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Abstract

INK-dependent programmed cell death.

Background: Genetic ablation of target cells is a powerful tool to study the origins and functions of cells, tissue
regeneration, or pathophysiology in a human disease model in vivo. Several methods for selective cell ablation by
inducing apoptosis have been established, using exogenous toxins or endogenous proapoptotic genes. However,
their application is limited to cells with intact apoptotic machinery.

Results: Herein, we established a method for inducing rapid and selective cell necrosis by the pore-forming bacterial
toxin Cry1Aa, which is specifically active in cells expressing the Cry1Aa receptor (CryR) derived from the silkworm
Bombyx mori. We demonstrated that overexpressing CryR in Drosophila melanogaster tissues induced rapid cell death of
CryR-expressing cells only, in the presence of Cry1Aa toxin. Cry/CryR system was effective against both proliferating
cells in imaginal discs and polyploid postmitotic cells in the fat body. Live imaging analysis of cell ablation revealed
swelling and subsequent osmotic lysis of CryR-positive cells after 30 min of incubation with Cry1Aa toxin. Osmotic cell
lysis was still triggered when apoptosis, JNK activation, or autophagy was inhibited, suggesting that Cry1Aa-induced
necrotic cell death occurred independently of these cellular signaling pathways. Injection of Cry1Aa into the body cavity
resulted in specific ablation of CryR-expressing cells, indicating the usefulness of this method for in vivo cell ablation.

Conclusions: With Cry toxins from Bacillus thuringiensis, we developed a novel method for genetic induction of cell
necrosis. Our system provides a “proteinous drill” for killing target cells through physical injury of the cell membrane,
which can potentially be used to ablate any cell type in any organisms, even those that are resistant to apoptosis or
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Background

Cell ablation followed by phenotypic analysis is an
effective method for investigating the function and ori-
gin of cells, tissue regeneration, or pathophysiology in a
model of human diseases. In contrast to surgical, laser,
or pharmacological ablation, genetic ablation is a repro-
ducible, versatile, and technically accessible method for
inducing death of target cells in vivo. Various genetic ab-
lation methods have been developed. For example, direct
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induction of apoptosis by expressing modified caspase-8
[1, 2], caspase-3 [3], or caspase-9 [4] under cell type-
specific promoters is well established. Exogenous toxins
such as the Diphtheria toxin (DT) A subunit have also
been used to induce cell death by inhibiting protein syn-
thesis [5, 6]. Conditional expression of the DT receptor
allows specific ablation of DT receptor-expressing cells
by DT injection [7, 8]. Enzyme-triggered conversion of pro-
drugs to cytotoxic compounds is another possible strategy
[9, 10]. Although the mechanisms of cell death are differ-
ent, most of these manipulations stimulate the genetic-
ally programmed process of apoptosis in the host [11].
In Drosophila melanogaster, several genetic ablation
methods using DT A, Ricin A, or pro-apoptotic mole-
cules such as Reaper, Hid, Grim (RHG) motif proteins
have been established [12]. Targeted cell ablation is
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usually achieved by combining cell type-specific Gal4
drivers with cell death-inducing genes downstream of
the upstream activation sequence (UAS). However, these
methods are again predominantly dependent on the
apoptotic machinery of target cells. Apoptosis is a time-
and energy-consuming process and sometimes results in
incomplete cell ablation. Unsuccessful induction of cell
death can trigger diverse cellular processes due to mild
activation of caspases, confusing the outcome of ablation
experiments [13]. Moreover, not all types of cells are
susceptible to apoptotic stimuli, as either loss or gain of
function of pro- or anti-apoptotic signaling components
prevents cells from undergoing apoptosis [14—16]. There
is a need for a genetic technique that induces cell death
in a more direct physical manner, and can therefore be
applied to a wider range of cell types.

Cry toxins are proteinous insecticidal toxins produced
by Bacillus thuringiensis during sporulation. Diverse
families of Cry toxins exhibit toxicity in diverse but
different target insects, and are thus wused as
environment-friendly biological pesticides that can kill
the specific insect pests with few side effects for the
ecosystem. Genetically modified crops producing Cry
toxins have been generated, and 66 million hectares
were planted worldwide in 2011 [17]. The mode of
action by which Cry toxins kill specific insects is not
completely understood. However, toxin-receptor inter-
action is regarded as an essential step for exerting
insecticidal activity, as susceptible insects express Cry
toxin receptors such as alkaline phosphatase, amino-
peptidase N, cadherin-like protein, or ABC transporter
C2 (ABCC2) in the midgut [18]. Upon binding to re-
ceptors, Cry toxins form oligomers that generate pores
in the cell membrane, leading to cell swelling and os-
motic cell lysis. Previous studies have demonstrated
that ectopic expression of the Bombyx mori receptors
cadherin-like protein BtR175 or BmABCC?2 is sufficient
for CrylA toxins to induce cell death in cultured Sf9
cells, although BtR175 is less efficient [19]. Since
CrylAa does not exhibit toxicity against non-target or-
ganisms, including Drosophila melanogaster, it can be
used for conditional cell ablation if the CrylAa recep-
tor is selectively expressed. In this report, we estab-
lished a novel ablation method for rapid and selective
induction of cell necrosis achieved by conditional
expression of CrylAa receptors.

Results

Targeted necrosis of Cry1Aa receptor-expressing cells in
cultured imaginal discs incubated with Cry1Aa

To test whether CrylAa can induce cell death in cells
overexpressing CrylAa receptors, we prepared the trans-
genic flies UAS-BmABCC2 and UAS-BtR175. We overex-
pressed each receptor in the wing pouch region, which
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eventually develops into adult wings, using the WP-Gal4
driver [20]. These flies had no morphological defects in
the wing pouch of third instar larvae or in adult wings,
suggesting that the ectopic expression of exogenous
Bombyx mori receptors in these cells was not toxic. We
dissected and cultured wing discs from third instar larvae
and treated them with CrylAa ex vivo. We observed pro-
pidium iodide (PI)-positive dying cells in the wing pouch
region when BmABCC2, but not BtRI75, was overex-
pressed (Fig. la—c, Additional file 1: Figure S1). PI is a nu-
cleic acid stain that acts as a marker for cell death,
particularly for necrosis, as it enters the cells only when
membrane integrity is disrupted. Since BmABCC?2 is suffi-
cient for CrylAa-induced cell death, we designated this
receptor as CryR (CrylAa toxin receptor) for simplicity.
We defined CrylAa-induced osmotic cell lysis as a form
of necrotic cell death (or accidental cell death) that was
not genetically regulated.

When CryR was driven by dpp-Gal4, which expresses
at the midline region of wing discs, strong PI signals
were observed in CryR-expressing cells when incubated
with CrylAa (Fig. 2a, b). Simultaneous expression of both
receptors further enhanced susceptibility to CrylAa-
induced cell death (Fig. 3), similar to the synergistic effect
observed in Sf9 cells [19]. Serial dilutions of CrylAa in the
culture medium (concentrations 6.25-100 nM) revealed
that 12.5 nM CrylAa induced weak but significant PI
staining. This became stronger as the toxin concentration
was increased; therefore, dose-dependent control of the
strength of ablation might be possible (Additional file 1:
Figure S2). These data indicate that the CrylAa/CryR
ablation system can be used to induce conditional cell
necrosis in Drosophila.

Rapid and selective cell necrosis by Cry1Aa in cultured
imaginal discs and fat body

To investigate the precise time course of CrylAa-induced
cell necrosis, we performed live imaging analysis of cul-
tured wing discs from WP > GFP CryR with 200 nM
CrylAa (Fig. 4a, Additional files 2, 3 and 4). PI signals
were first detected after around 30 min, and increased
throughout the 90-minute incubation period. Interest-
ingly, the morphology of the wing pouch region drastically
changed just before Pl-positive cells were first observed.
We observed swelling of GFP-positive cells, which re-
sulted in expansion of the wing pouch region. The WP-
Gal4 driver was also expressed in a small population of
leg discs, and these cells also died by cell swelling follow-
ing CrylAa treatment.

Imaginal discs are proliferating tissues that seem to be
relatively sensitive to cell death stimuli. Therefore, we
investigated whether the CrylAa/CryR ablation system
was applicable to non-proliferating tissues, such as the fat
body, by live imaging analysis (Fig. 4b, Additional file 5).
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Fig. 1 Cry1Aa toxin induces cell necrosis in Cry1Aa toxin receptor (CryR)-overexpressing cells in wing pouch in wing discs. (a—c) Propidium iodide
(PI) staining of cultured wing discs from third instar larvae expressing CryR by WP-Gal4. WP > GFP, CryR incubated 1 h with 100 nM Cry1Aa
showed Pl signal (c), in contrast to negative controls WP > GFP, LacZ with 100 nM Cry1Aa (b) or WP > GFP, CryR without Cry1Aa (a). Scale

bar, 100 pm

The fat body, a counterpart of mammalian liver and white
adipose tissue, is composed of large, postmitotic, polyploid
cells. We overexpressed CryR randomly in fat body cells
using the flip-out clone technique, which simultaneously
labels CryR-positive cells with GFP. When incubated with
100 nM CrylAa, CryR-expressing cells became PI-positive
20 min after toxin treatment, without any effect on neigh-
boring CryR-negative cells. This suggests that the CrylAa/

CryR system is a highly selective method for inducing ne-
crosis with single cell resolution.

Cry1Aa induced necrosis independently of apoptosis,
c-Jun N-terminal kinase (JNK) activation, or autophagy
One of the limitations of conventional cell ablation sys-
tems is their dependency on the cell’s ability to activate
programmed cell death. In contrast, CrylAa directly

dpp>GFF, CryR
1 +Cry1Aa

Fig. 2 Cry1Aa toxin induces cell necrosis in Cry1Aa toxin receptor (CryR)-overexpressing cells in dpp > GFP, CryR wing discs. (a, b) Pl staining of
cultured wing discs from third instar larvae expressing CryR by dpp-Gal4.dpp > GFP, CryR incubated 1 h with 100 nM Cry1Aa showed PI signal (b),
while dpp > GFP, LacZ incubated with Cry1Aa did not (a). Scale bar, 100 um
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Fig. 3 Synergistic effect of simultaneous expression of CryR and BtR175 on Cry1Aa-induced toxicity. Propidium iodide (PI) staining of wing discs
from third instar larvae overexpressing BtR175 by en-Gal4 and CryR by WP-QF2 incubated for 1 h with 50 nM Cry1Aa. Genotype is w; en-Gal4,
UAS-GFP/+; WP-QF2, UAS-BtR175/QUAS-CryR. PI signals were stronger in the posterior half of the wing pouch where both BtR175 and CryR were
expressed. Scale bar, 100 um
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Fig. 4 Live imaging of cell necrosis in cultured wing discs and fat body. a Time lapse imaging of Cry1Aa-induced cell death in wing discs from
third instar larvae. Wing discs of WP > GFP, CryR were cultured and Cry1Aa was added to the medium at a final concentration of 200 nM. Images
were from just before addition of Cry1Aa or after 20, 40, 60, and 80 min incubation. Full movies are supplied online (Additional file 2: Movie ST,
Additional file 3: Movie S2 and Additional file 4: Movie S3). Scale bar, 100 um. b Time lapse imaging of Cry1Aa-induced cell death in fat body from
third instar larvae. Fat bodies of hsff/p’zz, UAS-mCD8-GFP; Actin > y > Gal4, UAS-GFP/+; UAS-CryR/+ were incubated with 100 nM Cry1Aa. Flip-out
clone cells expressing CryR were labeled with GFP. Images were from 15, 30, and 45 min after incubation. Full movies are supplied online
(Additional file 5: Movie S4). Scale bar, 100 um
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forms a pore on the plasma membrane, suggesting that
cellular context does not affect toxicity. To test this, we
overexpressed p35, a baculoviral inhibitor of apoptosis
that inactivates caspases, and tested whether CrylAa
could still induce cell death (Fig. 5a, b). As expected, PI
signals were not attenuated by p35 overexpression. In
addition, CrylAa-induced cell death was not blocked by
treatment with z-VAD-fmk, a pan-caspase inhibitor
(Additional file 1: Figure S3A). We further confirmed
that knock down of either dronc, an initiator caspase, or
of pro-apoptotic RHG genes, did not inhibit cell death
(Additional file 1: Figure S3B, C), indicating that apop-
tosis is not required for the Cry/CryR system.

JNK activation can also induce programmed cell death
[21]. For example, Eiger, a tumor necrosis factor
superfamily protein in Drosophila, kills cells in a JNK-
dependent manner, at least partially by a different
mechanism from apoptosis. We therefore overex-
pressed puckered (puc), which is a negative regulator of
JNK. Similar to p35, puc expression did not affect
CrylAa-induced cell necrosis (Fig. 5¢).

Autophagic cell death is another type of programmed
cell death [22, 23]. For example, during metamorphosis
in Drosophila, degeneration of larval salivary gland or
midgut requires autophagic components [24, 25]. When
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autophagy was inhibited by knock down of atgl alone,
or together with z-VAD-fmk, we still observed PI-positive
dying cells induced by CrylAa (Additional file 1: Figure
S3D-F). These data demonstrated that CrylAa-induced
target cell ablation does not require genetic components

for cell death.

Cry1Aa injection induced selective cell necrosis in vivo

To investigate whether the CrylAa/CryR system can be
used for conditional cell ablation in vivo, CrylAa was
fed to either developing larvae or adult flies through a
CrylAa-containing diet. However, this failed to kill the
animals even though CryR was overexpressed ubiqui-
tously (da >CryR) or in gut enterocytes (NP1 >CryR),
probably due to the instability of Cry toxin in the Dros-
ophila medium and/or in the digestive tract. Therefore,
we injected concentrated CrylAa directly into the body
cavity of wandering third instar larvae (Fig. 6a). Injection
of CrylAa into control flies had no apparent effect on
viability or development, suggesting that there is little
“off-target effect” on flies without exogenous CryR. In
contrast, when CrylAa was injected into WP >GFP,
CryR larvae, we observed selective cell necrosis in the
wing pouch region (Fig. 6b, c). If cells in the wing pouch
undergo successful ablation, injected larvae should

en> GFP, CryR, LacZ|
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Fig. 5 Cry1Aa induces cell death even in cells with inhibited apoptosis or JNK-dependent cell death. (a-c) Propidium iodide (P) staining of cul-
tured wing discs from third instar larvae. En > GFP, CryR was crossed with LacZ (a), inhibitor of apoptosis, p35 (b), and JNK inhibitor, puc (c), and
wing discs from F1 progeny were incubated for 1 h with 100 nM Cry1Aa. Scale bar, 100 um
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Fig. 6 Injection of Cry1Aa for in vivo cell ablation. a Schematic of an in vivo ablation experiment. (b, ¢) Propidium iodide (PI) staining of wing
discs from Cry1Aa-injected larvae. All CryR-expressing cells, marked by green fluorescent protein (GFP), were Pl-positive (c), in contrast to the
controls, overexpressing LacZ (B). Scale bar, 100 um. d Adult flies injected with Cry1Aa during third instar larvae lost their wings. This phenotype
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become adult flies without wings. Strikingly, just a single
CrylAa injection in third instar larvae resulted in adults
without wings (Fig. 6d). This phenotype was only ob-
served in flies expressing CryR and exposed to CrylAa,
indicating conditional cell ablation by the CrylAa/CryR
system in vivo.

We also tested whether our system is applicable to the
developmental study of sensory organs by injecting
CrylAa toxin into Neur >CryR third-instar larvae. Neur-
Gal4 is expressed in sensory organ precursors (SOPs) in
wing discs that become adult bristles. CrylAa injection
during late-third instar larvae (6—12 h before pupal for-
mation) resulted in a loss of bristles from epithelia
(Fig. 7a). Although not all bristles are lost, the loss of
bristles is probably due to differences in developmental
timing as some SOPs such as the anterior scuteller bris-
tle, which arise during later stages of development (0-6
h before pupal formation). Indeed, ablated macrocheates
such as posterior scuteller bristle, or posterior drosocentral
bristle are generated in early to middle-third larval stage
(12-30 h before pupal formation) [26]. This suggested that
CrylAa kills cells rapidly upon injection into larvae,

and that CrylAa can be inactivated or removed from
the hemolymph within a relatively short period after injec-
tion. Therefore, the CrylAa/CryR system could be useful
for spatiotemporal cell ablation. Furthermore, a lack of mel-
anization in adult epithelia at the original SOP positions
implied that dying SOPs are eventually eliminated from the
tissue rather than remaining in the epithelial sheet.

We observed a lethal effect of injected CrylAa on
adult male flies with ubiquitous expression of CryR
(Fig. 7b). Almost all CryR-expressing flies died within 18
h of the injection, while all control flies survived. In
addition, CrylAa injection into Elav > CryR where CryR
was overexpressed in neurons, resulted in an unsteady
gait that eventually led to organismal death as early as 6
h post-injection (Additional file 6, Fig. 7b), suggesting
that CryR-expressing neurons were damaged by CrylAa.
To test whether CrylAa could permeate across the
blood—brain barrier (BBB) and induce cell death in CNS,
we performed PI staining upon CrylAa injection into
larval hemolymphs. The injected brain from Elav > CryR
larvae were positive for PI staining, but only at the sur-
face of the brain tissue (Fig. 7c). BBB in larval brain is



Obata et al. BMC Biology (2015) 13:48

Page 7 of 10

anterior Scuteller; pSC, posteior Scuteller) and arrows in the right panel

each condition. ¢ Confocal images of Propidium iodide (Pl) staining of

formation in the plasma membrane

>
w

Fig. 7 In vivo cell ablation of peripheral or central nervous system by Cry1Aa injection. a Adult flies injected with Cry1Aa during third instar larval
stage lost their bristles. Arrows in the left panel (negative control, without Neur-Gal4) indicate bristle positions (pDC, posterior Dorsocentral; aSC,

b Survival curve of male flies with CryR expression throughout the whole body (da) or only in neurons (Elav) with and without Cry1Aa; n = 50 for

were dissected 3 h post-injection and then stained with PI. A single focal plane from the middle and surface regions are shown. d Schematic view
of selective cell ablation by the Cry1Aa/CryR system. Cry1Aa specifically induces cell swelling and necrosis in CryR-expressing cells by pore
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larval brain from Elav > CryR, with and without Cry1Aa injection. Brains

established by surface glia, which are distinct from cor-
tex glia [27, 28]. To further validate that CrylAa cross
the BBB, we overexpressed CryR by cortex glia driver,
Nrv2-Gal4, and then investigated whether injected
CrylAa into the hemolymph could induce cell death in
these glia. Compared to the control (without CrylAa),
we observed a large portion of PI-positive cortex glia, al-
though PI-positive cells observed were not limited to
GFP-positive cells (Additional file 1: Figure S4). There-
fore, we believe that CrylAa penetrated the BBB, just as
DT did in mice [8], although cells deep inside the tissue
were not affected, suggesting that CrylAa/CryR system
might be applicable for CNS.

Discussion

Inducing cell death of target cells is increasingly required
by both basic biologists, who study the function of spe-
cific cells of interest, and clinical scientists seeking se-
lective ablation of unwanted cells such as tumor cells.
Because different types of Cry toxins and receptors have
different biochemical characteristics, we can select the

desired toxin-receptor combinations for each experi-
ment or for each organism. Further, utilizing two recep-
tors can broaden the application. For example, ablation
of target cells by expressing two receptors (e.g. CryR and
BtR175) simultaneously enhances cell toxicity, as observed
in the present study. Moreover, highly specific ablation
may be possible using relatively low concentrations of
CrylAa and two receptors driven by different promoters,
which may result in the death of only “merged” cells ex-
pressing both receptors.

Recently, Ichikawa et al. [29] developed a method for
inducing reactive oxygen species production using a
chemical photosensitizer, which was shown to be useful
for selective cell ablation in Drosophila tissue. This probe
(HMDESeR-BGal) is highly conditional, as it is activated
by light irradiation only in cells expressing E. coli B-
galactosidase. However, it is difficult to use this probe for
cell ablation in internal tissues, and maintaining tissue in
the dark is essential for keeping HMDESeR-BGal latent
during the non-ablation period. Therefore, the Cry/CryR
system has some advantages, especially for in vivo ablation.
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The Cry/CryR system provides spatiotemporally regu-
lated induction of cell death. Temporal control of gen-
etic ablation is useful for studying tissue repair or
regeneration after tissue injury. Therefore, this system
could be used for genetic studies of factors for tissue
repair/regeneration. Furthermore, we believe that the
Cry/CryR system is probably applicable to selective cell
ablation in mammals, including mice, as no obvious
toxicity has been observed so far. Conditional expression
of CryR by the Cre/LoxP system should permit conditional
ablation of mouse cells in vivo.

Conclusions

Cry toxins are widely used for pest control because of
their specific insecticidal activity. Our present study
demonstrates the possibility of using Cry toxins as a tool
for conditional ablation in model organisms like Dros-
ophila (Fig. 7d). Since CrylAa is a pore-forming toxin
that physically damages the target cell membrane, it can
induce necrosis in any type or condition of cells,
theoretically in any species.

Methods

Drosophila stocks and genetics

Fly stocks were maintained on a standard diet contain-
ing glucose, yeast, and cornmeal at 25 °C and 60 %
humidity under 12 h:12 h light:dark conditions. UAS-
Atgl-RNAi (HMS02750), WP-Gal4 [20], dpp-Gal4, Nrv2-
Gal4, and en-Gal4 were obtained from the Bloomington
Drosophila stock center. Clonal expression in the fat body
was based on the flip-out technique, as described
previously [20]. WP-QF2 (Kashio et al, in preparation)
was constructed from a QF2 fragment gifted by CJ Potter
[30]. UAS-BtR, UAS-CryR, and QUAS-CryR flies were
established as described below. UAS-dronc-RNAi was
established and characterized previously [20]. UAS-RHG-
RNAi was a gift from CH Chen [31].

Construction of CryR transgenic flies

To generate the expression constructs UAS-CryR and
PQUAST-CryR, the full length cDNA of CryR/BmABCC2
was amplified by PCR from the pBAC4x-1-EGFP-
BmABCC2 vector [19] with primers (5'-CGTgcggecgc
ATGAATAGTGATGGGAGAG-3" and 5'-TGAgcggecge
TTTTTCTGTATTTCTACC-3") or (5'-CGCtctagaATGA
ATAGTGATGGGAGAGC-3" and 5'-CGCtctagaTCATT
TTTCTGTATTTCTACCAAGATG-3'), and cloned into
pUAST or pQUAST vectors using Notl or Xbal sites,
respectively.

To generate the expression construct UAS-BtR175, the
c¢DNA of the toxin binding region of BtR175 [32] was
obtained by PCR from the pBAC4x-1-EGFP-BtR175-
TBR vector [19], with primers (5'-CCGActcgagATGGG
AGTTGACGTTCGAAT-3" and 5'- CCGActcgagTTA

Page 8 of 10

TGCCAAATTGACAGCTA-3"), and cloned into the
pUAST vector using the Xhol site.

Preparation of recombinant active Cry1Aa

CrylAa toxin was expressed as a recombinant protein in E.
coli, and CrylAa protoxin was solubilized under highly al-
kaline conditions (pH 11.0) by NaOH. The solubilized pro-
toxin was activated by trypsin and purified using HPLC, as
described previously [33]. The concentration of the purified
and activated toxin was measured by densitometry using
SDS-PAGE, with bovine serum albumin as a standard.

Pl staining analysis of wing discs ex vivo

For PI staining, wing discs were dissected from third
instar larvae and incubated with 100 nM (otherwise
stated) nM CrylAa toxin, 4 uM PI, and 16 M Hoechst in
S2 medium (GIBCO) at 25 °C for 60 min. After extensive
washing in S2 medium, the wing discs were fixed with 4 %
PFA for 20 min at room temperature and then placed on
glass slides. Images were obtained using a Leica SP8
confocal microscope and processed using Image]J software.

Live imaging analysis of wing discs and fat body

Wing discs were dissected from late third instar WP >
CryR larvae in S2 medium and mounted on 35 mm glass-
bottomed dishes with 50 uL PBS. After removing the PBS,
500 pL S2 medium was added and time-lapse imaging was
performed for 2 h, at 1-min intervals, using a Leica SP5
confocal microscope. CrylAa was added to the culture
medium at a final concentration of 200 nM between the
first and second image acquisitions. For fat body imaging,
fat bodies were dissected from late third instar larvae of
genotype, hs-flp"*%, UAS-mCD8-GFP; Actin > y > Gal4,
UAS-GFP/+; UAS-CryR/+. The fat body was mounted on a
glass slide with a small incubation space, with S2 medium
containing 100 nM CrylAa, and covered by cover glass.
After 15-min incubation, time-lapse images were obtained
using a Leica SP5 confocal microscope for 30 min at 1-min
intervals.

In vivo ablation by Cry1Aa injection

CrylAa toxin (13 ng) was directly injected into third in-
star larvae using the Nanoject II Auto-Nanoliter Injector
(Drummond Scientific Company, Broomall, PA, USA).
Wing discs were dissected 6 h after injection and stained
with PI, or flies were maintained at 25 °C until adult
hatching. Larval brains were dissected 3 h post-injection
and stained with PI. For adult injection, male flies of
da > CryR or Elav > CryR were injected with 13 ng
CrylAa toxin using the Nanoject II Auto-Nanoliter In-
jector. After injection, the flies were maintained at 25 °C
and dead flies were counted every 6 h. For Elav > CryR
imaging, video was recorded 3 h after the 13-ng CrylAa
injection.



Obata et al. BMC Biology (2015) 13:48

Additional files

Additional file 1: Figure S1. CryR, but not BtR175, is sufficient for
inducing cell necrosis in Drosophila wing discs. Propidium iodide (Pl)
staining of wing discs from third instar larvae overexpressing BtR175,
CryR, or both, with or without 100 nM Cry1Aa incubation for 1 h. Scale
bar, 100 um. Figure S2. Dose-dependent response of Cry1Aa-induced
cell death in wing discs. Propidium iodide (Pl) staining of wing discs from
third instar larvae overexpressing CryR. Wing discs were incubated for 1 h
with 100, 50, 25, 12.5, or 6.25 nM Cry1Aa. Scale bar, 100 um. Figure S3.
Cry1Aa induces cell death in Drosophila wing discs in the absence of
components for autophagy and apoptosis. Propidium iodide (Pl) staining
of wing discs from third instar larvae overexpressing CryR in their wing
pouch. Discs were incubated with 100 nM Cry1Aa for 1 h. (A) Wing discs
were cultured with 100 nM Cry1Aa in the presence of 200 uM pan-caspase
inhibitor, z-VAD-fmk. (B, C, D) Knock down apoptotic (B, C) or autophagic (D)
components within the wing pouch did not suppress Cry1Aa-induced cell
death. Dronc is an initiator caspase. RHG stands for pro-apoptotic genes,
Reaper, Hid, and Grim (triple RNAV). (E, F) Simultaneous inhibition of
apoptosis by 200 uM z-VAD-fmk and autophagy by Atg7-RNAi in the
presence (E) or absence (F) of 100 nM Cry1Aa. Scale bar, 100 um. Figure S4.
Cry1Aa induces cell death of cortex glia in larval brain in vivo.
Propidium iodide (PI) staining of brains from third instar larvae that
overexpressed CryR by Nrv2-Gal4, a cortex glia driver. (A-C) Cry1Aa was
injected during the third larval stage and brains were dissected 3 h after
injection. (A) No Cry1Aa injection as a negative control. Genotype;
Nv2>mGFP, CryR Scale bar, 100 um. (C) High magnification image of Cry1Aa
injected brain. Scale bar, 20 pm.

Additional file 2: Live imaging of CryTAa induced cell death in wing
disc from WP>GFR, CryR. GFP (green) and Pl (magenda) images.

Additional file 3: Live imaging of Cry1Aa induced cell death in wing
disc from WP>GFR, CryR. Merged (GFP and PI) images.

Additional file 4: Live imaging of Cry1Aa induced cell death in wing
disc from WP>GFE CryR. Bright field images.

Additional file 5: Live imaging of Cry1Aa induced cell death in fat body

with CryR- and GFP-overexpressing flip-out clones. Pl (magenda) and
merged (PI, GFP, and bright field) images.

Additional file 6: Movies of Flav>CryR adult flies after Cry1Aa injection.

Abbreviations

ABCC2: ABC transporter C2; BBB: Blood-brain barrier; CryR: Cry1Aa toxin
receptor; DT: Diphtheria toxin; JNK: c-Jun N-terminal kinase; PI: Propidium
iodide; RHG: Reaper, Hid, Grim; SOP: Sensory organ precursor; UAS: Upstream
activation sequence.
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