
The good news and the bad news
In the past 100 years our grasp of the biology of cancer 
has come a very long way. We now have a working know­
ledge of how tumors initially form, grow and spread. 
Importantly, vast amounts of information about features 
distinguishing tumor from normal cells is being 
accumulated, resulting in frequent, major new insights 
into cancer biology.

The bad news is that translating this information into 
the development of new treatments, or even refining the 
use of the ones we already have, has been much less 
impressive. Clinicians will attest that cytotoxic chemo­
therapy regimens, developed with the limited biological 
information available at the time of their development, 
remain the mainstay of treatment for most cancers. There 
are a few high-profile examples of rationally and 
molecularly targeted therapies, but we need to do much 
better if we are to shift the entire pattern of treatment to 
drugs that have high potency but mild side effects.

A brief history of old-school and new age drug 
discovery
Several articles have extensively reviewed the history of 
cancer drug development [1] and so here we will only 
pick out the salient points. It is widely accepted, although 
clouded by the secrecy of war [2], that the first tentative 
steps to treating cancer with drugs emanated from the 
observation that exposure to chemical warfare agents 
(‘poison gases’), such as nitrogen mustards, could limit 
the proliferative nature of rapidly dividing lymphoid cells. 
Goodman and Gilman reasoned that this could translate 
into a therapeutic context and used the nitrogen mustard 
mustine to treat a patient with non-Hodgkin’s lymphoma 
[3]. Around the same time, and building on the observa­
tion that the vitamin folic acid could stimulate acute 
lymphoblastic leukemia (ALL) cells, Farber used folate 
analogs such as aminopterin and then amethopterin 
(methotrexate) to treat ALL, in what is often heralded as 
the first ‘rational’ drug development approach [4]. Burch­
enal, Hitchings and Elion used a similar approach to 
assess the potential of purine analogs, identifying 
6-mercaptopurine (reviewed in [5]). The nitrogen mus­
tards and folate and purine analogs were much later 
shown to interfere with DNA replication, in part explain­
ing their anti-tumor activity. In contrast, the alkaloids of 
the Madagascar periwinkle, such as vincristine, originally 
identified in the 1950s in a screen for anti-diabetic drugs, 
block tumor cell division, and therefore proliferation, 
largely by inhibiting microtubule polymerization [6]. All 
these therapies remain in clinical use today.

Following the discovery of chemotherapeutics, the next 
significant advance came in the 1960s with the straight­
forward notion of combining drugs. The rationale for this 
came from the treatment of tuberculosis, for which 
antibiotics, each with a different mechanism of action, 
were more effective when used in combination. For 
cancer, it was considered that the development of resis­
tance to a battery of agents used concurrently, rather 
than a single drug, was less likely. Using this approach, 
Holland, Freireich and Frei pioneered a combination of 
methotrexate and 6-mercaptopurine for treating children 
with ALL (reviewed in [7]). Today, most cancer chemo­
therapy regimens use this same paradigm.
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Anti-hormone therapy has been spectacularly success­
ful in the treatment of breast cancer. Tamoxifen, the most 
successful of these agents, was identified in the early 
1960s as an estrogen receptor (ER) antagonist (more 
correctly, a selective estrogen receptor modulator). This 
drug, originally developed by Walpole’s group at ICI as a 
potential contraceptive, showed its potential when 
initially trialed for breast cancer in 1971 [8]. Subsequent 
clinical trials have confirmed the utility of this drug in 
ERα-positive breast cancer patients and tamoxifen has 
now been given to millions of women and has saved 
countless lives.

The impact of biology on cancer drug development at 
this stage was limited; most therapies had been identified 
either by serendipity or had been selected primarily on 
the basis that they could limit cell division. However, in 
the 1970s and 1980s, the advent of gene manipulation 
and molecular genetic analysis changed the nature of 
biological research forever and with it the drug discovery 
and development process. Molecularly targeted therapies 
could now be contemplated, that is, drugs that were 
rationally designed or selected to inhibit the activity of 
specific molecules (Table 1). If used in the right patient 
population - on tumors with specific molecular lesions - 
these therapies promised significant tumor selectivity. 
One of the most remarkable examples of the development 
of such a targeted therapy, to which biological research 
made a critical contribution, is that of imatinib (Gleevec; 
Figures 1 and 2).

Chronic myelogenous (or myeloid) leukemia (CML) 
was first identified in 1845 by Bennett and Virchow [9] 
and has been treated with a wide range of drugs [10]. In 
1960, Nowell and Hungerford described a consistent 
chromosomal abnormality - the ‘Philadelphia Chromo­
some’, named for the city in which they worked - in 
patients with CML [11]. This was later shown by Rowley 
to be formed from a reciprocal translocation of DNA 
between the long arms of chromosomes 9 and 22 [12] 
(Figure 1a).

In the 1970s and 1980s several oncogenes present in 
cancer-causing viruses were shown to have normal 
cellular equivalents that became altered in human cancers. 
For example, the Abelson murine leukemia retrovirus 
(A‑MuLV) [13] was shown to carry a transforming gene 
(vABL) that had a normal cellular homolog, cABL [14]. 
Subsequently, the cABL gene was shown to be involved in 
the chromosomal rearrangement in CML, translocating 
from chromosome 9 to the breakpoint cluster region 
(BCR) gene on chromosome 22 [15,16] (Figure 1a). This 
results in the production of a fusion gene between BCR 
and cABL [17]. In 1981, vABL had been identified as a 
protein kinase [18] and the BCR-ABL fusion mRNA was 
later shown to encode a constitutively active kinase 
whose activity could transform cells both in vitro [19] 

and in vivo [20,21]. Therefore, it was recognized that 
targeting the catalytic activity of ABL could potentially 
deliver a therapeutic window between tumor cells with 
constitutive activity of BCR-ABL and normal cells with 
more tightly controlled ABL activity. Subsequent studies 
on BCR-ABL biology have focused on defining the links 
between BCR-ABL activity and the pathological 
characteristics of CML and other diseases [22].

At the same time as the transforming activity of BCR-
ABL had been established, several observations were 
made that, while not critical to understanding the biology 
of BCR-ABL and CML, were absolutely crucial to the 
eventual development of drugs used to treat the disease. 
First, it was recognized that certain small molecules 
could inhibit the activity of protein kinases [23]. Second, 
methods for expressing large amounts of active human 
proteins in insect cells were refined, allowing BCR-ABL 
protein to be generated to enable a drug development 
program [24]. Finally, antibody production technology 
had progressed to such a point that the activity of protein 
kinases could be monitored in a relatively robust manner. 
All of these factors enabled a team led by Matter at Ciba-
Geigy to initiate a kinase small molecule inhibitor 
development program. By 1996, STI517 (imatinib) had 
been identified and its activity confirmed in BCR-ABL 
cells by Druker and colleagues [25]. In 1998, phase I 
clinical trials commenced [26], leading to drug approval 
by the US Food and Drug Administration in 2001.

At this time, the first resistance mechanisms to 
imatinib were identified [27]. These could have been due 
to mechanisms previously noted for chemotherapy 
resistance, such as enhanced metabolism or efflux of the 
drug from cells. However, in what turned out to be a 
general phenomenon, Sawyers and colleagues [27] identi­
fied BCR-ABL mutations in patients who had relapsed on 
imatinib treatment, which rendered the enzyme resistant 
to the inhibitory effects of imatinib [28]. The use of a 
three-dimensional structure of the catalytic domain of 
ABL in a complex with an imatinib variant [29] also gave 
insight into this phenomenon and has furthered our 
understanding of the mode of action of imatinib and the 
second-generation ABL inhibitors such as nilotinib [30] 
and dasatinib [31]. These latter drugs can overcome 
resistance caused by some, but importantly not all, BCR-
ABL mutations. Very recently, allosteric inhibitors of 
ABL have been identified [32] (allosteric being shorthand 
for ‘binding outside the catalytic site’). These latter 
molecules bind the myristate binding site of ABL, as 
opposed to the ATP binding site targeted by imatinib and 
related inhibitors. This inhibitor-target interaction does 
however, induce a structural change in the catalytic 
domain of the kinase and this in turn inhibits the enzyme 
activity of ABL. When combined with imatinib, an ABL 
allosteric inhibitor can overcome resistance caused by 
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BCR-ABL mutations such as T315I [32], illustrating the 
potential benefit of combining different modes of 
inhibition on the same target.

As a final note in the imatinib story, biological insight 
has been used to expand the range of patients that might 
be treated by this drug. As well as ABL, imatinib also 
inhibits related kinases, such as the cytokine receptor 
cKIT and platelet-derived growth factor receptors 

(PDGFRs). Constitutively active cKIT mutations are 
found in gastrointestinal stromal tumors and transloca­
tions in the PDGFRB gene are found in diseases such as 
chronic myelomonocytic leukemia (CMML). Imatinib 
has already shown considerable success for the treatment 
of gastrointestinal stromal tumors [33] and preliminary 
results suggest that it could also work in CMML 
characterized by PDGFRB alterations [34].

Table 1. Some examples of targeted therapies for cancer

Drug Brand name Drug target* Cancer types 

In clinical use

   Bevacizumab Avastin VEGF Colorectal, non-small cell lung, breast, renal
   Bortezomib Velcade Proteasome Myeloma, lymphoma
   Celecoxib Onsenal COX2 Familial adenomatous polyposis
   Erlotinib Tarceva

EGFR Non-small cell, lung, colorectal, head and neck
   Gefitinib Iressa
   Cetuximab Erbitux
   Panitumumab Vectibix
   Imatinib Gleevec

BCR-ABL, cKIT, PDGFR Leukemia, gastrointestinal   Dasatinib Sprycel
   Nilotinib Tasigna
   Methotrexate DHFR Multiple cancer types
   RAD001 Certican

mTOR Renal
   Temirolimus Toricel
   Sorafenib Nexavar

VEGFR, RAF, cKIT, PDGFR Renal, hepatic
   Sunitinib Sutent
   Topotecan Hycamtin

Topoisomerase I Multiple cancer types
   Irinotecan Camptosar
   Trastuzumab Herceptin ERBB2 Breast 
   Lapatinib Tykerb HER2, EGFR Breast
   Tamoxifen Nolvadex ERα Breast
   Exemestane Aromasin

Aromatase cytochrome P450 Breast   Anastrozole Arimidex
   Letrozole Femara
   Rituximab MabThera

CD20 Lymphoma
   Tositumomab Bexxar

In development

   17AAG HSP90
   ABT-737, ABT-263, Obatoclax BCL-XL, BCL-2
   Alvocidib CDKs
   Olaparib, AG014699 PARP1/2
   BEZ235 PI3K
   GRN163L hTERT
   Mapatumumab TRAIL Receptor
   Nutlin-3 MDM2
   PLX4032 BRAF
   GDC-0449 SMO
   PF-0477736 CHK1

*Target abbreviations: BCL-2, anti-apoptotic protein BCL-2; BCL-XL, anti-apoptotic protein BCL extra large; BCR-ABL, fusion protein of breakpoint cluster region and 
tyrosine kinase ABL1; BRAF, protein tyrosine kinase BRAF; CD20, B-cell phosphoprotein CD20; CDKs, cyclin-dependent kinases; CHK1, serine/threonine kinase CHK1; 
cKIT, tyrosine kinase c-KIT; COX2, cyclooxygenase 2; DHFR, dihydrofolate reductase; EGFR, epidermal growth factor receptor; ERα, estrogen receptor α; HER2, human 
epidermal growth factor receptor 2; HSP90, heat shock protein 90; hTERT, telomerase reverse transcriptase; MDM2, murine double minute 2; mTOR, mammalian target 
of rapamycin; PARP1/2, poly(ADP-ribose) polymerase 1/2; PDGFR, platelet-derived growth factor receptor; PI3K, phosphatidylinositol 3-kinase; RAF, small GTPase RAF; 
SMO, Smoothened; TRAIL receptor, TNF-related apoptosis-inducing ligand receptor; VEGF, vascular endothelial growth factor; VEGFR, VEGF receptor.

Lord and Ashworth BMC Biology 2010, 8:38 
http://www.biomedcentral.com/1741-7007/8/38

Page 



4 of 12

Similar successful approaches have resulted in the 
targeting of other oncogenes, such as epidermal growth 
factor receptor (EGFR; targeted by gefitinib and erlotinib, 
whose brand names are Iressa and Tarceva, respectively 
[35]) and Human epidermal growth factor receptor 2 

(HER2; targeted by trastuzumab/Herceptin [36]). More 
recently, the targeting of oncogenic Hedgehog signaling 
in medulloblastoma and basal cell carcinoma [37,38] has 
also shown considerable promise (Figure 3). Hedgehog 
(hh) was originally discovered by Nüsslein-Volhard and 
Wieschaus nearly 30 years ago as a ‘segment polarity’ 
gene that controls Drosophila embryonic cuticle pattern­
ing [39]. Vertebrate orthologs of hh were identified in the 
early 1990s and subsequent studies have not only 
dissected the mechanisms underlying hedgehog signaling 
but have also shown Hedgehog to be involved in various 
aspects of animal development, from cell fate through to 
body length [40]. Importantly, Hedgehog signaling has 
been shown to be dysregulated in human cancers, 
notably gastrointestinal tumors, prostate cancer, hemato­
logical malignancies and gliomas. Recent clinical studies 
suggest that medulloblastomas and basal cell carcinomas 
that rely on Hedgehog signaling can be treated with a 
small molecule inhibitor that targets the hh signaling 
mediator, Smoothened [37,38].

Another notable advance in targeted therapy develop­
ment has been in the development of small-molecule 
inhibitors of the oncogenic protein BRAF [41,42]. The 
BRAF gene, a viral oncogene homolog that encodes a 

Figure 1. Targeted therapy for chronic myelogenous leukemia 
(CML). (a) One of the more common molecular changes in 
hematopoietic cells from CML patients is a reciprocal translocation 
(swap) of DNA between the long arms of chromosomes 9 and 22. 
This translocation forms the ‘fusion’ gene BCR-ABL, which encodes a 
constitutively active ABL kinase. (b) The constitutive activity of BCR-
ABL in hematopoietic CML cells drives several candidate oncogenic 
signaling pathways. Hematopoietic cells in CML patients are 
‘addicted’ to BCR-ABL signaling such that BCR-ABL inhibition impairs 
their viability. (c) Tyrosine kinases such as ABL and BCR-ABL have 
well defined catalytic domains that bind ATP and use its phosphate 
moiety to post-translationally modify substrate proteins. Drugs such 
as imatinib bind and block the catalytic domain and in doing so limit 
hematopoietic cell proliferation in CML patients. (b) and (c) modified 
from [75] and [76].
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kinase involved in the RAS/RAF/MEK/ERK pathway 
(Figure 1b), is mutated in up to 70% of melanomas, with 
mutations such as BRAF V600E causing constitutive 
MEK/ERK activation. This MEK/ERK activation drives 
tumour cell proliferation and survival. Although there are 
various approaches designed to target RAS/RAF/MEK/
ERK signaling [41], much effort has been placed in 
designing small-molecule BRAF inhibitors [42]. Clinical 
studies now suggest that targeting constitutively active 
BRAF in patients with melanomas or colorectal tumors 
characterized by V600E mutations can have significant 
clinical benefit [43] and, very recently, a detailed study of 
BRAF/RAS/CRAF signaling interactions has provided 
further insight into, and potential refinement of, this 
approach [44].

Of course, although targeted therapies are heralded as a 
considerable advance from standard chemotherapies, 
they are still affected by resistance and toxicity effects. 
Returning to imatinib, BCR-ABL mutations can drive 
resistance [27,28], and moderate side effects of imatinib 
treatment, such as edema, do occur. However, with other 
targeted agents, such as sunitinib, toxicities such as a 
hand and foot skin reaction can be more severe and in 
fact dose-limiting. Some of these toxicities are likely to be 
caused by inhibition of the desired therapeutic target in 
normal tissues, whereas others may be due to the multi-
kinase inhibition profile of some of the drugs used 
clinically. Nevertheless, targeted agents are generally well 

tolerated compared with chemotherapies and tend to 
deliver larger therapeutic windows.

In summary, in contrast to more traditional cancer 
therapies, the development, clinical use and refinement 
of imatinib and other targeted therapies could not have 
occurred without the considerable groundwork of 
biologists from many different disciplines. Nevertheless, 
putting this together required the vision and application 
of individuals willing to apply these developments.

The future of cancer research?
We do need to recognize and applaud the progress that 
has been made in biologically targeted therapeutic 
development. This is a great validation of the role of 
biological insight, but how this field might develop in the 
future is less clear. To frame this discussion, it is worth 
noting some of the key problems currently faced in 
cancer therapy.

First, there are some effective drugs but they are not 
used in an optimal manner. For some cancer types, there 
are a series of drugs that work relatively well but the 
response to them is very heterogeneous. We need to 
understand the reasons for this heterogeneity and tailor 
the right treatment to the individual patient, rather than 
finding the best for the average patient. Second, more 
often than not, even after an initial response, patients 
frequently relapse - we need a clearer understanding of 
the mechanisms underlying relapse and drug resistance if 
we are to overcome them. Third, for some cancer types, 

Figure 3. Targeting oncogenic Hedgehog signaling. (a) In normal cells the Patched homolog, PTCH1, blocks the activation of the Smoothened 
homolog, SMO. Binding of Hedgehog ligand to PTCH1 removes the repression of SMO, and this drives transcriptional changes via the activity of GLI 
proteins. (b) In tumors such as basal-cell carcinoma and medulloblastoma, mutations in PTCH1 or SMO lead to constitutive, ligand-independent 
signaling and an addiction to hedgehog signaling. (c) Blocking the activity of SMO with a small molecule, GDC-0449 can ablate hedgehog signaling 
and thus inhibit cell growth in addicted tumor cells.
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there are no really effective therapies and we need to iden­
tify new drug targets and develop methods of exploiting 
them. And finally, with the exception of a minority of 
cancers, preventative strategies are not available.

A fair assessment of the situation would be that we are 
a considerable way off from solving these problems. 
Understanding more about the biology of cancer will be 
key if we are to make significant advances. But we do 
need to go a step further; biologists need to be continually 
alert to the possibility of translating their findings into 
changing clinical practice. Several recent conceptual and 
experimental advances might help achieve this but, in 
short, all cancer biologists need to become, in part, 
‘translational’.

A deeper understanding of the altered universe of 
the cancer cell
Understanding normal cell behavior has been a signifi­
cant goal of modern biology and of course this is 
extremely important in defining the neoplastic process. 
However, it is now widely recognized that this is not 
enough in itself as there are a constellation of changes in 
the altered and forever adapting universe of the cancer 
cell. Hanahan and Weinberg [45] summarized an immense 
body of work by listing the ‘hallmarks’ of cancer cells and 
tumors - a limitless replicative potential, resistance to 
apoptosis, insensitivity to anti-growth signals, self-
sufficiency in growth signals, tissue invasion and meta­
stasis, and sustained angiogenesis. Building on this model 
and our deeper understanding of cancer biology, Luo, 
Solimini and Elledge [46] have proposed additional 
characteristics, such as: evading immune surveillance 
[47]; an elevated DNA damage/replication response 
caused by elevated replication rates and also DNA repair 
defects in tumor cells [48]; proteotoxic stress - an 
increase in the amount of toxic, unfolded proteins in 
tumor cells and the resultant heat shock protein response 
[49]; mitotic stress/chromosomal instability [50]; meta­
bolic stress - the increased use of glycolysis rather than 
oxidative phosphorylation as a means of producing ATP 
[51]; and oxidative stress - an increase in the level of 
reactive oxygen species in tumor cells [52].

The obvious translational output of defining these 
characteristics is in identifying additional means by 
which tumor cells can be targeted. For example, the 
renewed interest in cancer cell metabolomics and 
metabolic stress [53] will most likely lead to therapies 
that target tumor-specific reliances on particular aspects 
of glucose metabolism. Furthermore, the classification of 
these characteristics presents significant new opportuni­
ties for reinvention of the combination therapy paradigm 
for cancer therapy. Combinatorial targeting of different 
‘hallmarks’ of cancer with targeted therapies (Figure  4) 

could elicit an enhanced and durable therapeutic response, 
as is seen with combinations of classical chemotherapies.

Embracing the complexity of the cancer cell
The control of cell growth and behavior has long been 
recognized to be complex. However, we are increasingly 
daunted by exactly how great a challenge it will be to 
understand or predict normal cell behavior or the rewir­
ing that goes on in cancer cells. There are some recent 
examples in which the discovery of entire levels of 
cellular regulation, such as microRNAs, add yet another 
layer of complexity.

Moreover, our restricted and naive view of biology has 
meant that, in general, understanding cell behavior has 
been by studying discrete pathways. These pathways are 
often a misleading oversimplification of the complex 
molecular networks that control cell behaviour. However, 
help may be at hand in addressing this complexity in 
‘systems’ approaches. Although still in their infancy, these 
computational approaches coupled with deep trans­
criptomic, genomic proteomic or metabolic profiling 
promise an integrated approach and, with this, a better 
understanding of interacting molecular networks. This 
should allow us to start thinking seriously about how 
drugs perturb networks rather than discrete pathways 
and use this information to develop new ‘network’ thera­
peutic strategies.

A significant challenge in cancer drug development, 
‘drugging the undruggable’, is being addressed by 
exploiting molecular networks. An example has been the 
use of poly(ADP-ribose) polymerase (PARP) inhibitors to 
treat BRCA-deficient cancers. BRCA1 and BRCA2 are 
both classical tumor suppressor genes: loss-of-function 
mutations disable BRCA1 and BRCA2 proteins and 
strongly predispose to cancer. Targeting tumor suppres­
sor genes presents a particular problem: unlike gain-of-
function oncogenic events such as the BCR-ABL fusion, 
it is not obvious how to pharmacologically target a tumor 
suppressor protein that is dysfunctional or even com­
pletely absent. However, exploiting knowledge of mole­
cular networks may be of significant benefit here. In 
2005, we demonstrated that tumor cells with deficiencies 
in either the BRCA1 or BRCA2 tumor suppressor genes 
are over 1,000 times more sensitive to potent inhibitors 
of the DNA repair protein PARP [54]. Underlying these 
observations is a network of synthetically lethal genes 
(Figure 5a).

Two genes or proteins are synthetically lethal when 
inactivation of either gene/protein is still compatible with 
cellular viability but inactivation of both leads to cell 
death [55]. Often, synthetic lethal relationships represent 
networks of proteins that show a form of functional 
buffering, and this seems to be the case with BRCA 
proteins and PARP. PARP is involved in the repair of 
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DNA breaks in a single strand of DNA. In normal cells, 
PARP inhibition and the resultant increase in DNA single 
strand breaks is functionally compensated for by a second 
form of DNA repair, homologous recombination. Homo­
logous recombination is controlled by BRCA1 and 
BRCA2 - when BRCA proteins are defective, as is the 
case in tumors from breast, ovarian and prostate cancer 
patients carrying germline BRCA gene mutations, this 
functional buffering is lost, and cells become exquisitely 
sensitive to PARP inhibitors (Figure 5b,c). These original 
in vitro observations have been translated into clinical 
trials and early results suggest significant tumor 

responses accompanied by relatively mild side effects 
when compared with standard chemotherapies [56]. This 
suggests that the large therapeutic window observed in 
the laboratory may indeed translate into the clinic. 
Although expanded clinical trials are needed to prove 
that such synthetic lethal approaches really do deliver 
larger therapeutic windows, the preliminary indications 
are that exploiting molecular networks may be a viable 
approach.

As discussed above, a large amount of effort has also 
been invested in targeting oncogenes as therapeutic 
targets. It is thought that tumor cells can be ‘addicted’ to 

Figure 4. Hallmarks of cancer. The dissection of cancer biology has allowed the characteristics of tumor cells to be more accurately detailed. Drug 
classes targeting each of the characteristics are also shown (outside ring). Adapted from [46].
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Figure 5. A synthetic lethal network exploited in cancer treatment. (a) Two genes or proteins are synthetically lethal when inactivation of 
either gene/protein is still compatible with cellular viability but inactivation of both leads to cell death [55]. Often synthetic lethal relationships 
represent networks of proteins that show a form of functional buffering. (b) A model for synthetic lethality using PARP inhibitors [54]. DNA is 
constantly damaged, both by environmental and by normal physiological processes. One of the more common forms of DNA damage is the 
formation of DNA single strand breaks (SSBs; step 1). SSBs are normally rapidly repaired by a process known as base excision repair (BER). BER is 
instigated by the activity of the poly(ADP ribose) polymerase, PARP1, and when PARP1 is inhibited (an example PARP inhibitor is shown), SSBs persist 
(step 2). As cells enter S phase, and DNA is replicated; replication forks are eventually stalled by persistent SSBs (step 3; the direction of a replication 
fork is shown by the green arrow). If not rapidly repaired, stalled replication forks can often degenerate and form DNA double strand breaks 
(DSBs), which are highly likely to be lethal (step 4). In normal cells, an additional DNA repair process, homologous recombination (HR), can repair 
stalled replication forks and DSBs (step 5). HR is mediated by BRCA1 and BRCA2 and acts as a functional buffer to enable normal cells to survive 
the effects of PARP and BER inhibition. Conversely, in patients with germ-line BRCA gene mutations, tumor cells show a severe HR defect (step 6). 
PARP inhibition combined with HR deficiency leads to tumor cell death either driven by the formation of lethal DSBs or because mutagenic forms 
of repair predominate in the absence of HR. The genomic instability that follows the use of these non-HR forms of DSB repair eventually limits the 
fitness and viability of tumor cells. (c) Synthetic lethality in in vitro cell culture. Clonogenic assays, which estimate tumor cell survival, demonstrate 
that tumor cells with either BRCA1 or BRCA2 deficiency are profoundly sensitive to potent PARP inhibitors such as KU0058948 (Kudos/AstraZeneca). 
Reproduced, with permission, from [54]. In vitro synthetic lethality translates into clinical synthetic lethality [56]. Computed tomographic (CT) scans 
of the abdomen in a patient with advanced ovarian cancer and BRCA mutation family history showed a reduction in the size of a peritoneal tumor 
nodule by 66% over a 4-month treatment period during which she received a potent PARP1 inhibitor, olaparib, at a dose of 100 mg, twice daily, for 2 of 
every 3 weeks. CT scans of the abdomen in another patient with advanced ovarian cancer, who had a BRCA1 mutation (4693delAA), showed complete 
regression of a peritoneal tumor nodule over a 4-month treatment period with olaparib (200 mg, twice daily) for a year.
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the activity of an oncogene [57], such that once the 
oncogene activity (or the pathway it controls) is blocked, 
tumor cells can no longer survive. Therefore, if one can 
identify an activated oncogene that a tumor cell is addicted 
to, there is the possibility of therapeutic approach to 
inhibit it. However, a significant problem arises if the 
target is not particularly suited to pharmacological 
inhibition. For example, a significant number of tumors 
are driven by either MYC or RAS oncogenes, but as 
transcription factors and GTPases, respectively, these 
proteins have been difficult to target, compared with, for 
example, protein kinases such as BCR-ABL.

One solution is to exploit molecular networks; the 
activity of oncogenes such as MYC or RAS results in 
considerable adaptive rewiring of cellular networks and 
tumor cells may become ‘addicted’ to these changes. 
These ‘non-oncogene addictions’ [46] could be therapeu­
tically targeted. By performing high-throughput loss-of-
function genetic screens that exploit RNA interference 
technology [58], Gilliland and colleagues [59] showed 
that tumor cells with mutant RAS have acquired a depen­
dence on the kinase STK33; tumor cell molecular 
networks have been re-wired such that STK33 now 
becomes critical whereas it is not in normal cells. Studies 
by Elledge and colleagues [60] and Hahn and colleagues 
[61] have also identified additional addictive effects in 
tumor cells that depend on RAS activity and similar work 
has elicited targets for MYC-driven cancers [62]. Whether 
these effects can ultimately be exploited therapeutically 
remains to be seen, but these proof-of-principle experi­
ments clearly highlight the potential for network targeting.

Akin to the approach of exploiting the complexity of 
cancer cells, the integration of multiple data types is also 
now proving a powerful tool to identify novel cancer 
drug targets. This is proving particularly true when 
functional genomic screens, such as those using RNA 
interference, are combined with molecular profiling tech­
niques. For example, Hahn and colleagues recently 
screened a small panel of colorectal tumor cell lines with 
an RNA interference library to identify CDK8, a gene that 
not only controlled tumor cell viability but also 
modulated WNT signaling, an oncogenic pathway 
commonly active in colorectal cancer [63]. By integrating 
these screen data with the genetic profiles of colorectal 
adenocarcinomas, they demonstrated that the CDK8 
gene was also amplified in a significant proportion of 
colorectal tumors, suggesting that it could be a promising 
drug target. Furthermore, the CDK8 gene copy alteration 
could also serve as a biomarker with which to select 
patients for treatment with a CDK8 targeting agent, once 
developed. Similar studies have also used the integration 
of a wide variety of disparate data types, such as gene 
expression profiles, immunohistochemical profiles, meta­
bolic profiles and forms of functional analysis, to identify 

novel cancer drug targets [64,65]. With the availability of 
technology, such as next generation sequencing, that 
offers the rapid dissection of cancer genome and trans­
criptome sequences [66-70], these integrated approaches 
are likely to become commonplace.

These next generation profiling technologies may also 
allow us to further our understanding of intra- and inter-
tumor heterogeneity. It is well established that tumors 
from patients with diseases that are similar in clinical 
presentation are often distinct at the molecular level (for 
example, in terms of the transcriptomic profile or 
genomic content). Furthermore, heterogeneity also exists 
between primary and metastatic lesions from the same 
patient and also within individual tumors. It is likely that 
this heterogeneity explains, in part at least, differing 
responses to therapy between ostensibly similar tumors. 
One approach to understanding this heterogeneity is to 
first catalog it, and much effort has already gone into the 
characterization of tumor heterogeneity at the genomic 
and transcriptomic levels, with a seminal example being 
the gene expression profiling of 65 breast tumors [71].

With the advent of next generation sequencing we are 
now seeing the first reports of base-pair resolution DNA 
sequences of human tumors [68,69]. This trickle will turn 
into a torrent as the cost of these profiling approaches 
falls, allowing us to properly address heterogeneity and to 
further tailor treatment to the individual. Nevertheless, 
the first few tumor genome DNA sequences are already 
informing our understanding of cancer biology and hint­
ing at therapeutic approaches. For example, the partial 
DNA sequence of a range of breast tumors and tumor cell 
lines already suggests that particular DNA repair defects 
are present, as represented by the specific patterns of 
DNA deletion and rearrangement that are left behind as 
footprints in the tumor genome [69]. Similarly, the type 
and number of mutations found in the genome sequences 
of a melanoma cell line and a lung tumor cell line [68,69] 
seem to reflect the environmental agents (exposure to 
ultraviolet light and tobacco use, respectively) that 
initially fostered tumorigenesis. Such base-pair resolution 
DNA sequences could be used as diagnostics to identify, 
for example, specific DNA repair defects and to select 
therapies accordingly. Similar advances in proteomic [72] 
and also metabolic [73] profiling could also address 
heterogeneity and inform therapeutic development. It is 
of course implicit that with this wealth of biological data, 
we need to make advances in our ability to process and 
analyze such large data collections.

Biology-driven cancer drug development
Returning to the here-and-now, there are several organi­
zational and logistical roadblocks to the application of 
basic research in cancer therapeutic development that 
have made this avenue daunting to many biologists. The 
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first is understanding and recognizing the actual clinical 
issues. This means that interactions with clinicians who 
understand the benefits of basic research need to be 
fostered and a meaningful dialog established that over­
comes the sometimes arcane jargon used in each field. 
Access to tumor tissue has also been a problem and the 
role of the pathologist is critical here. Pathologists, 
especially the new generation of molecular pathologists, 
can also provide the pivotal link between basic and 
clinical research. Finally, applied translational research 
has frequently been seen as inferior to ‘pure’ basic 
research. With the application of cutting edge technology 
and fundamental biological principles to translational 
research, it’s clear that addressing clinical realities is as 
pure a science as any.

Increasingly, biology needs to have a strong role in the 
design and analysis of clinical trials. It is generally 
accepted that targeted cancer drugs cannot be used on a 
‘one size fits all’ model and trials need to reflect the 
original fundamental biology. This means designing trials 
with solid pre-clinical laboratory work and where the 
patient subgroup to be treated is refined according to 
precise biomarkers, such as specific oncogene mutations. 
We argue elsewhere (AA and JS DeBono, unpublished 
work) that biomarkers for drug efficacy and patient 
selection need to be developed and integrated very early 
in the clinical trials process, such as in phase 1. Again, 
this means that biologists need to work closely with 
clinicians as drugs are developed, which in the past has 
been highly unusual. Likewise, studying cancers in the 
neo-adjuvant context (before definitive surgery) or in 
short ‘window of opportunity’ studies (where a therapy is 
administered and its molecular consequences closely 
followed using biopsies over a relatively short period of 
time or ‘window’) provides a wealth of material for the 
biologist to study drug responses in real tumors in situ. 
Finally, at least in the advanced cancer setting, resistance 
is at present almost inevitable, and the ability to obtain 
and study metastatic biopsies will be critical in under­
standing these mechanisms. Moreover, this will allow 
testing of hypotheses developed in cell line or animal 
models of drug resistance in the genuine clinical context 
[74].

Most cancer drug development is now biology driven. 
However, to ensure that fundamental new insights into 
the biology of cancer are used, it is essential that 
integrated approaches are used. This operates both at the 
level of the experimental approaches, taking full account 
of the complexity of cancer, but also at the level of 
interaction of different disciplines. Although the trend 
will be towards ‘big’ science, there is still an important 
role for the biologist in proving insight from hypothesis-
based approaches as long as this is applied appropriately. 
A large number of significant challenges in cancer 

remain, such as the relentless plasticity of the cancer 
genome and the Darwinian selection of resistance that 
results. However, with a true concord between biologists, 
oncologists, pharmaceutical companies and patients we 
believe that what we all want can be achieved: effective 
treatments for cancer.
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