was used to measure *°N, after introducing a
2 ml helium headspace into the closed exetainer and
equilibration between the liquid and gas phase.

Microsensor measurements

Plaque from two volunteers was subjected to in situ
measurements with NO, N,O, O,, pH and NO3;™ micro-
sensors outside the mouth. Biofilms were carefully
recovered with toothpicks or dental floss from the IP
spaces of the upper or lower molars by volunteers that
did not brush their teeth for at least 24 h. Whole bio-
film pieces were placed on solid agar (1.5%), fixed with
a drop of molten agar (0.5%) and covered with non-buf-
fered sucrose/salt medium (68 mM NaCl, 8 mM MgCl,,
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3.6 mM CaCl,, 26.8 mM KCl, 2% sucrose; pH 6.6 to
7.2). Biofilms equilibrated for at least 20 min before the
measurements, which were performed within 6 to 8 h
after biofilm retrieval. Manufacturing of amperometric
NO, N,O and O,, and ion-selective pH and NOj3’
microsensors [28,58-60] and microsensor measurements
[28] were conducted as previously described. Steady
state microprofiles were measured before and after 760
uM NaNOj was added, while an air jet directed on the
medium surface created a constant flow regime above
the biofilm. To investigate nitrogen cycling at pH 6 to 7
in the biofilm the medium was supplemented with phos-
phate buffer (10 mM Na,HPO,, 1.8 mM KH,PO,, pH
7.2; resembling the concentration in 1 x PBS), thereby
excluding chemical NO,™ reduction. To increase sensor
performance, NO3™ microprofiles were measured in
medium with lower salt content, and in the presence
and absence of 50 uM NaNOs3, instead of 760 pM. All
presented measurements were performed in the same
biofilm spot. Thus, the measurements are suitable to
draw mechanistic conclusions. However, the data do not
account for biofilm heterogeneity and are not suitable
for calculation of average fluxes over a given biofilm
surface. We repeated the same experiment with a bio-
film from a second individual, which essentially showed
the same treatment effects (see Additional file 1, Figure
S1 and supplementary discussion).

Molecular analysis of denitrification genes from

dental biofilms

Dental plaque was collected from dental surfaces and IP
spaces with sterile toothpicks by five volunteers that had
not brushed their teeth or eaten for 12 h. DNA was
extracted according to a protocol optimised for dental
plaque [61]. PCR amplification of partial sequences of
the denitrification genes narG, nirS, nirK, cnorB, qnorB,
and nosZ was performed in a total volume of 20 pl con-
taining 2 pl of 10 x PCR buffer, 250 uM of each deoxyr-
ibonucleoside triphosphate, 1 U of Tag polymerase (5
Prime GmbH, Hamburg, Germany), 0.3 mg/ml bovine
serum albumin (BSA), 0.5 uM of each primer and 10 to
100 ng DNA. Published primers that target a wide spec-
trum of denitrification genes from different organisms
were used and PCR experiments were performed as
described in the corresponding protocols with some
modifications (Additional file 1, Table S1). Amplicons
were analysed by electrophoresis on 1% agarose gels and
subsequent ethidium bromide staining. For 11 out of 22
amplicons with the expected size clone libraries were
constructed and sequenced to confirm that PCR pro-
ducts corresponded to the targeted genes. Amplicons
were purified with the QIAQuick PCR purification kit
(Qiagen, Hilden, Germany) and cloned using the TOPO
TA cloning system (Invitrogen, Carlsbad, CA, USA)
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following the manufacturer’s instructions. The obtained
sequences were analysed with BLAST http://www.ncbi.
nlm.nih.gov. Only 1 of the 11 clone libraries did not
contain the targeted gene (nirS, subject D).

N,O accumulation in mouth air

A total of 15 volunteers (25 to 52 years in age) were asked
not to brush their teeth the night and morning before the
measurement. They were allowed to eat and drink, but
not during the last hour before the measurements. To
exclusively measure N,O that is produced in the mouth,
but not in the lung or the stomach, we injected ambient
air (30 ml) into the empty mouth. Subsequently, volun-
teers were asked to breathe through the nose with the
mouth closed off from the nasopharynx and keep the
injected air in their mouth. We defined this air as mouth
air in which orally-produced N,O accumulated. Two gas
samples (1 ml) were withdrawn through the blunt canula
of a syringe after 30 and 90 s and filled into gas-tight exe-
tainers (3 ml). This sampling scheme was repeated five
times with teeth unbrushed and five times with teeth
brushed by the volunteers. The N,O accumulation rate of
seven volunteers was additionally measured after both
teeth brushing and a 1-min antiseptic mouthwash that
contains chlorhexidine, following the package insert
(Chlorhexamed fluid, 0.1%, GlaxoSmithKline, Biihl, Ger-
many). Before brushing the teeth, the volunteers collected
1 ml of saliva that was immediately frozen for later analy-
sis of the NO3/NO, concentration. Subsamples of mouth
air were analysed for N,O concentration using a gas chro-
matograph with a ®®Ni electron capture detector (Agilent
GC7890, Agilent Technologies, Waldbronn, Germany).
From the concentration difference between 30 and 90 s
and the incubated volume of air, the rate of N,O accumu-
lation was calculated in nmol/individual/h. The increase of
N,O concentration in mouth air was shown to be linear
for at least 240 s in additional test runs.

In a separate experiment, the N,O accumulation rate
of four volunteers with teeth unbrushed was determined
before and 2 h after drinking 200 ml of beetroot juice
that contained 12 mM NOj". The volunteers collected
0.5 ml of saliva before and then hourly after drinking
the beetroot juice for later analysis of the NO3 /NO,”
concentration. Maximum salivary NO3;™ and NO,™ con-
centrations were generally measured 2 h after drinking
beetroot juice. Saliva samples were cleared by centrifu-
gation and then analysed for NO3/NO,™ with the VCl3
reduction method [62] followed by NO measurement on
a chemiluminescence detector (CLD 86, EcoPhysics,
Duernten, Switzerland).

Data deposition
Sequences for the denitrification genes obtained in this
study have been submitted to the EMBL Nucleotide
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Sequence Database under the accession numbers
FN401446 to FN401486

Additional file 1: Supplementary information. Figure S1, discussion of
Figure S1, and Table S1.
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