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Abstract

Background: A genome-wide association study (GWAS) is the foremost strategy used for finding genes that
control human diseases and agriculturally important traits, but it often reports false positives. In contrast, its
complementary method, linkage analysis, provides direct genetic confirmation, but with limited resolution. A
joint approach, using multiple linkage populations, dramatically improves resolution and statistical power. For
example, this approach has been used to confirm that many complex traits, such as flowering time controlling
adaptation in maize, are controlled by multiple genes with small effects. In addition, genotyping by sequencing
(GBS) at low coverage not only produces genotyping errors, but also results in large datasets, making the use of
high-throughput sequencing technologies computationally inefficient or unfeasible.

Results: In this study, we converted raw SNPs into effective recombination bins. The reduced bins not only retain
the original information, but also correct sequencing errors from low-coverage genomic sequencing. To further
increase the statistical power and resolution, we merged a new temperate maize nested association mapping
(NAM) population derived in China (CN-NAM) with the existing maize NAM population developed in the US
(US-NAM). Together, the two populations contain 36 families and 7,000 recombinant inbred lines (RILs). One
million SNPs were generated for all the RILs with GBS at low coverage. We developed high-quality recombination
maps for each NAM population to correct genotyping errors and improve the computational efficiency of the
joint linkage analysis. The original one million SNPs were reduced to 4,932 and 5,296 recombination bins with
average interval distances of 0.34 cM and 0.28 cM for CN-NAM and US-NAM, respectively. The quantitative trait
locus (QTL) mapping for flowering time (days to tasseling) indicated that the high-density, recombination bin
map improved resolution of QTL mapping by 50 % compared with that using a medium-density map. We also
demonstrated that combining the CN-NAM and US-NAM populations improves the power to detect QTL by 50 %
compared to single NAM population mapping. Among the QTLs mapped by joint usage of the US-NAM and
CN-NAM maps, 25 % of the QTLs overlapped with known flowering-time genes in maize.
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Maize

Conclusion: This study provides directions and resources for the research community, especially maize
researchers, for future studies using the recombination bin strategy for joint linkage analysis. Available resources
include efficient usage of low-coverage genomic sequencing, detailed positions for genes controlling maize
flowering, and recombination bin maps and flowering- time data for both CN and US NAMs. Maize researchers
even have the opportunity to grow both CN and US NAM populations to study the traits of their interest, as the
seeds of both NAM populations are available from the seed repository in China and the US.

Keywords: Recombination bin map, Sequencing, Joint linkage analysis, Nested association mapping population,

Background

Maize exhibits extremely high levels of genetic diversity
and phenotypic variation [1, 2]. Numerous single nucleo-
tide polymorphisms (SNPs), small insertions-deletions,
and large structural variations substantially contribute to
this genetic diversity [3-5]. Abundant genetic variation
gives rise to great challenges for uncovering the genetic
basis of quantitative phenotypic variation.

Studies undertaken to understand the genetic archi-
tecture of complex traits and their variations in maize
have generally been performed by linkage analysis and/
or association mapping [6]. Linkage analysis based on a
bi-parental population only detects two alleles and has
poor mapping resolution. A genome-wide association
study (GWAS) often identifies spurious associations due
to population structure and genetic relatedness [7]. Joint
linkage analysis, using multiple segregating populations,
could overcome some of the inherent limitations associ-
ated with single population linkage analysis and genome-
wide association mapping [8].

To provide an effective genomic resource for joint link-
age analysis in maize, US researchers created a nested
association mapping (NAM) population. About 5,000 re-
combinant inbred lines (RILs) were created by crossing 25
diverse inbred lines with a common parent, B73 [8]. US-
NAM has been effectively used with genetic, genomic, and
systems biology tools to dissect the genetic architecture of
agronomic traits in maize [9-16]. In addition, analyses
with US-NAM have been quite accurate at surveying the
magnitude of effects across diverse germplasm [17].

One shortcoming of US-NAM, however, is its limited
number of founder lines; a NAM population becomes
more effective for GWAS when the allele is found in
three or more founders [18]. Additionally, because only
one reference line was used in US-NAM, the genetic
and phenotypic biases introduced into the population
are unknown.

To further improve our understanding of the genetic
architecture of maize and improve the resolution of
quantitative trait loci (QTLs), Chinese researchers inde-
pendently developed a new NAM population (CN-
NAM). About 2,000 RILs were created by crossing 11

diverse elite inbred lines with a common parent
HUANGZAOSI (HZS). Parents of the CN-NAM popu-
lation were selected from different heterotic groups that
are widely used in Chinese maize breeding [19]. Com-
bining the CN-NAM and US-NAM populations can pro-
vide a larger genomic resource for dissecting the genetic
architecture of complex traits in maize. Furthermore,
combining populations can enable higher power and
higher resolution in genetic mapping through joint linkage
analysis.

Despite the availability of this new mapping method
and the larger mapping population, marker density
remains an important limiting factor for identifying
genes controlling quantitative traits. This limitation is
especially pronounced for fine mapping of QTLs. New
sequencing technologies have facilitated cost-effective
high-throughput SNP genotyping for natural and artifi-
cial mapping populations. Genotyping by sequencing
(GBS), using methylation-sensitive restriction enzymes
to reduce genome complexity while retaining good gen-
ome coverage of lower copy regions, has proven to be a
highly efficient method in different species [20-25].
Yet, GBS-obtained data could be as large as millions of
SNPs, a density that makes the construction of a com-
posite genetic map almost impossible and negates the
potential benefits of conducting joint linkage analysis in
NAM populations.

One strategy to address this issue is to construct a
recombination bin map by identifying exact recombin-
ation breakpoints and dividing the chromosomal regions
into small recombination bins. These small recombin-
ation bins can be regarded as an effective type of genetic
marker [26]. This construction method of sequencing-
based high-density genetic maps could substantially reduce
the amount of time and effort required for QTL mapping.
For example, this method has been used for constructing
bin maps of single bi-parental populations and QTL map-
ping of complex agricultural traits in rice and sorghum
[27-29]. Therefore, we expected that recombination bin
maps would have the potential to improve the statistical
power of joint linkage analysis and reduce the computing
time of QTL mapping in NAM populations.
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The objectives of this study were the following: (1) to
construct high-resolution recombination bin maps of
both the US-NAM and CN-NAM populations based on
GBS data; (2) to evaluate the quality and accuracy of bin
maps by joint linkage analysis of a flowering-related
trait, days to tasseling; and (3) to conduct a combined
analysis of different NAM populations.

Results

Identification of high-quality lines

All RILs of the 36 families that comprised the two
NAM populations were sequenced with GBS, resulting
in a total of one (0.95) million SNPs. After removing
monomorphic and MAF < 0.05 SNPs across all families
from the raw GBS data, 238,945 and 294,962 SNPs
were obtained for CN-NAM with 11 families and US-
NAM with 25 families, respectively. Based on these
SNPs, we identified outlier lines of two NAM popula-
tions. After removing the outliers, we obtained 1,696
and 4,623 high-quality RILs in the CN-NAM and US-
NAM populations, respectively. We used these data for
the following analyses.

Bin maps of individual families

After removing low-quality SNPs, the number of high-
quality SNPs ranged from 39,620 for the HUANGYESI3
family in CN-NAM to 109,104 for the CML228 family
in US-NAM, with the corresponding mean SNP density
ranging from about 1 SNP/63.1 kb to 1 SNP/22.9 kb,
respectively. These SNPs were used to infer parental
genotypes, and detect recombination breakpoints for all
available RILs, as indicated by Fig. 1. The total number
of breakpoints per individual family ranged from 3,552
for 160 RILs in the HUANGYESI3 family to 6,695 for
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179 RILs in the CML228 family. The average number
of breakpoints per individual RIL in each family ranged
from 22.2 to 37.4 (Additional file 1: Table S1). After re-
combination breakpoint locations were determined, the
genotype of each RIL was assigned.

Bin maps were constructed for each family based on
the identity with the parental genotypes. The number of
recombination bins varied substantially among the 36
families. The total bin number per individual family
ranged from 734 to 2,183. More than 50 % of the bins
were less than 1,000 kb in physical length for all families
in both CN-NAM and US-NAM (Fig. 2). The median
physical length of bins within an individual family
ranged from 402 kb for the Tzi8 family (US-NAM) to
852 kb for the HUANGYESI3 family (CN-NAM). De-
tailed bin information for the 36 families is provided in
Additional file 2: Table S2.

Genetic linkage maps were constructed for each family
using bin genotypes. The genetic length of individual
family maps ranged from 1,178.58 cM for the HUAN-
GYESI3 family to 2,035.58 c¢cM for the CML228 family.
The average genetic distance between adjacent bins
ranged from 0.77 ¢cM for the CML333 family to 1.61 cM
for the HUANGYESI3 family.

Bin maps of CN-NAM and US-NAM

Joint recombination bin maps were constructed using
5,435 and 5,692 bins (without missing data) from CN-
NAM and US-NAM, respectively (Additional file 3:
Figure S1). The physical length of the bins ranged from
5.0 kb to 5.6 Mb (with an average of 378 kb) and from
5.0 kb to 9.2 Mb (with an average of 327 kb) in CN-
NAM and US-NAM, respectively. In total, 92 % of bins
were less than 1 Mb in length in CN-NAM compared

a b
One million SNPs 5000 bins
(Reduced 99.5%)
Family01 RILO0t BBBBBBBBBBBBBBB - AAAAAAAAAAAA 2 2 2 00
RILO02 AAAAABBBBBBBBBB - BBBBBBBBBBBB 02 2 - 2 2
RIL200 BBBBBBBBBBBBBBB - BBBBBBBBBBBB 2 2 2 - 2 2
Family02 RILO01 BBBBBBBB[AIBBAAAA - AAAAAAAAAAAA 220 00
RILO02 AAAAAAAAAAAAAAA - AAAAAAAAAAAA 000« 00
RILéOO BBBBBBBBBBBBBBB - BBBBBBBBBBBB 2 2 2 - 2 2
Family36 RILO0T AAAAAAAAAAAAAAA - AAAAAAAAAAAA 000 - 00
RILO02 AAAAAAAAAAAAAAA - AAAAAAABBBBB 000 - 0 2
RIL180 BBBBBBBBBBBBBBB - BBBBBBBBBBBB 2 2 2 - 2 2
Fig. 1 Construction of effective recombination bins from raw SNPs in NAM populations. a SNP genotypes of both NAM populations were
obtained by genomic sequencing. a and b represent genotypes from common parents and genotypes from diverse parents, respectively.
Genotypes indicated by a rectangular box were incorrect due to raw sequencing errors. b Bin map was constructed with sequencing SNPs by
recombination breakpoint location. 0 and 2 represent genotypes from common parents and genotypes from diverse parents, respectively. A
hidden Markov model was used to correct the error of genotype data
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to 94 % in US-NAM. Subsequently, of the 5,435 CN-
NAM bins, 2,706 with no segregation distortion were
used to construct an initial framework genetic map.
The remaining markers (bins) with segregation distortion
were added to the framework map, and we ensured that
no marker order or chromosome position conflicts were
introduced. Finally, a total of 4,932 bins were selected to
construct a composite genetic map of CN-NAM, result-
ing in a genetic distance of 1,700.44 c¢M in length, with
an average genetic distance of about 0.34 cM between
adjacent bins. Likewise, of the 5,692 US-NAM bins,
2,278 with no segregation distortion were used to con-
struct a framework map. Eventually, 5,296 bins were se-
lected for the composite genetic map of US-NAM,
yielding a 1,456.68-cM genetic length, with an average
genetic distance of about 0.28 ¢cM between adjacent
bins (Additional file 4: Table S3).

Quality and accuracy of bin maps

The quality and accuracy of these maps for QTL mapping
were evaluated by locating the known flowering-time
genes for days to tasseling (DT). Detailed results can be
found in Additional file 5: Table S4 and Additional file 6:
Table S5.

DT, one of the most obvious measures of reproductive
growth in maize, is thought to involve male and female
flowering-related genes [30]. The broad-sense heritability
for DT was 0.90 in CN-NAM and 0.89 in US-NAM.
Therefore, we checked for the presence of known genes
involved in the regulatory pathway of flowering time
within the interval of DT-related QTLs in different

genetic backgrounds (Additional file 7: Figure S2). For
example, ZMM4, a maize MADS-box gene in the FUL1
family, promotes floral transition and inflorescence de-
velopment in maize [31]. In this study, four QTLs de-
tected under different genetic backgrounds overlapped
the ZMM4 gene, with a likelihood of odd (LOD) score
ranging from 3 to 13, and explained 6.9 % to 34.9 % of
the phenotypic variation. One of four QTLs had its LOD
peak in bin 0231 in the M37W family, which encom-
passed a region of 780 kb in length and completely con-
tained the ZMM4 locus. Within the limits of single-family
mapping resolution, the ZMM4 overlapping DT QTLs
found in different families is evidence that the individual
family bin strategy can produce maps with high quality
and accuracy.

Further evidence came from mapping the ZCN8 gene.
The flowering time ZCN8 may function as the florigen
and integrates signals from both photoperiod and au-
tonomous pathways in maize [32]. We identified QTLs
overlapping the ZCN8 region in four families. Among
the four QTLs, the largest effect was detected in the
HUANGYESI3 family, explaining 37 % of the pheno-
typic variation. Within the QI319 family, two major
QTLs were detected on chromosomes 8 and 10 and
completely overlapped the cloned ZCN8 and ZmCCT
genes (Additional file 7: Figure S2).

For QTL mapping of single NAM populations, a total
of 18 and 29 QTLs were detected for DT in CN-NAM
and US-NAM, respectively (Additional file 6: Table S5).
About 46 % and 32 % of the DT-related QTL alleles
had a significant effect at P<0.05 for CN-NAM and
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US-NAM, respectively (Fig. 3); however, only 6.5 %
(CN-NAM) and 1.7 % (US-NAM) had an additive effect
on DT of about 1 day. About 17 % of the DT-related
QTLs in CN-NAM and 28 % in US-NAM completely
overlapped with the physical position of cloned genes
controlling maize flowering time (Fig. 4a). Two well-
studied maize flowering-time genes, ZCN8 and ZmCCT,
were located in QTL regions for both NAM populations.

Joint linkage analysis for combining CN and US NAM
populations

A composite genetic map for the combined CN-US
NAM population was constructed based on 6,238 re-
combination bins, with a genetic length of 1,455.48 cM
and an average genetic distance of about 0.23 c¢cM be-
tween adjacent bins (Additional file 8: Table S6). When
QTL mapping was conducted for DT in the CN-US
NAM population, 37 QTLs were detected, which was
significantly more than the total QTL number identi-
fied in a single NAM population (Fig. 4a). A compara-
tive analysis revealed that six QTLs were shared among
all three populations (US-NAM, CN-NAM, and CN-US
NAM). Seventeen QTLs were shared between CN-US
NAM and US-NAM, and 11 QTLs were shared be-
tween CN-US NAM and CN-NAM (Fig. 4b). Eight of
15 unique QTLs in CN-US NAM could be found in the
single-family QTL mapping for both NAM populations
(Additional file 5: Table S4).

The average QTL confidence intervals (CI) were
10.5 Mb and 9.3 Mb in CN-NAM and US-NAM, re-
spectively. The average CI in CN-US NAM was 5.3 Mb;
thus, combining populations improved the resolution by
about 50 %. The QTL with the largest effect on DT had
its LOD peak in the region that ranged from 123.810 Mb
to 124.356 Mb on chromosome 8, while a gene ZCN8 was
about 300 kb apart from the peak. The QTL with the
second largest effect on DT had its LOD peak on
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chromosome 10, between 94.588 Mb and 94.964 Mb,
while a strong candidate gene ZmCCT was about 340 kb
apart from the peak. Therefore, joint analysis for the com-
bined CN-US NAM population was effective and valuable
for quantitative trait mapping.

Power and resolution of QTL mapping using different
marker densities

The US-NAM population has been phenotyped for
days to anthesis (DA) and days to silking (DS) in six en-
vironments in the US, and a medium-density composite
genetic map was constructed using 1,106 SNPs [9].
Using the high-density composite genetic map of 5,296
bins, we reanalyzed DA and DS using the same pheno-
type data and mapping method. The number of QTLs
and the total phenotypic variation explained by all
QTLs were consistent with the results obtained using
the medium-density map (Fig. 5). However, with the
high-density map, the QTL CI varied from 1.0 to 6.4 cM
and 04 to 7.8 cM, for DA and DS, respectively, with an
average CI of 2.86 ¢cM in both traits; whereas, using the
medium-density map, the average QTL CI values were
5.58 and 6.03 cM for DA and DS, respectively. Two major
QTLs controlling flowering time, vgzl and ZmCCT, had
the most significant effects in US-NAM. The vgtl locus
could be narrowed down from a 5-Mb region on the
medium-density map to a 1.9-Mb region on the high-
density map. ZmCCT was located in a 12.4-Mb region on
the medium-density map, but could be narrowed to a
6.3-Mb region using the high-density map. These re-
sults suggest that recombination bin maps could be
effectively used in fine mapping of genes/QTLs that
control traits of interest.

Discussion
GBS is an efficient and economical method, especially
for genotyping RIL populations in which regions of

30 —= significant alleles

20

10

]

10

QTL Allele Number

20 M Allele with positive effect relative to HZS
M Allele with negative effect relative to HZS
30

0 01 02 03 04 05 06 07 08 09 10 11

Additive Allelic Effect in Days

at P<0.05

Fig. 3 QTL allele effect size distributions for days to tasseling (DT) within the two maize NAM populations. a Additive allele estimates for the 18
DT QTLs for all 11 diverse parents relative to common parent HZS in CN-NAM. A total of 91 QTL alleles were significant at P < 0.05. b Additive
allele estimates for the 29 DT QTLs for all 25 diverse parents relative to common parent B73 in US-NAM. A total of 232 QTL alleles were significant

-
@
°

—significant alleles

-
3
S

@
-3

o

«
k-3

QTL Allele Number

M Allele with positive effect relative to B73

g

M Allele with negative effect relative to B73
150 - - e . - - - - - - y
0o 01 02 03 04 05 06 07 08 09 10 11

Additive Allelic Effect in Days




Li et al. BMC Biology (2015) 13:78

Page 6 of 12

40

20

LOD score

20

40

PhyB1 L2
] t

H" |

24P1b
t

!,

oM
1

6i6z18
ZmPRR3T l
t

N

25
ZmPRRT3|

Ng CONZI I zmeer
t t

80

60

40 -

LOD score

20

|

WVYN-ND WVYN-SN

WVN SN-NO

Chr1

II‘I |\| 11 Wi |\H

Chr7

Chr9  Chr10

CN-US NAM

US-NAM

Fig. 4 Comparison of QTL mapping results for days to tasseling (DT) among the US-NAM, CN-NAM, and CN-US NAM populations. a QTL mapping
results for DT. The physical distance for each chromosome is represented in Mb (Mega-base) units on the horizontal axis. Bar width represents

QTL confidence interval. Arrows represent the physical positions of the known maize flowering-time genes overlapping with QTL. b Venn diagram
showing numbers of unique and shared QTLs among US-NAM, CN-NAM, and CN-US NAM

a
DA DS 120
(avg Cl 2.87 cM) (avg Cl 2.85 cM) 100
2 * ‘ - 80
3
[ - 60
8 .
a . r - 40
. \ | . ‘ | { - 20
L M ’ o o\ ,‘ | ARSI 1YY, ¥ P A Hiraphes PN\ AL WA bl ledhe -"
i T T T T T T T T T T 3 0
b 1 2 3 4 5 6 7 8 9 10
120
DA DS
- (avg ClI 5.58 cM) (avg C1 6.03 cM) n 100
o - N - 80
o
@ - A ; - 60
8 ‘
91 ﬁ A - 40
14 \ : " ‘ L[ I \ ‘ ' ‘ / " - 20
Mg A | "‘ L] R 4.‘ ‘ \ Y .\'\ u‘\ J _,»-" Fa-'/ ‘f\l ¥ ‘ l“ N A ‘ MY L APV ‘\_ﬂ-\
i T T T T T T T T T T 3 O
1 2 3 4 5 6 7 8 9 10
Chromosome
Fig. 5 QTL mapping for days to anthesis (DA) and days to silking (DS) with different marker density maps in US-NAM. a Composite genetic
map constructed using 4,932 bins. b Composite genetic map consisting of 1,106 SNPs published by McMullen et al. [43]. Avg Cl in (@) and (b)
represented average QTL confidence interval for DA and DS, respectively




Li et al. BMC Biology (2015) 13:78

extended linkage disequilibrium (LD) are common. We
used the GBS method to genotype the US-NAM and
CN-NAM populations and construct the genetic recom-
bination maps for each family within the populations.
Compared with genetic maps constructed using array-
based SNP genotyping for the same populations [9, 33],
marker numbers significantly increased, reducing the
average marker interval. We found substantial biological
variation in genetic map lengths per family within the
two NAM populations.

The largest genetic map lengths in the 36 families
were likely impacted by residual heterozygosity in the
parents. In contrast, the smallest genetic map lengths
were in families having large identity by descent (IBD)
regions with a recurrent parent, for example, the K12
and HUANGYESI3 families. The marker density of the
composite genetic maps for CN-US NAM was also four
times higher than that published for US-NAM. The
composite genetic map length in US-NAM was shorter
than in CN-NAM, which may have resulted from the
higher genotype calling error rate in CN-NAM due to
higher residual heterozygosity.

We noticed that the number of bins generated from
our study is slightly different from that of the previous
study by Giraud et al. [34]. In addition to the different
populations used, other causes might include different
types of genetic markers and the methods used for the
analyses. As the GBS markers in our study have a higher
missing rate and genotyping error potentially, we are on
the conservative side for calling bins. The benefit is the
effective reduction of genetic markers for joint linkage
analysis by using stepwise regression.

First, we filtered out SNPs with low quality by using
permutations involving resampling of windows of SNPs
followed by Bayesian inference [35]. Then consecutive
SNPs with the same genotype across all RILs were
lumped into blocks, and a recombination breakpoint
was assumed at the transition between two different
homozygous genotype blocks. The genotypic maps of
the RILs were aligned and split into recombination bins
[26]. Finally, after obtaining a skeleton recombination
bin map, we further reduced the number of bins by
merging bins less than 5 kb apart. Consequently, our
results do not suggest any reduction of false double
recombinant in our analyses.

The quality and accuracy of the genetic maps in this
study were confirmed by QTL mapping of flowering-
time-related traits. The co-location of major QTLs and
cloned genes controlling flowering time in maize pro-
vided evidence that high-resolution genetic maps are
possible using the bin mapping strategy. QTL mapping
of CN-NAM and US-NAM identified 18 and 29 signifi-
cant DT-related QTLs, respectively. Of these identified
QTLs, 17 % of the CN-NAM ones and 28 % of those in
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US-NAM overlapped with previously cloned flowering-
related genes in maize. These results illustrate the po-
tential power and reliability of bin-based, composite
genetic map construction. Hence, we strongly suggest
that this method could become an efficient, accurate,
and low-cost approach for primary or fine QTL map-
ping in maize, and other species.

The US-NAM analysis of maize flowering-time traits
argued for numerous small-effect QTLs with additive
effects [9]. We wondered if this conclusion was the
product of the way the parents were selected or was
indicative of more general phenomena. To directly
evaluate this question, we contrasted the US-NAM
analysis with a parallel analysis of CN-NAM. The com-
mon parents of the two NAM populations were chosen
based on a similar strategy. Both HZS in China and
B73 in the US are very important and widely deployed
elite inbred lines in each country’s history of maize
breeding. Diverse parents of the two NAM populations
were derived from different germplasm sets. Previously,
numerous small-effect QTLs were identified for flower-
ing time in US-NAM, phenotyped for flowering time in
six different US environments [9]. Likewise, flowering
time evaluation of US-NAM, collected from different
Chinese environments, showed no evidence for any
single large-effect QTL. Although we found a higher
percentage of significant QTL alleles with additive DT
effect in CN-NAM (46 %) compared to US-NAM
(32 %), no large additive effect was evident. Therefore,
CN-NAM results supported the earlier US-NAM find-
ing that flowering-time traits of NAM populations were
controlled by numerous small-effect QTLs with addi-
tive effects. Additionally, we found a higher percentage
of alleles with additive DT effects of about 1 day in
CN-NAM (6.5 %) compared to US-NAM (1.7 %). This
result may be due to the bigger difference in flowering
times between the common parent and diverse parents
in CN-NAM compared to those in US-NAM.

The power to detect QTL with a high-density map did
not improve compared to that using a medium-density
map. This is in agreement with results from Stange et al.
[36] showing that high-density maps could not improve
QTL detection power in experimental and simulation
data with marker densities of 1, 2, and 5 ¢cM. Factors in-
fluencing the statistical power of QTL mapping include
mapping population size, marker density, QTL effect
size, and significance level in declaring the existence of
QTL. Previous studies suggested that the power of QTL
detection was little affected by an increase in marker
density beyond 10 cM, irrespective of population size
and size of QTL effects [37, 38]. In our study, the
medium-density map had a marker density of 1.30 cM.
Hence, higher marker densities provide no advantage
on the increase of the QTL detection power.
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However, we did find a considerable improvement in
mapping resolution using a high-density map compared
to a medium-density map. For example, the average
lengths of confidence intervals for DA- and DS-related
QTLs were narrowed by 60 % and 47 %, respectively,
using the high-density map. This is consistent with re-
sults reported by Stange et al. [36], where the QTL con-
fidence interval lengths decreased with an increase of
marker density regardless of population size and QTL
effect size. High-density maps are beneficial for narrow-
ing LOD peaks of QTLs and improving the precision of
QTL localization, since they could increase the prob-
ability that a marker is tightly linked to a QTL. In our
study, this improved resolution could be beneficial for
fine mapping of QTLs and for marker-assisted breed-
ing. The two NAM populations with high-density marker
maps can be used to map QTLs for other quantitative
traits, improving the power and resolution of QTL map-
ping. The QTL results detected in these two NAM popu-
lations can be mutually verified and QTL regions can be
further narrowed by determining overlaps with QTLs
detected in other maize NAM populations. Accumulation
of results by expanding the use of this methodology in
other NAM populations can provide an excellent platform
for the dissection of the genetic architecture of complex
agronomic traits in maize.

In this study, we estimated the confidence intervals of
QTLs by using a 2-LOD drop-off method, which is
widely used to investigate the QTL mapping resolution
[34, 39, 40]. Although there is potential bias caused by
stepwise regression, the chances have not been found
that the bias would switch the order for comparing dif-
ferent procedures or methods. This suggests that our
conclusion is very likely true in comparing the mapping
resolutions by using a single NAM population or joint
NAM populations.

The high density of molecular markers is one import-
ant limiting factor for generating high-resolution genetic
maps. With ongoing advances in next-generation sequen-
cing, marker density will continue to increase. However,
ultra-high density markers will provide additional chal-
lenges for constructing genetic maps and conducting joint
linkage analyses. Choosing representative SNPs from raw
data is one way to produce a genetic map, but other
important SNP information may be lost. Construction of
bin maps uses all marker information to accurately evalu-
ate the location of recombination breakpoints. Especially
in NAM populations, we illustrated that this bin map
method effectively reduced the computing time of QTL
mapping without reducing mapping resolution.

This paper reports that the combination of CN and
US NAM populations was fruitful for detecting the gen-
etic architecture of complex traits in maize. Thus, this
method has the potential to pave the way toward fine
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mapping of complex traits. Two additional NAM popula-
tions have been created within the European CornFed
project [34]. In the future, the combination of more NAM
populations with broader genetic diversity can benefit the
systematic investigation of genetic architectures of com-
plex traits in maize. In particular, NAM populations estab-
lished based on European germplasm may be a good
choice for integration with temperate maize. In contrast,
NAM populations based on tropical and sub-tropical
germplasm may be valuable for investigating important
traits such as adaptation and abiotic stress tolerance.

Conclusion

In this study, high-density and high-quality composite
genetic recombination maps, based on genomic sequen-
cing data, were generated for two NAM maize popula-
tions, US-NAM and CN-NAM. Using these maps, we
were able to replicate the identification of previously
known genes that affect flowering time in maize and im-
prove the resolution of QTL mapping. The combined ana-
lysis of different NAM populations could improve the
power and resolution of QTL detection compared to sin-
gle NAM population mapping. This paper presents the
necessary bin maps and computational methods for the
maize scientific community to use these populations in
their own research.

Methods
Plant material
The nested association mapping population from China
(CN-NAM) is composed of about 2,000 RILs derived
from crosses between the common parent HUANGZAOSI
(HZS) with each of 11 diverse inbred lines: K12, YE478,
ZHENGS58, HUOBAI, QI319, WEIFENG322, LV28, HUA
NGYESI3, DUO229, PA405, and MO17. These are elite
inbred lines and represent members of several popular
heterotic groups used in Chinese maize breeding. HZS is
an elite foundation parent in China, with wide adaptability,
high combining ability, moderate growth period, and re-
sistance to northern leaf blight and dwarf mosaic virus
[19]. HZS has at least 70 derived lines and 80 hybrids. The
K12 and HUANGYESI3 inbred lines were the derived lines
of HZS [41]. HZS was crossed as the male parent to the
other 11 inbred lines, and then an average of 180 RIL lines
per family were derived through single seed descent (SSD)
to the F; generation. These RIL lines are free for public
research purposes [42].

The US-NAM population, described in detail by
McMullen et al. [43], consists of about 5,000 RILs
derived from crossing B73 with 25 diverse inbred lines.

Genotyping by sequencing
For the CN-NAM and US-NAM populations, a total of
7,698 RILs, including 758 repeatedly sequenced lines,
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were genotyped using the genotyping-by-sequencing
(GBS) method [20]. A detailed protocol is described on
the website given in Ref. [44]. US-NAM GBS data have
been posted on the Panzea website [45]. CN-NAM GBS
data are available from [42] and [45].

Identification of outliers

Outliers were defined as containing non-parental alleles
or retaining excess heterozygosity. Outliers were identi-
fied using unimputed GBS data of the NAM populations
via the software TASSLE4.0 [46]. After filtering SNP sites
(taxa coverage >10 %, minor allele frequency (MAF)
>0.01, and site coverage >20 %), a neighbor-joining tree
of every chromosome was made to spot the contami-
nated lines. If a line was not included in the correspond-
ing family, the line was considered a contaminant. Lines
with excess heterozygosity were identified for each fam-
ily after filtering the data (site coverage >66 % and MAF
>0.25). A line with a heterozygosity ratio >10 % was
treated as an excess heterozygosity outlier.

Bin map construction
SNP sites with MAF <0.05 and within the same tag
(64 bp) based on the unimputed GBS data were filtered
out for each family. The draft parental genotypes were
inferred from the low-coverage SNP datasets of each
RIL family using a maximum parsimonious inference of
recombination (MPR) method applied in an R package
MPR [35]. Then, parental genotypes were refined after
removing low-quality SNPs by resampling and using
the Bayesian inference method included in the MPR
package. The genotype assignment of each RIL was per-
formed using a hidden Markov model (HMM) approach,
with heterozygote set to missing according to the method
described by Xie et al. [35]. Consecutive SNP sites with
the same genotype were lumped into blocks, and a break-
point was assumed at the transition between two different
genotype blocks. Blocks with lengths less than 1,500 kb
and with a number of sequenced SNPs fewer than five
were masked as missing data to avoid false double recom-
bination. Markers co-segregating in two contiguous blocks
were combined into a recombination bin [26]. After mer-
ging a bin smaller than 5 kb to the next bin, a skeleton bin
map of RIL population was obtained. Genotypes of bins
for regions at the transitions between two different geno-
type blocks were set to missing data and imputed using
the R/qtl package [47]. The genetic maps for individual
CN-NAM and US-NAM families were constructed from
bins serving as genetic markers using the R/qtl package
function est.map with the Haldane mapping method [47].
After inferring parental genotypes and obtaining high-
quality SNPs for each family, markers polymorphic in
more than two families in the CN-NAM population and
four families in the US-NAM population were chosen to
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build composite genetic maps. Markers were encoded by
designating the common parent allele as “1”, the other
36 parent alleles as “0”, and heterozygous loci as missing
data “NA”. Markers monomorphic in a particular family
were also converted to missing data “NA”. Joint recom-
bination bin maps were generated by combining con-
secutive SNP sites with the same genotype into bins and
merging bins smaller than 5 kb to the next bin using
MPR (R package). After obtaining recombination bins,
two composite genetic maps were constructed by using
bins as markers in the JoinMap 4.0 software [48].
Markers were assigned into linkage groups at an inde-
pendence test LOD score of 10. Due to the large number
of markers in the two NAM populations, we used the
maximum likelihood mapping algorithm to order loci.
The Haldane mapping function was used to convert re-
combination frequencies to cM. For each linkage group
in the two NAM populations, a framework reference map
containing markers not exhibiting segregation distortion
was constructed. Markers which significantly (P < 0.05)
deviated from the expected 1:1 ratio in a chi-square test
were defined as exhibiting segregation distortion. After
the order and chromosome position of these markers
were determined, the remaining markers with segrega-
tion distortion were added to the reference map. Any
markers that showed inconsistent physical position in
the RefGen_v2 with themselves were excluded from
further mapping. The final selected map exhibited the
most agreement in marker order with the framework
map.

Phenotyping

The 1972 CN-NAM lines were evaluated phenotypically
in two years (2009 and 2010) and in three locations, i.e.,
Xinxiang in Henan province (35.19°N, 113.53°E), Beijing
(39.48°N, 116.28°E), and Urumgqi in Xinjiang province
(43.47°N, 87.39°E). These locations represented three main
maize growing regions in China. Each year/location com-
bination was considered as an environment, generating a
total of six environments. The CN-NAM population was
summer sown in Henan and spring sown in Beijing and
Xinjiang. Within each environment, trials included 11 sep-
arate sets (11 CN-NAM families), and each set contained
all lines of one family and its two parents. For each set, all
lines were randomly assigned within each replication with
a one-row plot. Two replications of each set were planted
adjacently. Each row included 11 plants and was 3 m long
and 0.6 m apart. A set of 4,396 US-NAM lines were grown
at five different environments in 2010 and 2011, ie., Sanya
in Hainan province (18.15°N, 109.30°E) in the winter of
2010, Xinxiang in Henan province (35.19°N, 113.53°E) in
the summer of 2011, Beijing (39.48°N, 116.28°E) in the
spring of 2011, Tianjin (39.10°N, 117.10°E) in the spring
of 2011, and Chongqging (29.35°N, 106.33°E) in the
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spring of 2011. All trials were arranged in an augmented
incomplete block design and consisted of one replica-
tion of US-NAM RILs and check entries [9]. For each
location, lines were grouped by family with augmented
incomplete blocks within each family. Each incomplete
block comprised 50 RILs and one check: B73. Experi-
mental units consisted of single-row plots of 11 plants.
Each plot was 3 m in length with 0.6 m between rows.
Days to tasseling (DT) data were collected for the CN-
NAM and US-NAM populations and measured as the
number of days from planting to tassel emergence for
half the plants within a row or plot. The DT datasets for
both NAM populations are available in Additional file 9:
Table S7 and Additional file 10: Table S8. The broad-
sense heritability for DT across the environments in dif-
ferent NAM populations was calculated on a mean basis
by PROC GLM in SAS v9.2. The best linear unbiased
prediction (BLUP) value of DT across environments was
obtained for each line of CN-NAM and US-NAM with
the MIXED procedure in SAS (SAS Institute Inc.). Sub-
sequently, the BLUP value for both NAM populations
was used for QTL mapping.

QTL analysis

The method of inclusive composite interval mapping
(ICIM) was used to detect the additive QTL for each of the
36 families by using the QTL ICI Mapping software Ver 3.2
[49]. In ICIM, the P values for entering variables (PIN) and
removing variables (POUT) were set at 0.001 and 0.002,
and the scanning step was set 1.0 cM. The LOD threshold
was determined by a 1,000-permutation test.

Joint QTL mapping for a single NAM population or the
two NAM populations together was conducted by using
the stepwise regression model described by Buckler et al.
[9]. We employed PROC GLMSelect in SAS v9.2 to
conduct this analysis. In the stepwise regression model for
a single NAM, the BLUP of days to tasseling (DT) was
used as the response variable. The family main effects and
4,932 bin markers in CN-NAM or 5,296 bin markers in
US-NAM were fitted as the explanatory variables. The
family main effects were always included in the stepwise
regression model. Then, marker effects nested within
families were chosen to enter or leave the model with a
threshold of the P value. The threshold was determined
by permutation tests (1,000 times) for a corresponding
type I error rate of 5 % [9]. For CN-NAM and US-NAM,
the P values corresponding to a 5 % type I error were both
approximately 0.0001.

In the stepwise regression model for both NAM popu-
lations, the BLUP of DT was used as the response
variable. The family main effects, reference (B73 and
HZS) effects, and 6,238 bin markers were the explana-
tory variables. The family effects and reference effects
were fit first in the model. Then, marker effects nested
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within families were selected to enter or stay in the model
based on the same procedure described above. In this situ-
ation, the P value threshold is P = 0.0005 for a correspond-
ing type I error of 5 %. For each QTL selected from the
stepwise regression model, the adjacent markers, four
from each side, were tested to derive the LOD score, one
at a time, with all the QTLs as covariates. For each QTL
position identified, confidence intervals were constructed
by a 2-LOD drop-off method.

Allelic effects of markers within a family were esti-
mated from the final optimized QTL model. Signifi-
cances of allele effects were determined with a t-test on
the differences between their founder means and the
reference (B73 or HZS) allele effect at a significance
level of P=0.05.
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