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Charged residues next to transmembrane
regions revisited: “Positive-inside rule” is
complemented by the “negative inside
depletion/outside enrichment rule”
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Abstract

Background: Transmembrane helices (TMHs) frequently occur amongst protein architectures as means for proteins
to attach to or embed into biological membranes. Physical constraints such as the membrane’s hydrophobicity and
electrostatic potential apply uniform requirements to TMHs and their flanking regions; consequently, they are
mirrored in their sequence patterns (in addition to TMHs being a span of generally hydrophobic residues) on top of
variations enforced by the specific protein’s biological functions.

Results: With statistics derived from a large body of protein sequences, we demonstrate that, in addition to the
positive charge preference at the cytoplasmic inside (positive-inside rule), negatively charged residues preferentially
occur or are even enriched at the non-cytoplasmic flank or, at least, they are suppressed at the cytoplasmic flank
(negative-not-inside/negative-outside (NNI/NO) rule). As negative residues are generally rare within or near TMHs,
the statistical significance is sensitive with regard to details of TMH alignment and residue frequency normalisation
and also to dataset size; therefore, this trend was obscured in previous work. We observe variations amongst taxa as
well as for organelles along the secretory pathway. The effect is most pronounced for TMHs from single-pass
transmembrane (bitopic) proteins compared to those with multiple TMHs (polytopic proteins) and especially for the
class of simple TMHs that evolved for the sole role as membrane anchors.

Conclusions: The charged-residue flank bias is only one of the TMH sequence features with a role in the
anchorage mechanisms, others apparently being the leucine intra-helix propensity skew towards the cytoplasmic
side, tryptophan flanking as well as the cysteine and tyrosine inside preference. These observations will stimulate
new prediction methods for TMHs and protein topology from a sequence as well as new engineering designs for
artificial membrane proteins.
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Background
Two decades ago, the classic concept of a transmem-
brane helical region was a rather simple story: Typical
transmembrane proteins were thought to be anchored in
the membrane by membrane-spanning bundles of non-
polar α-helices of roughly 20 residues in length, with a
consistent orientation of being perpendicular to the mem-
brane surface. Although this is broadly true, hundreds of
high-quality membrane structures have elucidated that
membrane-embedded helices can adopt a plethora of
lengths and orientations within the membrane. They are
capable of just partially spanning the membrane, spanning
using oblique angles, and even lying flat on the membrane
surface [1, 2]. The insertion and formation of the trans-
membrane helices (TMHs) follow a complex thermo-
dynamic equilibrium [3]. From the biological function
point of view, many TMHs have multiple roles besides
being just hydrophobic anchors; for example, certain TMHs
have been identified as regulators of protein quality control
and trafficking mechanisms [4]. As these additional bio-
logical functions are mirrored in the TMHs’ sequence pat-
terns, TMHs can be classified as simple (just hydrophobic
anchors) and complex sequence segments [5–7].
The relationship between sequence patterns in and in

the vicinity of TMHs and their structural and functional
properties, as well as their interaction with the lipid
bilayer membrane, has been a field of intensive research
in the last three decades [8]. Besides the span of gener-
ally hydrophobic residues in the TMH, there are other
trends in the sequence such as a saddle-like distribution
of polar residues (depressed incidence of charged residues
in the TMH itself ), an enriched occurrence of positively
charged residues in the cytosolic flanking regions as well
as an increased likelihood of tryptophan and tyrosine at ei-
ther flank edge [9–14]. These properties vary somewhat in
length and intensity between various biological organelle
membranes, between prokaryotes and eukaryotes [15] and
even amongst eukaryotic species studied due to slightly
different membrane constraints [9, 16]. These biological
dispositions are exploitable in terms of transmembrane
region prediction in query protein sequences [17, 18], and
tools such as the quite reliable TMHMM (software for
predicting TMHs based on a hidden Markov model),
Phobius or the dense alignment surface-transmembrane
filter (DAS-TMfilter) represent today’s prediction limit of
TMHs’ hydrophobic cores within the protein sequence
[19–25]. The prediction accuracy for true positives and
negatives is reported to be close to 100%, and the
remaining main cause of false positive prediction is hydro-
phobic α-helices completely buried in the hydrophobic
core of proteins. Note that reliable prediction of TMHs
and protein topology is a strong restriction for protein
function of even otherwise non-characterised proteins
[26–28] and thus provides very valuable information.

The “positive-inside rule” reported by von Heijne [2, 12]
postulates the preferential occurrence of positively charged
residues (lysine and arginine) at the cytoplasmic edge of
TMHs. The practical value of positively charged residue
sequence clustering in topology prediction of TMHs was
first shown for the plasmalemma in bacteria [12, 29]. As a
trend, the positive-inside rule has since been confirmed
with statistical observations for most membrane proteins
and biological membrane types [13, 30–32]. However,
more recent evidence suggests that, in thylakoid mem-
branes, the positive-inside rule is less applicable due to the
co-occurrence of aspartic acid and glutamic acid residues
together with positively charged residues [16].
The positive-inside rule also received support from

protein engineering experiments that revealed conclusive
evidence for positive charges as a topological determin-
ant [12, 33–35]. Mutational experiments demonstrated
that charged residues, when inserted into the centre of
the helix, had a large effect on insertion capabilities of
the TMH via the translocon. Insertion becomes more
unfavourable when the charge is placed closer to the
TMH core [36].
It remains unclear exactly why and how the positive

charge determines topology from a biophysical perspective.
Positively charged residues are suggested to be stronger de-
terminants of topology than negatively charged residues
due to a dampening of the translocation potential of nega-
tively charged residues. This dampening factor is the result
of protein-lipid interactions with the net-zero-charged
phospholipid phosphatidylethanolamine and other neutral
lipids. This effect favours cytoplasmic retention of positively
charged residues [37].
The recent accumulation of transmembrane protein se-

quences and structures allowed us to revisit the problem of
charged residue distribution in TMHs (see also http://blan
co.biomol.uci.edu/mpstruc/). For example, whilst β-sheets
contain charged residues in the transmembrane region, α-
helices generally do not [38]. Large-scale sequence analysis
of TMHs from various organelle membrane surfaces in
eukaryotic proteomes confirms the clustering of positive
charge having a statistical bias for the cytosolic side of the
membrane. At the same time, there are many TMH excep-
tion examples to the positive-inside rule; however, as a
trend, topology can be determined by simply looking for
the most positive loop region between helices [9, 13].
When the observation of positively charged residues

preferentially localised at the cytoplasmic edge of TMHs
emerged, it was also asked whether negatively charged resi-
dues work in concert with TMH orientation. It was shown
that a single additional lysine residue can reverse the
topology of a model Escherichia coli protein, whereas many
more negatively charged residues are needed to achieve the
same [35]. Nevertheless, a sufficiently large negative charge
can overturn the positive-inside rule [39, 40]; thus indeed,
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negative residues are topologically active to a point.
Negatively charged residues were observed in the flanks
of TMHs [13], especially in those of marginally hydro-
phobic transmembrane regions [41]. It is known that
the negatively charged acidic residues in transmem-
brane regions have a non-trivial role in the biological
context. In E. coli, negative residues experience elec-
trical pulling forces when travelling through the
SecYEG translocon, indicating that negative charges are
biologically relevant during the electrostatic interactions
of insertion [42, 43].
Unfortunately, there is a problem with statistical evi-

dence for preferential negative charge occurrence next
to TMH regions. Early investigations indicated that over-
all both positive and negative charge were influential
topology factors; this idea was dubbed the charge bal-
ance rule. If true, one would also expect to see a skew in
the negative charge distribution if a cooperation between
oppositely charged residues oriented a TMH [29, 44]. It
might be expected that, if positive residues force the
loop or tail to stay inside, negative residues would be
drawn outside, and the topology would be determined,
not unlike electrophoresis. Yet, there are plenty of indi-
vidual protein examples but no conclusive statistical evi-
dence in the current literature for a negatively charged
skew [9, 13, 14, 16, 31, 45].
There are many observations described in the litera-

ture that charged residues determine topology more pre-
dictably in single-pass proteins than in multi-pass TMHs
[40, 46]. It is thought that the charges only determine
the initial orientation of the TMH in the biological
membrane; yet, the ultimate orientation must be deter-
mined together with the totality of subsequent down-
stream regions [47].
With sequence-based hydrophobicity and volume ana-

lysis and consensus sequence studies, Sharpe et al. [9]
demonstrated that there is asymmetry in the intra-
membranous space of some membranes. Crucially, this
asymmetry differs amongst the membranes of various
organelles. They conclude that there are general differ-
ences between the lipid composition and organisation in
membranes of the Golgi and endoplasmic reticulum (ER).
Functional aspects are also important. For example, the
abundance of serines in the region following the luminal
end of Golgi TMHs appears to reflect the fact that this
part of many Golgi enzymes forms a flexible linker that
tethers the catalytic domain to the membrane [9].
A study by Baeza-Delgado et al. [13] analysed the dis-

tribution of amino acid residue types in TMHs in 170
integral membrane proteins from a manually maintained
database of experimentally confirmed TMPs (MPtopo
[48]) as well as in 930 structures from the Protein Data
Bank (PDB). As expected, half of the natural amino
acids are equally distributed along TMHs, whereas

aromatic, polar and charged amino acids along with
proline are biased near the flanks of the TMHs. Unsur-
prisingly, leucine and other non-polar residues are far
more abundant than the charged residues in the trans-
membrane region [9].
In this work, we revisit the issue of statistical evidence

for the preferential distribution of negatively charged
(and a few other) residues within and nearby TMHs. We
rely on the improved availability of comprehensive and
large sequence and structure datasets for transmem-
brane proteins. We also show that several methodo-
logical aspects have hindered previous studies [9, 13, 16]
from seeing the consistent non-trivial skew for nega-
tively charged residues disfavouring the cytosolic inter-
facial region and/or preferring the outside flank. First,
we show that acidic residues are especially rare within
and in the close sequence environment of TMHs, even
when compared to positively charged lysine and argin-
ine. Second, therefore, the manner of normalisation is
critical: Taken together with the difficulty of properly
aligning TMHs relative to their boundaries, column-wise
frequency calculations relative to all amino acid types as
in previous studies will blur possible preferential locali-
sations of negative charges in the sequence. However,
the outcome changes when we ask where a negative
charge occurs in the sequence relative to the total
amount of negative charges in the respective sequence
region. Thus, by accounting for the rarity of acidic resi-
dues with sensitive normalisation, the “non-negative
inside rule/negative-outside rule” is clearly supported by
the statistical data. We find that minor changes in the
flank definitions, such as taking the TMH boundaries
from the database or generating flanks by centrally
aligning TMHs and applying some standardised TMH
length, do not have a noticeable influence on the charge
bias detected.
Third, there are significant differences in the distribu-

tion of amino acid residues between single-pass and
multi-pass transmembrane regions in both the intra-
membrane helix and the flanking regions, with further
variations introduced by taxa and by the organelles along
the secretory pathway. Importantly, we find that it is
critical to weigh down the effect of TMHs in multi-pass
transmembrane proteins with no or super-short flanks
to observe statistical significance for the charge bias.
Bluntly stated, if there are no flanks of sufficient length,
there is also no negative charge bias to be observed.
The charge bias effect is even clearer when a classifica-

tion of TMHs into so-called simple TMHs (which, as a
trend, are mostly single-pass and mere anchors) and so-
called complex ones (which typically have functions
beyond anchorage) is considered [5–7]. We also observe
parallel skews with regard to leucine, tyrosine, trypto-
phan and cysteine distributions. With these large-scale
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datasets and a sensitive normalisation approach, new
sequence features are revealed that provide spatial
insight into TMH membrane anchoring, recognition,
helix-lipid, and helix-helix interactions.

Results
Acidic residues within and nearby TMH segments are rare
In order to reliably compare the amino acid sequence
properties of TMHs, we assembled datasets of TMH pro-
teins from what are likely to be the best in terms of quality
and comprehensiveness of annotation in eukaryotic and
prokaryotic representative genomes, as well as composite
datasets to represent larger taxonomic groups and to
consider subcellular locations (see Table 1). In total, 3292
single-pass TMH segments and 29,898 multi-pass TMH
segments were extracted from various UniProt [49] text
files according to TRANSMEM annotation (download
dated 20-03-2016). The UniProt datasets used included
only manually curated records; however, it is still neces-
sary to check for systematic bias due to the prediction
methods used by UniProt for TMH annotation in the
majority of cases without direct experimental evidence.
Therefore, a fully experimentally verified dataset was
also generated for comparison. The representative
1544 single-pass and 15,563 TMHs were extracted
from the manually curated experimentally verified
TOPDB [50] database (download dated 21-03-2016)
referred to as ExpAll here (Table1). TMH organelle
residency is defined according to UniProt annotation.
To ensure reliability, organelles were only analysed
from a representative redundancy-reduced protein
dataset of the most well-studied genome: Homo sapi-
ens (referred to as UniHuman herein). The several
datasets from UniProt are subdivided into different

human organelles (UniPM, UniER, UniGolgi) and
taxonomical groups (UniHuman, UniCress, UniBacilli,
UniEcoli, UniArch, UniFungi) as described in Table 1
(see also the Methods section). As will be shown
below, these various datasets allow us to validate our
findings for a variety of conditions, namely with regard
(1) to experimental verification of TMHs, (2) to origin
from various species and taxonomic groups, (3) to the
number of TMHs in the same protein as well as (4) to
subcellular localisation. Datasets and programs used
in this work can be downloaded from http://mendel.-
bii.a-star.edu.sg/SEQUENCES/NNI/.
The hydrophobic nature of the lipid bilayer membrane

implies that, generally, charged residues should be rare
within TMHs. For acidic residues, even the location in
the sequence vicinity of TMHs should be disfavoured
because of the negatively charged head groups of lipids
directed towards the aqueous extracellular side or the
cytoplasm. In agreement with the biophysically justified
expectations, the statistical data confirm that acidic resi-
dues are especially rare in TMHs and their flanking
regions. In Fig. 1, where we plot the total abundance of
all amino acid types in single-pass TMHs and multi-pass
TMHs (including their ±5 flanking residues), acidic resi-
dues were found to be amongst the rarest amino acids
both in UniHuman and ExpAll.
The effect is most pronounced in single-pass trans-

membrane proteins (Fig. 1a). There are only 666 gluta-
mates (just 1.24% of all residues) and 560 aspartates
(1.05% respectively) amongst the total set of 53,238
residues comprising 1705 TMHs and their flanks.
Within just the TMH regions, there are 71 glutamates
(0.20% of all residues in TMHs and flanks) and 58 aspar-
tates (0.16% respectively). This cannot be an artefact of

Table 1 Acidic residues are rarer in TMHs of single-pass proteins than in TMHs of multi-pass proteins

Dataset Acidic residues (D and E) Aspartic acid (D only) Glutamic acid (E only)

μ SP μ MP H statistic P value μ SP μ MP H statistic P value μ SP μ MP H statistic P value

ExpAll 0.086 0.309 148.1 4.50E-34 0.045 0.157 40.3 2.13E-10 0.042 0.161 46.6 8.64E-12

UniHuman 0.076 0.398 316.5 8.31E-71 0.034 0.191 91.6 1.05E-21 0.042 0.207 100.3 1.33E-23

UniER 0.106 0.430 34.4 4.39E-9 0.061 0.161 8.0 4.72E-3 0.045 0.268 26.8 2.24E-7

UniGolgi 0.097 0.381 39.8 2.88E-10 0.043 0.180 19.4 1.05E-5 0.053 0.201 20.2 7.01E-6

UniPM 0.039 0.400 121.0 3.86E-28 0.016 0.187 32.7 1.06E-8 0.022 0.213 36.9 1.26E-9

UniCress 0.062 0.434 163.5 1.99E-37 0.036 0.198 32.5 1.20E-8 0.025 0.241 66.0 4.59E-16

UniFungi 0.177 0.349 43.1 5.14E-11 0.044 0.166 24.5 7.60E-7 0.133 0.183 4.6 0.033

UniBacilli 0.089 0.352 24.1 9.16E-7 0.048 0.185 11.2 8.27E-4 0.040 0.176 12.3 4.54E-5

UniEcoli 0.148 0.315 2.7 0.100 0.111 0.150 0.1 0.729 0.037 0.163 2.2 0.140

UniArch 0.438 0.606 1.8 0.183 0.083 0.344 11.2 8.33E-4 0.354 0.247 3.5 0.0624

The statistical results when comparing the number of acidic residues in single-pass or multi-pass TMHs within their database-defined limits and excluding any flanks.
The number of helices per dataset can be found in Table 2 for single-pass TMHs and Table 3 for multi-pass helices. µSP is the average number of the respective residues
per helix in TMHs from single-pass proteins, while µMP is the average number of the respective residues per TMH from multi-pass proteins. The Kruskal-Wallis test scores
(H statistics) were calculated for the numbers of aspartic acid and glutamic acid residues in each helix from single-pass and the number of aspartic acid and glutamic
acid residues in each helix from multi-pass TMHs
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UniProt TMH assignments since this feature is repeated
in ExpAll. There are only 582 glutamates (1.22%) and
520 aspartates (1.09%) amongst the 47,568 residues in-
volved. Within the TMH itself, there are 64 glutamates
(0.19%) and 69 aspartates (0.21%). In both cases, the
negatively charged residues represent the ultimate end
of the distribution. Note that acidic residues are rare
even compared to positively charged residues, which are
about three to four times more frequent. On a much
smaller dataset of single-spanning transmembrane proteins,
Nakashima and Nishikawa [51] made similar compositional
studies. To compare, they found 0.94% glutamate and
0.94% aspartate within just the TMH region (these values
are very similar to ours from TMHs with small flanks;
apparently, they used more outwardly defined TMH
boundaries), but the content of each glutamate and as-
partate within the extracellular or cytoplasmic domains
is larger by an order of magnitude, between 5.26% and
9.34%. These latter values tend to be even higher than
the average glutamate and aspartate composition
throughout the protein database (5–6% [51]).
In the case of multi-pass transmembrane proteins

(Fig. 1c and d), glutamates and aspartates are still
very rare in TMHs and their ±5 residue flanks

(1.94% and 1.92% from the total of 377,207 in the
case of UniHuman, 1.79% and 1.70% from the total
of 454,700 in the case of ExpAll). Yet, their occur-
rence is similar to those of histidine and tryptophan
and, notably, acidic residues are only about ~1.5
times less frequent than positively charged residues.
The observation that acidic residues are more sup-
pressed in single-pass TMHs compared with multi-
pass TMHs is statistically significant. In Table 1, the
acidic residues are counted in the helices (excluding
flanking regions) belonging to either multi-pass or
single-pass helices. Indeed, single-pass helices appear
to tolerate negative charge to a far lesser extent than
multi-pass helices, as the data in the top two rows
of Table 1 indicate (for datasets UniHuman and
ExpAll). The trend is strictly observed throughout
subcellular localisations (rows 3–5 in Table 1) and
taxa (rows 6–10). Statistical significance (P ≤ 0.001) is
found in all but six cases. These are UniEcoli (D + E, D, E),
UniArch (D + E, E) and UniFungi (E). The problem is,
most likely, that the respective datasets are quite
small. Notably, the difference between single- and
multi-pass TMHs is greatest in UniPM; here, TMHs
from multi-pass proteins have on average 0.400

a b

dc

Fig. 1 Negatively charged amino acids are amongst the rarest residues in TMHs and ±5 flanking residues. Bar charts of the abundance of each
amino acid type in the TMHs with flank lengths of the accompanying ±5 residues from the (a) UniHuman single-pass proteins, (b) ExpAll
single-pass proteins, (c) UniHuman multi-pass proteins, and (d) ExpAll multi-pass proteins. Amino acid types on the horizontal axis are listed in
descending count. The bars were coloured according to categorisations of hydrophobic, neutral and hydrophilic types according to the free
energy of insertion biological scale [36]. Grey represents hydrophilic amino acids that were found to have a positive ΔGapp, and blue represents
hydrophobic residues with a negative ΔGapp, purple denotes negative residues and positive residues are coloured in orange. The abundances
of key residues are labelled
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negative residue per helix, whereas single-pass TMHs
contained just 0.039 (P = 3.86e-28).

Amino acid residue distribution analysis reveals a
“negative-not-inside/negative-outside” signal in single-
pass TMH segments
The rarity of negatively charged residues is a complicat-
ing issue when one studies their distribution along the
sequence positions of TMHs and their flanks. For
UniHuman (Fig. 2a) and ExpAll (Fig. 2b), we plotted the
absolute abundance of aspartic acid, glutamic acid, ly-
sine, arginine and leucine at each position (i.e., it scales
as the equivalent fraction in the total composition of the
alignment column). Note that the known preference of
positively charged residues towards the cytoplasmic side
is nevertheless evident. Yet, it becomes apparent that any
bias in the occurrence of the much rarer acidic residues is
overshadowed by fluctuations in the highly abundant
residues such as leucine.
The trends become clearer if the occurrence of specific

residues is normalised with the total number of residues
of the given amino acid type in the dataset observed in
the sequence region studied as shown for UniHuman in
Fig. 2c and for ExpAll in Fig. 2d. For comparison, we
indicated background residue occurrences (dashed lines
calculated as averages for positions –25 to –30 and 25 to
30). The respective average occurrences in the inside and
outside flanks (calculated from an average of the values at
positions –20 to –10 and 10 to 20 respectively) are shown
with wide lines.
The “positive-inside rule” becomes even more evident in

this normalisation: Whereas the occurrence of positively
charged residues is about the background level at the out-
side flank, it is about two to three times higher both for
the UniHuman and the ExpAll datasets at the inside flank.
Note that the background level was found to be 1.7%
(lysine) and 1.6% (arginine) in UniHuman and 1.4% (lysine
and arginine) in ExpAll. The inside flank average is 4.3%
(lysine) and 4.6% (arginine) in UniHuman and 4.2%
(lysine) and 4.6% (arginine) in ExpAll. The outside flank is
similar to the background noise levels: about 1.4% (lysine)
and 1.5% (arginine) in UniHuman and about 1.5% (lysine)
and 1.4% (arginine) in ExpAll.
Most interestingly, a "negative-inside depletion" trend

for the negatively charged residues is apparent from the
distribution bias. The inside flank averages for glutamic
acid were 1.1% and 1.4% in UniHuman and ExpAll re-
spectively; for aspartic acid, 1.2% and 1.4% in UniHuman
and ExpAll respectively. Meanwhile, the outside flanks
for aspartic acid and glutamic acid occurrences were
measured at 2.9% and 2.4% respectively in UniHuman,
and in ExpAll, these values for aspartic acid and glu-
tamic acid were found to be 2.5% and 2.1% respectively.
Against the background level of aspartic acid (2.8% and

2.9% in UniHuman) and glutamic acid (2.6% and 2.9% in
ExpAll), the inside flank averages were found to be about
2 to 3 times lower than the background level whilst the
outside flank averages were comparable to the back-
ground level (Fig. 2c and d). Taken together, this indi-
cates a clear suppression of negatively charged residues
at the inside flank of single-pass TMHs and a possible
trend for negatively charged residues occurring preferen-
tially at the outside flank. This is not an effect of the
flank definition selection since the trend remains the
same when using the database-defined flanks without
the context of the TMH (Fig. 2e and f). For UniHuman
(Fig. 2e), the negative charge expectancy on the inside
flank does not reach above 2% until position –10 (D)
and position –11 (E), whereas, on the outside flank, both
D and E start >2%. The same can be seen in ExpAll
(Fig. 2f ), where negative residues reach above 2% only as
far from the membrane boundary as at position –9 (D)
and position –7 (E) on the inside but exceed 2% beginning
with positions 1 (D) and 3 (E) on the outside.
The observation of negative charge suppression at the

inside flank, herein the “negative-inside depletion” rule,
is statistically significant throughout most datasets in
this study. The inside-outside bias was counted using
the Kruskal-Wallis (KW) test comparing the occurrence of
acidic residues within 10 residues of each TMH inside and
outside the TMH (Table 2). We studied both the database-
reported flanks as well as those obtained from central align-
ment of TMHs (see Methods). The null hypothesis (no dif-
ference between the two flanks) could be confidently
rejected in all cases (P value < 0.001 except for UniBacilli),
the sign of the H statistic (KW) indicating suppression at
the inside and/or preference for the outside flank (except for
UniArch). Most importantly, acidic residues were found to
be distributed with bias in ExpAll (P value <3.47e-58) and in
UniHuman (P value = 1.13e-93). Whereas with UniBacilli,
the problem is most likely the dataset size, the exception of
UniArch, for which we observe a strong negative inside rule,
is more puzzling and indicates biophysical differences of
their plasma membranes.

Amino acid residue distribution analysis reveals a general
negative charge bias signal in outside flank of multi-pass
TMH segments: the negative-outside enrichment rule
As a result of the rarity of negatively charged residues,
any distribution bias is difficult to recognise in the plot
showing the total abundance (or alignment column
composition) of residues in multi-pass TMHs and their
flanks from UniHuman (Fig. 3a) and ExpAll (Fig. 3b).
Yet, as with single-pass helices, the dominant general
leucine enrichment, as well as positive inside signal, can
be identified with certainty. When the residue occurrence
is normalised by the total occurrence of this residue type
in the sequence regions studied (shown as a relative
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a b

c d

e f

Fig. 2 Relative percentage normalisation reveals a negative-outside bias in TMHs from single-pass protein datasets. All flank sizes were set at up
to ±20 residues. We acknowledge that all values, besides the averaged values, are discrete, and connecting lines are illustrative only. On the
horizontal axes (a–d) are the distances in residues from the centre of the TMH, with the negative numbers extending towards the cytoplasmic
space. For (e and f), the horizontal axis represents the residue count from the membrane boundary with negative counts into the cytoplasmic
space. Leucine, the most abundant non-polar residue in TMHs, is in blue. Arginine and lysine are shown in dark and light orange respectively.
Aspartic and glutamic acid are showing in dark and light purple respectively. (a and b) On the vertical axis is the absolute abundance of residues
in TMHs from single-pass proteins from (a) UniHuman and (b) ExpAll. Note that no clear trend can be seen in the negative residue distribution
compared to the positive-inside signal and the leucine abundance throughout the TMH. (c and d) On the vertical axis is the relative percentage
at each position for TMHs from single-pass proteins from (c) UniHuman and (d) ExpAll. The dashed lines show the estimation of the background
level of residues with respect to the colour; an average of the relative percentage values between positions 25 to 30 and –30 to –25. The thick
bars show the averages on the inner (positions –20 to –10) and outer (positions 10 to 20) flanks coloured to the respective amino acid type.
Note a visible suppression of acidic residues on the inside flank when compared to the outside flank in single-pass proteins when normalising
according to the relative percentage. (e and f) The relative distribution of flanks defined by the databases with the distance from the TMH boundary
on the horizontal axis. The inside and outside flanks are shown in separate subplots. The colouring is the same as in (a and b)
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percentage at each position for multi-pass helices from
UniHuman in Fig. 3c and e and ExpAll in Fig. 3d and f),
the bias in the distribution of any type of charged residues
becomes visible.
With regard to the positive-inside preference, posi-

tively charged residues have a background value of 2.0%
for arginine and 2.2% for lysine in UniHuman, and 1.7%
for arginine and 1.9% for lysine in ExpAll. At the inside
flank, this rises to 4.6% for arginine and 4.1% for lysine
in UniHuman and 4.6% for arginine and 4.2% for lysine
in ExpAll. The mean net charge at each position was
calculated for multi-pass and single-pass datasets from
UniHuman and ExpAll (Additional file 1: Figure S1).
The positive-inside rule clearly becomes visible, as the
net charge has a positive skew approximately between
residues –10 and –25. What is noteworthy is that the
peaks found for single-pass helices were almost three
times greater than those of multi-pass helices. For
single-pass TMHs, the peak is +0.30 at position –15 in
UniHuman and +0.31 at position –14 in ExpAll, whereas
TMHs from multi-pass proteins had lower peaks of
+0.15 at position –13 in UniHuman and +0.10 at pos-
ition –14 in ExpAll. Thus, there is a positive charge bias
towards the cytoplasmic side; yet, it is much weaker for
multi-pass than for single-pass TMHs.
Notably, a "negative-outside enrichment" trend also

can be seen from the distribution of the negatively
charged residues, though with some effort (Table 3), as
the effect is also weaker than in the case of single-pass
TMHs. We studied the flanks under four conditions: (1)

database-defined flanks without overlap between neigh-
bouring TMHs, (2) flanks after central alignment of
TMHs without flank overlap, (3) database-defined flanks
but allowing overlap of flanks shared amongst neigh-
bouring TMHs, (4) same as condition (2) but only the
subset of cases where there is at least half of the
required flank length at either side of the TMH. In
UniHuman as calculated under condition (1), aspartic
acid is lower on the inside flank (2.3%) than on the out-
side flank (3.0%). Glutamic acid is also lower at the in-
side flank (2.4%) than the 2.8% on the outside flank
(Fig. 3c). Slight variations in defining the membrane
boundary point do not influence the trend (compare
Fig. 3c and e). We find that, in all studied conditions,
the UniHuman dataset delivers statistical significances
(P values: (1) 6.10e-34, (2) 5.43e-41, (3) 3.00e-57, (4)
5.60e-41), strongly supporting negative charge bias
(inside suppression/outside preference; see Table 3).
Surprisingly, the result could not straightforwardly be

repeated with the considerably smaller ExpAll. Under
condition (1), we find with ExpAll that aspartic acid has
a background level of 1.0%, an average of 2.6% on the in-
side flank and of 2.9% on the outside flank, but glutamic
acid’s background is 1.2% but 2.8% on the inside flank
and 2.5% on the outside flank. Statistical tests do not
support finding a negative charge bias in conditions (1)
and (2). Apparently, the problem is TMHs having no or
almost no flanks at one of the sides. Statistical signifi-
cance for the negative charge bias is detected as soon as
this problem is dealt with — either by allowing

Table 2 Statistical significances for negative charge distribution skew on either side of the membrane in single-pass TMHs

Single-pass Database-defined flanks Flanks after central alignment

Dataset Helices Negative residues H statistic P value Negative residues H statistic P value

Inside Outside Inside Outside

ExpAll 1544 848 1648 258.59 3.47E-58 735 1541 262.29 5.44E-59

UniHuman 1705 780 1922 421.53 1.13E-93 652 1865 501.86 3.74E-111

UniER 132 78 156 23.76 1.09E-06 76 150 21.62 3.33E-06

UniGolgi 206 60 240 104.45 1.61E-24 54 239 107.18 4.06E-25

UniPM 493 197 578 177.68 1.56E-40 161 569 215.18 1.02E-48

UniCress 632 314 450 18.23 1.96E-05 231 444 55.80 8.01E-14

UniFungi 729 449 631 28.15 1.12E-07 413 627 38.08 6.79E-10

UniBacilli 124 90 113 3.73 5.35E-02 86 106 2.53 1.12E-01

UniEcoli 54 32 77 17.24 3.30E-05 30 74 14.74 1.24E-04

UniArch 48 113 8 49.66 1.83E-12 96 7 45.62 1.43E-11

The “Helices” column refers to the total TMHs contained in each dataset (ExpALL, TMHs from TOPDB [50]; UniHuman, human representative proteome; UniER,
human endoplasmic reticulum representative proteome; UniGolgi, human Golgi representative proteome; UniPM, human plasma membrane representative
proteome; UniCress, Arabidopsis thaliana (mouse-ear cress) representative proteome; UniFungi, fungal representative proteome; UniBacilli, Bacilli class
representative proteome; UniEcoli, Escherichia coli representative proteome; UniArch, Archaea representative proteome; see Methods for details). In the “Database-
defined flanks” column, the “Negative residues” column refers to the total number of negative residues found in the ±10 flanking residues on either side of the
TMH and does not include residues found in the helix itself. In the “Flanks after central alignment” column, the “Negative residues” column refers to the total
number of negative residues found in the –20 to –10 residues and the +10 to +20 residues from the centrally aligned residues of the TMH. Unlike the other
tables, the global averages are derived from the ±20 datasets. The Kruskal-Wallis scores were calculated for negative residues by comparing the number of
negatively charged residues that were within the 10 inside residues and the 10 outside residues in either case
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extension of flanks overlap amongst neighbouring TMHs
as in condition (3) or by excluding examples without
proper flank lengths from the dataset as in condition (4).
The respective P values under these conditions are
2.05e-6 and 9.81e-15.

The issues we had with ExpAll raised the question that
sequence redundancy in the UniHuman set may have
played a role. Therefore, we repeated all calculations but
with UniRef50 instead of UniRef90 for mapping into se-
quence clusters (see the Methods section for details).

a b

c d

e f

Fig. 3 Negative-outside bias is very subtle in TMHs from multi-pass proteins. The meaning for the horizontal axis is the same as in Fig. 2, with the nega-
tive sequence position numbers extending towards the cytoplasmic space. Leucine is in blue. Arginine and lysine are shown in dark and light orange
respectively. Aspartic and glutamic acid are shown in dark and light purple respectively. All flank sizes were set at up to ±20 residues. (a and b) On the
vertical axes are the absolute abundances of residues from TMHs of multi-pass proteins from (a) UniHuman and (b) ExpAll. (c and d) On the vertical axes
are the relative percentages at each position for TMHs from multi-pass proteins from (c) UniHuman and (d) ExpAll. As in Fig. 2c and d, the dashed lines
show the estimation of the background level of residues with respect to the colour, and the thick bars show the averages on the inner and outer flanks
coloured to the respective amino acid type. (e and f) The relative distribution of flanks defined by the databases with the distance from the TMH
boundary on the horizontal axis for both the inside and outside flanks. The colouring is the same as in (a and b)
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We were surprised to see that harsher sequence redun-
dancy requirements do not affect the outcome of the
statistical tests in any major way. For the conditions
(1)–(4), we computed the following P values: (1) 1.31e-28
(5940 negatively charged residues inside vs 7492 outside),
(2) 1.38e-36 (5516 vs 7320), (3) 5.60e-53 (7089 vs 9233)
and (4) 4.18e-41 (4232 vs 5730).
So, the amplifying effect of some subsets in the overall

dataset on the statistical test that might be caused by
allowing overlapping flanks (condition (3)) is not the

major factor leading to the negative charge skew. Simi-
larly, the trend is also not caused by sequence redundancy.
Thus, we have learned that the negative charge bias does
also exist in multi-pass transmembrane proteins but under
the conditions that there are sufficiently long loops be-
tween TMHs. Bluntly stated: No loops equals to no charge
bias. As soon as the loops reach some critical length, there
are differences between single-pass and multi-pass TMHs
with regard to occurrence and distribution of negative
charges and the inside-suppression/outside-enrichment

Table 3 Statistical significances for negative charge distribution skew on either side of the membrane in multi-pass TMHs

A)

Multi-pass Database-defined flanks Flanks after central alignment

Dataset IDs Helices Negative residues H statistic P value Negative residues H statistic P value

n μ σ Inside Outside Inside Outside

ExpAll 2205 15,563 7.07 3.95 9709 9598 0.04 8.43E-01 9648 9659 0.35 5.56E-01

UniHuman 1789 12,353 6.93 3.20 7196 9164 147.50 6.10E-34 6740 8968 179.77 5.43E-41

UniER 155 898 5.85 3.20 630 584 0.44 5.08E-01 578 576 0.03 8.58E-01

UniGolgi 61 383 6.28 2.97 274 261 0.02 8.75E-01 266 259 0.09 7.65E-01

UniPM 427 3079 7.22 3.30 1945 2499 47.98 4.30E-12 1791 2440 64.42 1.01E-15

UniCress 507 3823 7.55 3.32 2567 2426 0.73 3.93E-01 2398 2433 1.11 2.93E-01

UniFungi 1338 8685 6.50 3.75 5560 5266 5.83 1.57E-02 5140 5214 0.00 9.62E-01

UniBacilli 140 822 5.94 3.98 470 468 0.07 7.92E-01 450 471 0.92 3.38E-01

UniEcoli 529 3888 7.39 3.76 1990 1902 0.26 6.07E-01 1875 1887 0.18 6.71E-01

UniArch 59 327 5.97 2.73 245 175 7.98 4.72E-03 235 181 7.08 7.81E-03

B)

Multi-pass Overlapping flanks Database-defined viable* flanks

Dataset Negative residues H statistic P value N Negative residues H statistic P value

Inside Outside Inside Outside

ExpAll 11,969 12,615 22.54 2.05E-06 8808 6082 6916 59.93 9.81E-15

UniHuman 8645 11,181 254.30 3.00E-57 8183 5169 6915 179.71 5.60E-41

UniER 750 763 1.16 2.81E-01 516 398 441 3.16 7.55E-02

UniGolgi 333 369 7.12 7.64E-03 195 162 186 3.00 8.30E-02

UniPM 2319 3107 99.68 1.79E-23 1977 1343 1960 98.63 3.05E-23

UniCress 3142 3298 9.21 2.41E-03 2110 1626 1741 6.40 1.14E-02

UniFungi 6724 6814 0.46 4.96E-01 4581 3340 3411 0.41 5.22E-01

UniBacilli 585 636 2.65 1.04E-01 382 230 306 12.73 3.61E-04

UniEcoli 2574 2800 17.88 2.35E-05 1596 951 1114 16.57 4.69E-05

UniArch 342 248 14.67 1.28E-04 132 120 104 0.28 5.97E-01

The “Helices” column refers to the total TMHs contained in each dataset (ExpALL, TMHs from TOPDB [50]; UniHuman, human representative proteome; UniER,
human endoplasmic reticulum representative proteome; UniGolgi, human Golgi representative proteome; UniPM, human plasma membrane representative
proteome; UniCress, Arabidopsis thaliana (mouse-ear cress) representative proteome, UniFungi, fungal representative proteome; UniBacilli, Bacilli class
representative proteome; UniEcoli, Escherichia coli representative proteome; UniArch, Archaea representative proteome; see Methods for details). In (A) the
“Database-defined flanks” and in (B) the “Database-defined viable* flanks” and the “Overlapping flanks” columns, the “Negative residues” column refers to the
total number of negative residues found in the ±10 flanking residues on either side of the TMH and does not include residues found in the helix itself. (A) In the
“Flanks after central alignment” column, the “Negative residues” column refers to the total number of negative residues found in the –20 to –10 residues and the
+10 to +20 residues from the centrally aligned residues with a maximum database defined flank length of 20 residues. The total number of proteins is given in
the IDs column. The “Helices” column contains the total number of TMHs in the dataset (n), the average number of TMHs per protein in that population (μ) and
the standard deviation of that average (σ). The Kruskal-Wallis scores were calculated for negative residues by comparing the number of negatively charged
residues that were within 10 residues inside and 10 residues outside the helices
*Here, viable indicates that in each TMH used for both flanks either side of the TMH has a flank length of at least half the maximum allowed flank length, in this
case 10 (viable length = 5)
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negative charge bias appears. Not only are there more
negative charges within the multi-pass TMH itself (in fact,
negative charges are almost not tolerated in single-pass
TMHs; see Table 1), but also, there is a much stronger
negative-outside skew in the TMHs of single-pass proteins
than in those of multi-pass proteins.

Further significant sequence differences between single-
pass and multi-pass helices: distribution of tryptophan,
tyrosine, proline and cysteine
Amino acid residue profiles along the transmembrane seg-
ment and its flanks differ between single- and multi-pass
TMHs also in other aspects. The relative percentages of
all amino acid types (normalisation by the total amount of
that residue type in the sequence segment) from single-
pass helices of the UniHuman (Fig. 4a; from 1705 TMHs
with flanks having 68,571 residues) and ExpAll (Fig. 4b;
from 1544 TMHs with flanks having 60,200 residues) were
plotted as a heatmap. The amino acid types were listed on
the vertical axis according to Kyte and Doolittle hydro-
phobicity [52] in descending order.
In accordance with expectations, enrichment for hydro-

phobic residues in the TMH, for the positively charged
residues on the inside flank as well as a distribution for
the negative distribution bias, was found in both datasets.
Additionally, the inside interfacial region showed consist-
ent enrichment hotspots for tryptophan (e.g. 7.1% at pos-
ition –11 in ExpAll, 6.2% at position –10 in UniHuman
with flanks after central TMH alignment) and tyrosine
(6.4% at –11 in ExpAll, 7.1% at –11 in UniHuman), and
some preference can also be seen for the outer interfacial
region (e.g. 5.2% at position 11 for tryptophan in ExpAll
and 5.8% at position 10 for tryptophan in UniHuman),
albeit the “hot” cluster of the outer flank covers fewer
positions than that of the inner flank. Further, there is an
apparent bias of cysteine on the inner flank and interfacial
region (e.g. 5.5% at position –10 in ExpAll, 5.9% at pos-
ition –11 in UniHuman) and a depression in the outer
interfacial region and flank (up to a minimum of 0.3% in
both ExpAll and UniHuman). Proline appears to have a
depression signal on the outer flank. Note that, in a simi-
lar way to Figs. 2 and 3, the distributions of the flanks
derived from centrally aligned TMHs are corroborated by
the distributions from the database-defined TMH bound-
ary flanks (see outside bands in Fig. 4a–d).
A similar heatmap was generated for UniHuman

multi-pass TMHs (Fig. 4c; from 12,353 TMHs with
flanks having 452,708 residues) and ExpAll multi-pass
(Fig. 4d; from 15,563 TMHs with flanks having 535,599
residues). Whereas the heatmaps of Fig. 4a–c appear
quite noisy, the plot for ExpAll multi-pass TMHs ap-
pears almost to have undergone Gaussian-like smooth-
ing, thus, indicating the quality of this dataset. Tyrosine
and tryptophan in the multi-pass case do not appear as

enriched in the interfacial regions of single-pass TMHs
from both UniHuman and ExpAll. Prolines are only sup-
pressed in the TMH itself and are not suppressed in the
outer flank as in the single-pass case but, indeed, are tol-
erated if not slightly enriched in the flanks.

Hydrophobicity and leucine distribution in TMHs in
single- and multi-pass proteins
Generally, we see in Fig. 4 that compositional biases
appear more extreme in the single-pass case, particularly
when it comes to polar and non-polar residues being
more heavily suppressed and enriched. To investigate
this observation, we calculated the hydrophobicity at
each sequence position averaged over all TMHs consid-
ered (after having window-averaged over three residues
for each TMH) using the Kyte and Doolittle hydrophobi-
city scale [52] (Fig. 5a) and validated using the White
and Wimley octanol-interface whole residue scale [53],
Hessa’s biological hydrophobicity scale [36] and the
Eisenberg hydrophobic moment consensus scale [54]
(Additional file 2: Figure S2). The total set of TMHs was
split into 15 sets of membrane-spanning proteins (1 set
containing single-pass proteins, 13 sets each containing
TMHs from 2-, 3-, 4-… 14-transmembrane proteins and
another of TMHs from proteins with 15 or more trans-
membranes). In Fig. 5b, we show the P value at each
sequence position by comparing the respective values
from multi-pass and single-pass TMHs using the two-
sample t test (Fig. 5b). Strikingly, the inside flank of the
single-pass TMHs is much more hydrophilic (e.g. see the
Kyte and Doolittle score = –1.3 at position –18) than
that of multi-pass TMHs (P value = 5.64e-103 at position
–14). Most likely, the positive-inside rule along with the
interfacial clustering of tryptophan and tyrosine contrib-
ute to a strong polar inside flank in single-pass helices
that is not present in multi-pass helices en masse. Fur-
ther, multi-pass TMHs cluster remarkably closely within
the transmembrane core; the respective hydrophobicity
is apparently not dependent on the number of TMHs in a
given multi-pass transmembrane protein. On average,
single-pass TMHs are more hydrophobic in the core than
multi-pass TMHs (P value < 1.e-72 within positions –5…5
and P value = 5.92e-190 at position 0). On the other hand,
hydrophobicity differences between TMHs from single-
and multi-pass proteins fade somewhat at the transition
towards the flanks (P value = 1.85e-4 at position –10, and
P value = 3.35e-31 at position 10).
Leucine is the most abundant residue in TMHs (Fig. 1)

and is considered one of the most hydrophobic residues
by all hydrophobicity scales. Therefore, it plays a very in-
fluential role in TMH helix-helix and lipid-helix interac-
tions in the membrane and recognition by the insertion
machinery. When looking at the difference in the abun-
dance of leucine between the inner and outer halves, we
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find that TMHs from single-pass proteins have a trend
to contain more leucine residues at the cytoplasmic side
of TMHs (see Figs. 2 and 4).
This trend is statistically significant for TMHs in many

biological membranes (Table 4, Fig. 6). In the most extreme
case of UniCress (single-pass), we see 49% more leucine
residues on the inside leaflet than the outside leaflet

(P value = 5.41e-24). This contrasts with UniCress
(multi-pass), in which the skew is far weaker, albeit yet
statistically significant. There are 6% more leucine residues
at the inside half (P value = 2.08e-4). The trend of having
more leucine residues at the cytoplasmic half of the TMH
is observed for all datasets (both single- and multi-pass)
except for UniArch (single-pass). The phenomenon is

a b

c d

Fig. 4 Relative percentage heatmaps from predictive and experimental datasets corroborate residue distribution differences between TMHs from
single-pass and multi-pass proteins. The residue position aligned to the centre of the TMH is on the horizontal axis, and the residue type is on the
vertical axis. Amino acid types are listed in order of decreasing hydrophobicity according to the Kyte and Doolittle scale [52]. The flank lengths in
the TMH segments were restricted to up to ±10 residues. The scales for each heatmap are shown beneath the respective subfigure. The darkest
blue represents 0% distribution, whilst the darkest red represents the maximum relative percentage distribution that is denoted by the keys in
each subfigure, with white being 50% between “cold” and “hot”. The central TMH subplots extend from the central TMH residue, whereas the
inner and outer flank subplots use the database-defined TMH boundary and extend from that position. (a) TMHs from the single-pass UniHuman
dataset. (b) Single-pass protein TMHs from the ExpAll dataset. (c) TMHs from the proteins of the multi-pass UniHuman dataset. (d) TMHs from
ExpAll multi-pass proteins. The general consistency in relative distributions of every residue type between single-pass and multi-pass of either
dataset including flank/TMH boundary selection allows us to infer biological conclusions from these distributions that are independent of
methodological biases used to gather the sequences. The only residue that displays drastically differently between the datasets is cysteine in
multi-pass TMHs only. The most striking differences in distributions between residues from TMHs of single-pass and multi-pass proteins include a
more defined Y and W clustering at the flanks, a suppression of E and D on the inside flank, a suppression of P on the inside flank and a
topological bias for C favouring the inside flank
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statistically significant with P values < 1.e-3 for ExpAll, Uni-
Human, UniPM and UniCress (both single- and multi-
pass). As with negative charge distribution, UniArch
presents a reversed effect compared to other single-pass
protein datasets with a 57% reduction in leucine on the
inside leaflet compared to the outside leaflet (P value =
7.25e-6). However, leucines of TMHs from UniArch multi-
pass proteins have no discernible preference for the inside
leaflets (4% more on the inside leaflet, P value = 0.625).

A negative-outside (or negative-not-inside) signal is
present across many membrane types
We explored the presence of amino acid residue compos-
itional skews described above for human transmembrane

proteins for those in other taxa and also specifically for
human proteins with regard to membranes at various
subcellular localisations. Acidic residues for TMHs from
single-pass and multi-pass helices were plotted according
to their relative percentage distributions (of the total
amount of this residue type in the respective segment) for
five taxon-specific datasets: UniCress (Fig. 6a), UniFungi
(Fig. 6b), UniEcoli (Fig. 6c), UniBacilli (Fig. 6d), UniArch
(Fig. 6e), and for three organelle-specific datasets: UniER
(Fig. 6f), UniGolgi (Fig. 6g), UniPM (Fig. 6h).
For single-pass proteins in all taxon-specific datasets

(with the exception of UniArch), there are more negative
residues at the outside than at the inside. The skew is
statistically significant (see Table 2, P < 0.001) except for

a b

Fig. 5 There is a difference in the hydrophobic profiles of TMHs from single-pass and multi-pass proteins. (a) The hydrophobicity of single-pass
TMHs compared to multi-pass segments from the UniHuman dataset. The Kyte and Doolittle scale of hydrophobicity [52] was used with a win-
dow length of 3 to compare TMHs from proteins with different numbers of TMHs. This scale is based on the water-vapour transfer of free energy
and the interior-exterior distribution of individual amino acids. The same datasets also had different scales applied (Additional file 2: Figure S2).
The vertical axis is the hydrophobicity score, whilst the horizontal axis is the position of the residue relative to the centre of the TMH, with nega-
tive values extending into the cytoplasm. In black are the average hydrophobicity values of TMHs belonging to single-pass TMHs, whilst in other
colours are the average hydrophobicity values of TMHs belonging to multi-pass proteins containing the same numbers of TMHs per protein. In
purple are the TMHs from proteins with more than 15 TMHs per protein that do not share a typical multi-pass profile, perhaps due to their excep-
tional nature. (b) The Kruskal-Wallis test (H statistic) was used to compare single-pass windowed hydrophobicity values with the average windowed
hydrophobicity value of every TMH from multi-pass proteins at the same position. The vertical axis is the logarithmic scale of the resultant
P values. We can much more readily reject the hypothesis that hydrophobicity is the same between TMHs from single-pass and multi-pass proteins in
the core of the helix and the flanks than the interfacial regions, particularly at the inner leaflet due to leucine asymmetry (Table 4)

Table 4 Leucines at the inner and outer leaflets of the membrane in TMHs

Dataset Single-pass Multi-pass

Inside Outside Percentage H statistic P value Inside Outside Percentage H statistic P value

ExpAll 4020 3403 118.13 40.07 2.44E-10 27,986 27,008 103.62 14.13 1.70E-4

UniHuman 4982 3697 134.76 193.02 6.99E-44 25,199 22,365 112.67 195.24 2.29E-44

UniER 359 297 120.88 8.41 3.72E-3 1863 1764 105.61 3.98 4.61E-2

UniGolgi 604 513 117.74 10.74 1.05E-3 753 677 111.23 5.61 1.79E-2

UniPM 1485 1006 147.61 98.90 2.65E-23 6221 5577 111.55 35.21 3.00E-9

UniCress 1495 1005 148.76 102.05 5.41E-24 6491 6099 106.43 13.76 2.08E-4

UniFungi 1389 1308 106.19 3.41 6.48E-2 14,505 14,099 102.88 6.74 9.41E-3

UniBacilli 260 251 103.59 0.03 8.72E-1 1488 1335 111.46 7.59 5.89E-3

UniEcoli 130 100 130.00 2.78 9.53E-2 7251 6975 103.96 5.92 1.50E-2

UniArch 51 118 43.22 20.13 7.25E-6 636 612 103.92 0.24 6.25E-1

The statistical results when comparing the number of leucine residues from the inner and outer leaflets in each protein in the dataset. The number of helices per
dataset can be found in Table 1. The Kruskal-Wallis test scores (H statistics) were calculated for leucine residues by comparing the number of leucine residues that
were in the inner half of the leaflet with those in the outer half of the leaflet of the database-defined TMH
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UniBacilli. However, despite statistical significance found
for UniFungi (P value = 1.12e-7 for database-defined and
P value = 6.79e-10 for flanks after central alignment;
Table 2), the trend is not very strong in this case
(Fig. 6b). Whereas the skew is just a suppression of
negatively charged residues at the inside flank for ExpAll
and UniHuman (as well as in UniCress), the bias
observed for UniEcoli also involves a negative charge
enrichment at the outside flank. In the case of UniArch
(Fig. 6e), we see a negative inside preference that is 6.0%
in the case of aspartic acid and 6.3% for glutamic acid
(not shown), with much lower values close to 0% on the

outside. Whilst the difference is statistically significant
for both TMHs (Table 2) from single-pass proteins
(P value = 1.83e-12 and P value = 1.43e-11 for two
versions of flank determination) and multi-pass pro-
teins (P values 4.72e-3, 7.81e-3, 1.28e-4 for three
versions of flank determination, see Table 3A and B),
the distribution along the position axis is heavily fluctuat-
ing, perhaps as a result of the small size of the dataset.
However, one can assuredly assign a “negative-inside”
tendency to the flanking regions of Archaean TMHs.
In the human organelle datasets, we see trend shifts at

different stages in the secretory pathway. In UniER,

a e

b f

gc

d h

Fig. 6 Comparing charged amino acid distributions in TMHs of multi-pass and single-pass proteins across different species and organelles. The
relative percentage distribution of charged residues and leucine was calculated at each position in the TMH with flank lengths of ±20 in different
datasets. The distributions are normalised according to relative percentage distribution. Aspartic acid and glutamic acid are shown in dark purple
and light purple respectively. Leucine, the most abundant non-polar residue in TMHs, is in blue. Arginine and lysine are shown in orange.
TMHs from single-pass proteins are on the left and TMHs from multi-pass proteins are on the right for different taxonomic datasets: (a)
UniCress, (b) UniFungi, (c) UniEcoli, (d) UniBacilli, (e) UniArch, and different organelles: (f) UniER, (g) UniGolgi, (h) UniPM. As a trend, the
negative-outside skew is more present in TMHs from single-pass proteins than multi-pass proteins (Tables 2 and 3). Another key observa-
tion is that in single-pass TMHs there is a propensity for leucine on the inner over the outer leaflet (Table 4)
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there is an enrichment of negative charge on the outside
flank of 1–1.5% that is comparable to the magnitude of
the positive inside signal. In UniGolgi, there is a sup-
pression of negatively charged residues on the inside
flank as well as an enrichment on the inside flank result-
ing in ~2% distribution difference. For UniPM, there is a
negative-inside suppression (but no outside enrichment)
as well as a positive-inside signal. All observed trends
are statistically significant (see Table 2, P < 1.e-5).
For multi-pass TMH proteins, we either see the same

trends but in a weaker form, or no skews are observed at
all, as inspection of the graphs in Fig. 6 shows. For data-
sets UniER, UniGolgi, UniCress, UniFungi and UniBacilli,
the hypothesis of equal distribution of negatively charged
residues cannot be rejected (P value > 0.001, see Table 3);
thus, a skew is statistically non-significant. Although
UniPM has a statistically significant bias (P value < 4.30e-
12, Table 3), the trends are more subtle and most present
for aspartic acid of UniPM. We see many more negative
and positive charges tolerated within the multi-pass
TMHs themselves throughout all datasets (Table 1). We
note that there is a positive-inside rule for all multi-pass
datasets studied herein.
To conclude, we find that negative charge bias distribu-

tion is a feature of single-pass protein TMHs that is
present across many membrane types, and it can have the
form of a negative charge suppression at the inside flank
or an enrichment of those charges at the outside flank.

Amino acid compositional skews in relation to TMH
complexity and anchorage function
In previous work, we studied the relationship of TMH
composition, sequence complexity and function [5–7]
and concluded that simple TMHs are more probably
responsible for simple membrane anchorage, whereas
complex TMHs have a biological function beyond just
anchorage. We wished to see how the skews observed in
this work relate to that classification. Therefore, the
single-pass TMHs from UniHuman and ExpAll were
separated into subsets of simple, twilight and complex
TMHs using the webserver Transmembrane helix:
Simple Or Complex (TMSOC) [6, 7]. The relative per-
centages of eight residue types (L, D, E, R, K, Y, W, C;
normalisation with the total amount of residues of that
amino acid type in all sequence segments considered)
were plotted along the sequence position for simple and
complex helices (Fig. 7). Of UniHuman single-pass pro-
teins, there were 889 records with simple TMHs and
570 with complex TMHs (Fig. 7a). In ExpAll, 769 TMHs
from single-pass proteins were simple TMHs and 570
were complex TMHs (Fig. 7b).
It is visually apparent (Fig. 7) that there are (1) stron-

ger skews and more inside-outside disparities in simple
single-pass transmembranes than in complex single-pass

transmembranes and (2) greater similarities between
single-pass complex transmembrane regions and those
from multi-pass proteins compared with simple single-
pass transmembranes in comparison with either of the
other two distributions. To examine the statistical sig-
nificance of these observations, we compared the amino
acid distributions (K, R, K + R, D, E, D + E, Y, W, L, C)
across the range of TMHs with flank lengths ±10 resi-
dues using the Kolmogorov-Smirnov (KS), the Kruskal-
Wallis (KW) and the χ2 statistical tests. The KS test
scrutinises for significant maximal absolute differences
between distribution curves, the KW test looks for skews
between distributions and the χ2 statistical test checks the
average difference between distributions. Calculations were
carried out over single-pass complex, single-pass simple
and multi-pass TMH datasets from both ExpAll and
UniHuman (for P values and Bahadur slopes, see Table 5
(dataset UniHuman) and Table 6 (dataset ExpAll)).
The many low P values in Tables 5 and 6 indicate

significant differences between the three distributions
studied. For the UniHuman dataset (Table 5), we find the
most striking, significant differences between charged
residue distributions (R, K, D, E) of simple and complex
single-pass TMH + flank regions (χ2 P value < 2.23e-3
for single amino acid types). Similarly, simple single-
pass TMH + flank segments differ significantly from
multi-pass TMH + flank segments (KW test P values <
3.e-2 for R, K, D, E, Y, W amino acid types as well as
for K + R and D + E). The trends are the same for the
ExpAll dataset (Table 6): simple and complex single-
pass TMH+ flank regions differ in charged amino acid type
distributions (χ2 P value < 4.21e-3 for all cases), as do sim-
ple single-pass and multi-pass ones (KW test P values <
5.e-2 for R, D, E, Y, W amino acid types and D + E).
Whereas P value tests for significant differences be-

tween distributions depend strongly on the amount of
data, the more informative Bahadur slopes that meas-
ure the distance from the zero hypothesis are independ-
ent of the amount of data [55–57]. As we can see in
Tables 5 and 6, the absolute Bahadur slopes for the
simple single-pass to multi-pass comparison are always
larger (even by at least an order of magnitude): (1) for
all three statistical tests applied (χ2, KS and KW), (2)
for all amino acid types, for K + R and E + D and (3) for
both datasets UniHuman and ExpAll. Thus, complex
single-pass TMH + flanks have compositional properties
that are indeed very similar to those of multi-pass ones
(which are known to have a large fraction of complex
TMHs [6, 7]). This strong evidence implies that the
actual issue is not so much about single- and multi-
pass TMH segments but between simple and complex
TMHs: The first are exclusively guided by the anchor
requirements, whereas the latter have more complex
restraints to fulfil.
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Several distribution features of simple TMHs from
single-pass proteins, when compared to complex TMHs
from single-pass proteins and TMHs from multi-pass
proteins, that contribute to the statistical differences
(Fig. 7) are especially notable. There is a more pro-
nounced trend for positively charged residues and tyro-
sine to be preferentially located on the inside flanks and
for negatively charged residues to be on the outside
flanks. The symmetrical peaks in the percentage distri-
bution of tyrosine in complex single-pass TMHs are
more akin to multi-pass TMHs, whereas in simple
TMHs the distribution resembles a more typical single-
pass helix (compare with Fig. 3). Furthermore, the
depression of charged residues within the TMH itself is
strongest in simple single-pass TMHs.
To emphasise, tryptophan is essentially not tolerated

within the simple TMHs, and there are higher peaks of
tryptophan occurrence at either flank. We also see a
strong inside skew for leucine clustering within the core
of simple TMHs which is not present in the “flatter” dis-
tributions of complex single-pass TMHs and TMHs
from multi-pass proteins.
There is obviously a cysteine-inside preference for

simple, single-pass TMHs but less in complex, multi-
pass TMHs (Fig. 7). This conclusion is contrary to that
of a previous study [51], but that deduction was drawn
from a much smaller dataset of 45 single-pass TMHs
and 24 multi-pass transmembrane proteins.

Discussion
The “negative-not-inside/negative-outside” skew in TMHs
and their flanks is statistically significant
We have seen that, consistently throughout the datasets,
there is a trend for generally rare negatively charged
residues to prefer the outside flank of a TMH rather
than the inside (and to almost completely avoid the
TMH itself ), be it by suppression on the inside and/or
enrichment on the outside. The trend is much stronger
in single-pass protein datasets than in multi-pass protein
datasets. However, as we have elaborated, the real crux
of the bias appears to be associated with the TMH being
simple or complex [6, 7] and, thus, whether or not the
TMH has a role beyond anchorage. The existence of this
bias has implications for topology prediction of proteins
with TMHs, engineering membrane proteins and also

for models of protein transport via membranes and
protein-membrane stability considerations.
It should be noted that the controversy in the scientific

community about the existence of a negative charge bias
at TMHs was mainly with regard to multi-pass transmem-
brane proteins. Despite having access to much larger,
better annotated sequence datasets and many more three-
dimensional (3D) structures than our predecessors, we
also had our share of difficulties here (see the Results
section titled: Amino acid residue distribution analysis re-
veals a general negative charge bias signal in outside flank
of multi-pass TMH segments: the negative-outside enrich-
ment rule and Table 3). The straightforward approach
results in inconclusive statistical tests if datasets become
small (for example, if selections are restricted to subcellu-
lar localisations or 3D structures or if very harsh sequence
redundancy criteria are applied) and, especially, if TMHs
with very short or no flanks are included. Therefore, in
the case of multi-pass proteins, we studied flanks as taken
from the transmembrane boundaries in the databases
under several conditions: (1) without allowing flank over-
lap between neighbouring TMHs, (2) as a subset of (1)
but with requiring some minimal flank length at either
side and (3) with overlapping flanks. We also studied
flanks after central alignment of TMHs and assuming
standardised TMH length. Multi-pass TMHs (without
overlapping flanks) do not show statistically significant
negative charge bias under condition (1) but, apparently,
because of many TMHs without any or super-short flanks,
at least at one side. Significance appears as soon as subsets
of TMHs with flanks at both sides are studied. Not
surprisingly, there is no charge bias if there are no flanks
in the first place. It is perhaps worth noting that the re-
sults from multi-pass TMHs with overlapping flanks may
involve amplification of skews since this involves multiple
counting of the same residues. Given the redundancy
threshold of UniRef90, we cannot rule out that these
statistical skews are the result of a trend from only a small
subgroup of TMPs which is being amplified. Hence, we
also needed to observe if these same observed biases were
true in condition (2), which is indeed the case.
As the "negative-not-inside/negative-outside” skew is

widely observed amongst varying taxa and subcellular
localisations with statistical significance, it appears, at
least to a certain extent, to be caused by physical reasons

(See figure on previous page.)
Fig. 7 Comparing the amino acid relative percentage distributions of simple and complex TMHs from single-pass proteins and TMHs from multi-pass
proteins. TMSOC was used to calculate which single-pass TMHs were complex and which were simple from ExpAll and UniHuman datasets. Simple
TMHs are typically anchors without necessarily having other functions (Wong et al. [5]). The relative percentages from single-pass simple (shown in light
blue), single-pass complex (red), and multi-pass protein TMHs (black) were plotted for (a, c, e, g, i and k) UniHuman and (b, d, f, h, j and l) ExpAll
for (a and b) positive residues, (c and d) negative residues, (e and f) tyrosine, (g and h) tryptophan, (i and j) leucine and (k and l) cysteine.
The slopes are statistically compared in Tables 5 and 6, and as a trend, the profiles of complex TMHs are more similar to multi-pass TMH profiles than
simple TMHs are to multi-pass TMHs
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and to be associated with the background membrane po-
tential. Several earlier considerations and observation
support this thought: (1) Firstly, a concert between the
negative and positive charge on the TMH flanks drives
anchorage and the direction of insertion of engineered
TMHs [29, 44]. (2) Secondly, the inner leaflet of the
plasmalemma tends to be more negatively charged [58].
Specifically, phosphatidylserine was found to distribute

in the cytosolic leaflets of the plasma membrane, and it
was found to electrostatically interact with moderately
positive-charged proteins enough to redirect the proteins
into the endocytic pathway [59]. The negative charge of
proteins at the inside of the plasma membrane would
decrease the anchoring potency of the TMH via electro-
static repulsion. (3) Thirdly, in membranes that maintain
a membrane potential, there are inevitably electrical

Table 5 Simple TMHs are less similar than complex TMHs to TMHs from multi-pass proteins in UniHuman

Residues P values for χ2 Bahadur slopes for χ2

Simple-vs-complex Simple-vs-multi Complex-vs-multi Simple-vs-complex Simple-vs-multi Complex-vs-multi

R 3.20E-06 7.38E-02 1.24E-01 6.61E-03 2.20E-03 1.27E-04

K 2.23E-03 4.99E-02 2.14E-01 3.99E-03 3.70E-03 1.18E-04

D 1.67E-09 3.06E-01 3.02E-01 3.34E-02 3.24E-03 1.20E-04

E 3.80E-07 2.34E-01 2.31E-01 1.81E-02 3.05E-03 1.36E-04

Y 3.86E-01 3.97E-01 2.11E-01 1.06E-03 1.47E-03 8.25E-05

W 3.77E-03 2.97E-01 3.84E-01 8.52E-03 2.73E-03 1.13E-04

L 3.59E-01 2.88E-01 3.21E-01 1.52E-04 3.92E-04 1.69E-05

C 6.44E-01 3.97E-01 3.41E-01 4.29E-04 1.29E-03 8.57E-05

R + K 2.19E-02 2.83E-01 2.52E-01 1.11E-03 6.33E-04 4.68E-05

D + E 1.47E-03 2.86E-01 2.79E-01 4.59E-03 1.49E-03 6.15E-05

P values for Kolmogorov-Smirnov Bahadur slopes for Kolmogorov-Smirnov

Simple-vs-complex Simple-vs-multi Complex-vs-multi Simple-vs-complex Simple-vs-multi Complex-vs-multi

R 2.31E-01 3.57E-04 1.08E-02 7.66E-04 6.71E-03 2.76E-04

K 4.31E-02 2.18E-03 8.93E-01 2.06E-03 7.56E-03 8.68E-06

D 1.39E-01 5.02E-06 1.08E-02 3.26E-03 3.34E-02 4.52E-04

E 7.96E-02 1.58E-05 1.08E-02 3.10E-03 2.32E-02 4.20E-04

Y 7.96E-02 2.22E-02 2.31E-01 2.81E-03 6.07E-03 7.78E-05

W 2.31E-01 9.06E-04 4.31E-02 2.24E-03 1.58E-02 3.70E-04

L 2.31E-01 2.31E-01 5.31E-01 2.17E-04 4.61E-04 9.42E-06

C 1.39E-01 3.61E-01 3.61E-01 1.93E-03 1.42E-03 8.10E-05

R + K 7.96E-02 1.33E-04 7.96E-02 7.35E-04 4.48E-03 8.60E-05

D + E 4.31E-02 1.58E-05 4.98E-03 2.21E-03 1.31E-02 2.55E-04

P values for Kruskal-Wallis Bahadur slopes for Kruskal-Wallis

Simple-vs-complex Simple-vs-multi Complex-vs-multi Simple-vs-complex Simple-vs-multi Complex-vs-multi

R 2.19E-01 5.06E-02 2.37E-01 7.92E-04 2.52E-03 8.79E-05

K 2.90E-01 1.33E-01 7.00E-01 8.11E-04 2.49E-03 2.73E-05

D 3.50E-01 1.81E-02 2.81E-01 1.74E-03 1.10E-02 1.27E-04

E 2.59E-01 5.65E-02 1.78E-01 1.65E-03 6.04E-03 1.60E-04

Y 6.03E-01 4.53E-01 4.41E-01 5.62E-04 1.26E-03 4.34E-05

W 4.19E-01 1.84E-01 5.70E-01 1.33E-03 3.81E-03 6.62E-05

L 6.37E-01 4.88E-01 9.77E-01 6.68E-05 2.25E-04 3.47E-07

C 5.00E-01 2.22E-01 9.62E-01 6.76E-04 2.10E-03 3.11E-06

R + K 1.87E-01 8.67E-02 4.08E-01 4.86E-04 1.23E-03 3.05E-05

D + E 1.68E-01 4.52E-02 1.91E-01 1.25E-03 3.68E-03 7.97E-05

The statistical results were gathered by comparing complex single-pass TMHs, simple TMHs from single-pass proteins and TMHs from multi-pass proteins in
UniHuman. The abundance of different residues at each position when using the centrally aligned TMH approach was compared with several statistical tests
(the Kolmogorov-Smirnov, Kruskal-Wallis and the χ2 statistical tests) and the Bahadur slope values of those results
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forces acting on charged residues during chain trans-
location, as this influences the translocon machinery
when orienting the TMH. Therefore, it is no surprise
that we see an inside-outside bias for negatively charged
residues that is opposite to the one for positively charged
residues. The negative charges in TMH residues have
been shown to experience an electrical pulling force as
they pass through the bacterial SecYEG translocon

import [42, 43]. Also, they are known to be involved in
intra-membrane helix-helix interactions [60]. For ex-
ample, aspartic acid and glutamic acid can drive efficient
di- or trimerisation of TMHs in lipid bilayers and,
furthermore, aspartic acid interactions with neighbour-
ing TMHs can directly increase insertion efficiency of
marginally hydrophobic TMHs via the Sec61 translocon
[60]. In support of this, less acidic residues are found in

Table 6 Simple TMHs are less similar than complex TMHs to TMHs from multi-pass proteins in ExpAll

Residues P values for χ2 Bahadur slopes for χ2

Simple-vs-complex Simple-vs-multi Complex-vs-multi Simple-vs-complex Simple-vs-multi Complex-vs-multi

R 5.10E-06 2.98E-01 5.10E-06 9.17E-03 1.61E-03 6.23E-05

K 2.35E-03 1.85E-01 2.35E-03 4.81E-03 3.88E-03 9.78E-05

D 2.61E-08 1.84E-01 2.61E-08 4.15E-02 7.90E-03 1.41E-04

E 2.38E-10 2.04E-01 2.38E-10 3.88E-02 7.08E-03 1.22E-04

Y 3.03E-01 3.11E-01 3.03E-01 2.01E-03 2.49E-03 5.51E-05

W 4.21E-03 4.29E-01 4.21E-03 1.11E-02 4.76E-03 6.46E-05

L 3.79E-01 3.04E-01 3.79E-01 2.28E-04 4.66E-04 1.50E-05

C 3.87E-01 2.52E-01 3.87E-01 1.75E-03 3.28E-03 1.48E-04

R + K 7.16E-04 2.52E-01 7.16E-04 2.80E-03 1.28E-03 3.76E-05

D + E 3.58E-05 2.94E-01 3.58E-05 1.03E-02 1.94E-03 4.90E-05

P values for Kolmogorov-Smirnov Bahadur slopes for Kolmogorov-Smirnov

Simple-vs-complex Simple-vs-multi Complex-vs-multi Simple-vs-complex Simple-vs-multi Complex-vs-multi

R 3.61E-01 4.31E-02 3.61E-01 7.66E-04 7.79E-03 1.62E-04

K 4.31E-02 8.93E-01 4.31E-02 2.49E-03 1.05E-02 6.57E-06

D 1.39E-01 2.18E-03 1.39E-01 4.68E-03 3.61E-02 5.10E-04

E 5.31E-01 1.33E-04 5.31E-01 1.11E-03 2.81E-02 6.87E-04

Y 2.31E-01 9.06E-04 2.31E-01 2.47E-03 6.26E-03 3.30E-04

W 5.31E-01 4.98E-03 5.31E-01 1.29E-03 1.13E-02 4.04E-04

L 2.31E-01 2.31E-01 2.31E-01 3.45E-04 2.12E-03 1.85E-05

C 5.31E-01 3.61E-01 5.31E-01 1.16E-03 8.91E-04 1.09E-04

R + K 1.39E-01 2.31E-01 1.39E-01 7.61E-04 4.82E-03 4.00E-05

D + E 1.39E-01 9.06E-04 1.39E-01 1.99E-03 1.41E-02 2.80E-04

P values for Kruskal-Wallis Bahadur slopes for Kruskal-Wallis

Simple-vs-complex Simple-vs-multi Complex-vs-multi Simple-vs-complex Simple-vs-multi Complex-vs-multi

R 4.37E-01 3.92E-01 4.37E-01 6.24E-04 2.52E-03 4.82E-05

K 3.83E-01 6.93E-01 3.83E-01 7.62E-04 2.88E-03 2.13E-05

D 4.49E-01 1.81E-01 4.49E-01 1.90E-03 1.06E-02 1.42E-04

E 7.64E-01 1.94E-01 7.64E-01 4.71E-04 9.05E-03 1.26E-04

Y 8.32E-01 3.36E-01 8.32E-01 3.09E-04 9.63E-04 5.15E-05

W 7.25E-01 1.36E-01 7.25E-01 6.53E-04 5.44E-03 1.52E-04

L 7.15E-01 7.95E-01 7.15E-01 7.90E-05 3.41E-04 2.90E-06

C 8.47E-01 9.54E-01 8.47E-01 3.05E-04 4.26E-05 5.06E-06

R + K 2.89E-01 5.13E-01 2.89E-01 4.79E-04 1.41E-03 1.82E-05

D + E 4.94E-01 2.07E-01 4.94E-01 7.11E-04 4.14E-03 6.29E-05

As in Table 5, the statistical results were gathered by comparing complex single-pass TMHs, simple TMHs from single-pass proteins and TMHs from multi-pass
proteins; however, in this case only ExpAll is used. The abundance of different residues at each position when using the centrally aligned TMH approach was
compared with several statistical tests (Kolmogorov-Smirnov, Kruskal-Wallis and the χ2 statistical tests) and the Bahadur slope values of those results
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single-pass TMHs, amongst which only some will undergo
intra-membrane helix-helix interactions. As the mutation
studies have shown negative charge as a topological deter-
minant [35], it is perhaps no surprise that we observe a
skew in negatively charged residues in a similar manner to
the skew in positively charged residues.
Whereas the "negative-not-inside/negative-outside” skew

is observed for distantly related eukaryotic species, and it is
also present in Gram-negative bacteria such as E. coli, this
sequence pattern was not observed for the Gram-positive
bacteria, in which there is no observable bias. In contrast,
Archaea have a statistically significant “negative-inside”
propensity both for single- and multi-pass TM proteins. It
is known that Archaea have remarkably different mem-
branes compared to other kingdoms of life due to their
extremophile adaptations to stress [61]. Whilst it is unclear
why negative charge is distributed so differently in
UniArch compared to the other taxonomic datasets, one
must appreciate that a much more nuanced approach
would be needed to draw formal conclusions about
Archaea, which current databases cannot provide due to
the relatively limited information and annotation of
Archaean proteomes.

Methodological issues made previous studies struggle to
identify negatively charged skews with statistical
significance
Whereas the influence of a negative charge bias in
engineered proteins with transmembrane regions on
the direction of insertion into the membrane was sol-
idly established [35, 39, 40, 45, 62], the search for the
negative charge distribution pattern in the statistics of
sequences of transmembrane proteins from databases
failed to find significance for the expected negative
charge skew [9, 13, 14, 16, 31, 45].
Generally speaking, the datasets from previous studies

have been considerably smaller compared with those in
our work (only Sharpe et al. had a similar order of mag-
nitude [9]), especially those with experimental informa-
tion about 3D structure and membrane topology that we
used for validation. And they might not have had the
luxury of using UniProt’s improved TRANSMEM con-
sensus annotation based on a multitude of transmem-
brane prediction methods and experimental data, but
this is also not the major issue. We found that there are
other factors that are critical for observing sequence bias
such as negative charge skew in the case of TMHs:

1. Acidic residues are rare near and within TMHs, and
biases in their distribution are easily blurred by
minor fluctuations of much more frequent amino
acid types, most notably leucine. Therefore, the
method of normalisation is critical. We have shown
that normalising by the total amount of residues of

the amino acid type studied within the sequence
region under consideration is appropriate to answer
the question of where to find a negatively charged
residue if there is any at all (called “relative
percentage” in this work).

2. The alignment of the TMHs is critical. It was
common practice to align the TMH according to the
most cytosolic residue [9], although it is known that
the membrane/cytosol boundary of the TMH is not
well defined (and the exact boundary is even less
well understood at the non-cytosolic side). Aligning
the transmembrane regions and their flanks from
the centre of the TMH was first proposed by Baeza-
Delgado et al. [13]. Since we know now that acidic
residues are often suppressed in the cytosolic flank
and within the TMH, this implies that the few acidic
residues found in the cytosolic interface would appear
more comparable to those in the poorly defined non-
cytosolic interface, as the respective residues are
spread over more potential positions, diminishing
any observable bias.

3. We find that separation into single- and multi-pass
transmembrane datasets (or, even better, simple and
complex transmembranes [6, 7]) is critical to study
the inside/outside bias. As many TMHs in multi-pass
transmembrane proteins have essentially no flanks or
very short flanks if the condition of non-overlap is
applied to flanks of neighbouring TMHs, this might
also obscure the observation of the negative charge
bias. If there are no flanks, then there will be no
residue distribution bias in these flanks. The problem
can be alleviated by either studying only subsets with
minimal flank lengths on both sides (although datasets
might become too small for statistical analysis) or by
allowing flank overlaps between neighbouring TMHs.

4. This classification is even more justified in the light
of previous reports about the “missing
hydrophobicity” in multi-pass TMHs [36, 63–65].
Otherwise, the distribution bias well observed
amongst the exclusive anchors could be lost to
noise. This addresses the more biologically
contextualised issue that there are different
evolutionary pressures on different types of
TMHs. The negative charge skew is most
pronounced for dedicated anchors frequently
found with simple TMHs typically observed in
single-pass TM proteins. These TMHs are
pressured to exhibit residue biases that may
aid anchorage in a topologically correct manner.
Complex TMHs, typically within multi-pass
membrane proteins that have a function beyond
anchorage, comply with a multitude of structural
and functional constraints, and the negative
charge skew is just one of them.
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The most representative precedent papers are those of
Sharpe et al. [9] from 2010 (with 1192 human and 1119
yeast single-pass TMHs), Baeza-Delgado et al. [13] (with
792 TMHs mixed from single- and multi-pass TM pro-
teins) and Pogozheva et al. [16] (TMHs from 191 mixed
from single- and multi-pass TM proteins with structural
information), both from 2013. Whereas the first analysis
would have benefitted from the central alignment
approach and the first two studies from another normal-
isation as described above, the third study did come
close to our findings. To note, their dataset mixed with
single- and multi-pass proteins was too small for reveal-
ing the negative charge bias with significance; yet, they
observed total charge differences at either side of the
membrane varying for both single- and multi-pass pro-
teins. Membrane asymmetry due to positively charged
residues occurring more frequently on the cytosolic side
causes net charge unevenness at both sides of the mem-
brane. This observation has been known to correlate with
orientation for decades [12, 13, 60]. Our data show
that the negative charge skew contributes to this
asymmetry.

There are differences in charged amino acid residue
biases in TMH flanks through each stage of the secretory
pathway
Here, we observe differences throughout subcellular
locations along the secretory pathway. We found that
negative charges are enriched at the outside flank (in the
ER), both enriched outside and suppressed inside for the
Golgi membrane and suppressed on the inside flank in
the plasma membrane (PM). It has been suggested that
the leaflets of different membranes have different lipid
compositions throughout the secretory pathway [66],
and this has led to general biochemical conservation in
terms of TMH length and amino acid composition in
different membranes [9, 16].
Lipid asymmetry in the Golgi and PM (in contrast

to the ER) has been known for more than a decade
[67, 68]. To note, the Golgi and PM have lipid asym-
metry with sphingomyelin and glycosphingolipids on
the non-cytosolic leaflet and phosphatidylserine and
phosphatidylethanolamine enriched in the cytosolic
leaflet. Although the ER is the main site for choles-
terol synthesis, it has markedly low concentrations of
sphingolipids [69]. The Golgi synthesises sphingomye-
lin, a lipid not present in the ER, but present in both
the Golgi [70] and in the PM [71, 72]. The PM is
also enriched with densely packed sphingolipids and
sterols [73]. Another factor influencing the sequence
patterns of TMHs and their flanking regions along
the secretory pathway appears to be the variation in
membrane potentials [74–76].

Several sequence features can be assigned to anchor
TMHs: charged-residue flank biases, leucine intra-helix
asymmetry and the “aromatic belt”
We investigated the difference between TMHs from
single-pass and multi-pass proteins and found significant
differences in sequence composition that are reflective
of the biologically different roles the TMHs play. To
emphasise and validate these findings, we separated
TMHs from single-pass proteins into simple and com-
plex TMHs [6, 7]: one type that likely contains mostly
TMHs that act as exclusive anchors, and another that
has roles beyond anchorage. This leaves us with “an-
chors” (simple TMHs from single-pass proteins) and
“non-anchors” (complex TMHs from single-pass pro-
teins and TMHs from multi-pass proteins). If there are
strong sequence feature differences between anchors
and non-anchors, it is likely that the sequence feature
has a role in satisfying membrane constraints to act as
an energetically optimally stable anchor.
Future studies in the area would desirably directly include

a comprehensive analysis of datasets of oligomerised TMHs
from single-pass proteins and ascertain if they appear to be
more similar to simple anchors, multi-pass proteins or gen-
erally neither. Currently, no sufficiently complete set of
intra-membrane oligomerised single-pass proteins exists
that can be compared to a large set of known non-
oligomerising proteins. The current work sidesteps this
issue by comparing single-pass proteins with simple TMHs,
which tend to be simple anchors (as shown in previous
work [6, 7]), against datasets that contain TMHs that
will form intra-membrane bundles. Bluntly, the simple/
complex status of a TMH can be easily computed from
its sequence with TMSOC, whereas the oligomerisation
state of most membrane proteins still needs to be
experimentally determined.
Unsurprisingly, both positively and negatively charged

residues can be seen to be more strongly distributed
with bias in anchors than non-anchors. Both the “posi-
tive-inside” rule and the “negative-not-inside/negative-
outside” bias are mostly observable in simple single-pass
TMHs (although they are statistically significant else-
where). It is perhaps true that where a bias is clearly
present in both non-anchors and anchors alike, it is a
strong topological determinant, whereas if the residue is
only distributed with topological bias in exclusively
anchoring TMHs, we can attribute these features more
specifically to biophysical anchorage. This being said, we
should not rule out that the same features aid topo-
logical determination, since negative charge has been
shown to be a weaker topological determinant than posi-
tively charged residues [35].
Tyrosine and tryptophan residues commonly are

found at the interfacial boundaries of the TMH, and this
feature, called the "aromatic belt'' [9, 13, 14, 31, 36], was
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thought to be caused by their affinity to the carbonyl
groups in the lipid bilayer [77]. Not all types of aromatic
residues are found in the aromatic belt; phenylalanine
has no particular preference for this region [14, 78]. It is
still unclear if the aromatic belt has to do with anchor-
age or with translocon recognition [13]. Here, TMHs
with exclusively anchorage functions showed stronger
preferences for the W and Y in the aromatic belt region,
otherwise known as the water-lipid interface region, than
TMHs with function beyond anchorage. This is strong
evidence that the aromatic belt indeed assists with anchor-
age and is less conserved where the TMH must conform
to other restraints beyond membrane anchorage. Further-
more, we see that tyrosine's preference for the inside inter-
face region also appears to be involved with anchorage,
and this trend is somewhat true for tryptophan, too.
Finally, our findings corroborate earlier reports that

many multi-pass TMHs are much less hydrophobic than
typical single-pass TMHs and about 30% of them fail the
hydrophobicity requirements of ΔG TMH insertion
prediction (“missing hydrophobicity”) [36, 63–65]. We
also find that the leucine skew and the hydrophobic
asymmetry towards the cytosolic leaflet of the mem-
brane are more pronounced in simple, single-pass TMHs
than in complex or multi-pass ones; thus, they appear to
be another anchoring feature. It was found previously
that the hydrophobic profiles of TMHs of multi-pass
proteins share similar hydrophobicity profiles on average
irrespective of the number of TMHs, and TMHs from
single-pass proteins have been found to be typically

more hydrophobic than TMHs from multi-pass proteins
[6]. Sharpe et al. [9] report an asymmetric hydrophobic
length for single-pass TMHs. Our study reiterates the
hydrophobic asymmetry and attributes it mainly to the
leucine distribution. The leucine asymmetry might be
linked to the different lipid compositions of either leaflet
of biological membranes.

Conclusion
In summary, three key features can be assigned that aid
TMH stability in the membrane (Fig. 8): (1) charge, (2)
the aromatic belt, and (3) leucine leaflet preference.
What is most novel here is that each of these features is
furthermore distributed with preference for a particular
side of the bilayer in the case of anchoring TMHs. These
differences in inside-outside topology that are most
present in anchoring TMHs further support the notion
that there are broad lipid compositional differences
between the inner and outer leaflets of the bilayers [9].
Furthermore, whilst some TMHs conform and comple-
ment to the properties of the bilayer, other TMHs with
function beyond anchorage are less constrained to
biophysically complement the bilayer. For these TMHs,
any advantage gained by adhering to the membrane
restrictions is outweighed by more complicated protein
dynamics, topological frustration and protein functional
requirements.
To conclude, the large fraction of functionally uncharac-

terised genomic sequences is the great bottleneck in life
sciences at this moment that hinders many biomedical

a b

Fig. 8 Residue distributions of transmembrane anchors. A view showing additional residue distribution features that TMHs with an anchorage
function display. (a) The more classic model of a TMH showing the "positive-inside" rule [12], the hydrophobic core [52], the polar enrichment
that flanks the hydrophobic stretch [13] and the aromatic belt [14]. (b) Simple anchors may display additional features that conform to the
membrane biophysical constraints: further suppression of charge in the hydrophobic core (Table 1), intra-membrane leucine asymmetry that likely
causes hydrophobic skew [9] (Table 4, Fig. 5), a higher preference for cysteine on the inside flanking region (Fig. 7k and l), a higher net "positive-
inside" charge (Additional file 1: Figure S1), asymmetric skew of the hydrophobic belt favouring the inner leaflet interface (Fig. 7e, f, g and h) and
a negative-outside bias via suppression on the inside flanking region or enrichment on the outside flanking region (Fig. 7c and d, Tables 2 and 3)
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and biotechnological applications, some with tremendous
societal need [27, 79]. Amongst these uncharacterised
genomic regions, there are ~10,000 protein-coding
genes, especially many membrane-embedded proteins.
It is hoped that the NNI/NO rule as well as the other se-
quence properties of membrane anchoring TMHs de-
scribed in this article will add new insights for membrane
protein function discovery, design and engineering.

Methods
Datasets
All datasets used for analysis are listed in Table 1. Trans-
membrane protein sequences and annotations were taken
from TOPDB [50] and UniProt [49]. UniProt-derived
datasets are the most comprehensive datasets, built with
(1) robust transmembrane prediction methods, providing
the limit of today’s achievable accuracy with regard to
hydrophobic core localisation, and (2) subcellular location
annotation that can be used for orientation determination.
However, they mostly rely on predicted transmembrane
regions. TOPDB has meticulous experimental verifications
of the orientation from the literature that are independent
of prediction algorithms [50]. Unfortunately, this dataset
is much smaller with too few entries to have it divided
with regard to taxonomy or subcellular locations.
UniProt database files were downloaded by querying

the server for different taxonomic groups as well as
different subcellular membrane locations: UniHuman
(human representative proteome), UniCress (Arabidopsis
thaliana, otherwise known as mouse-ear cress, represen-
tative proteome), UniER (human endoplasmic reticulum
representative proteome), UniPM (human plasma mem-
brane representative proteome) and UniGolgi (human
Golgi representative proteome). To enforce a level of
quality control, the queries were restricted to manually
reviewed records and transmembrane proteins with
manually asserted TRANSMEM annotation [49]. Pro-
teins were then sorted into multi-pass and single-pass
groups according to whether they had more than one or
exactly one TRANSMEM region respectively. TRANS-
MEM regions are validated by either experimental
evidence [49] or according to a robust transmembrane
consensus of the predictors TMHMM [23], Memsat
[80], Phobius [21, 22] and the hydrophobic moment plot
method of Eisenberg and co-workers [54]. TMHs and
flanking regions were oriented according to UniProt
TOPO_DOM annotation according to the keyword “cyto-
plasmic”. If a “cytoplasmic” TOPO_DOM was found in the
previous TOPO_DOM relative to the TRANSMEM region,
then the sequence remained the same. If “cytoplasmic” was
found in the next TOPO_DOM, relative to the TRANS-
MEM section, then the sequence was reversed. Proteins
without the “cytoplasmic” keyword in their TOPO_DOM
annotation were omitted from further analysis.

The TOPDB database [50] is a manually curated database
composed of experimental records from the literature that
allow determination of the protein topology. Experiments
include fusion proteins, posttranslational modifications,
protease experiments, immunolocalisation, chemical modi-
fications as well as revertants, sequence motifs with known
mandatory membrane-embedded topologies and tailoring
mutants (Additional file 3: Table S1). Length cut-offs for
the TMH were set with 16 as the shortest length and 38 as
the longest.
The datasets described in the following subsections

are used throughout this work.

ExpAll
TOPDB contained 4190 manually annotated transmem-
brane proteins at the time of download [50]. CD-HIT
[81] identified 3857 representative sequences using se-
quence clusters of >90% sequence identity. This choice
of similarity threshold was chosen since CD-HIT ultim-
ately underlies the clustering behind UniRef. Unlike the
other datasets, which by definition contain reasonably
typical TMHs, many of the transmembrane segments
annotated in TOPDB are extremely short or long, and
this would cause severe unrealistic hydrophobic mis-
matches. The short segments in particular could be the
result of misannotation, TMHs broken into pieces due
to kinks or segments that peripherally insert only into
the interface of the membrane bilayer. To remove the
atypical lengths, cut-offs were set with 16 as the lower
cut-off and 38 as the upper cut-off after inspecting the
length histogram. We found that, for the single-pass
TMHs in TOPDB, 1215 out of 1544 are within the
length limits (78.7%). Amongst the 17,141 multi-pass
TMHs, we find 15,563 within our global length limits
(from 2205 TOPDB records corresponding to 2281
UniProt entries). This removed 1578 very short TMHs
and none of the long TMHs. Our cut-off selection is very
similar to the one used by Baeza-Delgado et al. [13].
To get an idea of the taxonomical breakdown in the

ExpAll dataset, the UniProt ID tags were extracted and
mapped to UniProtKB. The combined dataset of multi-
pass (single-pass) proteins was mapped to 1288 (1343)
eukaryotic records, 404 (776) of which were human
records, 926 (191) bacterial records, 46 (5) Archaea
records and 14 (22) viral records.

UniHuman
This is a set of mostly human TMH-containing proteins or
their close mammalian homologues. UniProtKB contains
5187 human protein records that are manually annotated
with TRANSMEM regions (query = “annotation:(type:-
transmem) AND reviewed:yes AND organism:"Homo
sapiens (Human) [9606]" AND proteome:up000005640”.
To reduce sequence redundancy, these sequences were
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submitted to UniRef90 [82]. To note, UniRef90 was chosen
over UniRef50 to maintain a viable size of datasets for stat-
istical analysis of occurrence of negatively charged
residues, which are very rare in the vicinity of TMHs.
There were 5015 UniRef90 clusters representing the 5187
sequences. A list of sequences representing those clusters
was submitted back to UniProtKB, and 5014 representative
entries were recovered. There is a small issue in that the
list of representatives from UniRef includes non-canonical
isoforms, whilst the batch retrieve query of UniProtKB
only supports complete entries, i.e. canonical isoforms.
This resulted in the loss of one record at this point due to
two splice isoforms acting as representative identifiers. Of
those 5014 records, 4714 were records from human en-
tries, 197 were from mice, 94 from rats, 5 from bovines, 2
from chimps, 1 from Chinese hamsters, and 1 from pigs.
Although the TMH length variations within the UniHuman
dataset are much smaller than for ExpAll, we applied the
same length cut-offs for the sake of comparability. Out of
the 1709 single-pass cases, 1705 entered the final dataset.
Of those, 1596 were from human records, 87 were from
mouse, 19 were from rat, and 2 were from chimpanzee.
The further loss of a record in the taxonomic query is
again due to multiple splice isoform records being rep-
resented by a single UniProt record. Amongst the
12,390 multi-pass TMHs, 12,353 were included into
UniHuman. The other, multi-pass record identifiers
were mapped to 1789 UniProtKB entries. Of these,
1660 were human entries, 63 from rat, 61 from mouse,
4 from bovines and 1 from Chinese hamsters. This
clustered human dataset was then queried for
subcellular locations to make the UniER, UniGolgi and
UniPM datasets (detailed below).

UniER
The clustered UniHuman dataset was queried using
UniProtKB for endoplasmic reticulum subcellular location
(locations:(location:"Endoplasmic reticulum [SL-0095]"
evidence:manual)). This returned 487 protein entries, 457
of which belonged to human, 24 to mouse and 6 to rat. Of
these records, 287 contained sufficient annotation for
orientation determination. One hundred thirty-two were
single-pass entries, of which 120 records were from
humans, 11 from mouse, and 1 from rat. One hundred
fifty-five were multi-pass entries containing 898 TMHs.
One hundred forty-four were records from human, 8 were
from mouse and 3 were from rat.

UniGolgi
The clustered human dataset was queried using UniProtKB
for Golgi subcellular location (locations:(location:"Golgi
apparatus [SL-0132]" evidence:manual)). This returned 323
protein entries, 301 of which belonged to human, 19 to
mice, 2 to rat and 1 to pig. Of these records, 269 contained

sufficient annotation for orientation determination. Two
hundred six were single-pass entries, of which 195 records
were from human, 9 from mouse, and 1 from rat. Sixty-one
were multi-pass entries containing 383 transmembrane re-
gions. Fifty-four were records from human, 6 were from
mouse and 1 was from rat.

UniPM
The clustered human dataset was queried using UniProtKB
for the cell membrane subcellular location (locations:(loca-
tion:"Cell membrane [SL-0039]" evidence:manual)). This
returned 1036 protein entries, 948 of which belonged to
humans, 62 to mice, and 26 to rats. Of these records, 920
contained sufficient annotation for orientation determin-
ation. Four hundred ninety-three were single-pass entries,
of which 451 records were from human, 37 from mouse,
and 5 from rat. Four hundred twenty-seven were multi-
pass entries containing 3079 transmembrane regions. Three
hundred ninety-four were records from human, 17 were
from mouse and 16 were from rat.

UniCress
For the mouse-ear cress, a representative proteome
dataset was acquired with the query annotation:pro-
teomes:(reference:yes) AND reviewed:yes AND orga-
nism:"Arabidopsis thaliana (Mouse-ear cress) [3702]"
AND proteome:up000006548. This returned 3174 records
in UniProtKB. UniRef90 identified 3111 clusters. Of the
representative sequences, 3110 were mapped back to Uni-
ProtKB. Of those, 3090 were from Arabidopsis thaliana, 2
from Hornwort, 1 from cucumber, 1 from tall dodder, 1
from soybean (Glycine max), 2 from Indian wild rice, 2
from rice, 2 from garden pea, 1 from potato, 4 from spin-
ach, 1 from Thermosynechococcus elongatus (thermophilic
cyanobacterium), 1 from wheat, and 2 from maize. Of
those there were 1146 with suitable TOPO_DOM annota-
tion for topological orientation determination. Of those
records, 632 were identified as single-pass, all of which
were from Arabidopsis thaliana. Five hundred seven
protein records were from multi-pass records, which
contained 3823 TMHs. Five hundred six of those records
were from Arabidopsis thaliana, whilst 1 was from
Thermosynechococcus elongatus.

UniFungi
For the Fungi dataset, the query “annotation:(type:-
transmem) taxonomy:"Fungi [4751]" AND reviewe-
d:yes” was used. This returned 5628 records that were
submitted to UniRef90. UniRef90 identified 4934 represen-
tative records, all of which were successfully mapped back
to UniProtKB. Of those, 2070 had suitable annotation for
orientation. A total of 1990 records belonged to Ascomy-
cota including 1243 Saccharomycetales. 73 were Basidio-
mycota, and 6 were Apansporoblastina. Seven hundred
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twenty-nine records contained a single TMH region, 702 of
which belonged to Ascomycota, 26 to Basidiomycota and 1
to Encephalitozoon cuniculi, a Microsporidium parasite.
There were 8698 helices contained in 1338 records of
multi-pass proteins. Of these records, 1285 were
Ascomycota, 47 were Basidiomycota, and 5 were
Apansporoblastina. One TMH from UniFungi was dis-
counted from P32897 due to an unknown position.

UniEcoli
This dataset was generated by querying UniProt with
“reviewed:yes AND organism:”Escherichia coli (strain
K12)[83333]””, which returned 941 hits. The hits were
submitted to UniRef90, which returned 935 clusters. The
representative IDs were then resubmitted to UniProtKB,
all of which returned successfully. Nine hundred thirty-
four were from bacteria, whilst one was from lambdalike
viruses. Of the bacterial records, 862 were from various
Escherichia species, of which 565 were from E. coli strain
K12, 28 were from Salmonella choleraesuis, 25 were from
Shigella and the rest all also fell under the Gammaproteo-
bacteria class. This dataset contains 54 single-pass pro-
teins and 3888 helices from 529 multi-pass proteins with
sufficient annotation for topological determination.

UniBacilli
The Bacilli dataset was constructed by querying UniProt
for “reviewed:yes AND taxonomy:”Bacilli””. This returned
5044 records, which were submitted to UniRef90. There
were 2591 clusters found in UniRef from these records.
The representative IDs were successfully resubmitted to
UniProtKB. Of these, 2031 were of the order Bacillales
whilst 560 were also of the order Lactobacillales. This
dataset contains 124 single-pass proteins and 822 helices
from 140 multi-pass proteins.

UniArch
The Archaea dataset was constructed by querying UniProt
for “reviewed:yes AND taxonomy:”Archaea [2157]””. This
returned 1152 records, which were submitted to
UniRef90. One thousand fifty-four clusters were found in
UniRef from these records. The representative IDs were
successfully resubmitted to UniProtKB. Nine hundred
forty-six records belonged to the Euyarchaeota, 101 to
Thermoprotei, 4 to Thaumarchaeota, and 3 to Korarch-
aeum cryptofilum. This dataset contains 48 single-pass
proteins and 59 multi-pass proteins containing 327 helices
from 59 proteins.
We are aware that proteome datasets are “moving

targets” that have dramatically changed over the years
and probably will continue to do so to some extent
in the future [83]. Yet, we think that currently avail-
able protein sequence sets are sufficiently good for

our purposes, as we search for statistical properties in
the TMH context only.

On the determination of flanking regions for TMHs and
the TMH alignment
The determination of the boundary point at the sequence
between the TMH in a membrane and the sequence
immersed in the cytoplasm, extracellular space, vesicular
lumen, etc. is not as trivial as it initially appears. There is a
lot of dynamics in the TMH positioning, and the actual
boundary point will be represented by various residues at
different time points. Whilst the TMH core region detec-
tion from a sequence is trivial with modern software, the
exact determination of TMH boundaries remains difficult,
since it is unclear exactly how far in or out of the
membrane a given helix extends [84]. Previous studies
have dealt with this issue in various ways [9, 13, 16, 85].
Here in this work, we explore two boundary defini-

tions. First, we assign TMH boundary locations as
described in the respective databases. These flanks are
the ones that are reported in our TMH data files that
are available at http://mendel.bii.a-star.edu.sg/SE-
QUENCES/NNI/. We studied flank lengths of ±5, ±10,
and ±20 residues preceding and following the inside and
outside TMH boundaries. In these cases, the flanks are
aligned relative to the residue closest to the TMH.
In cases where the loops before and after the TMH are

shorter than the predefined flank lengths, further precau-
tions are necessary. In the multi-pass datasets particularly
(Additional file 4: Figure S4, Additional file 3: Table S1),
the flanks overlap with other membrane region flanks. We
explore several variants. On the one hand, we work with
data files where the flank residue stretches are equally
truncated so that no overlap occurs. If the loop length was
uneven, the central odd residue was not included into any
flank. We find, surprisingly, that a large number of TMHs
have no or just a super-short flank, a circumstance that
should disturb any statistical analysis due to the absence
of objects. Therefore, we also work with alternative
datasets: (1) with flanks overlapping between consecu-
tive TMHs (e.g. in Table 3B, yet this leads to some
residues being counted more than one time) as well as
(2) with subsets of the data where the flanks at both
sides have a defined minimal length (50% or 100% of
the required flanks; unfortunately, some of them
become too small for analysis).
The problem of flanks overlapping also affects some

single-pass and multi-pass TMH proteins with
INTRAMEM regions as described in some UniProt
entries. We do not include INTRAMEM regions in
the datasets as TMHs, but sometimes the flanking
regions of TMHs were truncated to avoid overlap with
INTRAMEM flanking regions (Additional file 5: Table S2).
The identifiers affected for single-pass TMH proteins
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are Q01628, P13164, Q01629, Q5JRA8, A2ANU3
(UniHuman), P13164, Q01629, A2ANU3 (UniPM) and
Q5JRA8 (UniER).
The second form of boundary point definition for

flank determination was achieved by gaplessly aligning
all TMHs relative to their central residue at the position
equal to half the length of the TMHs at either side.
Though there is some length variation amongst TMHs;
most of them are centred around a length of 20–22
residues. In this case, flanks are the sequence extensions
beyond the standardised-length 21-residue TMHs. We
define the inside flanking segments as the positions –20
to –10 and the outside flanking regions to be +10 to +20
from the central TMH residue (with the label “0”). In-
stead of emphasising some artificially selected boundary
residue, this definition allows the average TMH bound-
ary transition to become apparent.

Separating simple and complex single-pass helices
Single-pass helices from ExpAll and UniHuman datasets
helices were split into two groups: simple and complex
following a previously described classification [6, 7] to
roughly distinguish simple hydrophobic anchors and
TMHs with additional structural/functional roles. Simple
and complex helices were determined using TMSOC [7].
The complexity class is determined by calculating the
hydrophobicity and sequence entropy. The resulting co-
ordinates cluster with anchors being more hydrophobic
and less complex, whilst more complex and more polar
TMHs are associated with non-anchorage functions. In
UniHuman there were 889 simple helices and 570
complex TMHs. In ExpAll there were 769 simple helices
and 570 complex helices.

Distribution normalisation
In this work, we have used normalisation techniques
described in previous investigations as well as new
approaches designed to more sensitively identify biases
of rare residues. Baeza-Delgado and co-workers used
LogOdds normalisation column-wise in TMH align-
ments. Critically, this is based on their definition of
probability, which takes into account the total number
of amino acids in the dataset as a denominator [13].
Since aliphatic residues such as leucine and other highly
abundant slightly polar residues dominate the denomin-
ator, the distribution of the rare acidic residues will be eas-
ily lost in the “background noise” of those highly abundant
residues. Pogozheva and co-workers used two approaches,
(1) the total accessible surface area (ASAtotal) and (2) the
total number of charged residues (Ntotal), as a denominator
in their distribution normalisation [16].
In this work, two methods for measuring residue

occurrence in the TMH and its flanks were used. As in
previous work, we compute the occurrence ai,r of an

amino acid type i at a certain sequence position r in a
set of aligned sequences of TMHs and their flanks.
Following [9], the absolute relative occurrence pi,r of this
amino acid type at the sequence position r is then given
by Eq. (1) as:

pi;r ¼
ai;r

maxr arð Þ ð1Þ

Here, the denominator is the maximal number of
all residues in any alignment column (i.e., the number
of sequences in the alignment) and, to emphasise, this
will make pi,r mostly dependent on the most abun-
dant residue types. This type of normalisation reveals
the most preferred residue types at given sequence
positions.
Our second normalisation method is independent of

the abundance of any amino acid types other than the
studied one, and it answers the question: If there is a
residue of type i in the TMH-containing segment, where
would it most likely be? This relative occurrence qi,r is
calculated in Eq. (2) as:

qi;r ¼
100⋅ai;r

ai
ð2Þ

The value ai is the total abundance of residues of
just amino acid type i in a given alignment of TMH-
containing segments (i.e., in the TMH together with
its two adjoining flanks summed over all cases of
TMHs in the given dataset). Peaks in qi,r as a function
of r reveal the preferred positions of residues of type i.
The difference in pi,r and qi,r normalisation is visua-
lised in Additional file 6: Figure S3.

Hydrophobicity calculations
Hydrophobicity profiles were calculated using the Kyte
and Doolittle hydrophobicity scale [52] and validated
with the Eisenberg scale [54], the Hessa biological scale
[36] and the White and Wimley whole residue scale [53]
(Additional file 1: Figure S1). The hydrophobicity profile
uses un-weighted windowing of the residue hydrophobi-
city scores from end to end of the TMD slice. Three
residues were used as full window lengths, and partial
windows were permitted.

Normalised net charge calculations
Charge was calculated at each position by scanning
through each position of the TMHs and flanking re-
gions and subtracting one from the position if an acidic
residue (D or E) was present, or adding one if a
positively charged residue (K or R) was present. The
accumulative net charge cr was then divided by the
total number N of TMHs that were used in calculating
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the accumulative net charge. Thus, the charge distribution
is calculated by:

cr ¼
aK ;r þ aR;r
� �

− aD;r þ aE:r
� �

N
ð3Þ

Statistics
The inside/outside bias of negative residues was quanti-
fied by computing the independent Kruskal-Wallis (KW)
and two-sample t test statistical method from the Python
scipy.stats package v0.15 (https://docs.scipy.org/doc/sci
py/reference/generated/scipy.stats.kruskal.html, https://
docs.scipy.org/doc/scipy-0.15.0/reference/generated/scip
y.stats.ttest_ind.html). This test answers the question of
whether two means are actually different in the statis-
tical sense. For the leucine residues, each TMH region
was divided into two sections, representing the inner
and outer leaflets (Table 4). For the hydrophobicity plot,
three window values of hydrophobicity were taken for
each TMH at each position. The statistical analyses were
separately performed for single-pass and multi-pass
transmembrane proteins. At each position, the two
groups were compared using the KW test.
The zero hypothesis of homogeneity of two distribu-

tions was examined with the Kolmogorov-Smirnov (KS),
the KW and the χ2 statistical tests.The KS test scruti-
nises for significant maximal absolute differences be-
tween distribution curves, the KW test looks for skews
between distributions and the χ2 statistical test checks
the average difference between distributions. As the
statistical significance value (P value) is a strong function
of N, the total amount of data used in the statistical test,
we rely on the (absolute) Bahadur slope (B) as a measure
of distance between two distributions [55–57]:

B ¼ ln P−valueð Þj j
N

ð4Þ

The larger the absolute Bahadur slope, the greater the
difference between the two distributions.

Additional files

Additional file 1: Figure S1. The net charge per TMH plotted at each
position; the positive-inside rule is stronger in TMHs from single-pass
proteins than TMHs from multi-pass proteins. The net charge was
calculated at each position as described in the Methods section for
the (A) UniHuman and (B) ExpAll datasets. Net charge for TMHs from
multi-pass proteins is shown in black, and the profile of TMHs from
single-pass proteins is drawn in blue. (PDF 17 kb)

Additional file 2: Figure S2. The difference in hydrophobicity between
the single-pass and multi-pass datasets stratified by number of TMHs is
not due to the choice of scale. As with Fig. 5, UniHuman was stratified
according to the number of TMHs in each protein. The mean amino acid
hydrophobicity values of TMHs with a sliding unweighted window of 3
residues from UniHuman proteins at each position were plotted. To
validate the findings presented in Fig. 5a, several scales of hydrophobicity

were used. (A) The White and Wimley whole residue scale [53] is based
on the partitioning of peptides between water and octanol as well as
water to POPC. A positive score indicates a more polar score. (B) The
Hessa biological scale [36]. The hydrophobicity values represent the free
energy exchange during recognition of designed peptide TMHs by the
endoplasmic reticulum Sec61 translocon and, therefore, negative values
indicate an energetic preference for the interior of a lipid bilayer. (C)
Eisenberg’s consensus scale [54] is a scale based on the earlier scales
from Nozaki and Tanford [86], Wolfenden et al. [87], Chothia [88], Janin
[89] and the von Heijne and Blomberg scale [90]. The scales are
normalised according to serine. A positive score indicates a generally
more hydrophobic score. (PDF 43 kb)

Additional file 3: Table S1. The experimental evidences of TOPDB. The
total number of experimental evidences that contribute to ExpAll
according to the TOPDB database (more information is available at
http://topdb.enzim.hu/?m=exptype&mid=14). * refers to the total number
of a subsection being larger than the total of the subcategories, likely
due to lack of annotation where ambiguous literature evidence is
counted towards the total but cannot be categorised further.
(DOC 47 kb)

Additional file 4: Figure S4. The lengths of flanks and TMHs in multi-pass
and single-pass proteins in the UniHuman and ExpAll dataset. On the
horizontal axis are the lengths of the TM segment regions in residues. On the
vertical axis are the percentages of the population. There are three regions: the
inside flank, the TMH and the outside flank. These regions are acquired
according to the TMH boundary of the respective database. Where no overlap
is permitted, if the flank encroaches the flank of another TMH, the flank length
becomes half the number of residues in the loop region between the two
features. Where they are allowed to overlap, flanking residues may include
other flanks, or indeed other TMHs. (PDF 410 kb)

Additional file 5: Table S2. Records with INTRAMEM and TRANSMEM
flanking region overlap. The total number of TMHs from UniProt datasets
with flanking region overlap between INTRAMEM and TRANSMEM
regions. The number of multi-pass records to which the TMHs belong
are shown in brackets. (DOC 39 kb)

Additional file 6: Figure S3. Relative percentage heatmaps from the
predictive datasets calculated by fractions of the absolute maximum and
by the relative percentage of a given amino acid type. The residue
position aligned to the centre of the TMH is on the horizontal axis, and
the residue type is on the vertical axis. Amino acid types are listed in
order of decreasing hydrophobicity according to the Kyte and Doolittle
scale [52]. The flank lengths in the TMH segments were restricted to up
to ±5 residues. The scales for each heatmap are shown beneath the
respective subfigure. All TMHs and flank lengths are from the UniHuman
dataset. (A) The heatmap has been coloured according to a scale that
uses column-wise normalisations used in previous studies [9]. See Eq. (1)
in the Methods section. As an illustrative example, we show how the
value for E at position ±12 is obtained. There are in total 91/22 Es at
these positions in 1705 sequences; thus, the represented value is 0.013 at
–12 and 0.053 at 12. Note that L is clearly a hotspot as well as trends
for other hydrophobic residues, I and V, as is to be expected. A positive
inside effect can also be seen. (B) The heatmap has been coloured
according to the relative percentage of each amino acid type. Here,
91/22 Es at position ±12 are compared with 615 Es seen within the flanks
and the TMH section itself amongst all sequences in the alignment.
So, the expectation of an E at position ±12 if there is any E in the TMH +
flanks region at all is 0.036 at –12 and 0.148 at position 12. With this
type of normalisation, not surprisingly, we see the positive-inside rule is
hotter than in subfigure A. There are also hotspots in the flanks for the
negatively charged residues on the outside flank. The leucine hotspot is
no longer very pronounced, as the leucines are quite evenly spread over
many positions. (PDF 120 kb)
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