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Abstract

Background: Metazoans transcribe many long non-coding RNAs (IncRNAs) that are poorly conserved and whose
function remains unknown. This has raised the questions of what fraction of the predicted IncRNAs is actually
functional, and whether selection can effectively constrain INcRNAs in species with small effective population sizes

such as human populations.

Results: Here we evaluate signatures of selection in human IncRNAs using inter-specific data and intra-specific
comparisons from five major populations, as well as by assessing relationships between sequence variation and
predictions of secondary structure. In all analyses we included a reference of functionally characterized IncRNAs.
Altogether, our results show compelling evidence of recent purifying selection acting on both characterized and
predicted IncRNAs. We found that RNA secondary structure constrains sequence variation in IncRNAs, so that
polymorphisms are depleted in paired regions with low accessibility and tend to be neutral with respect to

structural stability.

Conclusions: Important implications of our results are that secondary structure plays a role in the functionality of
INcRNAs, and that the set of predicted IncRNAs contains a large fraction of functional ones that may play key roles

that remain to be discovered.
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Background

Long non-coding RNAs (IncRNAs) are non-coding tran-
scripts longer than 200 nt, which are often multiexonic
and polyadenylated [1, 2]. Compared to protein coding
genes, IncRNAs are transcribed at lower levels and tend to
do so in a tissue-specific manner, which hampers their
study and identification [3, 4]. So far, every search for
IncRNAs in a metazoan genome has resulted in hundreds
to thousands of predicted IncRNAs, with little overlap be-
tween studies. To date, most predicted IncRNAs remain
without a known function. Nevertheless, there is a
relatively small but steadily growing set of functionally
characterized transcripts. LncRNAdb v2 [5], a reference
database for functionally validated IncRNAs, lists 136 ex-
perimentally characterized human IncRNAs, and for some
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of them, the function and molecular mechanism are well
characterized. For instance, XIST is involved in X chromo-
some inactivation for dosage compensation [6], HOTAIR
interacts with the chromatin remodeling complex mediat-
ing epigenetic modifications of DNA [7], H19 acts as a
trans-regulator of imprinted genes [8], and MALATI reg-
ulates alternative splicing and has been implicated in
cancer [9, 10]. Other IncRNAs are only indirectly and
loosely associated with a possible biological function. For
instance, a recent study listed IncRNAs differentially
expressed in normal and tumor samples but, for most of
them, a direct implication in a biological process remains
unclear [11].

The lack of a clear function for most IncRNAs, as well
as their low levels of expression and sequence conserva-
tion, has led some authors to suggest that most IncRNAs
may actually represent transcriptional “noise,” ie., the
result of non-specific transcription [12]. Validating this
interpretation requires the assessment of selective con-
straints acting on human IncRNAs with a validated func-
tion. However, most previous studies have considered
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IncRNAs as a whole. Generally, these studies have found
that, at the sequence level, IncRNAs are overall much
less conserved than protein coding genes in all studied
organisms [4, 13, 14]. Hallmarks of selection have been
found in some organisms when comparing patterns of
sequence variation in introns and exons of IncRNAs. For
instance, a recent study detected selective pressures act-
ing on IncRNAs of Drosophila melanogaster using both
polymorphism and inter-specific conservation data [15].
For humans, by contrast, differences were weak or not
significant (at the inter- and intra-specific levels, respect-
ively) [15]. The authors suggested that due to the small
human effective population size, selection is not strong
enough to efficiently purge mutations on IncRNAs. Des-
pite this, other studies have found that exons are more
conserved than introns in human IncRNAs [16, 17].
Finally, some studies have noted that the lack of conser-
vation is not constant across the entire sequence and
that some IncRNAs contain highly conserved regions
present across distant species [18-20]. A recent study
showed that >85 % of IncRNAs had conserved splice
sites that can be dated back to the divergence of placen-
tal mammals, despite a fast turnover of exons and in-
trons [21]. It has been argued that these and other
highly conserved elements may be related with the func-
tion of IncRNAs. Alternatively, however, these elements
may play a role at the DNA level.

Secondary structure may be key for the function of
IncRNAs, as supported by several independent analyses of
some of the functionally characterized IncRNAs. For in-
stance, in MALATI, a highly conserved uracil-rich region
contributes to RNA stability through the formation of a
triple helix [22]. It has also been shown that the tumor sup-
pressor function of the IncRNA MEG3 can be attributed to
two secondary fold motifs [23]. Some studies have found
that specific folds in some IncRNAs, such as SRA [24] and
HOTAIR [25], are conserved in distant species as a result of
compensatory mutations. At the large scale, a genome-wide
study based on 35 mammals detected that roughly 14 % of
the Homo sapiens genome can fold into structures that are
evolutionarily conserved and that most of them (88 %) fall
in regions of low sequence conservation [26]. In addition,
IncRNAs have been found to be stable as measured by their
half-life, suggesting widespread functionality [27]. Finally, it
has been observed that IncRNAs have a higher degree of
secondary folding than predicted by chance, despite the fact
that, surprisingly, IncRNAs seem to be less structured than
mRNAs [28, 29]. Taken together, there is accumulating evi-
dence that structure may play an important role in IncRNA
functionality. However, it remains to be established on a
genome-wide scale whether the patterns of secondary
structure can effectively constrain sequence evolution in
IncRNAs, particularly in species, such as human, with a low
effective population size.
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In conclusion, we still have a very poor understanding
of how selective pressures may act on IncRNAs at the
sequence and structural levels. Several key questions re-
main open that are central to the understanding of the
evolution and function of IncRNAs. For instance, what
are the signatures of selection in those IncRNAs which
are known to have a function? What role does IncRNA
secondary structure play in shaping sequence variation?
And, finally, what fraction of annotated human IncRNAs
is functional? To address these questions and gain fur-
ther insights into what evolutionary pressures may be
acting on IncRNA, it is essential to combine evolution-
ary analyses at different levels. Firstly, inter- and intra-
species level comparisons provide different degrees of
resolution and are differentially affected by typical con-
founding factors such as the difficulties in aligning non-
coding sequences. Secondly, given the lower sequence
complexity of RNAs and their ability to maintain con-
served structures despite high sequence variation, we
consider it important to account for possible constraints
at the structural level. Finally, given that a set of truly
functional human IncRNAs exists, this can be exploited
as a golden reference for establishing relationships be-
tween evolutionary constraints and functionality, thereby
avoiding misleading comparisons with protein coding
genes, whose functionality is achieved by decoding their
sequence into proteins.

In this study, we focused on human intergenic
IncRNAs to ensure that the observed sequence con-
straints were not influenced by overlapping protein cod-
ing genes. The studied IncRNAs were derived from
GENCODE 19 [30] and were filtered with stringent cri-
teria. We also used a control data set of truly functional
and intergenic IncRNAs, consisting of 39 H. sapiens
IncRNAs with an experimentally characterized biological
function [31]. We analyzed patterns of sequence diver-
gence, patterns of sequence polymorphism in different
populations, and structural properties of these IncRNAs.
In line with several previous studies, overall sequence
conservation and single nucleotide polymorphism (SNP)
density did not provide evidence of selection when com-
paring introns and exons. Finer and unprecedented ana-
lyses, however, revealed compelling evidence for
purifying selection acting on functional IncRNAs in all
human populations studied. Firstly, conserved elements
were enriched in exons as compared to introns. Sec-
ondly, using population genetics parameters, we found
that exons have an excess of low frequency polymor-
phisms as compared to introns. Finally, we found that
SNPs are depleted in structured regions with low acces-
sibility. This finding provides the first direct evidence of
the impact of secondary structure in IncRNAs sequence
variation. Importantly, these findings were also apparent
for the bulk of predicted IncRNAs that remain
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uncharacterized, suggesting that the fraction of func-
tional IncRNAs under selective constraint in this set is
not negligible.

Results and discussion

Exons in IncRNAs are enriched in conserved elements but
do not show overall higher conservation than introns

To provide a common background with previous studies
using different sets of human IncRNAs, we first analyzed
phastCons scores in exonic and intronic regions of
IncRNAs and flanking protein coding genes, as well as
in flanking intergenic regions. Since most human
IncRNAs seem to be primate-specific [3, 4], we based
our analysis on scores computed using an evolutionary
model specific for primates (about 77 million years of
evolution, according to TimeTree [32]). Strikingly, in the
set of predicted IncRNAs (hereafter called the “broad
set”) we observed that exons are significantly less con-
served than introns and have similar levels of conserva-
tion as intergenic regions (Additional file 1: Figure S1).
Thus, compared to a previous study using a 46-
vertebrate model [15], we detected even fewer con-
straints, which may be due to the relatively poor quality
of some primate genomes. This reinforces the idea that
predicted human IncRNAs are in general very poorly
conserved through evolution. However, this result may
be due to the presence of noisily transcribed, non-
functional transcripts in the broad set, and we expect
larger constraints in functionally characterized IncRNAs.
Indeed, a recent study using mouse (a species with a lar-
ger effective population size than human [33]) found
that functional IncRNAs have levels of sequence con-
straint similar to those observed in protein coding genes
[34]. However, according to the authors, some IncRNAs
of their functional set overlapped with protein coding
genes or were classified as “protein coding” in a previous
study [4], which may have resulted in an overestimation
of their conservation. Here we assessed conservation for
the 39 human IncRNAs with an experimentally deter-
mined function (the “functional set”), which has been
strictly filtered for any potential overlap with protein
coding genes. We found that the functional and the
broad sets show different distributions of phastCons
score ratios in exons and introns (P =0.004, Additional
file 1: Figure S2). In contrast to the broad set, for func-
tional IncRNAs we observed the expected pattern that
exons are more conserved than introns, although these
differences are not significant.

Since divergence estimates may be influenced by the
presence of repeated elements, we calculated their abun-
dance using the RepeatMasker software [35]. The per-
centage of sequences having repeats is quite similar
when comparing the functional and broad sets, being
slightly higher for the functional (71.79 %) than for the
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broad set (70.87 %). However, for those sequences hav-
ing repeats, the percentage of sequences covered by in-
terspersed repeats is higher for the broad (35.81 %) than
for the functional (30.09 %) set. To evaluate whether
these repeats are affecting our estimates, we also plotted
phastCons scores for the best match (BM) subset of se-
quences having the same amount of mapped repeats
(broad_BM: 351 sequences, Additional file 1: Figure S3,
see Methods). In this later subset, differences between
exons and introns were also significant, confirming pre-
vious results obtained using the entire broad set
(Additional file 1: Figure S4). Thus, differences between
the functional and the broad sets do not arise from dif-
ferent levels of repeated elements. Overall our results
show that, contrary to what may be expected, conserva-
tion in IncRNAs proven to be functional is also very
weak. This result implies that lack of inter-species
conservation, as measured with this standard approach,
cannot be taken as evidence of lack of functionality.

As mentioned above, it has been suggested that short
and highly conserved sequence elements may be in-
volved in the function of IncRNAs, but it is as yet
unclear whether these elements may play a role at the
DNA level [1, 20, 36]. Other authors have proposed that
conservation in IncRNAs is limited to splice-related mo-
tifs and that conservation in exon cores should be rare
[29]. These models are compatible with observations of
overall low sequence conservation. Indeed, if functional-
ity of IncRNAs is conferred by short elements separated
by largely unconstrained sequences, one could expect
overall low conservation scores. In addition, if the ob-
served conserved elements are indeed involved in
IncRNA function, and not acting solely at the DNA level,
one would expect them to specifically associate with ex-
onic regions, thereby forming part of the mature
IncRNA transcript. We compared the abundance of con-
served elements, which are discrete regions having high
conservation scores as predicted by phastCons, in both
functional and broad human IncRNAs and using a mul-
tiple genome alignment of 100 vertebrates [37]. We ob-
served that the percentage of IncRNAs covered by
conserved elements is significantly higher in exons than in
introns in both functional and broad data sets (P < 0.05,
Fig. 1). These results support the idea that selective con-
straints may be limited to the maintenance of a few clus-
ters of positions, which may be involved in IncRNA
function by participating in structure or binding motifs
present in the mature transcript.

Human IncRNA exons show signatures of selection at the

population level

Considering the low conservation of IncRNAs across
species, it has been suggested that these molecules may
have a high turnover and a short evolutionary lifespan
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Fig. 1 Boxplots showing the percentage of exonic and intronic sequences covered by conserved elements in the functional and broad human
data sets. Horizontal lines inside boxes represent the median, boxes show the interquartile range (/QR, distance between first and third quartiles),
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[38]. If that is the case, selective constraints in functional
IncRNAs may be stressed at the species or population
level. We first focused on differences in SNP densities in
exonic and intronic regions, which have been assessed
before in the human African (AFR) population without
finding significant differences [15]. We computed the
SNP density in exons and introns in this and four other
major human populations (Admixed American (AMR),
European (EUR), East Asian (EAS), and South Asian
(SAS)), which are roughly fourfold smaller than the AFR
population in terms of effective size [39], and focused on
differences between populations and between the broad
and functional sets. The observed SNP density is fairly
variable between populations, with the AFR and SAS
populations having the highest and the lowest SNP dens-
ity, respectively (Additional file 1: Figure S5), which is
consistent with previous studies showing the highest
genetic diversity in African populations [40, 41].
LncRNAs and intergenic regions have higher SNP dens-
ities, as compared to protein coding genes, and differ-
ences between them are generally not significant
(Additional file 1: Figure S5). The distributions of SNP
densities in the functional and broad sets are not signifi-
cantly different (Additional file 1: Figure S6). In the two
sets, we observed that exons tend to accumulate fewer

SNPs than introns, but differences were only significant
for some populations in the broad set (AMR and SAS,
Additional file 1: Figure S7). Thus, our results are gener-
ally in line with those of a previous study restricted to
the AFR population [15]. However, our results reveal
that IncRNAs with a known function display similarly
low differences in SNP densities between exons and in-
trons; therefore, this feature cannot be used as evidence
for a lack of functionality.

To gain a deeper insight into the selective pressures
acting on human IncRNAs, we performed a more
thorough analysis by estimating several population
genetics parameters, including nucleotide diversity (i),
derived allele frequency (DAF), and Tajima's D.
Nucleotide diversity (i) is defined as the average
number of pairwise nucleotide differences per site
[42]. Figure 2a shows the nucleotide diversity of the
two sets of human IncRNAs, as well as that of sur-
rounding protein coding genes and intergenic regions.
We made three major observations. First, nucleotide
diversity levels are different between the four categor-
ies: intergenic regions and protein coding exons show
the highest and lowest levels of genetic diversity, re-
spectively, and the broad set of IncRNAs has higher
values than the functional set. Second, levels of
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nucleotide diversity vary among populations, and they
can be ordered from highest to lowest levels (AFR,
AMR, SAS, EUR, and EAS, in this order), and the
order is the same in the four categories studied. Of
note, the lowest levels of SNP density in the SAS
population are not related with the lowest m levels,
since SAS has higher m levels than EUR and EAS
populations. Third, we observed, for the first time in
human populations, that nucleotide diversity is signifi-
cantly smaller in exons than in introns in both func-
tional and broad IncRNA sets. We also evaluated
whether the differential levels of repeats in the functional
and broad sets are biasing our results, computing m for a
subset of broad IncRNAs having the same amount of
mapped repeats (broad_BM). The levels of m are similar to
those for the whole set and are significantly lower in exons
compared to introns, indicating that the differential
composition of repeats in the sets is not biasing our re-
sults (Additional file 1: Figure S8a). Overall, in human
IncRNAs, SNP density and nucleotide diversity seem to be
subjected to different degrees of constraint, and only
nucleotide diversity has robust detectable differences be-
tween exonic and intronic sequences.

To further evaluate whether the observed genetic di-
versity patterns deviate from neutrality expectations, we
performed Tajima's D tests [43]. Tajima's D is calculated
as the difference between two measures of genetic diver-
sity: the mean number of pairwise differences and the
number of segregating sites, each scaled so that they are
expected to be equal in a neutrally evolving population
of constant size. Tajima's D was calculated for each data
set (IncRNA and surrounding protein coding genes and
intergenic regions) and for coalescent simulations that
were computed using the observed population mutation
rate value (theta) for each region and a basic model
(constant population size, no recombination, panmixis,
and an infinite-sites model) with the ms program [44].
Tajima's D values were negative in the four data sets
(the two sets of human IncRNAs and surrounding pro-
tein coding genes and intergenic regions) and in all five
populations studied (Fig. 2b). Tajima's D values in the
broad_BM subset were similar to those for the whole
broad set, indicating that the differential composition of
repeats in the sets is not biasing our estimates
(Additional file 1: Figure S8b). The observed Tajima's D
values are different from those obtained in the
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coalescence simulations, supporting the hypothesis that
observed values deviate from neutral expectations due to
an excess of polymorphism at low frequency. The bias
towards low frequency variants in IncRNAs was con-
firmed in both exonic and intronic regions when evalu-
ating the DAF (Additional file 1: Figure S9). Deviations
from neutral expectations may be interpreted as the
consequence of a recent population bottleneck and/or
purifying selection. Human populations are known to
have undergone a recent expansion [40, 45], which may
contribute to the negative Tajima's D values detected in
all regions studied, including intronic and surrounding
intergenic regions. However, we also detected that m is
not uniformly distributed in exonic and intronic regions
and also not between IncRNAs, protein coding genes,
and intergenic regions. Thus, selective constraints con-
tribute to the observed deviations from neutral expecta-
tions. Taken together, our results suggest that purifying
selection may be acting on human IncRNAs to prevent
the accumulation of deleterious mutations, in both the
functional and broad sets.

Secondary structure constrains sequence variation in
IncRNAs

It has been proposed that some IncRNAs may function
through the adoption of specific secondary structure
folds [46]. In a previous study, the presence of a high
number of correlated positions on multiple alignments
was interpreted as evidence of evolutionary conservation
of RNA secondary structures [17]. We evaluated the sec-
ondary structure of human IncRNAs, rRNA, mRNA,
and intergenic regions using accessibility scores calcu-
lated with two independent methods, which indicate the
probability that each site belongs to an unpaired region
according to an ensemble of computationally predicted
secondary structures (see Methods). rRNAs should be
considered as a positive control, since their functionality
is known to depend on their secondary structure. By
contrast, intergenic regions should be considered as a
negative control, since their function (if any) is not ex-
pected to be driven by their RNA secondary structure.
Although the function of mRNAs depends primarily on
the encoded protein, protein coding transcript sequences
have been shown to be constrained at the structural level
[28]. Regardless of the method used to calculate accessi-
bilities, all data sets had similar distributions of residue
accessibility, in which non-accessible residues likely to
be paired or close to paired residues constitute the lar-
gest fraction (Additional file 1: Figure S10).

Firstly, we evaluated whether conserved positions (i.e.,
those positions included in a phastCons conserved elem-
ent) and non-conserved positions have different accessi-
bilities. The distributions of accessibilities in conserved
and non-conserved positions are significantly different
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in the functional set (P < 0.001 for both Sfold and RNA-
fold estimates after a Wilcoxon test) but not in the
broad set. However, when computing the median acces-
sibilities for conserved and non-conserved positions for
each IncRNA, differences remain significant only for the
Sfold method (P=0.03, Additional file 1: Figure S11).
These results suggest that conserved elements may be
enriched in secondary structure folds, which in turn may
be related to their function. Secondly, to evaluate
whether the secondary structure influences the location
of SNPs, we calculated the prevalence of polymorphic
sites at positions with different accessibilities. We ob-
served that positions of low accessibility showed lower
probabilities of having SNPs (Fig. 3). Importantly, in the
rRNA, functional, broad, and mRNA data sets, the dif-
ferences between the distributions of positions with SNP
or without them were significant and larger in the range
of positions with very low accessibilities (between 0 and
0.1) than in the rest of the accessibility ranges, inde-
pendent of the method used to calculate accessibilities
(Fig. 4, Additional file 1: Figure S12). These low accessi-
bility positions are likely to be paired or close to paired
residues and constitute the largest fraction (Additional
file 1: Figure S10). Note that accessibilities independently
computed using the two different softwares behave in
the same way for all sets, the only exception being the
intergenic regions. According to the RNAfold program
intergenic regions do not show a tendency to prevent
the accumulation of SNPs in low accessibilities, while ac-
cording to the Sfold program the behavior of the inter-
genic regions is similar to that of the broad and mRNA
regions. These results suggest that the secondary struc-
tures predicted in the intergenic regions should be
considered with caution. Importantly, both programs
show that the differences between this particular range
of accessibilities and others are particularly stressed in
both the rRNA and the functional sets. This indicates
that, overall, SNPs are prevented from accumulating in
positions of low accessibility, that is, positions in paired
regions that participate in the formation of secondary
structure folds, and therefore may be key in achieving
their function.

Some of the IncRNAs may be partially annotated, and
this may affect the predictions of the secondary structure.
Thus, we selected a subset of putative full-length tran-
scripts by keeping those that had the same length in GEN-
CODE 19 and 24, which is the latest release. The subsets
resulted in 35 out of 38 for the functional IncRNA set and
3394 out of 3483 for the broad IncRNA set. In both cases
we detected the same trend as obtained when using the
whole data set, with SNPs prevented from accumulating
in regions with low accessibility (Additional file 1: Figure
S13). Thus, the presence of partially annotated genes does
not seem to affect our estimates of accessibility.
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To evaluate whether our results are biased due to
the nucleotide composition of the sequence context,
we compared GC content (% GC) with the mean
number of SNPs and the accessibility scores
(Additional file 1: Figure S14). The three parameters
(% GC, mean SNPs, and mean accessibilities) were
calculated for non-overlapping windows of five

nucleotides. As expected, we observed a negative
correlation between % GC and accessibility, confirm-
ing previous results [47, 48]. Importantly, the mean
number of SNPs remains similar for different values
of % GC, indicating that the observed depletion of
SNPs in low accessibility sites does not depend on
GC content.
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Previous studies showed that purifying selection is
maintaining a splice-related motif, i.e., an exonic splicing
enhancer (ESE), near exon boundaries to ensure an effi-
cient splicing of multiexonic IncRNA [29, 49]. Schiiler et
al. [29] concluded that purifying selection acts to main-
tain ESE motifs but not necessarily RNA folding, since
they failed to find a correlation between evolutionary
rate and secondary structure stability. In our study we
detected that SNP density is lower in ESE motifs than in
non-ESE regions, and differences were significant for the
broad set in the five populations studied (Additional
file 2: Table S3), providing additional support to the idea
that constraints are larger in ESE than in non-ESE

regions. We wanted to test whether the observed rela-
tionship between accessibility and SNP density is due to
the presence of ESE motifs, which may point to splicing
as the main factor driving the observed relationships be-
tween conservation and structure. To this end we classi-
fied the positions of IncRNAs according to the presence
or not of ESE motifs, and we compared the accessibility
distributions for positions not having and having SNPs
(Additional file 1: Figure S15). Overall the behavior of
the sites with or without annotated ESEs is similar for
both the Sfold and RNAfold programs, although in the
broad set differences are higher for the ESE positions in
all populations studied. Thus, the reduction of SNPs in
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positions of low accessibility cannot be solely explained
by the presence of ESE elements. Altogether, our results
suggest that secondary structure constrains ancient and
recent sequence variation in IncRNAs, and that this is
largely independent of the presence of known motifs in-
volved in splicing.

Finally, an alternative way to measure whether SNPs
that impair folding are purged by natural selection is to
estimate the impact of the variation on the energetic sta-
bility of the fold. We did so by comparing the minimal
Gibbs free energy (AG) of the reference structure and
the structure of the IncRNA having a certain SNP, as re-
ported in the IncRNASNP database [50] (Fig. 5a, b). The
density plots are significantly different in the two sets (P
=1.41e-11). Notably, in the functional data set, median
values of the change in minimal energy are narrowly
centered around zero, suggesting that SNPs located in
functional IncRNAs do not generally affect the stability
of the secondary structure. Conversely, in the broad set,
energy changes are shifted to positive values, suggesting
that SNPs accumulated in these IncRNAs may result in
less stable secondary structures. To our best knowledge,
this is the first study that provides compelling evidence
for an impact of secondary structure on IncRNA se-
quence variation.

Conclusions
We have found evidence of selection acting on IncRNAs
at both sequence and structural levels. When evaluating
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divergence data, which include ancient events, we ob-
served that exons are observably but not significantly
more conserved in exons compared to introns in the
functional set. Interestingly, in both functional and
broad sets, we observed a significant enrichment of con-
served elements in exonic regions which may be related
with IncRNA functionality. When evaluating more re-
cent events using sequence polymorphisms, we found
evidence that purifying selection prevents increases in
the frequency of slightly deleterious mutations, especially
in exonic regions, in both functional and broad sets. Fur-
thermore, in IncRNAs with an experimentally character-
ized function we found that structural regions with low
accessibility are more likely to be conserved. In addition,
we observed that in IncRNAs, mRNAs, and rRNAs, seg-
regating sites are prevented from accumulating in low
accessibility, paired regions, and SNPs in functional
IncRNAs had little impact on the stability of the second-
ary structure. Importantly, these results are independent
of the GC content, the presence of ESE motifs, and the
presence of partial sequences. Taken together, these re-
sults suggest that, overall, IncRNA structure introduces
constraints on the evolution of its sequence.

We have observed that functional and broad human
IncRNAs have different evolutionary constraints, al-
though in both sets nucleotide diversity is driven by
recent purifying selection. The functional set is generally
more conserved, especially in exons, and secondary
structure may be maintained through constraints on
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SNP location. In the broad set, selective constraints are
generally weaker at both the sequence and secondary
structure levels. Despite these overall differences, it is
difficult to predict the functionality of an individual
IncRNA based on the observed sequence or structural
constraints, since there is a great variation in each of
these single values. This indicates that the set of func-
tionally characterized human IncRNAs is a heteroge-
neous group, with respect to their evolutionary
signatures. Heterogeneity in the functional set may be a
consequence of the different functions in which they are
involved. Note that, for most parameters studied, the
functional and broad sets have overlapping distributions,
suggesting that numerous IncRNAs of the broad set may
be functional.

In summary, our study provides new evidence that
IncRNAs are subjected to purifying selection in human
populations, and therefore numerous predicted IncRNAs
are potentially functional. In addition we found first evi-
dence that secondary structure of IncRNAs shapes re-
cent sequence variation. In general, conservation is low
in IncRNAs exons but remains detectable in short,
discrete regions, which have a higher tendency to par-
ticipate in structural folds. Altogether our results sup-
port a model in which the functionality of IncRNAs can
be maintained despite large sequence divergence, prob-
ably by maintaining the presence of short elements,
likely involved in folding and other forms of functional-
ity, which are surrounded by loosely constrained regions
that may act as spacers. Future experimental analyses
are needed to determine whether those short conserved
regions are actually functional in the mature IncRNA.

Methods

Selection of intergenic IncRNA and flanking intergenic
regions and protein coding genes

We considered 12,101 IncRNA transcripts, annotated in
Ensembl r75, derived from GENCODE 19, and we fil-
tered them by applying a strict pipeline. In this pipeline,
transcripts were discarded if they were (1) shorter than
199 nt, (2) repeated (i.e., transcripts having a different
identifier but identical sequence), (3) overlapping any
protein coding genes annotated in Ensembl, (4) exhibit-
ing coding potential according to the CPC software [51],
or (5) monoexonic. After applying our pipeline, we kept
5245 transcripts corresponding to 3741 genes, hereafter
called the broad set. For each IncRNA in this set, we re-
trieved the sequences from regions falling within 5 kb
upstream and downstream of the IncRNA gene. First, we
obtained a bed file including all annotated genes in
Ensembl r75 and our IncRNA list. Then, we obtained a
bed file including all unannotated regions of each gen-
ome using the substractBed tool in BEDTools v2 [52],
hereafter defined as intergenic regions. Similarly, we
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selected exons and introns belonging to protein coding
genes located within 5 kb upstream and downstream of
each IncRNA, referred to as the mRNA data set. Add-
itionally, we considered a second data set of functional
IncRNAs annotated in IncRNAdb v2 [31]. We removed
IncRNAs overlapping with any of the protein coding
genes annotated in Ensembl r75 and those that were
monoexonic to obtain a final list of 39 functionally vali-
dated IncRNA genes, which are referred to as the “func-
tional set” throughout the text.

Sequence conservation of IncRNA across species

The phastCons scores [37] were retrieved from the
UCSC database [53]. We then calculated average phast-
Cons scores for each exonic and intronic region of each
transcript, using the bigWigAverageOverBed tool and
computed the average phastCons score per transcript.
The phastCons scores were computed using genomic
alignments of 46 vertebrate species and a tree model for
primates (including human, chimp, gorilla, orangutan,
rhesus, baboon, marmoset, tarsier, mouse lemur, and
bushbaby). We discarded 216 out of 5245 transcripts
after filtering by requiring the presence of a minimum of
two species in the genomic alignment. The remaining
5029 IncRNA transcripts (3597 genes) have a median
53 % identity. Sixteen of them were further discarded be-
cause they were already included in the functional set.
We selected the longest transcript of each IncRNA to
perform further analyses. Transcript IDs and genomic
locations of the longest transcript of the selected
IncRNAs for each species are shown in Additional file 2:
Tables S1 and S2. Finally, we calculated average phast-
Cons scores for intergenic regions and protein coding
genes located within 5 kb of the selected IncRNA (see
above). We also retrieved a list of phastCons conserved
elements from UCSC Table Browser [54] that were an-
notated using a multiple genome alignment of 100 verte-
brates [55].

Sequence polymorphism

The polymorphism data were downloaded from phase 3
data from the 1000 Genomes Project [56]. We extracted
data from five super-populations: African (AFR;
42,486,664 SNPs), Admixed American (AMR; 26,968,342
SNPs), European (EUR; 23,123,795 SNPs), East Asian
(EAS; 22,899,456 SNPs), and South Asian (SAS;
25,745,962 SNPs). For each species and population, we
mapped SNPs to the longest isoforms of IncRNAs and
flanking protein coding genes, and to the flanking inter-
genic regions. We computed the derived allele frequency
(DAF) [57], the nucleotide diversity (1), and Tajima's D
for exonic and intronic regions of the longest transcript
of each IncRNA using PopGenome [58]. Because of
technical issues, chromosome Y and chromosome X of
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males were discarded in the PopGenome analyses. Fi-
nally we computed 1000 coalescent simulations for each
chromosome using the observed population mutation
rate value (theta) and a basic model (constant population
size, no recombination, panmixis, and an infinite-sites
model) with the ms program [59]. Because of the high
number of SNPs mapped in intergenic regions, the num-
ber of coalescent simulations in this latter set was lim-
ited to 500 per chromosome.

Secondary structure

We calculated the residue accessibility levels (prob-
ability of a residue and their neighbors to be unpaired
in the folded RNA) for the IncRNA, intergenic re-
gions, and mRNA data sets, as well as for a set of
566 human rRNAs. In the intergenic data set we dis-
carded the regions located less than 1 kb from the
IncRNA to minimize the presence of possible UTR
regions. For these, sequence fragments were created
from IncRNA transcripts using overlapping windows
of 80 nt with an increment of 20 nt over the entire
transcript. For each fragment Sfold [60] was used to
sample 1000 secondary structures and compute resi-
due accessibilities. Residue accessibility was calculated
for each position (i) by averaging the values obtained
for all fragments as reported by Sfold and using a
window of four nucleotides: the accessibility is the
probability that nucleotides i, i+ 1, i+2, and i+ 3 are
all unpaired (W=4). Similarly, we calculated accessi-
bility using the program RNAfold [61] using windows
of four nucleotides. We also calculated the percentage
of GC, the mean number of SNPs, and mean accessi-
bility in non-overlapping windows of five nucleotides.
We used the density function in the stats package for
R to calculate the probability distributions for posi-
tions having and not having SNPs, and the area under
the curve between two given accessibility values was
calculated using the integratexy function from the
sfsmisc package. Confidence intervals were estimated
using a bootstrapping strategy, implemented using the
boot package from R. Furthermore, we classified posi-
tions as being covered or not by an ESE motif using
the same experimentally confirmed set as Schiiler et
al. [29], and we did the same analyses as with the
whole data sets. We also retrieved the minimal Gibbs
free energy (AG) as calculated in IncRNASNP for H.
sapiens IncRNA [50]. For each IncRNA, the database
provides the secondary structure and the minimum
free energy (AG) of the folded reference transcript se-
quence and that obtained after replacing each SNP
annotated in dbSNP. Using these data, we calculated
the median AG for functional and non-functional H.
sapiens IncRNAs.
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Sequence repeats

The presence of repeated elements was evaluated using
RepeatMasker software using default parameters. For
each IncRNA, we calculated the percentage of sequences
covered by six major types of repeats: SINEs, LINEs,
LTRs, DNA elements, simple repeats, and low complex-
ity. To optimally select a subset of IncRNA from the
broad set having the same abundance of repeated ele-
ments, we used the nbpMatching package for R. Briefly,
for all IncRNA from the functional set, we found the
best matches in the broad set according to their com-
position in repeats, and we removed this set of IncRNA
from the analysis. Using this procedure selected the
10 % of sets having the best matches, consisting in 351
sequences (broad_BM, Additional file 1: Figure S3).

Statistical tests and plots

All statistical tests and plots were performed using the R
statistical software package [62]. The Wilcoxon test was
computed with default parameters and used in pairwise
comparisons between exonic and intronic distributions.
We corrected for multiple testing using the Benjamini
and Hochberg method [63]. Plots were produced using
the ggplot2 package in R [64].

Additional files

Additional file 1: Figures S1-S15. Figure S1. Boxplots showing mean
phastCons scores for exons and introns of IncRNAs, protein coding
genes, and intergenic regions located within 1 and 5 kb from any of the
INcRNAs. Figure S2. Density plots showing the distribution of differences
in the mean phastCons scores of exons and introns computed for each
INcRNA. Figure S3. Proportion of repeats found in the functional, broad,
and best matches subset (broad_BM). Figure S4. Boxplots showing
mean phastCons scores for exons and introns of IncRNAs for the
functional, broad human and broad_BM data sets. Figure S5. Median
SNP density and 95 % confidence interval for exonic and intronic regions
of IncRNA, nearby protein coding genes (1 and 5 kb), and surrounding
intergenic regions (1 and 5 kb). Figure S6. Density plots showing
differences in SNP density of exons minus introns computed for each
IncRNA. Figure S7. Boxplots showing SNP density in exons and introns
for the five major human populations in the functional and the broad
sets. Figure S8. Mean nucleotide variability for exonic and intronic
regions of broad and broad_BM sets. Figure S9. Derived allele frequency
for exonic and intronic regions of the functional and broad human data
sets in the five major populations. Figure S10. Comparison of the
accessibility distribution in the functional, broad, intergenic, rRNA, and
mRNA sets. Figure S11. Median accessibility for conserved and non-
conserved positions. Figure S$12. Differences between accessibility
distributions of positions with or without SNPs within a given range of
accessibilities. Figure S13. Differences between accessibility distributions
of positions with or without SNPs for the whole functional and broad sets
and for those INcRNAs likely to be fully annotated, within a given range
of accessibilities. Figure S14. Boxplots showing the correlation between
the mean accessibility and the mean % GC, and the mean number of
SNPs and the mean % GC, calculated in non-overlapped windows of five
nucleotides for both the functional and the broad sets in the five major
populations. Figure S15. Differences between accessibility distributions
of positions with or without SNPs for the functional and the broad sets.
(PDF 8535 kb)
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Additional file 2: Tables S1-S3. Table S1. Chromosome, transcript
start coordinates, transcript end coordinates, and transcript ID for each
INncRNA of the functional set. Table S2. Chromosome, transcript start
coordinates, transcript end coordinates, and transcript ID for each IncRNA
of the broad set. Table S3. Mean number of SNPs in regions classified
according to the presence or not of ESE motifs for the functional and
broad human sets in the five major populations. (XLS 295 kb)
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