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Abstract

activation of insulin and TOR signaling pathways.

the ommatidia.

Background: Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth.
Similar studies have also shown how components of the insulin and target of rapamycin (TOR) pathways are key
regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these
pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using
biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon

Results: Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which
correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK38 ) a kinase that is responsible
for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor
rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex
1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which
also depends on the ability of S6K kinase to inhibit GSK3f activity. Myc upregulation by insulin and TOR pathways
is @ mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces
Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our
functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of
insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the
ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of

Conclusions: Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways
to control growth in Drosophila. At the biochemical level we found that both these pathways converge at GSK3f3
to control Myc protein stability, while our genetic analysis shows that insulin and TOR pathways have different
requirements for Myc activity during development of the eye, suggesting that Myc might be differentially induced
by these pathways during growth or proliferation of cells that make up the ommatidia.

Background

Genetic studies in Drosophila have identified Myc as
well as components of insulin and target of rapamycin
(TOR) signaling pathways as key regulators of growth
[1,2]. Insulin and TOR signaling pathways are highly
conserved. In Drosophila, binding of insulin-like
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peptides to the insulin receptor (InR) results in the acti-
vation and phosphorylation of chico, the ortholog of the
insulin receptor substrates 1-4 (IRS1-4) [3]. This event
leads to the production of phosphatidylinositol-3,4,5-tri-
phosphate (PIP3) by phosphoinositide 3-kinase (P13K), a
reaction that is counteracted by the lipid phosphatase
and tensin homolog (PTEN) [4,5]. PIP3 recruits several
Ser/Thr kinases to the plasma membrane including Akt/
PKB (Protein Kinase B)[6] and PDK1 (3’-phosphoinosi-
tide-dependent protein kinase-1) [7]. Activation of Akt
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results in the inhibition of glycogen synthase kinase 3-
beta (GSK3pB), a conserved kinase that not only controls
energy metabolism by inactivation of glycogen synthase,
but also regulates Wnt signaling by controlling Bcate-
nin/armadillo [8] and Myc stability [9,10]. Activation of
Akt also inhibits tuberous sclerosis complex 1 and 2
(TSC1/2), a binary-complex that negatively regulates
Rheb, a GTPase upstream of TOR kinase responsible for
activation of TOR complex 1 [11]. TOR is found in two
complexes: TOR complex 1, which includes Raptor and
LSt8 adaptor molecules, is sensitive to amino acids and
is inhibited by rapamycin; and TOR complex 2, which is
composed of LSt8 and Rictor adaptor molecules, and
does not respond to amino acids or rapamycin [12,13].
Activation of TOR complex 1 results in phosphorylation
of ribosomal protein kinase p-70-S6 (S6K) on threonine
398, and of eukaryotic translation initiation factor 4E-
binding protein 1(4E-BP1), thereby triggering protein
synthesis and initiation of translation [14,15]. Insulin
and TOR activities are also balanced by a negative feed-
back mechanism that is activated when S6K is hyper-
activated to counteract insulin activity. Under this con-
dition, S6K phosphorylates IRS1-4/chico triggering its
internalization and subsequent proteasomal degradation
[16,17]. This feedback mechanism is reduced in patholo-
gical conditions, such as TSC syndromes where cells
carrying mutations in fscl or tsc2 display an abnormal
increase in size and exhibit constitutive phosphorylation
of S6K [18]. In these cells, hyper-activation of S6K cor-
relates with inactivation of GSK3p by phosphorylation
of Serine 9, which results in c-Myc protein accumula-
tion [18].

The Drosophila dmyc gene, called diminutive (dm),
was identified as the sole ortholog of the human c-myc
gene [19,20]. Analysis of dm target genes revealed a pro-
minent role for Myc in the regulation of genes control-
ling ribosomal biogenesis and protein synthesis [21-24],
thus animals carrying dm hypomorphic mutations are
smaller due to a reduction in their protein synthesis and
cell size [25-28]. This phenotype is reminiscent of hypo-
morphic mutants for tor or s6k, components of the
TOR signaling pathway [29-31]. Signaling through the
InR controls growth; mutants for the Drosophila-insu-
lin-like peptides or of the adaptor molecule chico/IRS
are also smaller because of fewer and smaller cells [3].
Recent genomic analysis in whole larvae showed a
strong correlation between the targets of Myc and those
of the TOR pathway; however, less overlap was found
between the targets of Myc and those of PI3K signaling
[23]. Whether Myc acts downstream or in parallel to
PI3K is not totally clear and previous observations in
vivo, in cells of the imaginal discs, indicate that activa-
tion of PI3K, even though it influenced growth and
decreased the G1 phase of the cell cycle, did not
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significantly alter Myc protein levels [32]. However, in
salivary glands, Myc expression was able to partially res-
cue the growth defect caused by lowering PI3K activity
[27] suggesting that Myc activity might be acting down-
stream of PI3K signaling. Together, these data suggest
that Myc could participate in the regulation of growth
in response to insulin and TOR signaling, however a
molecular link between Myc and these signaling path-
ways has not been clearly identified yet.

In this report, we provide evidence of a molecular
mechanism for the Myc protein to be stabilized by insu-
lin and amino acid signaling in Drosophila S2 cells,
which converge to decrease the activity of GSK3p, a
kinase responsible for Myc protein degradation. We
found Myc protein regulated in vivo both by insulin and
TOR pathways in epithelial cells of the imaginal discs.
Using genetic analysis we demonstrate that Myc func-
tions downstream of insulin and TOR to sustain proper
growth of the eye during development.

Results

Insulin induces Myc protein accumulation in Drosophila
S2 cells, with a mechanism that results in inactivation of
GSK3p and is dependent on TOR complex 1 activity

Our previous observation that Myc protein stability in
Drosophila S2 cells is reduced by GSK3p activity [10]
led us to investigate if stimulation of insulin signaling,
which inhibits GSK3p via Akt phosphorylation, could
result in Myc protein accumulation. Treatment of Dro-
sophila S2 cells with insulin induced an increase in
Myc protein levels visible after 30 minutes of stimula-
tion that was still detectable after 180 minutes of treat-
ment (Figure 1A). This event was accompanied by a
small increase in dmyc-RNA that peaked after 30 min-
utes and rapidly returned to baseline levels (Additional
file 1). Myc protein accumulation by insulin was
accompanied by phosphorylation of Akt on Ser 505, an
event that correlated with phosphorylation of GSK3f
on Ser 9 (Figure 1B), and was inhibited in the presence
of the PI3K inhibitor wortmannin (Figure 1C). In order
to analyze if GSK3B signaling contributes to insulin-
induced Myc protein upregulation, S2 cells were trea-
ted with insulin in the presence of the GSK3f inhibitor
lithium chloride (LiCl), or insulin was added to S2 cells
expressing the GSK3B- kinase dead (KD) mutant,
which was shown previously to reduce GSK3f activity
[33].

In these experiments, addition of insulin increased
Myc protein levels and this was accompanied by
increased phosphorylation of GSK3B on Ser 9 (Figure
1D and 1E, lane 2). LiCl or expression of GSK3B3-KD
also increased endogenous Myc protein levels (Figure
1D and 1E, lane 3) as a result of inhibition of the endo-
genous GSK3f activity, which is known to control Myc
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Figure 1 Insulin induces Myc protein upregulation in Drosophila S2 cells, which depends on TOR signaling. (A) Time course of Myc
protein accumulation upon insulin treatment. Insulin was added to serum-starved S2 cells and Myc levels were analyzed by western blotting. (B)
Insulin treatment increases Myc protein levels, correlating with phosphorylation of Akt on Ser 505 and of GSK3B on Ser 9. (C) Myc protein
accumulation by insulin is inhibited in the presence of the PI3K inhibitor wortmannin. (D and E). Blocking GSK3p activity with LiCl or using the
GSK3B kinase dead mutant (GSK3B-KD), affects insulin-induced Myc protein accumulation. To block GSK3f activity, S2 cells were treated with LiCl
(D), or transfected with a plasmid encoding for an HA-tagged GSK3B-KD that was previously demonstrated to reduce endogenous GSK3p kinase
activity [10] (E). Treatment with insulin results in the accumulation of Myc protein (D and E, lane 2). Blocking GSK3B activity by LiCl (panel D, lane
3) or by the expression of GSK3B-KD (panel E, lane 3) enhanced Myc protein level, which was not further increased when insulin was added to
cells where GSK3B activity was inhibited by LiCl or by the presence of its KD mutant (lane 4). Expression of the HA-GSK3B-KD was analyzed by

rapamycin complex 1.

western blotting using anti-HA antibodies. (F) Inhibition of TORC1 by rapamycin decreased insulin-induced Myc protein accumulation.
Rapamycin, alone or together with insulin, was added for 2 h to serum-starved S2 cells; vinculin was used as a control for protein loading. (G)
Blocking the proteosome pathway with MG132 inhibits Myc protein degradation by rapamycin. MG132 was added to the cells together with
rapamycin. Myc protein levels were analyzed after 2 hours of treatment using anti-Myc antibodies; actin was used as a control for protein
loading. GSK3B: glycogen synthase kinase 3-beta; LiCl: lithium chloride; KD: kinase dead; PI3K: phosphatidyl-inositol-3 kinase; TORCI1: target of

protein stability [10]. Blocking GSK3f activity with LiCl
or using GSK3B-KD, along with the addition of insulin,
led to an increase in Myc, which was comparable to
that of insulin alone (Figure 1D and 1E, compare lane 2
and 4).

Activation of insulin signaling enhances TOR activity
by releasing the negative feedback of Akt on TSC1/2
[34-36]. We therefore treated S2 cells with rapamycin,
an inhibitor of TOR complex 1 (TORCI1), to analyze the
contribution of TOR to insulin-mediated Myc upregula-
tion. These experiments showed that rapamycin sup-
presses Myc protein accumulation by insulin (Figure
1F), and similar results were obtained for the regulation
of dmyc-RNA (Additional file 2). These data also
showed that rapamycin reduced endogenous Myc pro-
tein levels without affecting dmyc-RNA, suggesting that
TOR signaling might regulate Myc protein stability. To
better understand this mechanism we blocked the pro-
teasome using MG132 and analyzed Myc protein level
upon rapamycin treatment. These data showed that Myc
protein degradation in the presence of rapamycin was
completely suppressed by MG132 (Figure 1G) suggest-
ing that TOR activity regulates Myc protein stability by
mediating its degradation through the ubiquitin-proteo-
somal pathway.

Amino acids and/or TOR signaling increases Myc protein
stability by GSK3f inhibition in Drosophila S2 cells

TOR signaling is activated by insulin and also by amino
acids (AAs) [35,36]. To determine whether AAs directly
controlled Myc protein accumulation, we serum-starved
S2 cells and then performed a complete amino acid star-
vation by subsequently bathing them in an AA-free
medium without serum. After 30 minutes, AAs were
added back to the cells for the indicated times and Myc
protein levels were analyzed by western blotting. As
shown in Figure 2A, treatment with AAs increased Myc
protein levels, which peaked between 60 and 90 minutes
after treatment. Quantitative RT-PCR analysis showed
that dmyc-mRNA was not significantly affected (Figure
1B in Additional file 1), suggesting that TOR signaling
regulates Myc protein mainly at its post-translational
level. AA starvation resulted in a reduction of Myc pro-
tein levels (Figure 2B, compare lane 1 and lane 2),
which was increased by adding AAs back to the medium
(Figure 2B, lane 3). This correlated with an increase in
GSK3pB phosphorylation of Ser 9. Myc upregulation by
AAs was significantly reduced in the presence of rapa-
mycin (Figure 2B, lane 4). In order to analyze if GSK3
activity contributes to TOR-induced Myc protein upre-
gulation, we stimulated S2 cells with AAs in the
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Figure 2 Amino acid activation of TOR pathway decreases GSK3p activity and increases Myc protein levels. (A) Time course of Myc
protein accumulation upon AA treatment. Cells were serum-starved overnight and then bathed in AA-free medium for 30 min. AAs were added
for the indicated time. Myc protein levels were analyzed by western blotting. (B) AA induced Myc protein accumulation through the activation
of TORCT. S2 cells were serum-starved (lane 1) and bathed in AA-free medium for 30 min (lane 2). AAs were added back for 2 h in the absence
(lane 3) or in the presence of rapamycin (lane 4). Myc accumulation corresponded to phosphorylation of GSK3f at Ser 9. (C) Inhibition of GSK3B
by LiCl limits the ability of AAs to induce Myc protein accumulation. Cells were serum-starved and then bathed in AA-free medium. A solution

AA than that observed when LiCl is added to cells bathed in complete Schneider medium and low serum (compare Myc levels in Figure 2C,
lane 2 to that in Figure 1D lane 3). This difference could be explained by the possibility that cells bathed in AA-free medium have a reduced
rate of protein synthesis. This could result in a delay of the mechanism that controls ubiquitin-induced Myc protein stability thus accounting for
the reduced level of Myc observed when LiCl is added to AA-free medium. (D) Ectopic expression of Rheb and SéK increases Myc protein and
correlates with phosphorylation of S6K on Thr 398 and of GSK3B on Ser 9.
MYC-Rheb. (E) S2-tub-Gal4 cells expressing tubulin-Gal4 were transfected to express UAS-HA-Myc, and co-transfected with HA-S6K and MYC-Rheb.
Expression of the relative proteins was analyzed by western blotting using the indicated antibodies; actin and GSK3B were used as control
loading. AA: amino acid; GSK3B: glycogen synthase kinase 3-beta; LiCl: lithium chloride; Rheb: Ras homolog enriched in brain; S6K: p70-S6

min. Accumulation of Myc protein correlates with phosphorylation of
accumulation is less evident when cells are bathed in medium lacking

S2 cells were transfected with plasmids encoding for HA-S6K and

presence of LiCl and analyzed whether AAs could still
induce Myc protein accumulation in this condition.

These experiments showed that addition of LiCl to an
AA-free medium slightly increased Myc protein level
(Figure 2C, lane 2) but to a lesser extent than in med-
ium with amino acids (compare with Figure 1D and 1E,
lane 3). Addition of AAs increased Myc protein levels
and was accompanied by an increase in phosphorylation
of S6K on Thr 398 that correlated with phosphorylation
of GSK3B on Ser 9 (Figure 2C, lane 3). Addition of LiCl
together with AAs did not further increase Myc protein
levels, an outcome similar to that observed with AA
treatment alone (Figure 2C, compare lane 3 and 4).
Similar results were obtained for the phosphorylation of
S6K on Thr 398 or GSK3p on Ser 9.

We then analyzed if ectopic expression of Rheb and S6K
resulted in accumulation of Myc protein. In these experi-
ments the epitope-tagged form of Rheb (MYC-Rheb) and
of S6K (HA-S6K) [37] were expressed in S2 cells and
endogenous Myc protein was analyzed by western blot.
These experiments showed that while S6K alone had a
very small effect on Myc protein levels (Figure 2D), co-

expression of S6K with Rheb was able to substantially
induce Myc protein accumulation, an event that correlated
with phosphorylation of S6K on Thr 398 and GSK3p on
Ser 9. In order to understand if accumulation of Myc pro-
tein induced by Rheb and S6K was regulated at the post-
transcriptional level, we co-expressed Rheb and S6K
together with an epitope HA-tagged form of Myc [10]. In
these experiments the UAS/Gal4 system [38] was used to
express UAS-HA-Myc in a stable S2-line that constitutively
expressed Gal4 under the tubulin promoter (S2-tub >
Gal4). Rheb and S6K were co-expressed with HA-Myc
and their protein levels were analyzed using anti-tag anti-
bodies. These experiments showed that expression of S6K
alone was not sufficient to induce significant changes in
Myc protein levels, however expression of Rheb alone
resulted in the accumulation of HA-Myc protein and this
effect was accompanied by phosphorylation of GSK3p on
Ser 9 (Figure 2E).

Taken together, these data show that TOR signaling
controls Myc protein stability at the post-transcriptional
level, which correlates with inhibition of GSK3p by its
phosphorylation on Ser 9.
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Modulation of insulin and TOR signaling regulates Myc
protein levels in epithelial cells of the wing imaginal discs
Our next step was to analyze if components of the insu-
lin and TOR signaling pathways regulate Myc protein
levels in vivo in cells from the wing imaginal discs.
Because it was previously shown that reduction of com-
ponents of the insulin and of TOR pathways in vivo
resulted in clones of reduced size [3,31,39], we decided
to take advantage of a conditional gene expression tech-
nique where the Act > CD2 > PR-Gal4 construct was
used to temporally induce the expression of UAS-trans-
genes under the actin promoter through the addition of
the synthetic steroid mifepristone [40]. Under these con-
ditions, we generated clones expressing UAS-Dp110 or
UAS-PTEN to modulate insulin signaling, or we acti-
vated the TOR pathway by expressing rkeb using the
ULIAS-Rheb™V? line, derived from insertion of a P element
in the rheb locus [41]. The Myc protein level was ana-
lyzed in clones of cells from wing imaginal discs of third
instar larvae after five hours of induction. Myc protein
at this stage of development (Figure 3A, in red) is pre-
dominantly expressed within the cells of the presump-
tive notum and in the wing pouch, with the exception
of the area of the hinge and a stripe of cells in the zone
of non-proliferative cells (ZNC) located along the dor-
sal-ventral boundary, where Myc is transcriptionally
repressed by Wingless activity [26,42,43]. These experi-
ments showed that clones expressing Dp110, marked by
co-expression of GFP, accumulate Myc protein (Figure
3B, red), which was also visible in cells from a clone
that was generated within the ZNC, where normally
Myc expression is repressed (arrow). In contrast, Myc
protein was visibly reduced in clones overexpressing
PTEN, a negative regulator of the insulin pathway (Fig-
ure 3C). Upregulation of TOR signaling, using UAS-Rhe-
b*Y, also induced the accumulation of Myc protein
(Figure 3D); on the contrary Myc protein was reduced
in clones expressing TOR™*”, a mutant of TOR that
functions as a dominant negative for TORC1 activity
[44] (Figure 3E). Interestingly, these experiments
revealed a strong non-autonomous accumulation of Myc
protein in cells neighboring the clones, particularly visi-
ble in Dp110 and PTEN clones and to a lesser extent in
Rheb?"# and TOR”%P clones (arrowhead). This was
more evident when clones where positioned along the
dorsal-ventral axis of the wing disc, suggesting that dif-
ferences in Myc expression in cells at the border of the
dorsal-ventral axis may induce changes that resulted in
the regulation of Myc levels non-autonomously.

Genetic interaction of Myc with members of the insulin
and TOR signaling pathways in the adult eye

Given our biochemical and cellular evidence indicating
that both the insulin and TOR pathways regulate Myc
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Figure 3 Expression of components of the insulin and TOR
signaling pathways modulates Myc protein levels in clones
from the wing imaginal discs. Analysis of Myc protein levels in
flip-out clones expressing components of the insulin or TOR
signaling pathways. (A) Endogenous Myc protein expression (red) in
wing imaginal discs from third-instar larvae is higher in the notum
and in the wing pouch (wp), while its levels is reduced in the hinge
area and in the ZNC where Myc expression is inhibited by Wingless
signaling. (B-E) Clones expressing the actin > Gal4:PR construct,
together with UAS-GFP, were induced at 48 h AEL. Expression of the
transgenes was induced using mifepristone and Myc protein levels
analyzed by immunofluorescence after 5 h of treatment. (B) Clones
expressing UAS-Dp110 showed Myc protein accumulation that was
also visible in the ZNC where normally Myc expression is repressed
(center, arrow). (C) Myc protein level was significantly reduced in
clones expressing UAS-PTEN. (D) Clones expressing UAS- UAS-
Rhet"* showed increased Myc protein that was decreased in UAS-
TOR™P clones (E). Notably, Myc protein was visibly induced non-
autonomously in cells outside the border of the clones (arrowhead).
AEL: after egg laying; TOR: target of rapamycin; wp: wing pouch;

ZNC: zone of non-proliferative cells.

protein levels, we used a genetic approach to analyze
the contribution of Myc to the growth exerted by these
pathways. Using the UAS/Gal4 system in combination
with flip-out techniques [45,46], we expressed compo-
nents of the insulin or TOR pathways in the eye and
analyzed their relative effect on growth by comparing
the size and number of ommatidia from animals with
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different dm genetic backgrounds. In these experiments
we recombined the tubulin-FRT-dmyc-FRT-Gal4 line,
which we previously used to rescue viability of dm"’
and lethality of dm” mutants, with the eyeless-Flp trans-
gene [47]. This line contains the dmyc-cDNA located in
a removable cassette between the tubulin promoter and
Gal4. Upon FLP-mediated excision of dmyc-cDNA, the
tubulin promoter drives Gal4 expression allowing for
the expression of the UAS transgenes in the eyeless
compartment (eye and antenna). This chromosome
(hereafter called ey) was recombined in wild-type ani-
mals (ey-dm™) and in flies carrying the hypomorphic
dm"™ or the null dm* alleles (hereafter called ey-dm" or
ey-dm®). The size and number of the ommatidia in the
eyes from control wild-type (ey-dm™) was compared to
that from ey-dm"® or ey-dm® mutant animals expressing
the different transgenes. The statistical significance of
these data, across the different dm genetic backgrounds
was calculated using the two-tailed z test (Appendix 1
in Additional file 3). Our first approach was to analyze
if Myc activity modulates ommatidial size changes
induced by components of the insulin pathway. This
analysis revealed that even though expression of UAS-
Dp110 increased the size of the ommatidia by 38% in a
wild-type dm™ background (Figure 4 and Table 1; P <
0.001, using a Student’s ¢ test) this effect was not depen-
dent on Myc expression (Table S1 in Additional file 4; P
= 0.4292, using a two-tailed z test) and only in dm®/Y
null animals did Dp110 exhibit a weak but significant
inhibition of its effect in increasing the size of the
ommatidia (Table S1 in Additional file 4; P = 0.0367,
using a two-tailed z test). By contrast, the increase in
the total number of the ommatidia induced by Dp110 in
ey-dm*/Y animals (Table 1; P < 0.001, ¢ test) was signifi-
cantly reduced in dm™°/Y and dm?/Y flies (Table S1 in
Additional file 4; P < 0.001, two-tailed z test). Reduction
of insulin signaling by PTEN showed a significant
decrease in the size of the ommatidia in ey-dm*/Y ani-
mals (92%) (Figure 4, Table 1, P < 0.001, ¢ test), and this
effect was more pronounced in ey-dm"’/Y and ey-dm®/Y
animals, where the size of the ommatidia was reduced
to 64% and 67%, respectively (Table 1; P < 0.001, ¢ test).
PTEN also significantly reduced the total number of the
ommatidia in the eyes of ey-dm* /Y and dm"°/Y flies
(Table 1; P < 0.001, t test). Statistical analysis of relative
growth across the different dm genetic backgrounds
showed that this reduction was highly significant for
both dm backgrounds (Table S1 in Additional file 4; P <
0.001, two-tailed z test). These data suggest that Myc
activity significantly contributes to insulin signaling-
induced growth in the eye.

Genetic analysis using components of TOR signaling
showed that, while expression of p70-S6K moderately
affected the size of the ommatidia (Table 1, P < 0.05, ¢
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test), expression of the UAS-Rheb*V* allele [39] showed
an 89% increase of ommatidia size in ey-dm™ /Y flies
(Table 1, P < 0.001, ¢ test) and this effect was drastically
reduced in ey-dm"°/Y and ey-dm®/Y animals (Table 1, P
< 0.001, ¢ test). This event was statistically significant as
demonstrated by our analysis of the relative size
increases across the different dm genetic backgrounds
(Table S1 in Additional file 4; P < 0.001, z test).

In summary these data suggests that Myc functions
downstream of TOR signaling to control the growth of
the size of the ommatidia.

While performing these experiments we noticed that
expression of components of TOR signaling, and in par-
ticular of the strong Rheb™"* allele, had a significant
negative effect on the total number of ommatidia (Table
1; P < 0.001, ¢ test). Moreover, this effect was rescued
by reducing dmyc levels (Figure 4, Table 1). To under-
stand the molecular mechanisms that caused Rheb to
reduce the ommatidia number, imaginal discs from
third instar larvae expressing UAS- Rheb™"* transgenes,
were examined for defects in cell proliferation or for
increased cell death. Imaginal eye discs from ey-dm”’/Y
or wild-type ey-dm™/Y animals carrying the UAS-Rhe-
b*"* transgene were subjected to bromodeoxyuridine
(BrdU) labeling to detect DNA replication (S phase), or
immunostained with anti-active caspase-3 to detect
apoptotic cells. This analysis revealed that, while no sig-
nificant changes were observed in the pattern of BrdU
labeling between the different genotypes (Additional file
6), a significant increase in the number of caspase-3
positive cells in the antennal and eye imaginal discs of
ey-dm*|Y; UAS-Rheb™"™ /+ larvae was seen, which was
significantly reduced in ey-dm"°/Y; UAS-Rheb™"™ /+ ani-
mals (Additional file 7). This highlights a potential
mechanism for TOR signaling to induce cell death when
growth is in excess.

Discussion

Previous studies in vertebrates have indicated a critical
function for Myc downstream of growth factor signaling
including insulin-like growth factor, insulin and TOR
pathways [18,48-50]. In Drosophila, despite a few notes
that Myc transcriptional activity acts downstream of
insulin and TOR pathways [23,24], no clear molecular
mechanisms linking these pathways to Myc have been
elucidated yet.

We previously demonstrated that inhibition of GSK3f3
prevents Myc degradation by the proteasome pathway
[10]. In this report, we further unravel the pathways that
control Myc protein stability and show that signaling by
insulin and TOR induce Myc protein accumulation by
regulating GSK3p activity in S2 cells. GSK3 is a consti-
tutively active kinase that is regulated by multiple sig-
nals and controls numerous cellular processes [8]. With
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Figure 4 Genetic interaction between Myc and components of the insulin and TOR pathways. (A) Scanning electron micrographs of adult
eyes from ey- dm*/Y (a-d), ey- dm™/Y (a-d) and ey- dm®/Y (a"-d") animals expressing the following transgenes: (a) control yw, (b) UAS-Dp110, (c)
UAS-PTEN, and (d) UAS-Rheb™*. All pictures are shown at the same magnification; posterior is to the left. Insets show higher-magnification views
of the ommatidia. Numbers at the top right indicate cell size variation as compared to control (100) for each genotype also reported in panel B
and C and Table 1. Histograms are representing the means of the (B) ommatidial size or (C) number of the indicated insulin and TOR
components in different dm genetic backgrounds. The standard deviations were calculated based on the total number of animals, as indicated
in Table 1. Note that the reduction of dm levels resulted in a small but significant decrease in ommatidial size in ey-dm”’/Y flies as compared to
control ey-dm™/Y (Panel B and C, and Table S2 in Additional file 5; P < 0.001, calculated using Student t test). This difference was more
pronounced in the eye of dm?/Y flies where the size of the ommatidia was reduced by 24% as compared to ey-dm*/Y flies. In addition, while
the total number of the ommatidia was similar for ey-dm™/Y flies and control ey-dm*/Y animals, flies with a null genetic background for dm (ey-
dm™/Y) showed an 11% of reduction in the total number of the ommatidia as compared to ey-dm*/Y eyes [57]. TOR: target of rapamycin.

our biochemical data we propose that GSK3p acts as a
common point where insulin and TOR signaling con-
verge to regulate Myc protein stability (Figure 5). In par-
ticular, we showed that activation of insulin signaling
induces activation of Akt, an event that is accompanied
by GSK3B phosphorylation on Ser 9 that causes its inac-
tivation and Myc protein to stabilize (Figure 1B).

Interestingly, insulin-induced Myc protein accumulation,
when GSK3p activity was blocked by the presence of
LiCl or by expression of GSK3B-KD, was similar to that
obtained with insulin alone. Since we showed that acti-
vation of insulin signaling leads to GSK3p inhibition
and to an increase in Myc protein, if insulin and GSK3f
signaling were acting independently, we would expect
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Table 1 Genetic interaction between Myc and components of insulin and target of rapamycin signaling

Genotype Total number ommatidia Ommatidium cell size (pmz) % number® %
cell size®
ey- dm® /Y +/4+; +/+ 726 + 17 (15) 239 + 14 (15) 100 100
ey- dm™* /Y: UAS-Dp110/+ 811 = 31 (06) * 329 + 10 (06) * 112 138
ey- dm™ /Y: UAS-PTEN/+ 538 + 25 (13) * 220 =11 (09) * 074 092
ey- dm®* /Y: UAS-S6K/+ 692 + 37 (10) ** 251 =12 (11) ** 095 105
ey- dm™ /Y: UAS- Rheb™ /4 555 + 18 (06) * 452 + 19 (06) * 076 189
ey- dm* /Y: UAS-TORT®P /+ 579 + 55 (11) * 214 +13 (11) * 080 089
ey- dm™oY; +/4; +/+ 735 + 16 (12) 218 + 09 (12) 100 100
ey- dm P°/Y; UAS-Dp110/+ 703 + 41 (06) ** 293 + 12 (06) * 096 135
ey- dm 0 /v; UAS-PTEN/+ 450 + 16 (06) * 140 % 09 (06) * 061 064
ey- dm /v UAS-S6K/+ 684 + 35 (09) * 216 + 15 (13) 093 099
ey- dm®® /Y; UAS- Rheb™"* /+ 651 + 31 (07) * 335 + 09 (09) * 088 154
ey- dm PO/v: UAS-TOR-"C /+ nd. nd. nd. n.d.
ey- dm*/Y; +/+; +/+ 650 + 44 (17) 179 + 11 (10) 100 100
ey- dm*/Y; UAS-Dp110/+ 641 + 66 (11) 228 + 08 (06) * 100 127
ey- dm*/Y; UAS-PTEN/+ 458 + 42 (06) * 120 + 13 (06) * 070 067
ey- dm*/Y; UAS- Rheb""* /+ 647 + 29 (12) 238 + 22 (08) * 100 132
ey- dm* /Y: UAS-TOR-E2 /4 nd. nd. n.d. n.d.

Standard deviations () are calculated based on the total number of the animals (reported in parenthesis); °Percentage of increase in size compared to relative
control (100); ® Percentage increase in cell number compared to relative control (100); p-values calculated using a Student t test: * P < 0.001; ** P < 0.05; n.d. =
not determined. Of note: overexpression of PTEN in ey-dm™/Y animals resulted in a misshaped eye phenotype (Figure 4A, Panel ') with a 98% penetrance,
which might have led to an underestimation of the total number of ommatidia and therefore affected our statistical analysis.

that activation of insulin signaling concomitantly with
the inhibition of GSK3p activity would result in a higher
level of Myc than that obtained with insulin or LiCl
alone. Our results instead showed a similar level of Myc
protein accumulation with insulin in the presence of
GSK3p inhibitors as compared to insulin alone (Figure
1D and 1E, compare lane 2 and 4), supporting the
hypothesis that GSK3p and insulin signaling, at least in
our experimental condition, depend on each other in
the mechanism that regulates Myc protein stability.

In a similar biochemical approach, we analyzed the
effect of AAs on Myc protein stability and how TOR
signaling is linked to mechanisms that inactivate GSK3f
to stabilize Myc protein in S2 cells. In these experiments
we were able to demonstrate that AAs increased Myc
protein stability, and we also showed that treatment
with rapamycin, an inhibitor of TORCI, reduced insu-
lin-induced Myc upregulation. The reduction of Myc
protein accumulation by rapamycin was blocked by inhi-
bition of the proteasome pathway, linking TOR signaling
to the pathway that controls Myc protein stability (Fig-
ure 1F). TORCI is a central node for the regulation of
anabolic and catabolic processes and contains the cen-
tral enzyme Rheb-GTPase, which responds to amino
acids by activating TOR kinase to induce phosphoryla-
tion of p70-S6K and 4E-BP1 [14,15]. Our analysis of the
molecular mechanisms that act downstream of TOR to
regulate Myc stability shows that AA treatment induces

p70-S6K to phosphorylate GSK3B on Ser 9, an event
that results in its inactivation and accumulation of Myc
protein (Figure 2).

Reducing GSK3p activity with LiCl, in medium lacking
AAs, resulted in a slight increase in Myc protein levels
(Figure 2C, lane 1 and 2). Adding back AAs lead to a sub-
stantial increase in Myc protein levels, which did not
further increase when AAs where added to cells in the
presence of the GSK3p inhibitor LiCl (Figure 2C, lane 3
and 4). These events were accompanied by phosphoryla-
tion of S6K on Thr 398, which correlated with phosphor-
ylation of GSK3f on Ser 9. From these experiments we
conclude that TOR signaling also converges to inhibit
GSK3p activity to regulate Myc protein stability (Figure
5). However, we need to point out that since AAs alone
increased Myc protein levels to a higher extent than that
observed with LiCl alone (Figure 2C, compare lane 2 and
3), our experiments also suggest that Myc protein stabi-
lity by TOR signaling is not solely directed through the
inhibition of GSK3f activity, but other events and/or
pathways contribute to Myc regulation. In conclusion,
our biochemical experiments demonstrate that GSK3f3
acts downstream of insulin and TOR pathways to control
Myc stability, however we do not exclude that other
pathways may control Myc protein stability upon insulin
and amino acids stimulation in S2 cells.

Reduction of insulin and TOR signaling in vivo
reduces cell size and proliferation, and clones mutant
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Figure 5 Model showing the proposed relationship between
Myc and the insulin and TOR signaling pathways. AA: amino
acids; DILPs: Drosophila insulin-like peptides; IRS: insulin-receptor
substrate; PI3K: phosphatidylinositol-3 kinase; Rheb: Ras homolog
enriched in brain; S6K: p-70-56 ribosomal protein kinase; TSC:
tuberous sclerosis complex; TOR: target of rapamycin.

for chico, the Drosophila orthologue of IRS1-4, or for
components of TOR signaling, are smaller due a reduc-
tion in size and the number of cells [29,31,39,51]. Our
experiments showed that reducing insulin signaling by
expression of PTEN or using TOR*”, a dominant nega-
tive form of TOR, decreased Myc protein levels in
clones of epithelial cells of the wing imaginal discs,
while the opposite was true when these signals were
activated using Dp110 or Rheb*"* (Figure 3). Those
experiments suggested that the mechanism of regulation
of Myc protein by insulin and TOR pathways was con-
served also in vivo in epithelial cells of the larval imagi-
nal discs.

During these experiments we also noted that Myc
protein was induced in the cells surrounding and bor-
dering the clones (non-autonomously), particularly when
clones where positioned along the dorsal-ventral axis of
the wing disc. This upregulation of Myc protein was not
restricted to components of the insulin signaling path-
way since we also observed it in cells surrounding the
clones mutant for components of the Hippo pathway
[52] or for the tumor suppressor lethal giant larvae
(Igl), which upregulates Myc protein cell-autonomously
[53]. We suspect that this non-autonomous regulation
of Myc may be induced by a novel mechanism that con-
trols proliferation of cells when ‘growth’ is unbalanced.
We can speculate that clones with different growth
rates, caused by different Myc levels, might secrete
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factors to induce Myc expression in neighboring cells.
As a consequence, these Myc-expressing cells will speed
up their growth rate in an attempt to maintain prolifera-
tion and tissue homeostasis. Further analysis is required
to identify the mechanisms responsible for this effect.

In order to distinguish if Myc activity was required
downstream of insulin and TOR signaling to induce
growth, we performed a genetic analysis. The ability to
induce growth and proliferation was measured in the
eye by measuring the size and number of the ommatidia
from animals expressing members of the insulin and
TOR pathways in different dm genetic background (dm
Y, dm® and dm?). Our data showed that Dp110
increased the size and number of the ommatidia, how-
ever only the alteration in the total number was depen-
dent on dm levels. These data suggest that Myc is
required downstream of insulin pathway to achieve the
proper number of ommatidia. However, when insulin
signaling was reduced by PTEN, a significant decrease
in the size of ommatidia was seen and it was dependent
on dm expression levels, suggesting that Myc activity is
limiting for ommatidial size and number. Activation of
TOR signaling induces growth [2], and our genetic ana-
lysis showed that Myc significantly contributes to the
size of the ommatidial cells thus suggesting that Myc
acts downstream of TOR pathway to control growth.

Recent genomic analysis showed a strong correlation
between the targets of Myc and those of the TOR path-
way [24], implying that they may share common targets.
In support of this observation our mosaic analysis with
a repressible cell marker (MARCM) experiments in the
developing wing disc showed that overexpression of
Myc partially rescues the growth disadvantage of clones
mutant for the hypomorphic Rheb™’ allele (Additional
file 8), further supporting the idea that Myc acts down-
stream of TOR to activate targets that control growth in
these clones.

Our genetic interaction revealed a stronger depen-
dence on Myc expression when Rheb was used as
opposed to S6K (Table 1). A possible explanation for
this difference could lie in the fact that S6K is not cap-
able of auto-activation of its kinase domain unless sti-
mulated by TOR kinase. TOR activity is dependent on
its upstream activator Rheb; consequently the enzymatic
activity of the Rheb/GTPase is the limiting factor that
influences S6K phosphorylation and therefore capable of
maximizing its activity [54].

Interestingly, these experiments also showed that acti-
vation of TOR signaling has a negative effect on the
number of ommatidia, and this correlates with the abil-
ity of Rheb”"* to induce cell death during the develop-
ment of the eye imaginal disc. Rheb-induced cell death
was rescued in a dm"’ mutant background, which led us
to speculate that ‘excessive’ protein synthesis, triggered
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by overexpression of TOR signaling, could elicit a Myc-
dependent stress response, which induces apoptosis.
Alternatively, high protein synthesis could result in an
enrichment of misfolded proteins [55] that may result in
a stress response and induces cell death. Further analysis
is required to delineate the mechanisms underlying this
process.

Conclusions

Our analyses provide novel genetic and biochemical evi-
dences supporting a role for Myc in the integration of
the insulin and TOR pathway during the control of
growth, and highlights the role of GSK3p in this signal-
ing. We found that insulin signaling inactivates GSK3f
to control Myc protein stability, and a similar biochem-
ical regulation is also shared by activation of the TOR
pathways. In support of this data, a recent genomic ana-
lysis in whole larvae showed a strong correlation
between the targets of Myc and those of the TOR path-
way; however, less overlap was found between the tar-
gets of Myc and those of PI3K signaling [23].

Statistical analysis applied to our genetic interaction
experiments revealed that, in the Drosophila eye, prolif-
eration induced by activation of the insulin pathway is
sensitive to variations in Myc levels, while a significant
interaction was seen mostly when TOR increased cell
size. Our data therefore suggests that there is a correla-
tion between Myc and the InR signaling and it is
expected that the InR pathway also shares some tran-
scriptional targets with Myc. Indeed, we found an over-
lap between the targets induced by insulin and Myc in
Drosophila S2 cells (PB, unpublished data) and these
targets have also been reported in transcriptome ana-
lyses in the fat body upon nutritional stress [24], sug-
gesting that Myc acts downstream of InR/PI3K and
TOR signaling and that this interaction might be speci-
fic to some tissues or in a particular metabolic state of
the cell.

Methods

Fly lines

Fly stocks were obtained from the Bloomington stock
center including w; UAS-Rheb®"*/TM6b which is
derived from P-element inserted in the rkeb locus [41],
UAS-Dp110 [56], UAS-PTEN [5], with the exception of
w; UAS-TOR™ P a mutant that expresses the toxic
extended domain of TOR protein (Thomas Neufeld,
UMN, MN, USA), UAS-HA-Myc [47], yw; UAS-Rheb
and w; FRT82, Rheb”™'/TMé6b (Hugo Stocker, ETH-ZH,
Switzerland), w; hs-Flp; tub-Gal4, UAS-GFP; FRT82 (hs-
CD2 y+)-tub-Gal80 (w+) (Myriam Zecca, Columbia Uni-
versity, NY, USA); UAS-GEP;Ay-Gal4:PR[3]/TM6b (Ken-
neth Irvine, Rutgers, NJ, USA [40]), ey—dm4 = yw dm?
tubulin-FRT-dmyc-cDNA-FRT-Gal4 ey-Flp/Y [57], ey-
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dm®® = yw dm®’tubulin-FRT-dmyc-cDNA-FRT-Gal4,
ey-Flp/Y, and ey-dm* = yw dm" tubulin-FRT-dmyc-
cDNA-FRT-Gal4, ey-Fip/Y.

Cell culture and western blot

Drosophila Schneider S2 cells or the line expressing the
plasmid tubulin-Gal4 (S2-tub-Gal4) [10] were grown at
25°C using Schneider medium (Invitrogen, GIBCO,
Carlsbad, CA, USA) supplemented with 10% heat-inacti-
vated FCS and 100 LU. of penicillin/streptomycin (Invi-
trogen, GIBCO, Carlsbad, CA, USA). Insulin and AA
treatments: S2 cells were serum-starved in 0.5% serum
for 12 h and then various chemical inhibitors were
added to the medium with or without insulin (from por-
cine, Sigma, St Louis, MO, USA 1 pM final concentra-
tion). For AA treatment, S2 cells were serum-starved as
described above and further incubated for 30 min in
medium without amino acids, made from the recipe of
Drosophila Schneider medium (Invitrogen, GIBCO,
Carlsbad, CA, USA) containing 0.5% dialyzed FCS. A 2x
solution containing the same concentration of AAs as
the Drosophila Schneider medium was added to induce
an AA response for the indicated times. Cells were
washed in PBS and lysed in a buffer containing 50 mM
HEPES, pH 7.4; 250 mM NaCl; 1 mM EDTA, 1% Triton
and protease and phosphatases inhibitors (Roche, Man-
nheim, Germany). Protein concentration was measured
using the Bio-Rad protein assay. Western blot analysis
was performed using the following primary antibodies:
anti-Drosophila Myc mAb [10]; anti-HA (Roche, Man-
nheim, Germany), anti-actin mAb and anti vinculin
mAD (Sigma, St. Louis, MO, USA); anti-Drosophila
phospho-Akt, anti-phospho-GSK3f anti-phospho-S6K
and anti GSK3p (Cell Signaling Technology inc. Dan-
vers, MA, USA). Chemical inhibitors were used at 1 uM
for rapamycin, 100 nM for wortmannin, and 50 mM for
LiCl. Plasmids encoding HA-S6K (pAct-HA-s6k) and
Myc-Rheb (pAct-Myc-Rheb), were a gift from Duojia J.
Pan [37]. Transfection of S2 cells or of S2-tub-Gal4 was
performed using Cellfectin reagent (Invitrogen, Carlsbad,
CA, USA). The efficiency of transfection in S2 cells was
analyzed by co-transfecting tub-Gal4 with UAS-GFP
plasmids, and was found in the range of 30% to 60%
depending on the experiment. Experiments were
repeated at least three times with similar results.

Generation of inducible Flp-out clones

Flp-out clones were generated using UAS-GFP;AyGal4:
PR[3]/TM6b flies [40] by heat shock for 20 min at 37°C.
Heat shock was performed 48 h after egg laying (AEL).
Gal4:PR was activated by transferring larvae to instant
food (Instant Drosophila Medium, Connecticut Valley
Biological, MA, USA) containing RU486 (mifepristone,
Sigma, St. Louis, MO, USA). Two grams of instant food
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were mixed with 7 mL of water previously supplemen-
ted with RU486, resulting in a final concentration of 20
pg/ml of mifepristone. Immunostaining protocol is
reported in the Additional file 9: Supplementary Mate-
rial and Methods.

Analysis of ommatidial size and number

Flies were reared at 25°C under reproducible growth
conditions and age matched (three-day-old males)
before determining the ommatidial size and number.
Total ommatidial number was counted on scanning
electron micrographs from animals of the indicate geno-
types. Size of the ommatidia was calculated by measur-

ing the area of 20 ommatidia located at the center of

the eye using Adobe Photoshop 7.0, as described pre-
viously [47]. At least eight animals of each genotype
were measured.

Statistical analysis

To perform this statistical analysis we considered two
components: an estimation of the relative size and num-
ber of the ommatidia and their variability, and a stan-
dard two-sided z test to establish the significance of the
differences of our data within the different dm genetic
backgrounds. Means comparison between groups of ani-
mals was made using a Student’s ¢ test. Data in Table 1
are presented as means. Standard deviations and the
number of animals are represented in parenthesis. A
two-tailed z test analysis was performed to calculate the

p values for the hypothesis that the relative growth of

the ommatidial size and number for the various pheno-
types are equal (see Appendix 1 in Additional file 3 and
Table S1 in Additional file 4).

Additional material

Additional file 1: Quantitative RT-PCR comparing the transcript
levels for dm, cyclin D and cyclin E in Drosophila S2 cells upon
insulin (A) or amino acids (B) treatment. Cells were treated with
insulin or AAs and RNA was extracted at the indicated times. gRT-PCRs
were performed to analyze expression of diminutive (dm), cyclin D and
cyclin E RNAs. The sequences of the primers used are available in
Additional file 8; Supplementary Material and Methods. actin was used as
the internal control. Error bars indicate the standard deviations ()
calculated on the average of three separate experiments.

Additional file 2: Quantitative RT-PCR of dm and its target fibrillarin
in Drosophila S2 cells upon insulin treatments and in the presence
of rapamycin. Cells were treated with insulin or rapamycin alone and
together as indicated in the figure; rp49 (ribosomal protein 49) was used
as internal control. Similar results were obtained using actin as a control
(not shown). Error bars indicate the standard deviation (+) calculated
from three independent experiments.

Additional file 3: Appendix 1. Significance analysis of the conjectured
growth for ommatidial number and size used in the experiments
outlined in Figure 4 and Table 1. The P-values of a two-tailed z test for
the analysis are represented in Table S1 in Additional file 4.

Additional file 4: Table S1. Representation of the relative increase
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represent the percentage of increase in size (a-Size) or number (a-
Number) as compared to their control and relative genetic background
(see also data in Table 1). da is the standard deviations and the total
number of animals used is indicated in Table 1. To establish the
significance of the relative differences of the data within the different dm
genetic background, we calculate the P-values using a standard two-
sided z-test (the formula used is represented in Appendix 1 of Additional
file 3). * complete genotype: the construct tubulin-FRT-dmyc-cDNA-FRT-
Gal4, ey-Flp/Y was recombined into the dm®*, dm”or dm” genetic
background.

Additional file 5: Table S2. Analysis of the ommatidial size and
number in animals with different dm genetic background. The total
number of ommatidia and the relative size of each ommatidium are
indicated. Standard deviations (+) are calculated based on the total
number of the animals reported in parenthesis. Values represent the
relative increase in the size (a) or number (b) of the ommatidia
compared to the values in their genetic background (100). P-values are
calculated from Student t test and are reported for the calculation of
ommatidia number (c) and size (d). * complete genotype: the construct
tubulin-FRT-dmyc-cDNA-FRT-Gal4, ey-Flp/Y was recombined into the dm®,
dmP°or dm* genetic background.

Additional file 6: BrdU-labeling in the eye imaginal discs from third
instar larvae expressing Rheb”" transgene in wild-type dm*/Y (A) or
in hypomorphic dm™/Y animals (B). Expression of the UAS-Rheb™* did
not significantly alter the S phase in the cells of the eye imaginal disc,
visualized by BrdU labeling (red). Nuclei are labeled with DAPI (blue).
Posterior is to the left.

Additional file 7: Expression of Rheb®"* induces Myc-dependent
apoptosis. Third instar eye imaginal discs from ey-dm™/Y or ey-dm"’/Y
larvae carrying the UAS-Rheb”™" transgene (A-B) or control chromosome
(C-D) were tested for the presence of apoptotic cells. Discs were stained
with anti-active caspase 3 antibody (red) to visualize cell death, or with
anti ELAV (green) to mark the differentiated neuronal cells posterior to
the morphogenetic furrow (MF). DAPI staining (blue) indicates nuclei. (E)
Quantification of caspase-positive cells in the region posterior to the MF
of the indicated genotype (visible in insets). Error bars indicate standard
deviation () calculated from six independent eye imaginal discs. P <
0.007for t test for ey- dm*/Y; UAS-Rheb™* vs. ey- dm"/Y; UAS-Rheb™"
while comparisons within the other genotypes resulted in P > 0.1. (F)
Photo of an eye imaginal disc from third-instar ey- dm™/Y; UAS-GFP larvae
highlighting the territory where the eyeless-Gal4; UAS-GFP transgene is
expressed. Posterior is to the left.

Additional file 8: MARCM showing a partial rescue of Rheb”™’
hypomorphic mutant clones by Myc overexpression. Rheb”’
homozygous mutant clones suffer of growth disadvantage [39]. These
clones, induced at 72 h AEL and marked by GFP expression, are
significantly smaller than wild-type siblings, which are marked by CD2
staining (red). The growth defect of Rheb™! mutant clones (A) is partially
rescued by expression of Myc (B). Those clones are visible by co-
expression with GFP, while wild-type clones are marked by the expression
of CD2 and visualized by immunofluorescence using anti-CD2 antibodies.
To generate MARCM clones the line hs-flp, tub-Gal4 (w+), UAS-GFP (w+);
FRT82 [hsCD2 (y+)] tub-Gal80 was crossed with the line w; FRT82 Rheb™ '/
TM6b (A) or with w; UAS-dMyc; FRT82 Rheb”™/TM6b (B). (see
Supplementary Material and Methods in Additional file 9).

of the size for each ommatidium and their total number. The values

Additional file 9: Supplementary Material and Methods.

Abbreviations

AA: amino acid; AEL: after egg laying; BrdU: bromodeoxyuridine; EDTA:
ethylenediaminetetraacetic acid; FCS: fetal calf serum; GFP: green fluorescent
protein; GSK3p: glycogen synthase kinase 3-beta; GSK3(3-KD: GSK33 kinase
dead; InR: insulin receptor; IRS: insulin-receptor substrate; LiCl: lithium
chloride; MARCM: mosaic analysis with a repressible cell marker; PBS:
phosphate buffered saline; PIP3: phosphatidylinositol-3,4,5-triphosphate; PI3K:
phosphatidyl-inositol-3 kinase; PTEN: phosphatase and tensin homolog;
Rheb: Ras homolog enriched in brain; RT-PCR: reverse transcription
polymerase chain reaction; S6K: p70-S6 ribosomal protein kinase; TOR: target
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of rapamycin; TORC1: TOR complex 1; TSC: tuberous sclerosis complex; ZNC:
zone of non-proliferative cells; 4E-BP1: eukaryotic translation initiation factor
4E-binding protein 1.
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